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Towards a simple model of compressible Alfveic turbulence
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A simple model of collisionless, dissipative, compressible magnetohtdrodynéiiegnic) turbulence in a
magnetized system is investigated. In contrast to more familiar paradigms of turbulence, dissipation arises from
Landau damping, enters via nonlinearity, and is distributed over all scales. The theory predicts that two
different regimes or phases of turbulence are possible, depending on the ratio of steepening to damping
coefficient (m,/m,). For strong damping|f,;/m,|<1), a regime of smooth, hydrodynamic turbulence is
predicted. Fotm, /m,|>1, steady state turbulence does not exist in the hydrodynamic limit. Rather, spikey,
small scale structure is predictd®%1063-651X%97)51509-1

PACS numbdis): PACS: 47.65+a, 47.52+

The theory of compressible magnetohydrodynamicnot predicted by other models. The resulting quasistationary
(MHD) (e.g., Alfvenic) turbulence has been a topic of inter- structures typically have narrow spectra.
est for some tim¢1]. Alfvén wave turbulence presents sev- Here, we present the first analytical study of the noisy-
eral novel challenges, due to the fact that khes selection KNLS equation as a generic model of collisionless, large-
rules preclude three Alfwrewave resonance. Thus, in incom- amplitude Alfvanic shocklet turbulence. Indeed, this is, to
pressible MHD, two Alfve waves can interact only with the our knowledge, the first structure-based theory of compress-
vortex (i.e., eddy mode. Compressibility relaxes this con- ible MHD turbulence in a collisionless system. Stationarity is
straint by allowing interaction with accoustic and ion- maintained via the balance of noise and dissipative nonlin-
ballistic modeqi.e., Landau dampingalong with waveform earity. Dissipation here results from ion Landau damping,
steepening. This naturally leads to the formation of Affiee  which balances the parallel ponderomotive force produced
shocklets. Thus, one approach, which is analogous to thiey modulations of the compressible Alivavave train. A
noisy Burgers model in hydrodynamics, is based on thene-loop renormalization groyfRG) calculation(equivalent
study of nonlinear wave evolution equations with external[8] to a direct interaction approximatid®] closure is uti-
noise drive[e.g., the noisy derivative nonlinear Sctimger  lized. Although the KNLS describes both gquasiparallel and
(DNLS) equation, in space physicsSuch theories describe oblique waveg5], we consider here the simpler case of qua-
turbulence as an ensemble of nonlinear structures, e.gsjparallel propagation. The general case will be addressed in
shocks, discontinuities, and high-amplitude waves, which ara future publication. The noisy KNLS is, thus, a generic
typically observed in compressible.g., interplanetary2]) model of strong, compressible Affu& turbulence and may
plasmas. This course of investigation was pursued computdpe relevant to the solar wind, interstellar medium, shock ac-
tionally to study the noisy DNLS equatidi3]. Stationarity = celeration, as well as to compressible MHD theory, as a
was achieved by insertingd hoc viscous dampinglater  whole. Note that this perspective is analogous to that of the
linked to finite plasma conductivitj4]) into the otherwise noisy Burgers equation model of compressible fluid turbu-
conservative DNLS equation. The DNLS model fails, how-lence[10]. Several features which are not common in stan-
ever, for the important case gf~1 (8=4map/B3 is the dard MHD turbulence theories appear in this model. It is
ratio of plasma pressure to magnetic pressg,o?gig an ex- shown that the dissipativiategral coupling renormalizes the
ternal magnetic fieldand the electron-to-ion temperature ra- Wave train velocityin addition to inducing nonlinear damp-
tio To/T;~1 (for instance, in the solar wind plasiavhen  Ing and dispersion. Moreover, consideration of the resulting
Alfvén waves couple to strongly damped ion acoustic modessolvability condition for a stationary state in the hydrody-
As a consequence, the kinetically modified DN[56], re-  hamic limit (w,k—0) suggests that KNLS turbulence can
ferred to as the kinetic nonlinear Schioger equation €Xist in one oftwo different state®r phasesin the hydro-
(KNLS), which exhibits intrinsically dissipative nonlinear dynamic regime, turbulence consists of large-scale, smooth
coupling, emerges as the superior basic model. Numericdk»,k—0) wave forms and dissipative structures. In the re-
solution of the KNLS reveals a new class of dissipativedime when the hydrodynamic limit does not exist, one may
structures, which appear through the balance of nonlinea#xpect a small-scale, spikey, intermitteat,k-+0) shocklet
steepening with collisionless nonlinear damping. Thesdurbulence. This hypothesis, however, needs furtegy., nu-
structures include arc-polarized ar®ipolarized rotational ~merica) study.
discontinuities[7], observed in the solar wind plasma and The “noisy KNLS” equation is
i dp R
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the reference frame velocity,= 1 is the perturbation param- u (see discussion belgwappear in the second order In
eter,v 5 is the Alfven speed, an€); is the ion gyrofrequency. Since the KNLS(and DNLS is not Galilean invariant, the
Unlike the Burgers equation, the KNL&nd DNLS equa- vertex \ is also renormalized. This is a third order effect.
tion is not Galilean invariant, hence tlg term is explicit.  Because of mathematical difficulties, we exactly calculate
The packet velocity , is renormalized due thieroken sym- and u, only, and forA, we provide a simple heuristic argu-
metry between+k and —k harmonics induced by Landau ment. In general, the noise finctidnis also renormalized at
damplng This precludes the conventional praCUCe of tranSh|gher orders in\. Usua”y’ in one- |00p RG ana|yses such
forming to the frame comoving at, to eliminatev,. The  turbulent corrections are assumed to be small. Note that
macroscopic ponderomotive plasma velocity perturbation fofmowledge of turbulens and ¥ is not required for predict-

a high amplitude Alfve wave is ing the existence of the hydrodynamic linitee below:
dz We expand¢k in a power series with respect to the per-
z L]

%z —7 turbation parametex ¢ ¢(°)+)\¢(0>+)\ ¢(2)+ . and
2 equate terms, order by order in To second order we have

where 7 is the (nonloca) Hilbert operator that represents (0—vok— M0k2)¢(2>
collisionless(Landay dissipation. The coefficientsy; and

Upmm g millgfl, = [ -

m, are functions of3 andT,/T;, only, i.e., =k 2 2 % oD, [m+im,sgnk+k')]
o 1 (1 ﬁ*)—’_XH(l B*/,y) (38) olj,t)” —0' 0" wto'+o
1~ 4 2 2’
(1= B*)2+ xf(1-B*1y) =—ix2 > k(k+k +K")Go(k+k' +K", (5)
k/ k//
1 * _1 / r’ rr
S x| B* (y=Dly 3b) 0, o

4 (1- )+ xf(1- B 1y)*
where 8* =(T./T;) 8, y=3 is the polytropic constant, and DR EREAARS”

X|= V8Bl TY[(Te/T))¥2exp{(Ti—Tg)/2T;}] is the parallel M+ K 4 LK

heat conduction coefficient that models kinetic collisionless [myHimasgrik-+ k™) 1im, +imosgrtk+k™ )]
dissipation in fluid models. The term; represents nonlinear where the bare propagatGiy(w,k) =i/(w—kvo—k?ug). In
steepening of a wave via coupling to the self-generated derthe DIA, we take¢(®=¢(?). The terms proportional t&

sity perturbation(associated with an acoustic mgddhe andk2 in the Ieﬁ-héund si&ue act to modify, and . Thus,

termm, colrrespolr]'ldﬁ tdxmgIUc da?pmg of afwave H} r€SO- the nonlinear term of Ed5) represents an amplitude depen-
r::asntuﬁﬁl?écv?:cc\)lzljsl(é|s;?§;t|gnSI\r/]v: :;%E’gg;g%gt thgr?NOEsdem correction toboth the velocity and dispersion coeffi-
is intrinsically anonlinearly dissipativeequation, i.e., there Cients and Eq.(5) is a recursive equation for the renormal-
is nolinear damping retained here. In this regc',ird .r/ve Com_|zed coefficientwy and w. The fixed point of this recursion
relation gives the self-consistent values of these coefficients.

ment that there appear to be two meaningful paradigm prObRepIacmg the bare,, o with their amplitude dependent
lems to be explored. One is to retdinth linear growthand o ~0
counterpartw, u, we write

damping in the KNLS. In this case the results will necessar-
ily be quite model dependent. The other, which we pursueéw—vk—,ukz)
here, is to study the purely nonlinear problem with noisy

drive. This case allows us to isolate and focus on the intrin- d rdeo"dK AR fu 121500 |2
sically nonlinear dynamics of the KNLS equation. (277)4 w dow | k'| | k”|
In Fourier spacé{=ik/|k|, so the transformed KNLS is
(—iw+ivok+ipmok?d) b y k(kt+k'+k)
w |a)'—vk’—,uk’2|2|w”—vk"—,uk”2|2
'“‘kzw ("’k’ “’“’f”zk; WAL L imasgrtcrk i+ imasarti k)
o',0" _ / 7 m2 "

(6)

We should note that and p will now assume complex
assumed to be zero mean, ahdorrelated in space and time. values,
To extract information from Eq(4), we utilize the direct
interaction approximatioiDIA) closure[9,11,13. We fol-

low the approach used ir12] which is different from[11], The real partsy, andu, , represent the amplitude dependent
where the correlation functions of cubic Sctimger turbu-  speed of a wave packétote, there is a momentum transfer
lence were found. We emphasize the statistical nature of olfrom waves to resonant particles in this mgaeid nonlinear
analysis. Indeed, turbulence renormalizes the coefficients afispersion(i.e., an amplitude dependent frequency shift in
the evolution equation, leaving its functional form un- Fourier spacg respectively. The imaginary parts, andu; ,
changed. The renormalized phase veloeitand dispersion correspond to damping processes. In particuladescribes

where the function sgm{=x/|x|. The stochastic noisk is

v=uv,tivi, pm=pctig. (7



RAPID COMMUNICATIONS

56 TOWARDS A SIMPLE MODEL OF COMPRESSIBE . . . R2373
the exponential damping via phase mixing of a wave packet A2 ) " “

and y; describes turbulent, viscous dissipation. It is easily — u,v3=f* 5 4mlln< i +3m2—'},
seen that fom,—0 the KNLS may be written in the comov- (2m)? 8Knin i Hi

ing frame with vy=0. Thus, no additional phase-mixing (90
terms appear, since the terfi'k andk”k vanish upon inte- wivd= N2 (2m) 2] (Mol 8Kmin) My (it ). (90)

gration over—o<{k’,k"}<o, in the hydrodynamic limit.
The collisionless damping breaks this symmetry of thke For the coefficients and u, we may now write
and —k parts of the spectrum, thus resulting in the phase-
mixing and phase velocity renormalization tertamalogous ve~visg pe/ wi)In"2x,,  vi~—fyAmylnx, ,
to nonlinear frequency shiftencountered here.

We seek solutions in the hydrodynamic limi—0, 4m;
k—0. For simplicity, we assume for noise the white noise For ™ M 3_m2
statistics, i.e.,f,=f. This assumption is not too artificial,

(10

m\2 f  /Am,
' “‘N_(m_z) Kein Y T °
Note that the factor .=In(Kpii/v;)~In(Inkyi) makes an
insignificant cut-off correction. Nonzero, arises due to
wave momentum loss via interaction with resonant particles
and reflects the process whereby a nonlinear wave acceler-
ates in the direction of steepening.e., v,>0 for
B=1T.=T,), an effect that is observed in numerical solu-

since MHD waves are usually pumped at large scaesll-

k) and the largde tail is heavily damped by collisionless
dissipation, which is an increasing functionlofOrdered by
powers ofk, the nonlinear term in the integrals contains
k3,k*, ... contributions. However, theydrodynamic behav-

ior is completely determined by the smélle limit. Thus, ; . . . o
by omitting higherk terms, Eq.(6) naturally splits into two tions of the KNL.S equatiofi7]. This effect is Iogarlthmlc fo_r
Kmnmin—0. Negativev; corresponds to exponential damping

equations fow and u, respectively. Tha',«" integrations due to phase mixing, and is proportional to the dissipation
can be easily performed in complex plane. It is convenient tQ P 9, prop P

. . . : = ot~ rate m,. The coefficientu, represents turbulent dispersion,
introduce dimensionless variables=k'zi/v, x"=K'Zi/v. 4 he coefficieniy <0 corresponds to turbulent viscous
The k’,k” integrals in Eq.(6) diverge ask’,k”"—0 (i.e. in- . ki <0 esp

. . . damping. By analogy with noisy Burgers equat[d?2], Egs.
frared divergence The integrations can be performed con- (10) for the turbulent transport coefficients yield the pulse
sistently only in the limit where the infrared cutoffs satisfy P Y P

: o e . . propagation scaling exponents for the hydrodynamic regime,
the mequ_ahtyxc '.X°<1'. Quite lengthy, but straightforward which are defined by divergences at the cutoff. For diffusion
complex integrations yield

term, we havedx?/ ot~ ui~|6x| (i.e., ~1/Kmin), SO that

A2 2f(m | 6x| ~ ét. This corresponds to symmetric ballistiéspersion
v t+ivi=—f*4 5 ~—3[Eln2xc+ min(1—2w) of the shocklet waveform. For the velocity term, we wiis
~(27;) v v,—0 whenkgin—0) X/t~v;~ y\Inx,~const, that isx~t.
n m 7T_+3 (83 This corresponds to ballistitanslation of the shocklet.
213 ' We now construct the quantit¥,= kpinui /v from Egs.
g (9) to determine when our cutoff approximatiog<<1 is
g4 N OmE[ X i[mﬂ_— 3) valid. Note thatx.<1 must be satisfied for a self-consistent,
MK 2m2 T4 X X M hydrodynamic regime solution. Dividing Eq&@b) and (9¢)
by Eqg. (9d), we derive a system of equations that is easily
+ v (5—3u)]— In®xM[1+2v (1—w)] simplified to give the condition
+Inx[2M(u—v)—M(4p—5v +1)] 4x2In3x¢— 3xInx,— (My/m,)?=0. (12)
+E(0, @), (8p)  Again, forx,<1, we may omit the smak? term. This equa-

tion has maximum atx;) max=€ 1<1, i.e., a solution of
where T=v—v* G=p—p*, m=m;+im,, m=[m this equation for smalk. exists only whenx.=<(Xc)max-
—m*]sgn(;ix;), M=m+m*, v=0/7, u=ulE, and the Whenxc>(Xc)max, EQ. (11) does not have a smatl; solu-
dimensionless infrared cut-off i§ =K., /v;. The func- 10N, SO NO stationary state Is possible in the hydrodynamic
tion F(, ) is positive definite and contains no explicit di- IMit. To clarify the physical meaning of the control param-
vergences-x.. Since we are concerned with the hydrody- €t€rxc, we write it asxe= (Kqinii)/ (Kminvi) . Obviously,x
namic limit, wherex,<1, the detailed structure of this IS justa measure of the efficiency of turbulergcousdamp-
function is not significant. Returning to standard notation,ing ~k? relative tocollisionless(Landay damping(distrib-
extracting real and imaginary parts, and keeping the leading/ted in all scales Smallness ok, indicates a situation of

divergent(in x.) terms, we have from Eq8a) stronger Landau damping and weaker linear turbuleis-
coug dissipation. The two cases of. lesser or greater
vwd=t\%(2m)2(m3/2)27a, (9a  (Xc)maxthus correspond to different states of turbulence. The
regime of hydrodynamic turbulendee., X.<(Xc) maxl COr-
v =14\ (2m) 2 (M3l 2)IN?(Keminilvi), (9b)  responds to strong dampingm,|>|m;,|, which dominates

nonlinear steepening. Large-scale wave-form structures are
where o=sgn(u,/u;). As can be easily seen, possible, consistent with the notion of a hydrodynamic re-
v, lvi~1(Inky)—0 askmip—0, so we obtain from Eq. gime. The turbulent viscous damping dominated nonlinear
(8h) dispersion in this casey,/uij=4m;/3m,<1. The opposite
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Corrections tox follow from the third order expansion and
are so laborious that they are left for a future publication. We
can, however, estimate the renormalizedas follows. The
energy spectrum is

1 (e fifk
B%k)=—| do —
27 )~ |w—vk— uk?|?
= —(f212)[1/(vk+ uik?)]. (13
The fluctuation level
B?= o dkB(k)= r 14
“5q] (k)= e (14)

FIG. 1. B-T./T; diagram of state. The region inside the curve should be independent of the cut-aff, thusA ~In~"x.. Of
corresponds to highly damped turbulence. No steep fronts appeagourse, the fluctuation level may only depend on the noise

There is wave steepening in the region outside the curve.

regime of “shock” turbulence(i.e., X.=(Xc)max cOrre-
sponds to weakly damped Alfaewaves,|m,|<|m,| (how-

ever, Landau damping still dominates the small-scale diss
pation), where a stationary, hydrodynamic regime is not
possible. In this case, nonlinear steepening is balanced bgl
turbulent dispersion, resulting in a state of small-scale cohe
ent nonlinear structures, steep fronts and discontinuities. Tf\(,-;:l

bifurcation point can easily be found from) =€ * and
Eqg. (11 as

|my|/|ma|pis=V3/e=1.1

(the exact numerical solution yields1.3). The coefficients
m,m, depend on plasma parameters, i.e.,foandT./T;.
We plot the condition Eq12) in the form of a8 vs T./T;

12

Ir-

strength,f, and the dissipation rate,. As is expectedB?
varies asm, * while noise is constant.
To conclude, we have presented the first analytical theory

analysis of a noisy KNLSand DNLS model. The noisy
'KNLS describes turbulence of kinetically dampi@d 8=1)

nonlinear Alfven wave turbulence, i.e., a turbulence of dis-
Ipative structurep7], discontinuities, and shock waves. The
renormalized wave velocity and dispersion coefficients, as
ell as the pulse propagation exponents, were calculated.
Two different phases of turbulence were identified, depend-
ing on the nonlinearity-to-dissipation coefficient ratio,
m; /m,. For|m;/m,|<1 a stationary state of hydrodynamic
(k—0,0—0) turbulenceg(with noise is predicted, while for

|m; /m,|>1 such a state is precluded and small-scale bursty,
spikey turbulence is indicated. A phase diagram in the space
of B andT,./T; is given. These findings may be pertinent to

diagram in Fig. 1. The region inside the curve corresponds teecent observations of multiple states in solar wind plasma
|m;/m,|<1, i.e., a phase of hydrodynamic turbulence. Theturbulence.

outer region corresponds to a phase of bursty turbulence of We thank B. Tsurutani, V.D. Shapiro, V.I. Shevchenko,

steep nonlinear Alfue waves.
For completeness, the perturbation paramatenust be

and S.K. Ride for useful discussions. This work was sup-
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