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Complete and exact solutions of a class of nonlinear diffusion equations
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In this Rapid Communication complete and exact solutions of a class of nonlinear diffusion equations have
been presented. The exact solutions give a tutorial explanation about the mechanism of velocity selection. The
marginal stability hypothesis is extended to predict velocity selection for the equations. It has been shown that
this class of equations can be transformed to the heat equation via nonlinear transformations. Numerical
experiments have been performed to test the theoretical predif82063-651X97)51411-5
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In exploration of dissipative systems far from equilibrium cal velocity. All of these points are physically significant, in
[1,2], one of the challenging problems concerns the selectioparticular the selection of the asymptotic spe@tl. This
mechanism: what kinds of evolving velocity and emergingcharacteristic quantit€*, in a sense, plays a similar role for
pattern would be selected in a kinetic process when the systescribing kinetic dissipative systems far from equilibrium
tem is suddenly quenched into an unstable state. This noras the critical exponents do for phase transitions in equilib-
equilibrium problem shares a common ground with physicakium.
kinetics, chemical reaction and living phenomeida-13]. A conventional wisdom is to predict the selected velocity
The difficulties with this problem originate from the specific and other basic quantities without solving any tough nonlin-
nonlinearities in dissipative systems. When a nonlinear sysear equations. Inspired by the mathematical studies, physi-
tem loses its stability, a set of possible states of the systemists have proposed a few scenaria¥—21] regarding the
would appear. In practice, however, one and only one state iselection mechanism on some nonlinear equations. Dee and
realized. Therefore one needs to find a criterion that allowsanger[17], based on heuristic arguments, made a step to-
one to judge which state would be finally selected in a diswards obtaining a criterion of the marginal stability. Accord-
sipative process. Although the search for such a selectioimg to their arguments in simple cases the selected velocity
mechanism has a long history in studies of crystal growttand wave number can be determined via analyzing the dis-
[3], recent interest and developments in this topic have beepersion relationship of the corresponding equations, and the
directly stimulated by rigorous mathematical studies done irselected velocity is basically represented by the smallest
the 1970’s about a specific kind of nonlinear diffusion equaphase velocity. Since then several different scenarios includ-

tions[14-18§. ing the structure stability principlg20], and the variational
In Aroson and Weinberger’'s work on the Fisher-type non-principle [21], have been proposed in addition to the exten-
linear diffusion equatiohl4] sive discussions about marginal stabilify8,19.
) 5 As nonlinearity is a subtle subject, finding such a selec-
dplot — oplox==1(¢), (1) tion principle depends to a large extent on a detailed knowl-
f(¢) e CY0,1]; f(¢)>0Vhe(0,1); edge of the corresponding equations. A completely and ex-
actly solvable example of a nonlinear partial differential
f(0)=f(1)=0; f'(0)>0;f'(1)<0, equation which could be related to the selection mechanics is

indispensable. First of all, such an example would shed light
it has been rigorously proved, based on the comparison prirgn where and how a selection event emerges. Second, it
ciple on parabolic operators, that there exists a distinct selegould be used to either illustrate or to judge the validity of a
tion mechanism in this Fisher-type equation. In plain physi-proposed selection principle. Third, it would stimulate the
cal language the main results obtained by Aroson an@evelopment of a more general principle of selection for a
Weinberger are the followingi) There exists a unique criti- wider class of equations. The purpose of this Rapid Commu-
cal velocityC* for Eq. (1), such that for anfC>C* Eq.(1)  nication is to offer such examples of nonlinear diffusion
admits a kink-type solitary wave solutiofij) the system is  equations, and to discuss the problem of velocity selection.

extremely insensitive to the initial conditions; during the dy- we begin with the following nonlinear diffusion equation
namic process all irrelevant modes of initial perturbationsstudied by Sattingelr16]:

quickly dissipate, while relevant modes survive and are am-

plified; (iii) almost any physical disturbance of a nonlinear dplat — P plax®> =g(dplox , ), 2
diffusion system governed by E{l) develops into a kink-

type solitary wave with a critical velocit€*; the front with  whereg[(d¢/dx), #] is a smooth function of¢/x and ¢.
speedC* is an attractive state of the time evolution, which is Equation(2) is a generalization of Eq1). By defining the
automatically selected by the system itsefiy) this  weighted function and weighted norms, Sattinger proved a
critical velocity can be estimated by \2'(0)<C* general stability theorem regarding wave front solutions of
$2\/Sup¢e(0,1)[f(¢)/¢]. If f(¢) is a concave function, EQq.(2). As a particular example of Ed2), let us consider
the estimation actually gives an exact expression for the critithe following modified Fisher equation
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9\ 2 One of the crucial characteristics of this nonlinear partial
- —( —) =¢p(1-¢), (3 differential equation is that the basic form of the differential
- operator on the left hand side of E() remains invariant

) under the operation of any power transformation. Actually if
wherem is a parameter. Whem=0, Eq.(3) becomes the e make the transformatian=wv'* for Eq. (5) wherea is a
standard Fisher equation. The third term on the left hand sidgeal number, then Eq5) becomes

of Eq. (3) represents a modification to the diffusion. It will
be seen shortly that by adding this term into the standard dv ¢%°v (a+m—1)/a [dv
Fisher equation, Eq3) acquires an important inherent sym- o y 0 \ax
metry. This equation has applications to real systems such as
bacteria colony growttj10]. If one looks for a traveling This means that after performing the power transformation,
wave solution,gp= ¢p(x—ct)=¢(£), Eq. (3) becomes the differential operator on the left hand side of EG)
shows the same algebraic structure as that of Bqlt is this
d¢ d’¢ m (de\? symmetry observation that suggests that &)y.can be ex-
“CUE g2 1-gldg) =D @ Lty linearized for th =2 by using the followi
dg2 1-¢ldé actly linearized for the casm y using the following
transformation:
In a mechanical analogy, this ordinary differential equation o
describes the motion of a particle in the potential u=v - @)
—J#(1—¢)d¢ with the resistance forces proportional to By virtue of transformatior{7), Eq. (5) is reduced to a linear
the velocity as well as to the velocity squared. The statejiffusion equatior22]
¢=0 is unstable, whereas the state=1 is stable.

2
) =av(vt*-1). (6)

By letting ¢=1—u, Eq. (3) becomes dulot — d*vlgx* =v—1. (8
g 72 m/ ou\ 2 In the case of separable variables, E8). can be exactly
o_au + _(_u) =u(u—1) (5)  solved. Therefore the most general solution of & for the

2 IX ) A
gt gx2 U casem=2 is

d=1— 1/ 1+, AexplVo,— 1[x+ (oi/ o — 1) t]}+Aexp— Vo, — 1 x— (oi/Jo;— 1) t]} |, 9
I
|
where A;; and A;, are integration constants anal is an 1 ™
arbitrary constant which represents an eigenvalue of®#q. ¢;=1— , C1= ,
In order to guarantee that is a bounded real number, the 1+Aexd — Vo1 —1(X—cyt)] w;—1
conditionsA;;=0 andA;,=0 are required. (12)
This general solution provides a great deal of information 1 W,
about Eq.(3). First of all, it is easy to see from E¢Q) that =1- , Co= ,
q( ) y w) ¢2 1+A2exq_\a)2_1(x_C2t)] 2 w2—1
1 (13
=1~ 1+ elo- Ity g—Jo-Ix+at (10 and
is a special solution of Eq3). When w>1, this solution ¢3=1= L1+ Arex] — Vo, = 1(x=Cat)]
expresses a pair of wave fronts which propagate with a ve- +Aex] — Vo, — 1(X—c,t) ]} (14)
locity
are the exact wave front solutions of E). Solution(14),
o 11 ¢4, contains the two eigenmodes of E§), which could be
c= o—1 (1) regarded as a “nonlinear combination” of solutiofi®) and

(13). A natural question is this: which exact solution is more

probable,#,, &,, or ¢3? The answer, however, is very
in the opposite directions to each other. In this way the syselear. If c;<c,, the last term in the denominator of Ed.4)
tem evolves to the stable stage=1 from the unstable state will be much smaller than the other terms in the asymptotic
¢=0. Figure 1 shows a computer simulation of this wavelimit; therefore solution(14) will quickly evolve into solu-
phenomenon. The numerical calculations illustrate that théion (12). The role of wave fronts with a faster velocity will
wave propagates with a definite velocity=2. However, be gradually diminished in the kinetic process. In other
whenw< 0, solution(10) indicates that any disturbance will words, the slower the wave travels, the longer the wave sur-
decay rapidly; so there will be no wave propagation. Furthervives. Similarly, the general solutiof®) contains the multi-
more, for any pair of value®;>1 andw,>1, the following  eigenmodes of E(8), which may be considered as a “non-
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FIG. 1. Numerical simulation of Eq3) for m=2, exhibiting a pictorial FIG. 3. The numerical calculations on the selected veldity, versus
representation of the exact soluti¢h0). The two fronts propagate with o parameteg. The solid line is the theoretical prediction by Eg9), and

velocity C=2 in the opposite directions, and gradually disappear after col-he filled circles represent the numerical results on &@).
lision.

Therefore all the classical solutions of the modified Fisher
linear combination” of multisolitary wave solutions; each equation can be exactly recovered. This situation is similar to
with a different velocity. The same arguments applied to th hat of the Burgers equation which can be transformed to the

general solutior{9) lead to the conclusion that only the front eat equation by the CoIe-Hopf ”a”SfO”T.‘atW]: This is .
with the smallest velocity will survive in the asymptotic another example of a nonlinear partial differential equation

; : X . which can be exactly and completely solved.
process. By using expressiddl), this smallest velocity Whenm#2, to the best of our knowledge, no exact and
is Cmin=2. Therefore the front with the smallest velocity ., ; ;

, . o . mplete solutions of Eq3) can be found. Although the
is naturally selected in the kinetic process. This exampley,qe exact solvable example and the proposed selection

illustrates some basic points of the selection process angechanism support the basic points of the marginal stability
suggests that the selection mechanism is the competitioRynothesis, the correct selected velocity cannot be predicted
between the nonlinear eigenmodes. When the system igccessfully by simply using the conventional marginal sta-
suddenly driven to an unstable state, a large amount Ghjlity hypothesis[17—19. The reason is that there is a non-
nonlinear modes are excited. The number of these modamear derivative termm/(1— ¢)(d¢/9x)? in Eq. (3). Thus a
may be innumerably infinite, and each of them has a differsupplementary version of the marginal stability hypothesis
ent decaying rate. These modes interact with each other inshould be made. Generally, asymptotic behavior of a wave
dissipative environment. The eigenmodes with a larger defront is dominated by both stable and unstable states; and a
caying rate are depressed. Finally only the mode with theselected velocity is determined by a balance between
smallest decaying rate survives in a nonlinear limit. It is thisasymptotic behavior of the wave on both sides. Let us write
lowest decay mode that determines the selected velocitywo dispersion relationships for E(B) for both the unstable
This picture on the velocity selection is, in fact, consistentState¢=0 and the stable staig=1. The first isk;=k*+1
with the corresponding conclusions in the mathematical lit(@round¢=0), by which the corresponding minimum phase
erature[14—16 and the considerations of marginal stability Velocity is [Cimis=2. The second isk,=(1-m)k*~1
[17,18. (around¢=1), by which the corresponding minimum phase
Another interesting point for Eq(8) is that if v=1  velocity iS|Comin|=2Vm—1, wherem>1. The question is:
+ expt)w(x.t), Eq. (8) will become the heat equatiatw/dt  which velocity is reliable|cqmin| =2 or |Comin| =2Vm—17?
— (0°w/9x?)=0. This shows that for the case=2, the Note that both thec;n,i, and c,ni, represent the stability
modified Fisher equatioifd) is transformed into the heat limits of the wave front on the opposite sides. In order to
equation by the following transformation: guarantee the global stability of the wave front, the low limit
of the velocity should be the larger of the two velocities,
|C1minl @nd|cominl- Therefore the naturally selected velocity,

d= explt)w(x,t)/1+[expt)w(x,t)]. (19  j.e., the marginal velocity, is

5 Cnin=MaX{|C1minl,[Caminl}- (16)

In short, the selected velocity i€,,;,=2 when m<2;

and C.,i,=2Vm—1 when m>2. A numerical experi-

c..3 ment has been performed to check this prediction. The re-
min . . . .

sults are shown in Fig. 2. It is clear that the numerical cal-

, culations are in excellent agreement with the theoretical pre-

1} diction.

' Next we would like to discuss a general example of

[

FIG. 2. The numerical calculations on the selected veldCity, vs the
parametem. The solid line is the theoretical prediction by Ed6), and the
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filled circles represent the numerical results on &)

Eq. (2):

au  du B+1

ot (9)(2 u

ou

ox

2

=u(uf-1),

17

where the parametg®>0 is an arbitrary real number. This
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class of nonlinear diffusion equations can be considered as a o v
generalization of Eq(5). Armed by the above detailed dis- i —=B-1).
cussion and analysis, our task now becomes straightforward X

and swift. First of all, it is easy to see that by lettinig So one immediately gets the complete and exact solutions of
=v¥P Eq.(17) is transformed into Eq. (17) for any value of the parametg;

(18)

1 1B
u= . (19

1+E Ailex{ \/ﬁ(wi—l)(er wi\/Et +Ai2ex;{—\/,8(wi—1)(x—

Vor 1

The structure of solutions of EL7) is similar to that of Eq. It is encouraging that for the different values@®fandm our

(3). Carrying out a discussion parallel to that for E8), we  numerical calculationg23] are once again in excellent agree-

reach to the same conclusions that all the fast nonlineament with the prediction by Eq22).

eigenmodes are depressed by the slowest eigenmode duringin summary, the complete and exact solutions of a class

a dissipative process, and finally the asymptotic behavior obf nonlinear diffusion equations have been found based on a

the system is dominated only by this slowest eigenmodesymmetry observation, which are the first and perhaps the

According to Eq(19), each nonlinear propagating mode hassimplest examples that explicitly illustrate the fundamental

a phase velocitfC= w\/8/\w—1. Then the slowest veloc- points of selection mechanism and offers a concrete expla

ity, or the selected velocity is nation for the abstract conclusions on the nonlinear diffusion
equations related to the selection mechanism. It has been

Chin= 2\/E-

shown that these equations can be exactly mapped into the
Figure 3 demonstrates that our numerical simulations on Eci

inear heat equation. This fact indicates that there exists an
(17) which show the perfectly same velocities for the differ- hhergnt relationship among this_class of equations, the heat
ent values ofg as predicted by Eq20). These general re- equation and the Burgers equation. Furthermore an alterna-
sults obviously support the proposed selection mechanis

r“ve scenario on the marginal stability hypothesis has been
again and are more convincing. Furthermore a noticeabl roposed, which is capable of predicting the selected veloc-
fact is that by using the transformatioru=[1/1

ity for the general case of the equations. One element of this
1 exp(Bt)w(x,1)]¥, Eq.(17) becomes the linear heat equa- scenario is to emphasize the significance of asymptotic
tion.

analysis on stability on both the stable and unstable sides of
We have also considered a more general case of3q.

(20

a wave front; the other is that a selected velocity should be
chosen in such a way that would guarantee the necessary
2 conditions on stability on the both sides. In our opinion the

=u(uf-1), (21) extended marginal stability hypothesis should be valid for a
wider class of nonlinear diffusion equations.

4+ —
ot (9X2 u

du du mfdu
X

wherem+ B+ 1. In this case no complete and exact solution  The authors would like to thank Andy Guenthner and W.
could be found. Using the extended marginal stability crite-Woyczynski for their helpful discussion and comments. This
rion discussed above, the selected velocity is work was supported by the NSF-ALCOMdvanced Liquid

Crystal Optical MaterialsCenter through Grant No. DMR-
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