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The persistence exponeétfor the global order paramet#f (t) of a system quenched from the disordered
phase to its critical point describes the probabilipgt) ~t~ ¢, that M(t) does not change sign in the time
intervalt following the quench. We calculai#&to O(e?) for modelA of Hohenberg and HalperiiRev. Mod.
Phys.49, 435(1977)] (and to ordefe for modelC) and show that at this ordé (t) is a non-Markov process.
Consequently, to our knowledgé,is a new exponent. The calculation is performed by expanding around a
Markov process, using a simplified version of the perturbation theory recently introduced by Majumdar and
Sire[Phys. Rev. Lett77, 1420(1996]. [S1063-651X97)50707-0

PACS numbe(s): 05.70.Ln, 05.50t+q, 05.70.Jk

The “persistence exponentd, which characterizes the function is calculated to orde¢?, and this is then used to
decay of the probability that a stochastic variable exceeds ealculate to the same order, using a perturbative method
threshold valudtypically its mean valupthroughout a time  proposed by Majumdar and SitsS) [8], valid in the vicin-
interval, has attracted a great deal of recent intdresfil]. ity of a Markov process. The Markov scaling relation is
One of the most surprising properties of this exponent is thashown explicitly to be violated at ordes”, supporting our
its value is highly nontrivial even in simple systems. Forclaim thaté is a new independent exponent.
example, § is irrational for theq>2 Potts model in one Before discussing the calculation 6f however, we pro-
dimension[6] (where the fraction of spins that have not vide first_asimpler, and more transparent, formula?ion of the
changed their state in the timteafter a quench tor=0 p_erturbatmn theory than that given in MS_. _In partlcular the
decays a$~ %) and is apparently not a simple fraction for the final result, Eq.(14), does not appear explicitly in MEL3].
diffusion equatior[9,10] (where the fraction of space where Lety(t) be a.GaUSS'an stochastic process with Zero mean,
the diffusion field has always exceeded its mean decays hose Correlailon function obeys dynamical scaling, i.e.,
). ygtl)yl(/t22)>=t1<D(t1{t2). Let _T:Int. and x(T)=y(t)./

A recent study of nonequilibrium modal critical dynam- {y“(1))™ Thenx(t) is a Gaussiarstationary process with

. ) o . . zero mean, i.e., its correlation function is translationally in-
ics[12], where a system coarsens at its critical point startlnq/ariant (X(T)X(T))=A(T,—T,). Notice thatA(0)=1 b
from a disordered initial condition, looked at the probability constrljctionl a cgnventiorﬁ thalt .we shall adopt throuz:]/hout

P(1y,tp) that the global magnetization does not change Siglrfhis aper(in contrast to that of Ref.8]). If the persistence
during the inter\_/at1<_t<t2 [11]. The persistgnce expor_lent probgbii)lit)r/( of y decays algebraicaI[I'y]?tiJ, then F'ihe persis-
for this system is defined by (t;,t,)~(t1/t5)" in the limit tence probability of(T) decays as-exp(— T) for T—so.

Lz./tl_’?o' IIEi%Iic:t_ resultz \I/v?;e obotcail_ne_c: ffotrh thg ONe- The persistence probability may be expressed as the ratio
imensional(1D) Ising model, then—ce limit of the O(n) of two path integrals, as follow8]:

model, and to orde¢=4—d near dimensionl=4. For these
systems it was found that the value éfwas related to the Jyx=oDX(T)exp —S)

dynamic critical exponent, the static critical exponeng, PX(T")>0;0<T'<T)= Dx(T)exp(—S) ’ @
and “nonequilibrium” exponeni [which describes the de-
: . o i where
cay of the autocorrelation with the initial condition, 1T ;
(H(x,1) #(x,0))~t"M?] by the scaling relationdz=\—d :_J' f
+1— /2. This relation may be derived from the assumption S=3 0 dTy 0 dTX(T) (T2, T)X(T2)- @

that the dynamics is Markovian, which is indeed the case for
all of the cases considered in that paper. HereG(T4,T,) is the matrix inverse of the correlation ma-
From a consideration of the structure of the diagrams thatrix (x(T{)x(T,))=A(T,—T,). Notice thatG is not simply
appear at ordet? (and higher ordér however, it was argued a function of T,— T, (unless we impose periodic boundary
that the dynamics of the global order parameter should notonditions.
be Markovian to all orders, implying that the exponeht In MS this path-integral formalism was used to map the
does not obey exactly that “Markovian scaling relation” Markov process onto a quantum harmonic oscillator in
[11]. Thus, to our knowledgef is a new exponent. Monte imaginary time, developing the perturbation theory in the
Carlo simulations in two dimensions indeed suggest weakormalism of quantum mechanics. We shall merely use path
violation of the Markov scaling relatiofil1]. integrals as a convenient notation, performing all our calcu-
In this paper we present an explicit calculation of thelations within the natural framework of stochastic processes.
non-Markovian properties of the global order parameter. The Let x(T) be a stationary Gaussian Markov process, i.e.,
nonequilibrium  magnetization-magnetization correlationone defined by
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— uxP+ &(T), 3

where ¢ is a Gaussian white noise, witR&(T)E(T'))

=2u8(T—T"). The noise strength has been chosen so thatQ(X,T|XO,0):

the autocorrelation function i&8°(T) = exp(— uT).

Suppose the procesg$T) is perturbatively close to a Mar-
kov process, in the sense th@t=G°+ eg. Then we can
expand the exponentials in the path integrals in @g.and
reexponentiate, so that ©(e) the numerator becomes

LDX(T)e‘S= LDx(T)exp( — - gJOTdTlfOTde

Xg(Ty, TALTL,To)+ 0(62)), 4)

where the subscript represents the constrai{T’)>0
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We now calculateAg(T). The conditional probability
Q(x,T|x,,0) for the stationary Markov process may be ob-

tained directly from Eq(3):
1/2
o -

The conditional probabilityQ ™ (x,,T,|x;1,T;) that the pro-
cess goes tox,,T,), given that it started fromx;,T,),
without x ever being negative is given by the method of
images:

Q" (2[1)=0Q(Xz,T2|X1,T1) = Q(Xz2, To| = x4, Ty),

(X—Xoe #T)?
2(1—e 2+T)

[277(1—e2'”)

9

where we have adopted an obvious shorthand notation for
the arguments o®*.

To calculate the joint probability? * (x;,T;;X,,T,) that
the process passes throughat T, andx, at T,, averaged

(0<T'<T) on the paths in the integral in the numerator Ofonly over paths wherg(T) is always positive, we consider a

Eqg. (1), and

FDX(TX(THX(Tp)e™ S

AT, To)= [ oxT)e ®

(5

is the correlation function for the Markov process, averaged

(and normalizetlonly over the paths consistent with the con-
straintC. The denominator in Ed1) is given by an identical
expression, except thaﬂg is replaced byA°, the uncon-
strained correlation function.

By virtue of the constraintA?j will not be strictly transla-
tionally invariant for finiteT. In the limit T—c, however,
the double time integral in Eq4) reduces toT times an
infinite integral over the relative timeT,—T,;, with
AS(T,,T,) replaced by its stationary limiA%(T,—T,).
Similarly, g will be translationally invariant in this regime,
giving

T T
J'o dTlfo dT,9(T1, To)AAT,,To)

=T f ) (dw/27)g(0)AN ), (6)

path starting at X;,T;) and finishing at %;,T¢), passing
through &,,T,) and &,,T,) without ever crossing the ori-
gin. Then the required stationary limit is

. Q*(f;2;1]i)
lim

Pt(X{,T1:X5,To)= _—
( ! ! 2 2) Ti—>7m,Tf—>oo Q+(f||)

(10

The Markov property means that we can decompose
Q" (f;2;1]i)=Q"(f[2)Q"(2/1)Q"(1]i). Using Egs. (8)
and(9) in Eq. (10), we find

2
P*(x1,0i%z, T)= —(1—e 24T) Mo yxpenT
Xexr{ sinl’(

It is now straightforward to evaluate the autocorrelation
function:

(x§+x5)
C2(1—-e" 2T

X1X2
ZsinMT) '
(1)

AUT)= fo dxlfo dXoX1 %P (X1,0i%2, T) (12

where we have used the translational invariance to write the

final result in Fourier spacgl5]. Note that the zeroth-order
result [~ oDx(T)exp(—S)/fDx(Mexp(S) is just the per-

sistence probability of the stationary Gaussian Markov pro-

cessx’(T), which decays as exp(uT) asT— .
Using (1), (4) and(6), we find that the persistence expo-
nent may be written in the form

0= lim — %In[P(x(T’)>O;O<T’<T)]

T—oo

©

=d
:/.L+ff
0

3B (0)[A@) ~RA@)]+0(D). (1)
5-9(@)[AY(@) ~A%w)]+O(e?).

where the term iA%(w) is the O(e) contribution from the
denominator in Eq(1), and we have exploited the— — w
symmetry of the integrand.

—[3(1- e #1224 (erT+2e #Tysin e #T].

(13

Equation(7) for & can now be expressed as a real-time
integral as follows. We first writeA(T)=A%(T)+ ea(T),

and we note that in Fourier spaceA(w)] *=G(w)
=G%w)+eg(w). Using AP=exp(—uT)  gives
g(w)=—2a(w)(w?+u??4u?. Inserting this in(7), and
transforming to real time, gives

2

€ |~ , d 2 0 0
GZM_4_,LL2,[O dTa(T)(,M _W) [Ac(T)_A (T)]

=p

1—62—Mfoca(T)[1—eX[X—2,u,T)]3’2dT]. (14)
™ Jo
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The final result is remarkably compact. Sinea(T) is just R SH .

the perturbation to the Markov correlatdP(T)=e #T, the dhs=——+¢, (15)
normalizationA(T) =1 forcesa(0)=0. This is sufficient to s

converge the integral in Eq14) provided a(T) vanishes SH
more rapidly thariT2. Equation(14) has recently been used am=pV2—+7y (16)
to calculate persistence exponents for interface growth in a om
class of generalized Edwards-Wilkinson modeld]. . o

As was remarked earlier, the problem of nonequilibriumWith the Hamiltonian
critical dynamics is Markovian to first order ik=4—d. In R
the thermodynamic limit the global order parameter is H[s,m]zf dr
Gaussian because, at timeit is the sum off L/£(t)]¢ (es-
sentially) statistically independent contributions, whérds y -
the system size ang~t'# is the length scale over which + Emsz—hmm
critical correlations have been established. Corrections to the

Gaussian distribution can be expressed in terms of highefy,a external fieldh.. is to be adjusted such than)=0. The
m .

cumulants of the normalized total magnetizationL naevin noises and e G ian random for with
M (t)/(M2(t))Y2 Using the translational invariance of the -2N9€ oiseg’ and » are Gaussian random fo ces
gero mean and correlators  (Zi(r,t)Z;(r',t"))

system with respect to space it is easy to show that for larg . , , N

L the 2N-point cumulant is smaller by a factor _2%io(r=r)e(t=t), _<77(r’t) (r )= —2pV28(r
(tY2/L)(N-1d than the Gaussian part of thé&\2oint corre- —r')é(t—t’), while the initial conditionssy(r), mogr) are
lation function. The perturbative approach discussed in th&aussian random variables with distributioR[sy,mg]
first part of this paper can therefore be applied. To calculatecexp(_HO[go,rrb]), where Ho[go,mo]:fddr[%gg/ﬂ mé/
the lowest non-Markovian term i, we need to calculate the 2¢].

autocorrelation function of the total magnetizatidh(t) We first consider “modeA” dynamics (where forn>1

to order €2, i.e., we need to calculate the autocorrelation“persistence” is associated with a given component of the
function A(ty,tp) =(M(t)M(tp))/(M?(t))"3M?(t,))%  order parameterFor modelA, Eq.(16) is discarded, and the
which in the scaling regime depends only on the ratioterms inm are omitted from Eq(17). The calculation of the
tp/t1. The necessary techniques of dynamical field theoryautocorrelation function is straightforward in principle

incorporating the extra renormalization associated with thg16,17,, but algebraically tedious, and the final resulfviéth
random initial conditionand responsible for the nonequilib- T =|n(t,/t,)]

rium exponent\), have been developed by Janssral.

Ty 1 op 9 5, 1,
2s+2(Vs)+4!(s)+2m

: 17

[16,17. Al 3+ ,
Models A and C of Hohenberg and Halperifil2] are A(T)=e 1_4(n—+8)26 Fa(e)+0O(e”)|, (18

defined by Langevin equations for a nonconserved
n-component vector order-parameter fied¢r,t) and (for ~ whereu=(\—d+1— 5/2)/z from the one-loop calculation

model C) a noncritical conserved density(r,t): [11] (equivalent to the “Markov scaling relation; and
4 m? x—1
FA(x)=—In§[2In(2x)+(x—1)In(x—1)—(x+1)|n(x+1)]—2(In2)2—F+4In2—(x—1)ln o
N x+1 N x—1 | 3x—1 | x+1 | 3x+1 ax+ 1)l 3x+1
+(x+1)In o +(x—1)In o n Tox (Xx+1)In o n o (3x+1)In o
I 3x—1) (x—1) | 3x—1\12 (x+1)[ (3x+1\]? C(x— C(x+1
+(3x—1)In o~ |~ 2 n o > n o —(x—=1)Li, o +(x+1)Li, o
20x+ D)Ly ) 4 2= 1)L, 2 1)L, == DL, -2
—2(x+1)Li, ax +2(x—=1)Li, ax +(x+1)Li, 1 —(x=1)Li, I—1]’

and Li(x)=—fdtin(1—t)/t is the dilogarithm function. simple exponential. Substituting(T)=A(T)—e *T from
The functionF 5(e") is a bounded, monotonically increasing, Eq. (18) into Eq.(14), usingu = (1/2)+ O(€), we find (after
function of T in (0). It vanishes agInT for T—0 [satis- Some algebra
fying the requirement for convergenceTat O of the integral
in Eq. (14)], while F(«)=0.05762. ...

The non-Markov nature of the procebi(t) at ordere?
follows from the fact that, at this ordef(T) is no longer a

3(n+2) )
0:/.L 1+4(n—+8)26 o, (19)
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where
a=4(\2—23+6)+8y2In2—4(\/2—1)In3
—2(1422)In(3+242) — 14In(5+ 2/6)
+10IN(7+4+3)+8\2In[(4+ V22— \6)/(4— 2
—\6)1-42In[(23-2+2)/(2\3-2~2)]

=0.271577604975. .. .

This result can be compared with recent simulation data

for the Ising model in twd11,19,2Q and threg19] dimen-
sions. Ford=2, using\=1.585-0.006[21], and »=1/4
(exac) gives uz=0.460+0.006. Ignoring non-Markov cor-
rections, one would obtai#z= uz, smaller than the mea-
sured valuggz= 0.505+ 0.020(the finite-size scaling method
used in[11] naturally determines the combinati#z [20]).
The non-Markov correction factor in Eq19) is, forn=1,
(14+0.007548. . . ,€2)=1.030 fore=2. The “improved”
estimate fordz becomes 0.4740.006, closer to, but still
somewhat smaller than, the numerical estimate.

For d=3, one hasz=2.032+0.004, A=2.78%0.006
[21], and »=0.032+0.003, givingu =0.380+0.003. Multi-
plying by the non-Markov correction factor far=1, i.e.,
1.0075, givesd=0.383+0.003, compared to the numerical
resultd=0.41[19]. A direct expansion to ordes, using the
known expansions foe, A, and %, gives (specializing to
n=1) 0=1/2— e/12+ (a— 2In3)¥72— 2€%/81+ O(€%), i.e.,
0=0.365 ford=3, slightly lower than that obtained using
the best numerical estimates nf\, and » and only using
the € expansion for the non-Markov correction.

A similar approach can be applied to “mod&|” defined
by the full set of equation§l5)—(17). In this case, one ob-
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tains non-Markovian corrections already at ordeiThe au-
tocorrelation function is given b{for n=1)

A(T)=exp(— uT) 1—§FC(eT)+0(62) . (20
x—1 Xx+1
Fc(x)=ln2—TIn(x—1)—Tln(x+1)
x—1
+xInX—W. (21

Again, Fc(e") vanishes likeTInT for T—0, while F(x)
=In2-1/2. Insertinga(T) = A(T) —exp(—uT) from Eq.(20)
into Eq. (14) gives

\/Ee-l— O(€?)|,

0=u| 1+ R

(22)

where u=(N—d+1—»/2)/z as before, but now the dy-
namical exponentz and A take their modelz values
[12,18.

In summary, we have computed to order the persis-
tence exponen® for the global order parametevi(t) of
modelsA and C. At this order, the dynamics df1(t) are
non-Markovian, and is a new exponent, not related to the
usual static and dynamic exponents. The calculation was per-
formed by expanding around a Markov process, using a sim-
plified form of the perturbation theory introduced by Majum-
dar and Sire.
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