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Towards a simple model of compressible Alfve´nic turbulence

M. V. Medvedev* and P. H. Diamond†

Physics Department, University of California at San Diego, La Jolla, California 92093
~Received 4 March 1997!

A simple model of collisionless, dissipative, compressible magnetohtdrodynamics~Alfvénic! turbulence in a
magnetized system is investigated. In contrast to more familiar paradigms of turbulence, dissipation arises from
Landau damping, enters via nonlinearity, and is distributed over all scales. The theory predicts that two
different regimes or phases of turbulence are possible, depending on the ratio of steepening to damping
coefficient (m1 /m2). For strong damping (um1 /m2u,1), a regime of smooth, hydrodynamic turbulence is
predicted. Forum1 /m2u.1, steady state turbulence does not exist in the hydrodynamic limit. Rather, spikey,
small scale structure is predicted.@S1063-651X~97!51509-1#

PACS number~s!: PACS: 47.65.1a, 47.52.1j
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The theory of compressible magnetohydrodynam
~MHD! ~e.g., Alfvénic! turbulence has been a topic of inte
est for some time@1#. Alfvén wave turbulence presents se
eral novel challenges, due to the fact that thek–v selection
rules preclude three Alfve´n-wave resonance. Thus, in incom
pressible MHD, two Alfve´n waves can interact only with th
vortex ~i.e., eddy! mode. Compressibility relaxes this con
straint by allowing interaction with accoustic and io
ballistic modes~i.e., Landau damping!, along with waveform
steepening. This naturally leads to the formation of Alfve´nic
shocklets. Thus, one approach, which is analogous to
noisy Burgers model in hydrodynamics, is based on
study of nonlinear wave evolution equations with exter
noise drive@e.g., the noisy derivative nonlinear Schro¨dinger
~DNLS! equation, in space physics#. Such theories describ
turbulence as an ensemble of nonlinear structures,
shocks, discontinuities, and high-amplitude waves, which
typically observed in compressible~e.g., interplanetary@2#!
plasmas. This course of investigation was pursued comp
tionally to study the noisy DNLS equation@3#. Stationarity
was achieved by insertingad hoc viscous damping~later
linked to finite plasma conductivity@4#! into the otherwise
conservative DNLS equation. The DNLS model fails, ho
ever, for the important case ofb;1 (b54pap/B0

2 is the
ratio of plasma pressure to magnetic pressure,B0

2 is an ex-
ternal magnetic field! and the electron-to-ion temperature r
tio Te /Ti;1 ~for instance, in the solar wind plasma!, when
Alfvén waves couple to strongly damped ion acoustic mod
As a consequence, the kinetically modified DNLS@5,6#, re-
ferred to as the kinetic nonlinear Schro¨dinger equation
~KNLS!, which exhibits intrinsically dissipative nonlinea
coupling, emerges as the superior basic model. Nume
solution of the KNLS reveals a new class of dissipat
structures, which appear through the balance of nonlin
steepening with collisionless nonlinear damping. The
structures include arc-polarized andS-polarized rotational
discontinuities@7#, observed in the solar wind plasma an
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not predicted by other models. The resulting quasistation
structures typically have narrow spectra.

Here, we present the first analytical study of the nois
KNLS equation as a generic model of collisionless, larg
amplitude Alfvénic shocklet turbulence. Indeed, this is,
our knowledge, the first structure-based theory of compre
ible MHD turbulence in a collisionless system. Stationarity
maintained via the balance of noise and dissipative non
earity. Dissipation here results from ion Landau dampi
which balances the parallel ponderomotive force produ
by modulations of the compressible Alfve´n wave train. A
one-loop renormalization group~RG! calculation~equivalent
@8# to a direct interaction approximation@9# closure! is uti-
lized. Although the KNLS describes both quasiparallel a
oblique waves@5#, we consider here the simpler case of qu
siparallel propagation. The general case will be addresse
a future publication. The noisy KNLS is, thus, a gene
model of strong, compressible Alfve´nic turbulence and may
be relevant to the solar wind, interstellar medium, shock
celeration, as well as to compressible MHD theory, as
whole. Note that this perspective is analogous to that of
noisy Burgers equation model of compressible fluid turb
lence@10#. Several features which are not common in sta
dard MHD turbulence theories appear in this model. It
shown that the dissipativeintegral coupling renormalizes the
wave train velocity, in addition to inducing nonlinear damp
ing and dispersion. Moreover, consideration of the result
solvability condition for a stationary state in the hydrod
namic limit (v,k→0) suggests that KNLS turbulence ca
exist in one oftwo different statesor phases. In the hydro-
dynamic regime, turbulence consists of large-scale, smo
(v,k→0) wave forms and dissipative structures. In the
gime when the hydrodynamic limit does not exist, one m
expect a small-scale, spikey, intermittent (v,k→” 0) shocklet
turbulence. This hypothesis, however, needs further~e.g., nu-
merical! study.

The ‘‘noisy KNLS’’ equation is

]f

]t
1v0

]f

]z
1l

]

]z
~fU2!2 im0

]2f

]z2
5 f̃ , ~1!

wheref5(bx1 iby)/B0 is the wave magnetic field,f̃ is the
random noise,m05vA

2/2V i is the dispersion coefficient,v0 is

c
du/
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the reference frame velocity,l51 is the perturbation param
eter,vA is the Alfvén speed, andV i is the ion gyrofrequency
Unlike the Burgers equation, the KNLS~and DNLS! equa-
tion is not Galilean invariant, hence thev0 term is explicit.
The packet velocityv0 is renormalized due thebroken sym-
metry between1k and 2k harmonics induced by Landa
damping. This precludes the conventional practice of tra
forming to the frame comoving atvA to eliminatev0. The
macroscopic ponderomotive plasma velocity perturbation
a high amplitude Alfve´n wave is

U25m1ufu21m2Ĥ@ ufu2#, Ĥ5
1

pE2`

` P
z82z

dz8 ,

~2!

where Ĥ is the ~nonlocal! Hilbert operator that represen
collisionless~Landau! dissipation. The coefficientsm1 and
m2 are functions ofb andTe /Ti , only, i.e.,

m15
1

4

~12b* !1x i
2~12b* /g!

~12b* !21x i
2~12b* /g!2

, ~3a!

m252
1

4

x ib* ~g21!/g

~12b* !21x i
2~12b* /g!2

, ~3b!

whereb* 5(Te /Ti)b, g53 is the polytropic constant, an
x i5A8b/pg@(Te /Ti)

3/2exp$(Ti2Te)/2Ti%# is the parallel
heat conduction coefficient that models kinetic collisionle
dissipation in fluid models. The termm1 represents nonlinea
steepening of a wave via coupling to the self-generated d
sity perturbation~associated with an acoustic mode!. The
term m2 corresponds tokinetic damping of a wave by reso
nant particles, which rapidly sinks energy from all harmo
ics, unlike viscous dissipation. We emphasize that the KN
is intrinsically anonlinearly dissipativeequation, i.e., there
is no linear damping retained here. In this regard, we co
ment that there appear to be two meaningful paradigm p
lems to be explored. One is to retainboth linear growthand
damping in the KNLS. In this case the results will necess
ily be quite model dependent. The other, which we pur
here, is to study the purely nonlinear problem with no
drive. This case allows us to isolate and focus on the int
sically nonlinear dynamics of the KNLS equation.

In Fourier spaceĤ5 ik/uku, so the transformed KNLS is

(2 iv1 iv0k1 im0k2)f
v
k

1 ilk (
v8,v9
k8,k9 ~ f

v8
k8 f

v9
k9 f

v2v82v9
k2k82k9 [m1

1 im2sgn(k2k8)]!5 f
v
k , ~4!

where the function sgn(x)5x/uxu. The stochastic noisef
v
k is

assumed to be zero mean, andd correlated in space and time
To extract information from Eq.~4!, we utilize the direct
interaction approximation~DIA ! closure@9,11,12#. We fol-
low the approach used in@12# which is different from@11#,
where the correlation functions of cubic Schro¨dinger turbu-
lence were found. We emphasize the statistical nature of
analysis. Indeed, turbulence renormalizes the coefficient
the evolution equation, leaving its functional form u
changed. The renormalized phase velocityv and dispersion
s-

r

s

n-

-
S

-
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r-
e

-

ur
of

m ~see discussion below! appear in the second order inl.
Since the KNLS~and DNLS! is not Galilean invariant, the
vertex l is also renormalized. This is a third order effec
Because of mathematical difficulties, we exactly calculatev
andm, only, and forl, we provide a simple heuristic argu
ment. In general, the noise finctionf̃ is also renormalized a
higher orders inl. Usually, in one-loop RG analyses, suc
turbulent corrections are assumed to be small. Note
knowledge of turbulentl and f̃ is not required for predict-
ing the existence of the hydrodynamic limit~see below!.

We expandf
v
k in a power series with respect to the pe

turbation parameterl: f
v
k 5f

v
k
(0)1lf

v
k
(0)1l2f

v
k
(2)1••• and

equate terms, order by order, inl. To second order, we hav

(v2v0k2m0k2)f
v
k
~2!

5lk (
k8,k9
v8,v9

f
2v8
2k8
~0!

f
2v9
2k9
~0!

f
v1v81v9
k1k81k9
~1! [m11 im2sgn(k1k8)]

52 il2 (
k8, k88
v8, v88

k(k1k81k9)G0(k1k81k9, ~5!

v1v81v9)~f
2v8
2k8
~0!

!f
v8
k8
~0!

~f
2v9
2k9
~0!

f
v9
k9
~0!

!f
v
k
~0!

3@m11 im2sgn~k1k8!#@m11 im2sgn~k1k88!# ,

where the bare propagatorG0(v,k)5 i /(v2kv02k2m0). In
the DIA, we takef

v
k
(2).f

v
k
(0) . The terms proportional tok

andk2 in the left-hand side act to modifyv0 andm0. Thus,
the nonlinear term of Eq.~5! represents an amplitude depe
dent correction toboth the velocity and dispersion coeffi
cients, and Eq.~5! is a recursive equation for the renorma
ized coefficientsv and m. The fixed point of this recursion
relation gives the self-consistent values of these coefficie
Replacing the barev0, m0 with their amplitude dependen
counterpartsv, m, we write

~v2vk2mk2!

5
l2

~2p!4E E E E
2`

`

dv8dv9dk8dk9u f
v8
k8 u2u f

v9
k9 u2

3
k~k1k81k9!

uv82vk82mk82u2uv92vk92mk92u2

3
@m11 im2sgn~k1k8!#@m11 im2sgn~k1k9!#

v1v81v92v~k1k81k9!2m~k1k81k9!2
.

~6!

We should note thatv and m will now assume complex
values,

v5v r1 iv i , m5m r1 im i . ~7!

The real parts,v r andm r , represent the amplitude depende
speed of a wave packet~note, there is a momentum transf
from waves to resonant particles in this model! and nonlinear
dispersion~i.e., an amplitude dependent frequency shift
Fourier space!, respectively. The imaginary parts,v i andm i ,
correspond to damping processes. In particular,v i describes
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the exponential damping via phase mixing of a wave pac
and m i describes turbulent, viscous dissipation. It is eas
seen that form2→0 the KNLS may be written in the comov
ing frame with v050. Thus, no additional phase-mixin
terms appear, since the termsk8k andk9k vanish upon inte-
gration over2`,$k8,k9%,`, in the hydrodynamic limit.
The collisionless damping breaks this symmetry of the1k
and 2k parts of the spectrum, thus resulting in the pha
mixing and phase velocity renormalization terms~analogous
to nonlinear frequency shifts! encountered here.

We seek solutions in the hydrodynamic limitv→0,
k→0. For simplicity, we assume for noise the white no
statistics, i.e.,f

v
k 5 f . This assumption is not too artificia

since MHD waves are usually pumped at large scales~small-
k) and the large-k tail is heavily damped by collisionles
dissipation, which is an increasing function ofk. Ordered by
powers of k, the nonlinear term in the integrals contai
k3,k4, . . . contributions. However, thehydrodynamic behav
ior is completely determined by the small-k,v limit. Thus,
by omitting higher-k terms, Eq.~6! naturally splits into two
equations forv andm, respectively. Thev8,v9 integrations
can be easily performed in complex plane. It is convenien
introduce dimensionless variablesx85k8m̃/ ṽ , x95k9m̃/ ṽ .
The k8,k9 integrals in Eq.~6! diverge ask8,k9→0 ~i.e. in-
frared divergence!. The integrations can be performed co
sistently only in the limit where the infrared cutoffs satis
the inequalityxc8 ,xc9!1. Quite lengthy, but straightforwar
complex integrations yield

v r1 iv i52 f 4
l2

~2p!2

2m̃

ṽ 3 H m̃

2
ln2xc1m̃ ln~122m̄ !

1
m̃

2 S p2

3
13D J , ~8a!

m r1 im i52 f 4
l2

~2p!2

m̃m̃

ṽ 4 H m̂
lnxc

xc
2

1

xc
@m̂ v̄ ~m̄23!

1m̃v̄ ~523m̄ !#2 ln2xcm̃@112 v̄ ~12m̄ !#

1 lnxc@2m̃~m̄2 v̄ !2m̂~4m̄25 v̄ 11!#

1F~ v̄ ,m̄ !J , ~8b!

where ṽ 5v2v* ,m̃5m2m* , m5m11 im2 , m̃5@m
2m* ]sgn(v im i), m̂5m1m* , v̄ 5v/ ṽ , m̄5m/m̃, and the
dimensionless infrared cut-off isxc5kminm i /v i . The func-
tion F( v̄ ,m̄) is positive definite and contains no explicit d
vergences;xc . Since we are concerned with the hydrod
namic limit, where xc!1, the detailed structure of thi
function is not significant. Returning to standard notatio
extracting real and imaginary parts, and keeping the lead
divergent~in xc) terms, we have from Eq.~8a!

v rv i
35 f 4@l2/~2p!2#~m2

2/2!2ps, ~9a!

v i
45 f 4@l2/~2p!2#~m2

2/2!ln2~kminm i /v i !, ~9b!

where s5sgn(m r /m i). As can be easily seen
v r /v i;1/(ln2kmin)→0 as kmin→0, so we obtain from Eq
~8b!
et
y

-

o

,
g,

m rv i
35 f 4

l2

~2p!2

m2

8kmin
F4m1lnS kminm i

v i
D13m2

m r

m i
G ,

~9c!

m iv i
35 f 4@l2/~2p!2#~m2/8kmin!m1~m r /m i !. ~9d!

For the coefficientsv andm, we may now write

v r;v isgn~m r /m i !ln
22xc , v i;2 fAlm2lnxc ,

~10!

m r;m i S 4m1

3m2
D , m i;2S m1

m2
D 2 f

kmin
Alm2

lnxc
.

Note that the factor lnxc5ln(kminmi /vi);ln(lnkmin) makes an
insignificant cut-off correction. Nonzerov r arises due to
wave momentum loss via interaction with resonant partic
and reflects the process whereby a nonlinear wave acc
ates in the direction of steepening~i.e., v r.0 for
b<1,Te5Ti), an effect that is observed in numerical sol
tions of the KNLS equation@7#. This effect is logarithmic for
kmin→0. Negativev i corresponds to exponential dampin
due to phase mixing, and is proportional to the dissipat
rate m2. The coefficientm r represents turbulent dispersio
and the coefficientm i,0 corresponds to turbulent viscou
damping. By analogy with noisy Burgers equation@12#, Eqs.
~10! for the turbulent transport coefficients yield the pul
propagation scaling exponents for the hydrodynamic regi
which are defined by divergences at the cutoff. For diffus
term, we havedx2/dt;m i;udxu ~i.e., ;1/kmin), so that
udxu;dt. This corresponds to symmetric ballisticdispersion
of the shocklet waveform. For the velocity term, we write~as
v r→0 whenkmin→0) x/t;v i;Al lnxc;const, that isx;t.
This corresponds to ballistictranslationof the shocklet.

We now construct the quantityxc5kminm i /v i from Eqs.
~9! to determine when our cutoff approximationxc!1 is
valid. Note thatxc!1 must be satisfied for a self-consisten
hydrodynamic regime solution. Dividing Eqs.~9b! and ~9c!
by Eq. ~9d!, we derive a system of equations that is eas
simplified to give the condition

4xc
2ln3xc23xclnxc2~m1/m2!250. ~11!

Again, forxc!1, we may omit the smallxc
2 term. This equa-

tion has maximum at (xc)max5e21,1, i.e., a solution of
this equation for smallxc exists only whenxc<(xc)max.
Whenxc.(xc)max, Eq. ~11! does not have a small-xc solu-
tion, so no stationary state is possible in the hydrodyna
limit. To clarify the physical meaning of the control param
eterxc , we write it asxc5(kmin

2 m i)/(kminv i). Obviously,xc

is just a measure of the efficiency of turbulentviscousdamp-
ing ;k2 relative tocollisionless~Landau! damping~distrib-
uted in all scales!. Smallness ofxc indicates a situation of
stronger Landau damping and weaker linear turbulent~vis-
cous! dissipation. The two cases ofxc lesser or greater
(xc)max thus correspond to different states of turbulence. T
regime of hydrodynamic turbulence@i.e., xc<(xc)max# cor-
responds to strong damping,um2u@um1u, which dominates
nonlinear steepening. Large-scale wave-form structures
possible, consistent with the notion of a hydrodynamic
gime. The turbulent viscous damping dominated nonlin
dispersion in this case,m r /m i.4m1/3m2!1. The opposite
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regime of ‘‘shock’’ turbulence~i.e., xc>(xc)max) corre-
sponds to weakly damped Alfve´n waves,um2u!um1u ~how-
ever, Landau damping still dominates the small-scale di
pation!, where a stationary, hydrodynamic regime is n
possible. In this case, nonlinear steepening is balanced
turbulent dispersion, resulting in a state of small-scale coh
ent nonlinear structures, steep fronts and discontinuities.
bifurcation point can easily be found from (xc)max.e21 and
Eq. ~11! as

um1u/um2uubi f.A3/e.1.1 ~12!

~the exact numerical solution yields.1.3). The coefficients
m1 ,m2 depend on plasma parameters, i.e., onb andTe /Ti .
We plot the condition Eq.~12! in the form of ab vs Te /Ti
diagram in Fig. 1. The region inside the curve correspond
um1 /m2u,1, i.e., a phase of hydrodynamic turbulence. T
outer region corresponds to a phase of bursty turbulenc
steep nonlinear Alfve´n waves.

For completeness, the perturbation parameterl must be
renormalized, because the KNLS is not Galilean invaria

FIG. 1. b-Te /Ti diagram of state. The region inside the cur
corresponds to highly damped turbulence. No steep fronts app
There is wave steepening in the region outside the curve.
i-
t
by
r-
he

to
e
of

t.

Corrections tol follow from the third order expansion an
are so laborious that they are left for a future publication. W
can, however, estimate the renormalizedl as follows. The
energy spectrum is

B̃2~k!5
1

2p
E

2`

`

dv

f
v
k f

v
k

*

uv2vk2mk2u2

52~ f 2/2!@1/~v ik1m ik
2!#. ~13!

The fluctuation level

B̃25
1

2pE2`

`

dkB̃2~k!52
f 2

4v i
~14!

should be independent of the cut-offxc , thusl; ln21xc . Of
course, the fluctuation level may only depend on the no
strength,f , and the dissipation rate,m2. As is expected,B̃2

varies asm2
21 while noise is constant.

To conclude, we have presented the first analytical the
analysis of a noisy KNLS~and DNLS! model. The noisy
KNLS describes turbulence of kinetically damped~at b.1)
nonlinear Alfvén wave turbulence, i.e., a turbulence of di
sipative structures@7#, discontinuities, and shock waves. Th
renormalized wave velocity and dispersion coefficients,
well as the pulse propagation exponents, were calcula
Two different phases of turbulence were identified, depe
ing on the nonlinearity-to-dissipation coefficient rati
m1 /m2. For um1 /m2u,1 a stationary state of hydrodynam
(k→0,v→0) turbulence~with noise! is predicted, while for
um1 /m2u.1 such a state is precluded and small-scale bur
spikey turbulence is indicated. A phase diagram in the sp
of b andTe /Ti is given. These findings may be pertinent
recent observations of multiple states in solar wind plas
turbulence.
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