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Transverse structure functions in high-Reynolds-number turbulence
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Transverse structure functions are obtained at high Reynolds numbers in atmospheric turbidgtore
microscale Reynolds numbers between 10 000 and 15 GUse measurements confirm that their scaling
exponents are different from those for longitudinal structure functions. Implications of this conclusion are
discussed brieflyS1063-651X97)50511-3

PACS numbg(s): 47.27.Ak, 47.27.Jv

Anomalous scaling in turbulence has been studied tradi- In this context, we have made a series of measurements in
tionally in terms of the so-called longitudinal structure func- atmospheric turbulence at Taylor microscale Reynolds num-
tions (LSF’s), which are moments of velocity increments bers ranging between 10 000 and 15 000. These Reynolds
Au,=u(x+r)—u(x), whereu is the velocity component in numbers are comparable to the highest ever used for studies
a certain directiorx and the separation distanceis mea- of small-scale turbulencée.g.,[13,14]). Here, we examine
sured also in the same direction. For most flows, experimerthe velocity data solely to address the following issue: Are
tal convenience necessitates that the directibe that of the there genuine differences between the longitudinal and trans-
mean flow. Several attemgdis—10 have been made recently verse exponents? As already remarked, this question is im-
to obtain the so-called transverse structure functidisF's), portant for the theory of small-scale turbulence.
which are moments of velocity increments for which the The velocity data were acquired by means of single-wire
separation distance is transverse to the direction of the veand X-wire probes mounted at a height of about 35 m above
locity component considered. A few of these measurementihe ground on a meteorological tower at the Brookhaven
(e.g., Refs[1,2,6)) suggestor imply) that the scaling expo- National Laboratory. The hot wires were about 0.7 mm in
nents for TSF are equal, to within experimental uncertaintieslength and 5um in diameter. They were calibrated just prior
to those for LSF. If the two sets of exponents are indeedo being mounted on the tower, and operated on DISA
equal, the hierarchy of models built up on the basis of LSF55M01 constant-temperature anemometers. The frequency
(see, e.g., Ref.11)) remains essentially intact. On the other response of the hot wires was typically good up to 20 kHz.
hand, there exist measuremen®-5,8—1Q purporting to  The voltages from the anemometers were low-pass filtered
show that the transverse exponents of order greater than 2 aaed digitized. The low-pass cutoff was never more than half
measurably smaller than the longitudinal exponents. If truethe sampling frequencys. The voltages were converted to
this observation calls for additional complexity in small- velocities in a standard way through the calibration proce-
scale phenomenology—and might even suggest the absendare. The mean wind velocities, roughly constant over the
of strict scaling in the problem. duration of a given data set, ranged between 5 and 10' ms

To make a convincing case that high-order TSF exponents the experiment series. The usual procedure of surrogating
are smaller than those of LSF, it must first be shown that théime for space“Taylor's hypothesis™) was used to obtain
inertial-range scales are isotropic. A minimum condition forthe dissipation ratée) and estimate the Kolmogorov scale
local isotropy to exist is that the second-order exponents . The latter varied between 0.44 and 0.64 mm among the
the inertial range should be equal for LSF and TSF. It isvarious data sets and was comparable to the active wire
known (e.g., Ref.[12], Fig. 5 that this requires, in shear length. The real-time duration of data records was typically
flows, a Taylor microscale Reynolds number of the order ofof the order 2500 sec. Table | lists the relevant data for the

1000 and h|gher All the results cited above have been Oqjata records analyzed he@andu’ are the mean and root-

tained at modest Reynolds numbers. Some of them havgean-square velocities, respectively, dgds the sampling
been made in shear flows. One might therefore wonder if thgequency;

observed differences between the two sets of exponents are

due perhaps to the lack of isotropy in the inertial range. (e)=150((duax)?),
Further, the scaling range at moderate Reynolds number is
modest at best. n=(v%(e))™,

TABLE I. The basic parameters for the data sets used in this work.

U u’ () i A Ry fs,Hz Number
ms ! ms ! m?s 3 mm cm per channel of samples
7.6 1.36 3.x10°? 0.57 11.4 10 340 5000 10
4.8 1.45 2.x1072 0.64 15.4 14 860 2000 %10P
5.2 1.80 0.9%107°2 0.44 8.9 10 680 10 000 410’
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FIG. 1. Normalized third-order structure functionS; FIG. 2. RatiosR,, R,, andRg plotted against. As expected

=(Au})/r(e), wheree=15v((du/dx)?), plotted against the sepa- for locally isotropic turbulence, the ratig, is essentially indepen-
ration distance . A scaling range of more than a decade is likely. dent ofr, while the fourth- and sixth-order ratios become increas-
The magnitude of5; is not far from 0.8 in the region where it is ingly stronger functions of. This confirms that higher-order TSF’s
roughly flat, as expected from Kolmogorov's four-fifths law; it is scale with smaller exponents than LSF’s of corresponding order.
both interesting and nontrivial that the law appears to hold quantiThird set of data from Table | has been used.

tatively even in inhomogeneous turbulence. First and second sets of

data from Table | have been combined. R, and Rs show stronger departures from being flat in the
same region. Least square fits yieR,~r°%% and R
15vu'2\ 12 ~r%13 Even though the scatter Ry is large, the slope can
- W ' be obtained relatively unambiguously. If the structure func-
tions scale like power laws, as is believed to be the ¢asg,
R,=U'Nv. Ref.[16]), the indices inR, andRg are equal to the differ-
ences between the longitudinal and transverse exponents. It
Figure 1 shows the normalized third-order LSB;= appears clear that the latter are larger than the former. The

—(AU)/r(¢), plotted against the separation distancéf the  results are very close to those obtained from low-Reynolds-
turbulence were homogeneous, one expects a sizeable regipamber simulation§9].

where S; is a constant equal to 4/Bl5]. There exists no One can also obtain the two sets of exponents directly by
foolproof demonstration that the Kolmogorov's four-fifths using the extended self-similarity methptB]; as examples,
law holds for inhomogeneous turbu'en@g_, Se{lG,lﬂ) the fourth-order LSF and TSF are plotted in F|g 3 against
Atmospheric turbulence is strongly inhomogeneous. Yet, thé|Au;[®). The scaling region is marked. For this flow, the
expectation just cited is roughly satisfied. The flat region inPoWwer-law part does not extend to the dissipation region,
Fig. 1 can thus be considered the inertial range. It is, howeonsistent with Ref[20]. It is clear that the TSF has a
ever, difficult to choose from the figure an unambiguouslySmaller slope. than the L.SF' The d!fferenc_:e in the slope
scaling part. This choice is critical if small differences in agrees well with that obtained from Fig. 2 directly. Table I
scaling exponents are being sought. We have sidestepped the
issue here by computing the ratios of LSF to TSF as func- 1
tions of r. If the longitudinal and transverse exponents are

the same, the ratios must be flat over some range. We shal ;e |
considern=2, 4, and 6; data convergence is poorer ffor

>6. It is also usefu[18] to examine moment orders below o
<

o -2

unity. For this purpose, one should take absolute values of <
velocity differences in the above expression. We thus con- ;=
sider, in general, the ratios of generalized structure functions, =10

Rn:<|Aur|n>/<|AUr|n> )

wherev is the turbulent velocity normal to the ground.

Figure 2 shows the ratioR,, R,, and Rs. As already 0 = - e ” ”
noted, isotropy considerations demand tRatshould have (1au )
zero slope in the inertial range. This is indeed very nearly so.
Cross-spectral dataot presented heyeonfirm that the an- FIG. 3. ESS plots for the fourth-order LSF and TSF. Marked on

isotropy is negligible in this range of scales. If one fits athe figure are the scaling region and the slopes obtained from least
power law toR; in Fig. 2, one obtains an index of about square fits to data in that range. Third set of data from Table | has
0.02. This is quite close to zero. On the other hand, the ratioseen used.
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TABLE II. Scaling exponents for generalized structure func- almost impossible to obtain textbook isotropy in the inertial
tions determined from the ESS method. For exponents with momerfange, and that the level of anisotropy present in our data is
orders 4, 5, and 6, the error bars are, respective022,20.031,  penign. Subject to this provision, we support the previous
and =0.05, and are comparable for longitudinal and transverse eXzonclusion drawn from studies using numerical détay
ponents. For Iower moment orders, the errors are much smaller btﬁef_ [9]) that the transverse exponents are smaller than the
harder to quantify. longitudinal ones. The numerical data correspond to modest
Reynolds numbers, but have the advantage of not needing

M;):;:rn t L(;r:(%l;l::::f I T;ir;\;e;f Taylor's hypot_hesis. While we do employ the hypothesis, its
effects are believed to be small because only ratios of LSF to

0.2 0.076 0.075 TSF are considered.
0.4 0.150 0.148 If the two sets of exponents are indeed different, as ap-
0.6 0.224 0.220 pears likely, it would mean that one needs a richer small-
0.8 0.295 0.290 scale phenomenology than is usually employedy., Ref.
1.0 0.366 0.359 [11]). An attempt in this direction has been made by Chen
20 0.700 0.680 et al.[9]. Alternatively, it has been suggested] that struc-
30 1 0.960 ture functions are not the fundamental objects of interest.
4.0 1.266 1.200 The suggestion of Ref.21] is to use, instead, irreducible
5.0 1.493 1.402 representation of the rotation group. At the_ Iev_el of the fourth
6.0 1.692 1567 order, the latter reduces to a linear combination of the LSF,

the TSF, and the mixed structure functiqdyu?Av?) [22].
We have tested the scaling of these linear combinations.

lists the exponents for thgeneralized_SF and TSF obtained Purel)ll ?n irgpirical gtrounds btarl]setdthon the qualit)(/j of piowert-
by the ESS method. For reference, it might be noted tha W pIots, It does not appear that there 1S any advantage 1o

<|Aur|3)~<Aur3>1'°5 for the present measurements. preferring them over the traditional structure functions. A

In summary. it appears that the scaling exponents for TSFOT€ detailed discussion of this important issue is beyond
Y, 1tapp 9 exp the scope of this article and will be published elsewhere.

are measurably smaller than those for LSF. The second-order
structure functions should scale exactly alike if local isotropy We thank Shiyi Chen and Mark Nelkin for their valuable
prevails in the inertial range. In our data, they are slightlycollaboration; we also thank them, and Detlef Lohse as well,
different (Fig. 2). One might thus wonder if this residual for comments on the draft. We are grateful to Itamar Procac-
anisotropy gets magnified in higher-order moments, leadingia for extended correspondence over several months, and
to the present conclusion. However, this lingering anisotropyictor Cassella for assistance with the experiments. The
is no more than that observed in the DNS data of formallywork was supported by the National Science Foundation
isotropic turbulencd9]. We are inclined to think that it is Grant No. DMR-9529609.
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