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Self-organized criticality with complex scaling exponents in the train model
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The train model, which is a variant of the Burridge-Knopoff earthquake model, is investigated for a velocity-
strengthening friction law. It shows self-organized criticality with complex scaling exponents. That is, the
probability density function of the avalanche strength is a power law times a log-periodic function. Exact
results(scaling exponent: 3/22i/In 4) are found for a nonlocal cellular automaton that approximates the
overdamped train model. Further the influence of random static friction is discussed.
[S1063-651%97)50612-X
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Ten years ago Bak, Tang, and Wiesenfeld showed that the avalanchgearthquakg statistics have been found. In
weakly driven dissipative system with many metastablenost of these studies an unrealistic purely velocity-
states can organize itself into a critical state in the sense of weakening friction law is used. But any phenomenological
second-order phase transitifi]. Because criticality is char- friction law has to be velocity strengthening for large veloci-
acterized by scale invariance they expect power-law behavies. Here we use gealistic friction law (see Fig. 1that is a
ior. For example, the probability density function of the velocity independent Coulomb law for small velocities. For
strengthS of the restructuring eventéavalanches should velocities larger thal_no it is proportional to the velocity5].
scale like 158 whereB is some positive real number. Our second model is a nonlocal cellular automaton that ap-

In continuous scale invariance the scaling fadtaran be ~ Proximates the train model in the overdamped limit.

arbitrary. This invariance is partially brokenxfis restricted The train model is a finite chain dfl +1 blogks on a
» — o — o rough surface. The blocks are coupled by springs and the
to a specific valua. and its integer powers". Thisdiscrete

X ; interaction with the surface is described by a phenomeno-
scale invariancehas a profound consequen@. It leads to

® logical dry-friction lawF (see Fig. L
complexscaling exponent8 +iC, whereC=2/In \. More
precisely: The scaling function has the fo®nBf(C In 9), . .
wheref is a 2r-periodic function. Sornette and collaborators ~ MXj+F(Xj) = &(Xj+1=2X+X;-1), J=1,... N, (1)
have shown that such scaling functions are common in many
areas, e.g., fractals, deterministic chaos, dendritic growth F
and ruptur€g2].

In this paper we present two models that exhibit self- F
organized criticality(SOQ with complex scaling exponents. X x, MAAN %
The first model is the train modgB], which is a variant of el -~ M
the well-known Burridge-KnopofiBK) earthquake model v
[4]. In the literature the BK model and the train model are
treated as examples of weakly driven dissipative systems FIG. 1. The train model and the phenomenological friction law
with many metastable states. In both models power laws fo2).
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FIG. 2. The positions of the blocks just before an avalanche i=1

starts. Several hundreds of avalanches are shown. The parameters before after N
are N=50, vo=0.01, M=Fg=«=1. The initial values are Wherex; andx;"™"" are the position of the block before

x;(0)=0, forj=0,... N. and after the avalanche. The lengtlis the number of blocks
that are involved in the avalanche, i.&G"+x"*"*, For
non-system-spanning avalanch@®., L<N) this quantity
}porresponds to the height of the branching points in the tree.
In Fig. 2 the area below a branching point is j&st

We see a clear distinctive behavior between the under-
damped casey=0.1) and the overdamped casg<4) [6].
The underdamped case is characterized by chaotic motion of
the chain leading to an irregular sequence of avalanches even
for nonrandom initial conditiong3]. In the overdamped case
the motion is very regular. After the transient that is finished

whereM is the mass of a block; is the position of block,
and«x is the stiffness of the springs. The system is driven b
pulling block zero with a very small velocity, i.e.,Xo=1vt.
The other end of the chain is free, i.&y.1=Xy. Our fric-
tion law F reads:

(—o,Fg if x=0;

F(X)=1{ yvo If 0<x<vyg: 2 after the first system-spanning avalanche the same sequence
.. of avalanches reappears periodically. In both cases SOC with
yx if x>v,. discrete scale invariance occurs. But the details are different.

First we investigate the underdamped case. Figure 3
shows the cumulative densi®(S) for five different values
A resting block starts sliding if the sum of the spring forcesof the system lengtiN. The cumulative densit(S) is the
is larger tharFg. The friction law does not allow backward probability to find an avalanche that is stronger ti&The
motions because the static friction can take any negativeumulative densities fo§ show steps for large avalanches.

value. The kinetic friction force is a monotonically increas- et us assume tha®(S) fulfill a usual finite-size scaling
ing function of the velocity. We assume <<Fg otherwise  ansatz, i.e.,

the chain would not show avalanches. In the simulation we

drive the system infinitesimally slowly. This can be achieved P(S)=S “G(S/IN9). (4

in the following way. During an avalancheg, is held con-

stant. After the avalanche, when all blocks are at fest,  Note thatB= o+ 1 because the probability density function

5(,—=O), we setxo=(1+¢€)Fg/k—X,+2x,, with e<1. Thus is the derivative ofP. The inset of Fig. 3 shows the best

the force on block number one is {le)F5 and just exceeds approach to such an ansatz. The valuexofvas obtained

the threshold for sliding. Usually we have chosen10 “. from a fit of the averaged values @& for the system-
Figure 2 shows the evolution of the model for two differ- spanning avalanches that are responsible for the last step in

ent values of the damping constantThe avalanches always the cumulative density. This fit yielda=2.34+0.02. For

start at the pulling end. They propagate up to a certain blockthe value ofc we have chosewr=1—1/a because a sum

This is the reason for the treelike structures seen in Fig. 2ule (S)~N has to be fulfilled 3].

We characterize the avalanches by two quantities that have a Although the finite-size scaling ansatz is not completely

simple geometric meaning in Fig. 2: The lendthand the satisfactory, one has the impression that for increasinbe

strengthS defined by scaling functions are approaching a sawtooth function. In
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other words, the cumulative density has steps that become 10° 4
steeper and steeper for increasiMgand largerS. The scal- T
ing function shows oscillations that are periodic in the loga- 1071 =
rithm of the argument. This is a clear sign of discrete scale |
invariance. The numerically obtained scaling factor is 10 1 N
X =4.3+0.4. Thus the complex exponent of the probability 1074 L
density function readB+iC =o+1+2mi/lIn\ ~1.573+ 4.3. © 1 os

The self-similarity of the avalanche tree in Figbp re- % 10 "3 o6 C
flects the discrete scale invariance in the overdamped case. 1075 %04 K
Between two system-spanning avalanchés; 2 avalanches 1 @02
occur. Heren=1+int(logN/log2), where int) denotes the 107° =

%% o 0 o 0
largest integer smaller thax. There are onlyn different S
avalanche lengths and sizes. Tiéh type of avalanche oc-
curs 2~ ™ times. Its length isL=2M"1, Thus, the scaling
factor is 2. The cumulative densif(L) is in a log-log plot
a staircase with stairs of equal heights and widtfis A FIG. 4. The cumulative densit(S) for the deterministic cel-
similar staircase is found fd?(S). Here the scaling factor is lular automaton for the overdamped train model with and without
N =22=4 becauseS corresponds to an area in Fig. 2. The randomly chosen constant static forceg. The parameters are
critcal exponents are a=2 and o=05. Thus (Fgy=«k=1 andN=2121. The curves are shifted in order to dis-
B+iC =3/2+ 2i/InA. tinguish them. The upper solid curve is the nonrandom case, i.e.,

The overdamped behavior of the train model can be mimAFs=0. The middle dashed curve is one realization of the random

. . static friction taken from a Gaussian distribution witt¢=0.1.
icked by the followingnonlocal cellular automaton. The : ) - S

tate of h cell is i by the block i d The lower solid curve is an average over 1000 realizations of the
state o eac. cell 1s g.lver? y the block posi |0>qsan. 8 random static friction. The inset shows the scaling functions.
boolean variables; which is true when the block slides,

otherwise it isfalse. The driving rule is the same as in the
train model, i.e.xo=(1+ €)Fg/k— X5+ 2X;.

The relaxation rules are the following) First the forces

fi=K(Xj_1—2X;+Xj1) —Fgare calculated. The variabtg

107%107"10° 10' 10° 10 10* 10° 10° 107 10°
S

on until no new block starts to slide. Thus the avalanche
lengthL is the smallest positive value that fulfills

is true if and only if f;>0. (ii) In the second step the posi- Xo+ (XL +1=Xo)L/(L+ 1) +X 15— 2% 1<Fs/k. (7)
tions of all sliding blocks are updated simultaneously in the
following way: After some straightforward calculations one finds that be-
tween two system-spanning avalanch8s®avalanches oc-
Xj, ~Xj, cur. They are organized in the same binary tree as in the train

Xj=Xj,+ -1 (J=j1), for j1<j<j2, (5 model[see Fig. 2b)]. The length and the strength of theh

type areL,,=2™"! and S,,=(1+2°™ 1)Fs/(6«), respec-
wherej, andj, are the left-nearest and right-nearest non-tively. Therefore the cellular automaton has exactly the same
sliding blocks. That is,s; =s; =false and s;=true, for ~ scaling exponents and log periodicity as the overdamped

j,<ij<i,. The consequence of this rule is that rain model.
Xj—1t+Xj+1—2%;=0, for j;<j<j,. Note thatsy=sy;;

=false If j,=N+1 thenxj2=xj1 in (5). This rule gives the 107 4— et
result of a relaxation of sliding blocks governed ity as- 6 |

sumingv =0 in the friction law(2) and immobile nonslid- 107 L
ing blocks. The slightly curved lines in Figl® are the effect 10°4 L

of ve#0. (iii) In the third step the boolean variabe is

recalculated: A sliding block still slides and nonsliding block < 10"+ i

starts to slide for the same reason as in the first step. That is, 7 o 0.6
o e 04 C

__ <old
SJnew_s}) V(Xj—1= 2%+ X1~ Fs/k>0), 102__§02 B
- 1
for J—l, ....N, (6) 10 N 0'90—310—210—1 0° 10 -
o S/N?

where\/ denotes the boolean operator for inclusive (or) (O o e B R o v e s e
Repeat step6i) and(iii ) until no new block starts to slide in 10710 107 10° 107 107 107 107 107 10" 10

step(iii ). Note that rul€ii) is anonlocalrule becausg; and >

j2 can be arbitrary far from sitg This is in contrast to most FIG. 5. The cumulative densit(S) of the cellular automaton
other automata discussed in the field, which have local relaxith randomly chosen static frictioRs which changes after each
ation rules. slide. The parameters af&g)=«x=1, AF.=10"3, and N=530,

The result of applying these relaxation rules are the fol-750, 1060, 1500, and 2121. The cumulative densities are shifted by
lowing. The first sliding block is always block number one. 2 log,,N in order to separate them. The inset show the scaling
In the next cycle block number two starts to slide. This goesunction G.
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The behavior of the automaton is very sensitive to NONHecause the motion of a group of less tﬁérb|ocks is in
uniformities in static frictionFs because the avalanches al- general irregular. Two observations may help to explain this
ways stop when conditiotv) is just fulfilled. We introduce  phenomenon(i) The steps in the cumulative densitylofd

quenched randomness in two different ways leading to twg,ot occur at powers of two but aN/\", for n=0, ... n

ditferent behaviors. whereX, ~2, a is an N-independent number between 1/2

In the first way random numberSg; from a Gaussian = ~ .
distribution are assigned to each block. After each systen@nd 1, andn is clearly less than ImVL)/In2. (ii) Although
AIBE_: large avalanches are organized in a binary tree, their

spanning avalanche the same sequence of avalanches sequence of occurrence is different. Let us consider a bi
pears. They are also organized in a hierarchical manner. The q ' 9

cumulative densities are still staifsee Fig 4but the heights avalanche much bigger than but not a system-spanning

and the widths of the steps are fluctuating. Averaging ovePn€- LOoking for a considerably bigger avalanche in the past
many realizations ofF ¢, ,F s Fen leads to cumulative and in the future we find that in the overdamped case both

densities that still show log-periodic oscillatiofsee Fig. 4 time intervals are the same whereas in the underdamped case

The oscillation amplitude decreases with the noise level Ththe time interval in the past is much smaller than the time
P ' E]terval in the future. In fact only a handful of very tiny

phase of the oscillation changes also but it still does no valanches occur in the time interval in the past.

depend orN. . . . We have shown that SOC with complex scaling expo-
The automaton shows a different beha"'of i We assign %hents occurs in the train model with raalistic velocity-

each block a new random numbeg; after a slide. Figure 5 g o gthening friction law. We are confident that other depin-

shows that the oscillations in the cumulative density vanlsrhing models may also show discrete scale invariance. The

completely even for infinitesimally small noise levil. o ingredients are the followingi) There should be a bi-
Otherwise the scaling exponents are the same as for the nogt'ability between pinning and sliding for the same local

random case. In the underdamped case the train model is | ce. This can be either achieved by inertia of the pinned

sfensitive to this _kind of quenchedzrandomngss. In ,SimU|abbjects or by age-dependent pinnifig., the pinning force
tions of Eq.(1) with AFs/(Fs)=10"% we still find oscilla- \yhich increases with the pinning timeii) The sliding dy-
tions but with smaller ampIytugie_s_. namics should be nonchaotic with diffusion-like relaxation
Why have these log periodicities not be found for purely ot oo \vavelength excitations. In BK-like models a
velocity-weakening fr|ct|o_n_law$3]’_? The main reason may velocity-strengthening friction laws are a necessary condi-
be that for_sqch lawanysliding motion of the cha|_n orapart o for that.(iii ) Quenched randomness in the pinning forces
of the chain isunstable For a velocity-strengthening friction ¢, 5.1d be absent or weak. The first two properties are nec-
force, sound waves with wavelength larger thangggary to get nonlocal deterministic relaxations rules similar
L=4mkM/y are overdamped because their frequency beto our automaton. These rules are responsible for discrete
comes less thap/2M. Thus avalanches involving more than scale invariance because they either amplify successively an
L blocks show regular behavior after some possibly chaotiéntrinsic (microscopi¢ length scale up to the system size by
transients. This regular behavior is very well described bya constant factor or vice versa. Quenched randomness dis-
the nonlocal cellular automaton. In the overdamped caseorts these processes leading to fluctuations of the phase of
(i.e., L=1) the regular motion successively amplifies thethe log periodicity, which may be smeared out if they are too
smallest intrinsic length scalé.e., L=1) by the factor 2. Strong.
This basic mechanism is responsible for discrete scale invari- | gratefully acknowledge D. Sornette who introduced me
ance which would be destroyed by the intrinsic instabilitiesto the concept of discrete scale invariance, H. Thomas for a
caused by a velocity-weakening friction force. It is unclearcritical reading of the manuscript, and the Centro Svizzero di
why in the underdamped casgeee., L>1) discrete scale in- Calcolo Scientifico at Manno, Switzerland for doing the
variance also occur. The mechanism has to be a different or@mulations on the NEC SX-3 and SX-4.
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