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Nonuniversality of weak synchronization in chaotic systems
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We show that the separate properties of weak synchronizd&é® and strong synchronizatio(S9),
reported recently by PyragiBhys. Rev. B54, R4508(1996)], in unidirectionally coupled chaotic systems, are
not generally distinct properties of such systems. In particular, we find analytically for the tent map and
numerically for some parameters of the circle map that the transitions to WS and SS coincide.
[S1063-651%97)50610-4

PACS numbd(s): 05.45+b

Chaotic systems, by definition, are characterized byHe found numerically that in a specific system, namely, the
strong sensitivity to the initial conditions. Thus, in a generallogistic map, synchronization between the variableg, and
situation, one cannot synchronize two chaotic systems, sincg ask is increased, occurs in two stages. In the first stgge,
in a practical situation it is impossible to start the evolutionsynchronizes witlz and not withx, starting at a critical value
of the two systems witlexactlythe same initial conditions. k, . He called thisveak synchronizatiows). The second
However, one can synchronize subsystems of a chaotic systage of synchronization startskat kg, with ks>k,,, and is
tem that have a chaotic output, but are intrinsically stablecharacterized by the synchronizationxgfy, andz, which he
This was shown by Pecora and Carfdl]. More specifically, called strong synchronizatioriSS. Note that in the above
Pecora and Carroll studied dynamical systems of the typequation the case=1 represents synchronization in a trivial
u=g(u,w), w=h(u,w) and showed that variable’ gov-  way, since this leads tg,,1=2,1=X,+1. S0, for this kind
ered byw’ =h(u,w’) can synchronize withw if the sub-  ©f couplingk is taken in the interval0,1).

Liapunov exponents of the driven subsysternare all nega- The conditions under which WS and SS occur were de-
tive (implying that the subsystenv’ is stablg. The sub- tgrmlned by two Liapunov exponents, that is, the conditional
Liapunov exponents they defined depend on the Jacobidd@PUnov exponent,

matrix of thew subsystem, taking derivatives with respect to

w only. 1 N
In a recent paper, Pyrag48] studied one-dimensional AR=In(1—k)+ lim =, In|f'(yn)], 2
chaotic systems, governed by a functigrcoupled unidirec- N—e NA=1

tionally in the following way:

defining the stability of the invariant manifolg= z, and the

Xn+1=F(Xn),  Ynr1=F(yn) =KL F(yn) = ()], transverse Liapunov exponent of the invariant manifold
X=Y,
zn+1= F(zy) —k[f(z) = f(xp)]. (1)
1 N
No=In(1—K)+ lim =, In|f'(x,)]. 3
*Electronic address: mariav@eecs.berkeley.edu N— oo Ni=1
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In the logistic map, Pyragas found thelf becomes zero at are the same. The Liapunov exponafitis equal to one of
two characteristic values of the coupling strendgthandks, the Liapunov exponents of the global system, namely, it is
corresponding to the threshold of WS and SS, respectivelyequal to\,. Thus, this Liapunov exponent has a clear physi-
In the region of weak synchronizatiok{<k<ks), A\R<0  cal importance even whenandz are not synchronized. On
and\,>0. Strong synchronization occurs fee-ks, where  the other hand) is not a Liapunov exponent of the global
these two Liapunov exponents coincide, id=\R. system in the region whene andy are not synchronized

We studied the phenomenon of chaotic synchronization ifweak synchronization However,A, and\; are related to
other one-dimensional maps, coupled also according to Eggach other via a simple additive term, namely,
(1). We found that the phenomenon of weak synchronizatior\ ,=In(1—k)+X\;. It is obvious that in the region of SS,
is not always found in such systems. No=AR=X,.

We start by showing what is the relationship between the We found in Ref[3] that the loss of synchronization be-
exponents\R and )\, defined by Pyragas, and the Liapunov tween subsystems of a dynamical system coupled according
exponents of the three-dimensional systewith dynamical to Pecora and Carroll's coupling is characterized by the Li-
variablesx, y, andz) governed by Eq(1). We will call this  apunov exponents of the global system. That is, when one of
the global system, which has the following Jacobian matrixsuch Liapunov exponents crosses z@ncthe positive direc-

at a single position along the orbit: tion) the two identical subsystems will lose synchrony. When
, this occurs, a transition from chaos to hyperchpdstakes
f'(Xn) 0 0 place. Here we find a similar phenomenon. The transition
Jo=| kf'(x)) [1=KIf'(yn) 0 ) from SS to WS corresponds to the transition from chaos to
KE' (x,) 0 [1-K]f'(z,) hyperchaos in the global system.

Our next step is to show that WS does not necessarily
The Liapunov exponent of this system is found by calculatPrecede SS. We show this analytically in the tent map, and
ing the eigenvalues of the matrix that consist of the productater numerically in the circle map.

of the Jacobian matrices along a given orbit. It turns out that, 1he tent map is defined as

because of the symmetry of this particular matrix, the prod-

uct J of the Jacobian matrice, is of the type ax, if 0sx<1/2,
a;; 0 O M0=1a1-x), if 12=x=1. (12
J=|axn ax 0 |, (5)

The tent map has a period-one orbit whes@®<1, with
fixed pointx* =0. For 1<a<2, the map has a chaotic orbit.
For a>2, the orbit diverges(Note that, to avoid divergen-
cies, when Ga<?2 the initial conditions must be in the
interval [0,1]). Since|f’(x,)|=a in any point of the orbit,

ag; 0 ag

wherea,;, a,1, @y, az;, andass are in principle different
from zero. The eigenvalues of this matrix are

N we have, using Eqg9)—(11)
Ag=ay=]] (), (6)
Ni=Ina, (13
N
Ay=ay= 1-k]f’ , 7
2o nﬂl [1=KIF (yn) @) Ay=N3=In(1—Kk)+Ina. (14)
N
As=ags— H [1-K]f'(z,). (8) _For a fixeda, we find that\ , decreases mo_notonica_lly kss
n=1 increased fronk=0. Consequently, there is no region of WS

o _ _ in this map. For this map, synchronization betweeandy
Consequently, in this way of coupling, the eigenvalues of the,q; occurs simultaneously, and only what is called SS is
system are easily found, and each one is a function of @en The transition where SS occurs is determined by
single variable. The Liapunov exponents are therefore \,<0, which givesk,=1—1/a.

Next, we consider coupled circle maps according to Eq.

N
A= lim %2 In|f"(x,)], (9) (1), where
n=1

N—o

b

S fx)= — 5-Sin(2mx). 15
)\2:|n(1—k)+|im%§ In|f' (y.)l, (10 () =x+ o= 5—sin2mx) (15)
n=1

N—o0

LN Here we find regions of the parameter space where WS is not
Aaz=In(1—K)+ lim = Inlf (21, 11 observed. We show in Fig.(d an example for this, where
a=In( ) an If" (o) a1 b=6 and w=0.44. The solid line in that figure represents
AR, which is equal to\,, and the dashed line represeits
If the initial values ofy and z are in the same basin of which is equal to In(+k)+X\,;. We do not find a region df
attraction, them ;=\ ,, because the parameters of the mapswvhereAR<0 and\,>0, and consequently no WS is seen.

N—c
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FIG. 2. Information dimensioD; as a function ofk for the
global attractofEgs.(16) and(17)] (solid line) and for the driving
system[Eq. (16)] (dashed ling The error bars foD; are smaller
than the diamond symbol. Since &sincreases, the variables
change faster thar;, we decrease the integration time st&p
according toAt=0.02/(k+1). The initial conditions used were
x;=0.1,%,=0.2,%x3=0.3,y,=0.4,y,=0.5, andy;=0.6.

y3:y1y2_8/3Y3v

wherea=6. Here, we also can understand the phenomenon
of weak synchronization reported by Pyragas for this
coupled system, by considering it as a single global system
of six variables. We calculated all the Liapunov exponents of
the global system, and found that ke¢=6.6 one of the Li-
apunov exponents changes sign. Beyond this critical value of
k, synchronization between two copies of the Lorenz system
FIG. 1. Liapunov exponentéin Pyragas’ notation\™ (solid  [Eq. (17)] with different initial conditions(in the same basin
line) and A, (dashed lingfor coupled circle maps, witia) b=6  of attraction will occur. That is, WS will be seen. No other
and ©=0.44, and(b) b=4 andw=0.4. We usedN=30 000 in  change of sign was found in the Liapunov exponents as we
Egs.(2) and (3), and neglected a transient of 3000 iterations. Thejncreaseck to k=200. Next, we calculated the information
initial conditions werex=0.1,y=0.2, andz=0.3. dimensionD; of the attractor of the global system, assuming
that the Kaplan and YorkEs] conjecture holds. Contrary to
) ) o the numerical results reported in R¢2], we find numeri-
For the circle magand also in the logistic mapve ob- 41y that the dimension of the global attractor does not con-
§erved mterestmg phenqmena when the drlylng variahte verge to the dimension of the driving systéEqg. (16)]. The
in one of the periodic windows of the chaotic baan. Thereconvergence of these two dimensions was considered in Ref.
we see regions dt wherey andz are chaotic X;=\">0)  [2] as the characterization of SS in this system. As Fig. 2
even whenx is periodic ;<0 andAq<0). This is shown  ghows, fork=50, D; for the global attractorsolid line) is

in Fig. 1(b), whereb=4 andw=0.4. _ _approximately constant, but different from the information
In Ref. [2], Pyragas also studied the coupling of Rossler'sgimension of the driving systenlashed ling For the global
and Lorenz’s systems according to system we find thaD; = 2.16 wherk=50 and for the driving

systemD; = 2.01 (with the last digit being uncertain in both
cases Consequently, although we observed the property of
WS in the coupled system governed by E(6) and (17),
we have not identified a regime of SS, as characterized in
X2= X1+ 0.2¢,], (16 ~ Ref.[2.
In summary, we have found that the property of weak
synchronization in maps coupled according to 89.is only
X3=a[ 0.2+ X3(x;—5.7)], a particular property of some systems. We have found that it
does not hold in at least two systems, namely, the circle map
and the tent map. We have also clarified the relationship
yi=10(—y;+Vs), bet\Neeme and\q and the Liapunov exponents of the global
system. Finally, we have verified that strong synchronization
as defined in Refl2] is not observed in the coupled system

Yo=28y1—Yo—Y1Y3+ KXy, (17 governed by Eqs(16) and(17).

5(1: - CY[X2+X3],
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