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Non-Markovian persistence and nonequilibrium critical dynamics
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The persistence exponentu for the global order parameterM (t) of a system quenched from the disordered
phase to its critical point describes the probability,p(t);t2u, thatM (t) does not change sign in the time
interval t following the quench. We calculateu to O(e2) for modelA of Hohenberg and Halperin@Rev. Mod.
Phys.49, 435~1977!# ~and to ordere for modelC! and show that at this orderM (t) is a non-Markov process.
Consequently, to our knowledge,u is a new exponent. The calculation is performed by expanding around a
Markov process, using a simplified version of the perturbation theory recently introduced by Majumdar and
Sire @Phys. Rev. Lett.77, 1420~1996!#. @S1063-651X~97!50707-0#

PACS number~s!: 05.70.Ln, 05.50.1q, 05.70.Jk
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The ‘‘persistence exponent’’u, which characterizes the
decay of the probability that a stochastic variable exceed
threshold value~typically its mean value! throughout a time
interval, has attracted a great deal of recent interest@1–11#.
One of the most surprising properties of this exponent is
its value is highly nontrivial even in simple systems. F
example,u is irrational for theq.2 Potts model in one
dimension @6# ~where the fraction of spins that have n
changed their state in the timet after a quench toT50
decays ast2u) and is apparently not a simple fraction for th
diffusion equation@9,10# ~where the fraction of space wher
the diffusion field has always exceeded its mean decay
t2u).

A recent study of nonequilibrium modelA critical dynam-
ics @12#, where a system coarsens at its critical point start
from a disordered initial condition, looked at the probabil
P(t1 ,t2) that the global magnetization does not change s
during the intervalt1,t,t2 @11#. The persistence exponen
for this system is defined byP(t1 ,t2);(t1 /t2)

u in the limit
t2 /t1→`. Explicit results were obtained for the one
dimensional~1D! Ising model, then→` limit of the O(n)
model, and to ordere542d near dimensiond54. For these
systems it was found that the value ofu was related to the
dynamic critical exponentz, the static critical exponenth,
and ‘‘nonequilibrium’’ exponentl @which describes the de
cay of the autocorrelation with the initial condition
^f(x,t)f(x,0)&;t2l/z# by the scaling relationuz5l2d
112h/2. This relation may be derived from the assumpti
that the dynamics is Markovian, which is indeed the case
all of the cases considered in that paper.

From a consideration of the structure of the diagrams
appear at ordere2 ~and higher order!, however, it was argued
that the dynamics of the global order parameter should
be Markovian to all orders, implying that the exponentu
does not obey exactly that ‘‘Markovian scaling relation
@11#. Thus, to our knowledge,u is a new exponent. Monte
Carlo simulations in two dimensions indeed suggest w
violation of the Markov scaling relation@11#.

In this paper we present an explicit calculation of t
non-Markovian properties of the global order parameter. T
nonequilibrium magnetization-magnetization correlati
561063-651X/97/56~1!/25~4!/$10.00
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function is calculated to ordere2, and this is then used to
calculateu to the same order, using a perturbative meth
proposed by Majumdar and Sire~MS! @8#, valid in the vicin-
ity of a Markov process. The Markov scaling relation
shown explicitly to be violated at ordere2, supporting our
claim thatu is a new independent exponent.

Before discussing the calculation ofu, however, we pro-
vide first a simpler, and more transparent, formulation of
perturbation theory than that given in MS. In particular t
final result, Eq.~14!, does not appear explicitly in MS@13#.

Let y(t) be a Gaussian stochastic process with zero me
whose correlation function obeys dynamical scaling, i
^y(t1)y(t2)&5t1

aF(t1 /t2). Let T5 lnt and x(T)5y(t)/
^y2(t)&1/2. Thenx(t) is a Gaussianstationaryprocess with
zero mean, i.e., its correlation function is translationally
variant,^x(T1)x(T2)&5A(T22T1). Notice thatA(0)51 by
construction, a convention that we shall adopt through
this paper~in contrast to that of Ref.@8#!. If the persistence
probability of y decays algebraically int, then the persis-
tence probability ofx(T) decays as;exp(2uT) for T→`.

The persistence probability may be expressed as the
of two path integrals, as follows@8#:

P„x~T8!.0;0,T8,T…5
*x.0Dx~T!exp~2S!

*Dx~T!exp~2S!
, ~1!

where

S5
1

2E0
T

dT1E
0

T

dT2x~T1!G~T1 ,T2!x~T2!. ~2!

HereG(T1 ,T2) is the matrix inverse of the correlation ma
trix ^x(T1)x(T2)&[A(T22T1). Notice thatG is not simply
a function ofT22T1 ~unless we impose periodic bounda
conditions!.

In MS this path-integral formalism was used to map t
Markov process onto a quantum harmonic oscillator
imaginary time, developing the perturbation theory in t
formalism of quantum mechanics. We shall merely use p
integrals as a convenient notation, performing all our cal
lations within the natural framework of stochastic process

Let x0(T) be a stationary Gaussian Markov process, i
one defined by
R25 © 1997 The American Physical Society
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dx0

dT
52mx01j~T!, ~3!

where j is a Gaussian white noise, witĥj(T)j(T8)&
52md(T2T8). The noise strength has been chosen so
the autocorrelation function isA0(T)5exp(2mT).

Suppose the processx(T) is perturbatively close to a Mar
kov process, in the sense thatG5G01eg. Then we can
expand the exponentials in the path integrals in Eq.~1! and
reexponentiate, so that toO(e) the numerator becomes

E
C
Dx~T!e2S5E

C
Dx~T!expS 2S02

e

2E0
T

dT1E
0

T

dT2

3g~T1 ,T2!AC
0~T1 ,T2!1O~e2! D , ~4!

where the subscriptC represents the constraintx(T8).0
(0,T8,T) on the paths in the integral in the numerator
Eq. ~1!, and

AC
0~T1 ,T2![

*CDx~T!x~T1!x~T2!e
2S0

*CDx~T!e2S0
~5!

is the correlation function for the Markov process, averag
~and normalized! only over the paths consistent with the co
straintC. The denominator in Eq.~1! is given by an identical
expression, except thatAC

0 is replaced byA0, the uncon-
strained correlation function.

By virtue of the constraint,AC
0 will not be strictly transla-

tionally invariant for finiteT. In the limit T→`, however,
the double time integral in Eq.~4! reduces toT times an
infinite integral over the relative timeT22T1, with
AC
0(T1 ,T2) replaced by its stationary limitAC

0(T22T1).
Similarly, g will be translationally invariant in this regime
giving

E
0

T

dT1E
0

T

dT2g~T1 ,T2!AC
0~T1 ,T2!

→TE
2`

`

~dv/2p! g̃~v!ÃC
0~v!, ~6!

where we have used the translational invariance to write
final result in Fourier space@15#. Note that the zeroth-orde
result *x.0Dx(T)exp(2S0)/*Dx(T)exp(2S0) is just the per-
sistence probability of the stationary Gaussian Markov p
cessx0(T), which decays as exp(2mT) asT→`.

Using ~1!, ~4! and ~6!, we find that the persistence exp
nent may be written in the form

u[ lim
T→`

2
1

T
ln@P„x~T8!.0;0,T8,T…#

5m1eE
0

`dv

2p
g̃~v!@ÃC

0~v!2Ã0~v!#1O~e2!. ~7!

where the term inÃ0(v) is theO(e) contribution from the
denominator in Eq.~1!, and we have exploited thev→2v
symmetry of the integrand.
at

f

d

e

-

We now calculateAC
0(T). The conditional probability

Q(x,Tux0,0) for the stationary Markov process may be o
tained directly from Eq.~3!:

Q~x,Tux0 ,0!5F 1

2p~12e22mT!G
1/2

expF2
~x2x0e

2mT!2

2~12e22mT! G .
~8!

The conditional probabilityQ1(x2 ,T2ux1 ,T1) that the pro-
cess goes to (x2 ,T2), given that it started from (x1 ,T1),
without x ever being negative is given by the method
images:

Q1~2u1!5Q~x2 ,T2ux1 ,T1!2Q~x2 ,T2u2x1 ,T1!, ~9!

where we have adopted an obvious shorthand notation
the arguments ofQ1.

To calculate the joint probabilityP1(x1 ,T1 ;x2 ,T2) that
the process passes throughx1 at T1 andx2 at T2, averaged
only over paths wherex(T) is always positive, we consider
path starting at (xi ,Ti) and finishing at (xf ,Tf), passing
through (x1 ,T1) and (x2 ,T2) without ever crossing the ori
gin. Then the required stationary limit is

P1~x1 ,T1 ;x2 ,T2!5 lim
Ti→2`,Tf→`

Q1~ f ;2;1u i !
Q1~ f u i !

. ~10!

The Markov property means that we can decomp
Q1( f ;2;1u i )5Q1( f u2)Q1(2u1)Q1(1u i ). Using Eqs. ~8!
and ~9! in Eq. ~10!, we find

P1~x1 ,0;x2 ,T!5
2

p
~12e22mT!21/2x1x2e

mT

3expF2
~x1

21x2
2!

2~12e22mT!
GsinhS x1x2

2sinhmTD .
~11!

It is now straightforward to evaluate the autocorrelati
function:

AC
0~T!5E

0

`

dx1E
0

`

dx2x1x2P
1~x1 ,0;x2 ,T! ~12!

5
2

p
@3~12e22mT!1/21~emT12e2mT!sin21e2mT#.

~13!

Equation~7! for u can now be expressed as a real-tim
integral as follows. We first writeA(T)5A0(T)1ea(T),
and we note that in Fourier space@Ã(v)#215G̃(v)
5G̃0(v)1e g̃(v). Using A05exp(2mT) gives
g̃(v)52 ã(v)(v21m2)2/4m2. Inserting this in ~7!, and
transforming to real time, gives

u5m2
e

4m2E
0

`

dTa~T!S m22
d2

dT2D 2@AC0~T!2A0~T!#

5mH 12e
2m

p E
0

`

a~T!@12exp~22mT!#23/2dTJ . ~14!
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The final result is remarkably compact. Sinceea(T) is just
the perturbation to the Markov correlatorA0(T)5e2mT, the
normalizationA(T)51 forcesa(0)50. This is sufficient to
converge the integral in Eq.~14! provided a(T) vanishes
more rapidly thanT1/2. Equation~14! has recently been use
to calculate persistence exponents for interface growth
class of generalized Edwards-Wilkinson models@14#.

As was remarked earlier, the problem of nonequilibriu
critical dynamics is Markovian to first order ine542d. In
the thermodynamic limit the global order parameter
Gaussian because, at timet, it is the sum of@L/j(t)#d ~es-
sentially! statistically independent contributions, whereL is
the system size andj;t1/z is the length scale over whic
critical correlations have been established. Corrections to
Gaussian distribution can be expressed in terms of hig
cumulants of the normalized total magnetizati
M (t)/^M2(t)&1/2. Using the translational invariance of th
system with respect to space it is easy to show that for la
L the 2N-point cumulant is smaller by a facto
(t1/z/L)(N21)d than the Gaussian part of the 2N-point corre-
lation function. The perturbative approach discussed in
first part of this paper can therefore be applied. To calcu
the lowest non-Markovian term inu, we need to calculate th
autocorrelation function of the total magnetizationM (t)
to order e2, i.e., we need to calculate the autocorrelati
function A(t1 ,t2)5^M (t1)M (t2)&/^M

2(t1)&
1/2^M2(t2)&

1/2,
which in the scaling regime depends only on the ra
t2 /t1. The necessary techniques of dynamical field theo
incorporating the extra renormalization associated with
random initial condition~and responsible for the nonequilib
rium exponentl), have been developed by Janssenet al.
@16,17#.

Models A and C of Hohenberg and Halperin@12# are
defined by Langevin equations for a nonconserv
n-component vector order-parameter fieldsW(r ,t) and ~for
modelC! a noncritical conserved densitym(r ,t):
g,
a

he
er

e

e
te

,
e

d

] tsW52
dH

dsW
1zW , ~15!

] tm5r¹2
dH

dm
1h ~16!

with the Hamiltonian

H@sW,m#5E ddr F t

2
sW21

1

2
~¹sW !21

g

4!
~sW2!21

1

2
m2

1
g

2
msW22hmmG . ~17!

The external fieldhm is to be adjusted such that^m&50. The
Langevin noiseszW andh are Gaussian random forces wi
zero mean and correlators ^z i(r ,t)z j (r 8,t8)&
52d i jd(r2r 8)d(t2t8), ^h(r ,t)h(r 8,t8)&522r¹2d(r
2r 8)d(t2t8), while the initial conditionssW0(r ), m0(r ) are
Gaussian random variables with distributionP@sW0 ,m0#

}exp(2H0@sW0,m0#), where H0@sW0 ,m0#5*ddr @t0sW0
2/21m0

2/
2c0].

We first consider ‘‘modelA’’ dynamics ~where forn.1
‘‘persistence’’ is associated with a given component of t
order parameter!. For modelA, Eq.~16! is discarded, and the
terms inm are omitted from Eq.~17!. The calculation of the
autocorrelation function is straightforward in princip
@16,17#, but algebraically tedious, and the final result is@with
T5 ln(t2 /t1)]

A~T!5e2mTF12
3~n12!

4~n18!2
e2FA~eT!1O~e3!G , ~18!

wherem5(l2d112h/2)/z from the one-loop calculation
@11# ~equivalent to the ‘‘Markov scaling relation’’!, and
FA~x!52 ln
4

3
@2ln~2x!1~x21!ln~x21!2~x11!ln~x11!#22~ ln2!22

p2

6
14ln22~x21!lnS x21

2x D
1~x11!lnS x11

2x D1~x21!lnS x21

2x D lnS 3x21

2x D2~x11!lnS x11

2x D lnS 3x11

2x D2~3x11!lnS 3x11

2x D
1~3x21!lnS 3x21

2x D2
~x21!

2 F lnS 3x21

2x D G21 ~x11!

2 F lnS 3x11

2x D G22~x21!Li2S x21

2x D1~x11!Li2S x11

2x D
22~x11!Li2S x11

4x D12~x21!Li2S x21

4x D1~x11!Li2S 2x

3x11D2~x21!Li2S 2x

3x21D ,
and Li2(x)[2*0
xdtln(12t)/t is the dilogarithm function.

The functionFA(e
T) is a bounded, monotonically increasin

function ofT in (0,̀ ). It vanishes asTlnT for T→0 @satis-
fying the requirement for convergence atT50 of the integral
in Eq. ~14!#, while F(`)50.057622 . . . .

The non-Markov nature of the processM (t) at ordere2

follows from the fact that, at this order,A(T) is no longer a
simple exponential. Substitutinga(T)5A(T)2e2mT from
Eq. ~18! into Eq.~14!, usingm5(1/2)1O(e), we find~after
some algebra!

u5mH 11
3~n12!

4~n18!2
e2aJ , ~19!
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where

a54~A222A31A6!18A2ln224~A221!ln3

22~112A2!ln~312A2!214ln~512A6!

110ln~714A3!18A2ln@~41A22A6!/~42A2

2A6!#24A2ln@~2A3221A2!/~2A3222A2!#

50.271577604975 . . . .

This result can be compared with recent simulation d
for the Ising model in two@11,19,20# and three@19# dimen-
sions. Ford52, usingl51.58560.006 @21#, and h51/4
~exact! givesmz50.46060.006. Ignoring non-Markov cor
rections, one would obtainuz5mz, smaller than the mea
sured valueuz50.50560.020~the finite-size scaling metho
used in@11# naturally determines the combinationuz @20#!.
The non-Markov correction factor in Eq.~19! is, for n51,
(110.0075438 . . . ,e2).1.030 for e52. The ‘‘improved’’
estimate foruz becomes 0.47460.006, closer to, but still
somewhat smaller than, the numerical estimate.

For d53, one hasz52.03260.004, l52.78960.006
@21#, andh50.03260.003, givingm50.38060.003. Multi-
plying by the non-Markov correction factor fore51, i.e.,
1.0075, givesu50.38360.003, compared to the numeric
resultu.0.41@19#. A direct expansion to ordere2, using the
known expansions forz, l, and h, gives ~specializing to
n51) u51/22e/121(a22ln3)e2/7222e2/811O(e3), i.e.,
u.0.365 ford53, slightly lower than that obtained usin
the best numerical estimates ofz, l, andh and only using
the e expansion for the non-Markov correction.

A similar approach can be applied to ‘‘modelC,’’ defined
by the full set of equations~15!–~17!. In this case, one ob
. E

A

ev

ev

ys
a

tains non-Markovian corrections already at ordere. The au-
tocorrelation function is given by~for n51)

A~T!5exp~2mT!F12
e

6
FC~eT!1O~e2!G , ~20!

FC~x!5 ln22
x21

2
ln~x21!2

x11

2
ln~x11!

1xlnx2
x21

2x
. ~21!

Again, FC(e
T) vanishes likeTlnT for T→0, while FC(`)

5 ln221/2. Insertinga(T)5A(T)2exp(2mT) from Eq.~20!
into Eq. ~14! gives

u5mF11
724A2
12

e1O~e2!G , ~22!

where m5(l2d112h/2)/z as before, but now the dy
namical exponentsz and l take their model-C values
@12,18#.

In summary, we have computed to ordere2 the persis-
tence exponentu for the global order parameterM (t) of
modelsA andC. At this order, the dynamics ofM (t) are
non-Markovian, andu is a new exponent, not related to th
usual static and dynamic exponents. The calculation was
formed by expanding around a Markov process, using a s
plified form of the perturbation theory introduced by Majum
dar and Sire.
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