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Complete and exact solutions of a class of nonlinear diffusion equations
and problem of velocity selection
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In this Rapid Communication complete and exact solutions of a class of nonlinear diffusion equations have
been presented. The exact solutions give a tutorial explanation about the mechanism of velocity selection. The
marginal stability hypothesis is extended to predict velocity selection for the equations. It has been shown that
this class of equations can be transformed to the heat equation via nonlinear transformations. Numerical
experiments have been performed to test the theoretical prediction.@S1063-651X~97!51411-5#

PACS number~s!: 47.10.1g, 02.30.Hg, 03.40.Kf
m
tio
ng
sy
o

ca

c
y
te
te
w
is
tio
t

e
i
a

n

ri
le
s

an
-

y-
n
m
a

is

,
rit

in

r
m
lib-

ity
lin-
ysi-

and
to-

d-
city
dis-
the

lest
lud-

n-

ec-
wl-
ex-
ial
s is
ght
d, it
f a
he
r a

u-
n
n.

n

d a
of
In exploration of dissipative systems far from equilibriu
@1,2#, one of the challenging problems concerns the selec
mechanism: what kinds of evolving velocity and emergi
pattern would be selected in a kinetic process when the
tem is suddenly quenched into an unstable state. This n
equilibrium problem shares a common ground with physi
kinetics, chemical reaction and living phenomena@3–13#.
The difficulties with this problem originate from the specifi
nonlinearities in dissipative systems. When a nonlinear s
tem loses its stability, a set of possible states of the sys
would appear. In practice, however, one and only one sta
realized. Therefore one needs to find a criterion that allo
one to judge which state would be finally selected in a d
sipative process. Although the search for such a selec
mechanism has a long history in studies of crystal grow
@3#, recent interest and developments in this topic have b
directly stimulated by rigorous mathematical studies done
the 1970’s about a specific kind of nonlinear diffusion equ
tions @14–16#.

In Aroson and Weinberger’s work on the Fisher-type no
linear diffusion equation@14#

]f/]t 2 ]2f/]x2 5 f ~f! , ~1!

f ~f!PC1@0,1#; f ~f!.0,;fP~0,1!;

f ~0!5 f ~1!50; f 8~0!.0; f 8~1!,0 ,

it has been rigorously proved, based on the comparison p
ciple on parabolic operators, that there exists a distinct se
tion mechanism in this Fisher-type equation. In plain phy
cal language the main results obtained by Aroson
Weinberger are the following:~i! There exists a unique criti
cal velocityC* for Eq. ~1!, such that for anyC.C* Eq. ~1!
admits a kink-type solitary wave solution;~ii ! the system is
extremely insensitive to the initial conditions; during the d
namic process all irrelevant modes of initial perturbatio
quickly dissipate, while relevant modes survive and are a
plified; ~iii ! almost any physical disturbance of a nonline
diffusion system governed by Eq.~1! develops into a kink-
type solitary wave with a critical velocityC* ; the front with
speedC* is an attractive state of the time evolution, which
automatically selected by the system itself;~iv! this
critical velocity can be estimated by 2Af 8(0)<C*
<2ASupfP(0,1) @ f (f)/f#. If f (f) is a concave function
the estimation actually gives an exact expression for the c
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cal velocity. All of these points are physically significant,
particular the selection of the asymptotic speedC* . This
characteristic quantityC* , in a sense, plays a similar role fo
describing kinetic dissipative systems far from equilibriu
as the critical exponents do for phase transitions in equi
rium.

A conventional wisdom is to predict the selected veloc
and other basic quantities without solving any tough non
ear equations. Inspired by the mathematical studies, ph
cists have proposed a few scenarios@17–21# regarding the
selection mechanism on some nonlinear equations. Dee
Langer@17#, based on heuristic arguments, made a step
wards obtaining a criterion of the marginal stability. Accor
ing to their arguments in simple cases the selected velo
and wave number can be determined via analyzing the
persion relationship of the corresponding equations, and
selected velocity is basically represented by the smal
phase velocity. Since then several different scenarios inc
ing the structure stability principle@20#, and the variational
principle @21#, have been proposed in addition to the exte
sive discussions about marginal stability@18,19#.

As nonlinearity is a subtle subject, finding such a sel
tion principle depends to a large extent on a detailed kno
edge of the corresponding equations. A completely and
actly solvable example of a nonlinear partial different
equation which could be related to the selection mechanic
indispensable. First of all, such an example would shed li
on where and how a selection event emerges. Secon
could be used to either illustrate or to judge the validity o
proposed selection principle. Third, it would stimulate t
development of a more general principle of selection fo
wider class of equations. The purpose of this Rapid Comm
nication is to offer such examples of nonlinear diffusio
equations, and to discuss the problem of velocity selectio

We begin with the following nonlinear diffusion equatio
studied by Sattinger@16#:

]f/]t 2 ]2f/]x2 5g~]f/]x ,f! , ~2!

whereg@(]f/]x),f# is a smooth function of]f/]x andf.
Equation~2! is a generalization of Eq.~1!. By defining the
weighted function and weighted norms, Sattinger prove
general stability theorem regarding wave front solutions
Eq. ~2!. As a particular example of Eq.~2!, let us consider
the following modified Fisher equation
R4931 © 1997 The American Physical Society
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]f

]t
2

]2f

]x2
2

m

12fS ]f

]x D 2

5f~12f! , ~3!

wherem is a parameter. Whenm50, Eq. ~3! becomes the
standard Fisher equation. The third term on the left hand
of Eq. ~3! represents a modification to the diffusion. It w
be seen shortly that by adding this term into the stand
Fisher equation, Eq.~3! acquires an important inherent sym
metry. This equation has applications to real systems suc
bacteria colony growth@10#. If one looks for a traveling
wave solution,f5f(x2ct)[f(j), Eq. ~3! becomes

2c
df

dj
2

d2f

dj2
2

m

12fS df

dj D 2

5f~12f!. ~4!

In a mechanical analogy, this ordinary differential equat
describes the motion of a particle in the potent
2*f(12f)df with the resistance forces proportional
the velocity as well as to the velocity squared. The st
f50 is unstable, whereas the statef51 is stable.

By letting f512u, Eq. ~3! becomes

]u

]t
2

]2u

]x2
1

m

u S ]u

]xD 2

5u~u21! . ~5!
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One of the crucial characteristics of this nonlinear par
differential equation is that the basic form of the different
operator on the left hand side of Eq.~5! remains invariant
under the operation of any power transformation. Actually
we make the transformationu5v1/a for Eq. ~5! wherea is a
real number, then Eq.~5! becomes

]v
]t

2
]2v

]x2
1

~a1m21!/a

v S ]v
]xD 2

5av~v1/a21! . ~6!

This means that after performing the power transformati
the differential operator on the left hand side of Eq.~6!
shows the same algebraic structure as that of Eq.~5!. It is this
symmetry observation that suggests that Eq.~5! can be ex-
actly linearized for the casem52 by using the following
transformation:

u5v21. ~7!

By virtue of transformation~7!, Eq. ~5! is reduced to a linear
diffusion equation@22#

]v/]t 2 ]2v/]x2 5v21. ~8!

In the case of separable variables, Eq.~8! can be exactly
solved. Therefore the most general solution of Eq.~3! for the
casem52 is
f512 1/S 11(
i

Ai1exp$Av i21@x1 ~v i /Av i21! t#%1Ai2exp$2Av i21@x2 ~v i /Av i21! t#% D , ~9!
re
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where Ai1 and Ai2 are integration constants andv i is an
arbitrary constant which represents an eigenvalue of Eq.~8!.
In order to guarantee thatf is a bounded real number, th
conditionsAi1>0 andAi2>0 are required.

This general solution provides a great deal of informat
about Eq.~3!. First of all, it is easy to see from Eq.~9! that

f512
1

11eAv21x1vt1e2Av21x1vt
~10!

is a special solution of Eq.~3!. When v.1, this solution
expresses a pair of wave fronts which propagate with a
locity

c5
v

Av21
~11!

in the opposite directions to each other. In this way the s
tem evolves to the stable statef51 from the unstable stat
f50. Figure 1 shows a computer simulation of this wa
phenomenon. The numerical calculations illustrate that
wave propagates with a definite velocityc52. However,
whenv,0, solution~10! indicates that any disturbance wi
decay rapidly; so there will be no wave propagation. Furth
more, for any pair of valuesv1.1 andv2.1, the following
n

e-

s-

e

r-

f1512
1

11A1exp@2Av121~x2c1t !#
, c1[

v1

Av121
,

~12!

f2512
1

11A2exp@2Av221~x2c2t !#
, c2[

v2

Av221
,

~13!

and

f3512 1/$11A1exp@2Av121~x2c1t !#

1A2exp@2Av221~x2c2t !#% ~14!

are the exact wave front solutions of Eq.~3!. Solution~14!,
f3, contains the two eigenmodes of Eq.~8!, which could be
regarded as a ‘‘nonlinear combination’’ of solutions~12! and
~13!. A natural question is this: which exact solution is mo
probable,f1 , f2 , or f3? The answer, however, is ver
clear. If c1,c2, the last term in the denominator of Eq.~14!
will be much smaller than the other terms in the asympto
limit; therefore solution~14! will quickly evolve into solu-
tion ~12!. The role of wave fronts with a faster velocity wi
be gradually diminished in the kinetic process. In oth
words, the slower the wave travels, the longer the wave
vives. Similarly, the general solution~9! contains the multi-
eigenmodes of Eq.~8!, which may be considered as a ‘‘non
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linear combination’’ of multisolitary wave solutions; eac
with a different velocity. The same arguments applied to
general solution~9! lead to the conclusion that only the fron
with the smallest velocity will survive in the asymptot
process. By using expression~11!, this smallest velocity
is cmin52. Therefore the front with the smallest veloci
is naturally selected in the kinetic process. This exam
illustrates some basic points of the selection process
suggests that the selection mechanism is the compet
between the nonlinear eigenmodes. When the system
suddenly driven to an unstable state, a large amoun
nonlinear modes are excited. The number of these mo
may be innumerably infinite, and each of them has a diff
ent decaying rate. These modes interact with each other
dissipative environment. The eigenmodes with a larger
caying rate are depressed. Finally only the mode with
smallest decaying rate survives in a nonlinear limit. It is t
lowest decay mode that determines the selected velo
This picture on the velocity selection is, in fact, consiste
with the corresponding conclusions in the mathematical
erature@14–16# and the considerations of marginal stabili
@17,18#.

Another interesting point for Eq.~8! is that if v51
1exp(t)w(x,t), Eq. ~8! will become the heat equation]w/]t
2 (]2w/]x2)50. This shows that for the casem52, the
modified Fisher equation~3! is transformed into the hea
equation by the following transformation:

f5 exp~ t !w~x,t !/11@exp~ t !w~x,t !# . ~15!

FIG. 1. Numerical simulation of Eq.~3! for m52, exhibiting a pictorial
representation of the exact solution~10!. The two fronts propagate with
velocity C52 in the opposite directions, and gradually disappear after
lision.

FIG. 2. The numerical calculations on the selected velocityCmin vs the
parameterm. The solid line is the theoretical prediction by Eq.~16!, and the
filled circles represent the numerical results on Eq.~3!.
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Therefore all the classical solutions of the modified Fish
equation can be exactly recovered. This situation is simila
that of the Burgers equation which can be transformed to
heat equation by the Cole-Hopf transformation@22#. This is
another example of a nonlinear partial differential equat
which can be exactly and completely solved.

WhenmÞ2, to the best of our knowledge, no exact a
complete solutions of Eq.~3! can be found. Although the
above exact solvable example and the proposed selec
mechanism support the basic points of the marginal stab
hypothesis, the correct selected velocity cannot be predi
successfully by simply using the conventional marginal s
bility hypothesis@17–19#. The reason is that there is a no
linear derivative termm/(12f)(]f/]x)2 in Eq. ~3!. Thus a
supplementary version of the marginal stability hypothe
should be made. Generally, asymptotic behavior of a w
front is dominated by both stable and unstable states; an
selected velocity is determined by a balance betw
asymptotic behavior of the wave on both sides. Let us w
two dispersion relationships for Eq.~3! for both the unstable
statef50 and the stable statef51. The first isl15k211
~aroundf50), by which the corresponding minimum pha
velocity is uc1minu52. The second isl25(12m)k221
~aroundf51), by which the corresponding minimum pha
velocity is uc2minu52Am21, wherem.1. The question is:
which velocity is reliable,uc1minu52 or uc2minu52Am21?
Note that both thec1min and c2min represent the stability
limits of the wave front on the opposite sides. In order
guarantee the global stability of the wave front, the low lim
of the velocity should be the larger of the two velocitie
uc1minu anduc2minu. Therefore the naturally selected velocit
i.e., the marginal velocity, is

Cmin5Max$uc1minu,uc2minu%. ~16!

In short, the selected velocity isCmin52 when m,2;
and Cmin52Am21 when m.2. A numerical experi-
ment has been performed to check this prediction. The
sults are shown in Fig. 2. It is clear that the numerical c
culations are in excellent agreement with the theoretical p
diction.

Next we would like to discuss a general example
Eq. ~2!:

]u

]t
2

]2u

]x2
1

b11

u S ]u

]xD 2

5u~ub21!, ~17!

where the parameterb.0 is an arbitrary real number. Thi

l-

FIG. 3. The numerical calculations on the selected velocityCmin versus
the parameterb. The solid line is the theoretical prediction by Eq.~19!, and
the filled circles represent the numerical results on Eq.~17!.
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class of nonlinear diffusion equations can be considered
generalization of Eq.~5!. Armed by the above detailed dis
cussion and analysis, our task now becomes straightforw
and swift. First of all, it is easy to see that by lettingu
5v1/b, Eq. ~17! is transformed into
e
ur
r
d
as
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]v
]t

2
]2v

]x2
5b~v21!. ~18!

So one immediately gets the complete and exact solution
Eq. ~17! for any value of the parameterb,
u5H 1

11(
i

Ai1expFAb~v i21!S x1
v iAb

Av i21
t D G1Ai2expF2Ab~v i21!S x2

v iAb

Av i21
t D GJ

1/b

. ~19!
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The structure of solutions of Eq.~17! is similar to that of Eq.
~3!. Carrying out a discussion parallel to that for Eq.~9!, we
reach to the same conclusions that all the fast nonlin
eigenmodes are depressed by the slowest eigenmode d
a dissipative process, and finally the asymptotic behavio
the system is dominated only by this slowest eigenmo
According to Eq.~19!, each nonlinear propagating mode h
a phase velocityC5 vAb/Av21. Then the slowest veloc
ity, or the selected velocity is

Cmin52Ab. ~20!

Figure 3 demonstrates that our numerical simulations on
~17! which show the perfectly same velocities for the diffe
ent values ofb as predicted by Eq.~20!. These general re
sults obviously support the proposed selection mechan
again and are more convincing. Furthermore a noticea
fact is that by using the transformationu5@1/1
1exp(bt)w(x,t)#1/b, Eq.~17! becomes the linear heat equ
tion.

We have also considered a more general case of Eq.~5!:

]u

]t
2

]2u

]x2
1

m

u S ]u

]xD 2

5u~ub21!, ~21!

wheremÞb11. In this case no complete and exact soluti
could be found. Using the extended marginal stability cri
rion discussed above, the selected velocity is

Cmin5Max$2Ab,2Am21%. ~22!
ar
ing
of
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m
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-

It is encouraging that for the different values ofb andm our
numerical calculations@23# are once again in excellent agre
ment with the prediction by Eq.~22!.

In summary, the complete and exact solutions of a cl
of nonlinear diffusion equations have been found based o
symmetry observation, which are the first and perhaps
simplest examples that explicitly illustrate the fundamen
points of selection mechanism and offers a concrete ex
nation for the abstract conclusions on the nonlinear diffus
equations related to the selection mechanism. It has b
shown that these equations can be exactly mapped into
linear heat equation. This fact indicates that there exists
inherent relationship among this class of equations, the h
equation and the Burgers equation. Furthermore an alte
tive scenario on the marginal stability hypothesis has b
proposed, which is capable of predicting the selected ve
ity for the general case of the equations. One element of
scenario is to emphasize the significance of asympt
analysis on stability on both the stable and unstable side
a wave front; the other is that a selected velocity should
chosen in such a way that would guarantee the neces
conditions on stability on the both sides. In our opinion t
extended marginal stability hypothesis should be valid fo
wider class of nonlinear diffusion equations.
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