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Nonuniversality of weak synchronization in chaotic systems

Maria de Sousa Vieira* and Allan J. Lichtenberg
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~Received 2 June 1997!

We show that the separate properties of weak synchronization~WS! and strong synchronization~SS!,
reported recently by Pyragas@Phys. Rev. E54, R4508~1996!#, in unidirectionally coupled chaotic systems, are
not generally distinct properties of such systems. In particular, we find analytically for the tent map and
numerically for some parameters of the circle map that the transitions to WS and SS coincide.
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Chaotic systems, by definition, are characterized
strong sensitivity to the initial conditions. Thus, in a gene
situation, one cannot synchronize two chaotic systems, s
in a practical situation it is impossible to start the evoluti
of the two systems withexactlythe same initial conditions
However, one can synchronize subsystems of a chaotic
tem that have a chaotic output, but are intrinsically stab
This was shown by Pecora and Carroll@1#. More specifically,
Pecora and Carroll studied dynamical systems of the t
u̇5g(u,w), ẇ5h(u,w) and showed that variableẇ8 gov-
erned byẇ85h(u,w8) can synchronize withw if the sub-
Liapunov exponents of the driven subsystemw8 are all nega-
tive ~implying that the subsystemw8 is stable!. The sub-
Liapunov exponents they defined depend on the Jaco
matrix of thew subsystem, taking derivatives with respect
w only.

In a recent paper, Pyragas@2# studied one-dimensiona
chaotic systems, governed by a functionf , coupled unidirec-
tionally in the following way:

xn115 f ~xn!, yn115 f ~yn!2k@ f ~yn!2 f ~xn!#,

zn115 f ~zn!2k@ f ~zn!2 f ~xn!#. ~1!

*Electronic address: mariav@eecs.berkeley.edu
561063-651X/97/56~4!/3741~4!/$10.00
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He found numerically that in a specific system, namely,
logistic map, synchronization between the variablesx, y, and
z, ask is increased, occurs in two stages. In the first stagey
synchronizes withz and not withx, starting at a critical value
kw . He called thisweak synchronization~WS!. The second
stage of synchronization starts atk5ks , with ks.kw , and is
characterized by the synchronization ofx, y, andz, which he
called strong synchronization~SS!. Note that in the above
equation the casek51 represents synchronization in a trivi
way, since this leads toyn115zn115xn11. So, for this kind
of couplingk is taken in the interval@0,1).

The conditions under which WS and SS occur were
termined by two Liapunov exponents, that is, the conditio
Liapunov exponent,

lR5 ln~12k!1 lim
N→`

1

N(
n51

N

lnu f 8~yn!u, ~2!

defining the stability of the invariant manifoldy5z, and the
transverse Liapunov exponent of the invariant manifo
x5y,

l05 ln~12k!1 lim
N→`

1

N(
n51

N

lnu f 8~xn!u. ~3!
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In the logistic map, Pyragas found thatlR becomes zero a
two characteristic values of the coupling strength,kw andks ,
corresponding to the threshold of WS and SS, respectiv
In the region of weak synchronization (kw,k,ks), lR,0
andl0.0. Strong synchronization occurs fork.ks , where
these two Liapunov exponents coincide, i.e.,l05lR.

We studied the phenomenon of chaotic synchronizatio
other one-dimensional maps, coupled also according to
~1!. We found that the phenomenon of weak synchronizat
is not always found in such systems.

We start by showing what is the relationship between
exponentslR andl0, defined by Pyragas, and the Liapun
exponents of the three-dimensional system~with dynamical
variablesx, y, andz) governed by Eq.~1!. We will call this
the global system, which has the following Jacobian ma
at a single position along the orbit:

Jn5S f 8~xn! 0 0

k f8~xn! @12k# f 8~yn! 0

k f8~xn! 0 @12k# f 8~zn!
D . ~4!

The Liapunov exponent of this system is found by calcu
ing the eigenvalues of the matrix that consist of the prod
of the Jacobian matrices along a given orbit. It turns out th
because of the symmetry of this particular matrix, the pr
uct J of the Jacobian matricesJn is of the type

J5S a11 0 0

a21 a22 0

a31 0 a33

D , ~5!

wherea11, a21, a22, a31, anda33 are in principle different
from zero. The eigenvalues of this matrix are

L15a115 )
n51

N

f 8~xn!, ~6!

L25a225 )
n51

N

@12k# f 8~yn!, ~7!

L35a335 )
n51

N

@12k# f 8~zn!. ~8!

Consequently, in this way of coupling, the eigenvalues of
system are easily found, and each one is a function o
single variable. The Liapunov exponents are therefore

l15 lim
N→`

1

N(
n51

N

lnu f 8~xn!u, ~9!

l25 ln~12k!1 lim
N→`

1

N(
n51

N

lnu f 8~yn!u, ~10!

l35 ln~12k!1 lim
N→`

1

N(
n51

N

lnu f 8~zn!u. ~11!

If the initial values of y and z are in the same basin o
attraction, thenl35l2, because the parameters of the ma
y.
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are the same. The Liapunov exponentlR is equal to one of
the Liapunov exponents of the global system, namely, i
equal tol2. Thus, this Liapunov exponent has a clear phy
cal importance even wheny andz are not synchronized. On
the other hand,l0 is not a Liapunov exponent of the globa
system in the region wherex and y are not synchronized
~weak synchronization!. However,l0 and l1 are related to
each other via a simple additive term, name
l05 ln(12k)1l1. It is obvious that in the region of SS
l05lR5l2.

We found in Ref.@3# that the loss of synchronization be
tween subsystems of a dynamical system coupled accor
to Pecora and Carroll’s coupling is characterized by the
apunov exponents of the global system. That is, when on
such Liapunov exponents crosses zero~in the positive direc-
tion! the two identical subsystems will lose synchrony. Wh
this occurs, a transition from chaos to hyperchaos@4# takes
place. Here we find a similar phenomenon. The transit
from SS to WS corresponds to the transition from chaos
hyperchaos in the global system.

Our next step is to show that WS does not necessa
precede SS. We show this analytically in the tent map,
later numerically in the circle map.

The tent map is defined as

f ~x!5H ax, if 0<x<1/2,

a~12x!, if 1/2<x<1.
~12!

The tent map has a period-one orbit when 0<a,1, with
fixed pointx* 50. For 1,a,2, the map has a chaotic orbi
For a.2, the orbit diverges.~Note that, to avoid divergen
cies, when 0<a,2 the initial conditions must be in the
interval @0,1#). Sinceu f 8(xn)u5a in any point of the orbit,
we have, using Eqs.~9!–~11!

l15 lna, ~13!

l25l35 ln~12k!1 lna. ~14!

For a fixeda, we find thatl2 decreases monotonically ask is
increased fromk50. Consequently, there is no region of W
in this map. For this map, synchronization betweenx andy
and z occurs simultaneously, and only what is called SS
seen. The transition where SS occurs is determined
l2,0, which givesks5121/a.

Next, we consider coupled circle maps according to E
~1!, where

f ~x!5x1v2
b

2p
sin~2px!. ~15!

Here we find regions of the parameter space where WS is
observed. We show in Fig. 1~a! an example for this, where
b56 andv50.44. The solid line in that figure represen
lR, which is equal tol2, and the dashed line representsl0,
which is equal to ln(12k)1l1. We do not find a region ofk
wherelR,0 andl0.0, and consequently no WS is seen
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For the circle map~and also in the logistic map! we ob-
served interesting phenomena when the driving variablex is
in one of the periodic windows of the chaotic band. The
we see regions ofk wherey andz are chaotic (l25lR.0)
even whenx is periodic (l1,0 andl0,0). This is shown
in Fig. 1~b!, whereb54 andv50.4.

In Ref. @2#, Pyragas also studied the coupling of Rossle
and Lorenz’s systems according to

ẋ152a@x21x3#,

ẋ25a@x110.2x2#, ~16!

ẋ35a@0.21x3~x125.7!#,

ẏ1510~2y11y2!,

ẏ2528y12y22y1y31kx2 , ~17!

FIG. 1. Liapunov exponents~in Pyragas’ notation! lR ~solid
line! and l0 ~dashed line! for coupled circle maps, with~a! b56
and v50.44, and~b! b54 andv50.4. We usedN530 000 in
Eqs. ~2! and ~3!, and neglected a transient of 3000 iterations. T
initial conditions werex50.1, y50.2, andz50.3.
,

s

ẏ35y1y228/3y3 ,

wherea56. Here, we also can understand the phenome
of weak synchronization reported by Pyragas for t
coupled system, by considering it as a single global sys
of six variables. We calculated all the Liapunov exponents
the global system, and found that atk'6.6 one of the Li-
apunov exponents changes sign. Beyond this critical valu
k, synchronization between two copies of the Lorenz syst
@Eq. ~17!# with different initial conditions~in the same basin
of attraction! will occur. That is, WS will be seen. No othe
change of sign was found in the Liapunov exponents as
increasedk to k5200. Next, we calculated the informatio
dimensionDi of the attractor of the global system, assumi
that the Kaplan and Yorke@5# conjecture holds. Contrary to
the numerical results reported in Ref.@2#, we find numeri-
cally that the dimension of the global attractor does not c
verge to the dimension of the driving system@Eq. ~16!#. The
convergence of these two dimensions was considered in
@2# as the characterization of SS in this system. As Fig
shows, fork*50, Di for the global attractor~solid line! is
approximately constant, but different from the informatio
dimension of the driving system~dashed line!. For the global
system we find thatDi52.16 whenk*50 and for the driving
systemDi52.01 ~with the last digit being uncertain in bot
cases!. Consequently, although we observed the property
WS in the coupled system governed by Eqs.~16! and ~17!,
we have not identified a regime of SS, as characterized
Ref. @2#.

In summary, we have found that the property of we
synchronization in maps coupled according to Eq.~1! is only
a particular property of some systems. We have found th
does not hold in at least two systems, namely, the circle m
and the tent map. We have also clarified the relations
betweenlR andl0 and the Liapunov exponents of the glob
system. Finally, we have verified that strong synchronizat
as defined in Ref.@2# is not observed in the coupled syste
governed by Eqs.~16! and ~17!.

e

FIG. 2. Information dimensionDi as a function ofk for the
global attractor@Eqs.~16! and~17!# ~solid line! and for the driving
system@Eq. ~16!# ~dashed line!. The error bars forDi are smaller
than the diamond symbol. Since ask increases, the variablesyi

change faster thanxi , we decrease the integration time stepDt
according toDt50.02/(k11). The initial conditions used were
x150.1, x250.2, x350.3, y150.4, y250.5, andy350.6.
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