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Worm structure in the modified Swift-Hohenberg equation for electroconvection
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An anisotropic complex Swift-Hohenberg equation is proposed to study pattern formation in electroconvec-
tion. In the subcritical regime, a localized state is found in two dimensions, which resembles the “worm” state
observed in recent experiment by M. Denrghal. [Phys. Rev. Lett.77, 2475 (1996; Science272, 388
(1996)]. In the corresponding one-dimensional model, a stationary pulse state is discovered, due to a nonadia-
batic effect, and it is shown to explain the localization of the “worm” state in the two-dimensional model.
Based on these results, we believe that the initial bifurcation should be subcritical where the “worm” state is
observed, and further experiment is suggested to test this scei@t@63-651X97)50110-3

PACS numbe(s): 47.54+r, 02.60.Cb, 47.20.Ky

The study of localized structures in nonequilibrium sys-the worm state in the first place. For this purpose, we pro-
tem has received a great deal of attention since being olpose a phenomenological model to explain the formation of
served experimentally in binary-mixture Raleighraed the worm state. As we show below, we have indeed found in
convection(RBC) [1]. Even though binary-mixture RBC is a Our quel a nontrivial localized state, whose structure anq
highly dissipative system, the localized structures behavdynamics resemble those of the worm state in the experi-
much like solitons in integrable systems. On the theory sider,nent'.we also demonstrate thaF the Iogallza}non of the worm
Thual and Fauv§2] were the first to study the behavior of a _state is due to small sc_ale phys(cmnad@batlc_ effegt and,
subcritical complex Ginzburg-Landau equation and foun n fagt, the correspond!ng 1D structure is a different kind of
that in certain parameter ranges, there are indeed localiz aca"ZEd state. Experimental measurements are also sug-
pulse solutions. The basic ingredients for the existence Ogested o tes_t our theory. .
localized structure aré) there has to be linear bistability, The amplitude equation formalism that was l_Jsec_[Bm
which guarantees the local stability of the peak and the tail of"‘r.‘d related wo rk$_3,4]_ to study _the pulse pattern in binary-
the pulsey(ii) nonlinear dispersiofithe complex part of the mixture RBC in principle describes the large scale and long
coefficients for the nonlinear termis needed to stabilize the

time behavior of the envelope of the pattern. For the problem
front connecting the peak and the tail of the localized solu

at hand, the spatial extension of the worm state in the per-
tion. Much work has since been devoted along these lines t

endicular direction is comparable to the basic wavelength;
understanding the details of the experimental re4ai4] therefore a more sensible model should include the small
Most of the experimental results in binary-mixture RBC

scale dynamics. The Swift-Hohenbei®H) equation[10] is
were obtained in quasi-one-dimension, i.e., in a thin annulué phenomenological model equation with the full symmetry

[5]. Further efforts to extend these findings to a two dimenCf the original problem, and it contains dynamics down to

sional (2D) system have not revealed any similar 2D local- i€ small scale of the basic wavelength. Various modified
ized state as in one dimensi¢hD), except for some time- forms. of the SH _equatlon havg been used successfully in
dependent patchy structui@] and some long time transients StUdying many different experimental systems, e.g., non-
[7]. Recently, Denniret al. [8,9] studied electroconvection Bousinesq effectg, mean f'OV.V effe@sl]{ H_opf bifurcation

in a nematic liquid crystal carefully. Depending on the elec-[lz’lg-l’ a_md rotating convectiofil4]. This is the approach
trical conductivity, they found that the pattern above onset iSVe take in this paper.

: ; ; To mimic the physics of the liquid crystal electroconvec-
either a spatially extended spatial-temporal ch&¥C) state . - : .
or some isolated localized state, which they named th&On: the modified Swift-Hohenberg equatitSHE) has to

“worm” state. The worm state is localized in the direction °€ arllsotbroplc(eve?] at thel L!:r;ear levgl andHlt ??)Sf to be
perpendicular to the director of the liquid crystal, but is ex-SOMPIex because the initial bifurcation is a Hopf bifurcation.
tended in the parallel direction. The worm can move in theLet ¢(x,t) be the complex order parameter. We can write
parallel direction. The internal structure of the worm seemghe order parameter equation as

to consist of both orientations of the linearly unstable oblique _ : _ 2, 22 2, 2.2 2

rolls, and the internal roll structure is moving relative to the Ilot=(etio)d=o((0x+aq)"+b(ox+ a0y +ay

motion of its envelope. +(P+gD)Dp+iv,(2+g2) +a(d>+g2)eé

In this paper, we present a theoretical study of the intrigu- o o o
ing localized worm pattern. Recently, there has been +golpl2p+ 01l pl* . ()
progress in constructing a microscopic model whose linea

properties agree with those of the experim¢g8is However, ﬁere,e if the reduced Rayleigh numbes, is the Hopf fre-

to understand the electroconvection quantitatively from théluency,q=(dy. dy)=|q|(cosf, sinf), and the length scale
full nonlinear microscopic equations is still a daunting task.of the equation is set by letting)| =1, so the linearly most
Meanwhile, many of the fundamental qualitative questionaunstable wavelength,=27. Also b is an anisotropic pa-
remain unanswered, such as the reason for the existence @meter with the constraib|<2, ando is a complex con-
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Re(¢(45.y))
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FIG. 1. (8 A 2D snapshot of the field Re(x,y)] for e=—0.2,a=1,b=0,v4=0.5,0=1.5,g,=3+1i, andg;=—2.75+i, showing
the localized worm structureéb) A cross section of the 2D pattern shown(@) at x=45 (indicated by the arrowsRd ¢(45y)] versus y.
The structure on the left side shows the overlapping region of two counterpropagating worms, and the structure on the right side shows the
transverse profile of an individual worm.

stant. The first two lines on the right-hand si@RHS) of Eq.  states travel in th& direction. According to their length, the
(1) represent the linear properties of the electroconvectiomnvorm states in our simulation can be divided into two cat-
system, which can be extracted from experiment or lineaegories, which we call the long worm and the short worm.
microscopic theory. It is easy to see that the system is linThe length of the short worm does not change with time, and
early most unstable atlk,|=a, and |ky|=a, for s usually~3\,. Short worms travel in the direction with
¢~explkxtikyy). The parametep, is proportional to the  constant velocity proportional to,. An example of a short
group velocity andh is another anisotropic parame(w_hen_ worm can be seen near the bottom of Figa)1 The long
a=1, the group velocity is along the wave-vector directionyorm's length grows with time and eventually extends over
g). The last line on the RHS of E@l) contains the nonlinear the whole length of the system because of the periodic
coupling terms with complex coefficienty andg,. In gen-  boundary condition.
eral, the nonlinear terms can also be anisotropic; we only We have tested the sensitivity of the worm pattern to the
include the simplest terms possible here. parameters in our model. We find that there is a finite range

Since it is the goal of this paper to find the localized wormof parameters where the worms appear. For example, if we
state, we focus our attention on the subcritical cBEg]  change the value o while keeping the rest of the param-
where Re¢y)>0 and Re@,)<0. We can easily eliminate eters unchanged, worms exist fer0.10>e>—0.25. When
theiw term in the linear part of the equation by a change ofe is too small, there is no pattern; and wheis too big, the
variable p=¢'“'¢, so we will setw=0 for now on. There pattern becomes extended instead. The worm state is quite
are five real parameters; a, b, 6, andv, and three complex insensitive to the values ai andb, as long asa~1 and
parameterso, go, andg, for this model. We have numeri- |b|<2. Forb=2 anda=1, the model becomes isotropic and
cally studied the MSHE extensively in parameter space anthe worm structure gives way to a time-dependent patchy
identified certain parameter regions where the localizedtructure[13]. The velocityv 4 is important to give the worm
worm state is observed. a group velocity. The wave-vector angfehas to be small

To demonstrate the existence of the worm state, we firstnough8<35° to make the worm perfectly aligned in the
show the behavior of Eq1) for a particular set of param- direction. There are also finite regions in the paramedgrs
eters: e=—0.2, a=1, b=0, =23, v4=05, 0=15, g,;, o where worm states are observed.
go=3+1, andg;=—2.75+i. The equation is simulated in The worm states interact strongly with each other. When
systems of size 6464, 128< 64, and 25& 64 with periodic  two short worms collide, they come out of the collision with-
boundary conditions using both a second order finite differout changing their characteristics. When a short worm col-
ence method and spectral method with discretizatiorlides with a long worm, the short worm sometimes disap-
Ax=Ay=0.5,1.0 and time stefpyt=0.001,0.01. We start the pears. When two long worms approach each other off center,
system with random initial conditions with large enough am-oblique rolls are excited in the region of their overlap until
plitude. The system quickly organizes itself into the worm-the worms pass through each other or one of the worms
like state. A snapshot of the 2D pattern for[léx,y)] after  disappears. When two long worms collide head on, they stop
the initial transient is shown in Fig.(d). each other and form a well defined boundary between them.

In order to show the localization of the worm states in the  For the short worm, because the spatial extent in both
y direction, a cross section of the 2D pattéig. 1(a)] along  directions is about the same order, the formation of the short
the y direction atx=45 is shown in Fig. (b). The worm  worm is likely due to strong interaction between the two
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We have studied the above 1D MSHE carefully. The nu-
merical scheme is the same as in the two-dimensional case,

\/‘/\'\r and we also start with a random initial condition with suffi-
JV\_-

cient amplitude. In order to compare it to the two-
dimensional case, we have set the parametersl.5,
vy=0.5,00=3.0+i, andg; = —2.75+i to be the same as in
the 2D calculation. We can varg because the value &, is

20 F

V undeterminedh priori. For g, =sin(#) with =23°, we find
v a finite range ofe values, where localized structure is ob-
served—0.15>¢>—0.5. A space-time plot of t
16 F —~ | - p . _p Fg@’/(y )]
/\ for e=—0.25 after an initial transient is shown in Fig. 2. It

is clear from Fig. 2 that the final state consists of localized
pulses. Most remarkably, the pulses are not moving, even in
14 : . . . . ; - the presence of the group velocity term in E8).
0 10 20 30 40 50 60 70 80 90 100 . . .
y We find that the pulse solution can be written as

FIG. 2. Space time plot of the field in E(): R (x,t)]+t/4
versusx for time differencedt=4, showing two stationary pulses. Yy, t)=A(y)exdia(y,t)], (4)
The initial condition is random noise with large enough amplitude;
the parameters are explained in the text.

BRI

where the amplitudé\(y) is independent of time and is lo-

calized with a width of 1.ky. With its peak position shifted
directions. However, for the long worms, due to the extendtp y=0, the shape of the pulse is symmetric aroynd0:

edness of the worm in thedirection, we are able to separate A(y)=A(-y). The phase of the pulse depends on time lin-
the dependence in the two directions and therefore gain morgarly:

understanding of the mechanism for the localization inythe

direction. Indeed, Fourier analysis of the long worm along a(y, )= ao(y)+Qt, (5)

the x direction shows that it is a good approximation for

assuming the dependence to be a simple plane wave: with 0= —0.25. The shape of the time-independent phase
_ ag(y) is depicted in Fig. @). From Fig. 3b), we see that
P(x.y, )=y, ) explikyx). 2 the phase is symmetric arouye=0: ag(y)=ao(—Y). The
phase is nearly constant near the center. Away from the cen-

If we substitute the above ansatz into the original @%.we  ter, the phase is

obtain a 1D MSHE for/(y,t). For simplicity, we seb=1
andb=0: ag(y)~—Kyly|+const, |y|>5
Il at= (e +iw)p—o(F+a))?P+ivg(do+a5) i with k,~1.
+ 2+ 4y, 3 As we pointed out earlier in our paper, the existence of a
Gol P+ galyl*y @ localized state in the subcritical equation with complex co-
efficient is now well knowrj2]. However, a stationary local-
ized pulse in the full equation, including the group velocity
term, is observed here. If one were able to eliminate the

where e=e—Re(0)(q2—k3)? and w=w—Im(c)(q>
—kZ)?+v4(a5—k?). w is set to 0 as in 2D.
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FIG. 3. (a) The amplitude of the 1D pulse shown in Fig.&(y) versusy; (b) the stationary part of the phase of the 1D pulggy)
versusy. See text for explanation.
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small scale structure and write the full equation in terms oq‘::(quiqy)_ In the x direction, the long worm expands
the amplitude equation, one could use two coupled compleghile moving with the group velocity.

Ginzburg-Landau equations characterizing oppositely mov- oy results may be tested experimentally and also provide

ing wave packets. As shown in the work of Brand and De-, |ink petween experiment and quantities accessible to the
issler[16], the oppositely moving pulses often pass throughy;crgcopic theory. In particular, we find that the worm state

eac_h other_ without 6_‘“‘3””9 their own character_lstlcs. UF.)Onoccurs for subcritical parameters. This means that the onset
tuning the intercoupling between the two oppositely moving ¢ o (presumably unstableextended plane wave state is

pulses, the pulses can form a bound state that does not move, " . . ] A ; ;
LI CE Stbcritical, with discontinuities in the amplitude, etc. This
in either direction. However, the structure of the bound state

. . . . Simple state, although unstable, should be accessible to cal-
is such that the amplitudes of the two oppositely moving : : :

. ) . ~culations based on the microscopic theory. Our model shows
pulses are strongly suppressed in their overlap region, whic at the maximum amplitude of the localized structures in the
is quite different from our stationary pulse state, I:urther_worm state(a quantit F;nuch more difficult to calculate from
more, in our simulation, no prebound traveling pulse wa 4 y

observed, and the stationary localized state always for She full equations also jumps discontinuously at the onset:

spontaneously as one whole object, which is also consistrenﬁt1is can be tested explicitly by experiment, and in this sense
P y Ject, e experimental transition is predicted to be subcrifitl.
with the experiment.

Away form the center, the two halves of the pulse seem tcyVe also find that the phase structure inside the worm is quite

have opposite phase velocity, =+ Q/k, . However k, is different from that described by the linearly unstable wave

much larger than the linearly most unstable wave nurnbe\r/ectors: this can also be checked by detailed experimental
g y tudy of the worm structure.

gy, . In addition, the size of the pulse, i.e., the spatial extent of In addition, our theory can be used to explain the transi-

:Egtvzr?glfofgéiés iEZIIEL;Z?\?ggqﬁérzr}E if}'g:gg zsahgi\#zre tjon between the spatially extended STC state at small con
P uctivity and the worm state at higher conductivity. The

structure, which can only pe studied using models that "Nransition can be simply related to the supercritical to sub-
clude the small scale physics.

In summary, we have constructed a modified Swift-cr't'cal transition in our model where Rg{) changes sign.

. . . The study of this transition and the exploration of the param-
Hohenberg model to explain the formation of the Iocallzedeter space will be published elsewhere.

worm state observed in electroconvection experiments. For a The di fth tate in the MSHE di

broad parameter range, we have found a solution of th‘t:'h' € discovery of The worm state In the proposed in

MSHE that is localized in one directiory (direction) and 'S paper Is an important step tpwards fully understandmg

extended in the other directiox direction. In they direc- the worm st_ates, including que§t|ons such as the ngcleaﬂon
) and interaction of the worms. Evidently, further experimental

tion, the amp"“%de of the worm is maximum at thg Center nd theoretical work is needed to fully comprehend these
and decays rapidly away from the center, The localization cj

the solution is understood by the discovery of a localize ascinating phenomena in electroconvection.

stationary pulse state in 1D, whose existence depends cru- The author is grateful to Dr. M. C. Cross for critical read-
cially on small scale physicéonadiabatic effegt In addi-  ing of the manuscript and also would like to acknowledge
tion, the phase inside the worm, as shown in Figp) 3can-  useful discussions with Dr. H. Riecke, Dr. M. Dennin, and
not be described by the linearly most unstable mode®r. G. Ahlers.
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