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Linear time-delay feedback control of a pathological rhythm in a cardiac conduction model
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This paper describes a method based on one-step linear time-delay feédb&dk for suppressing a
pathological period-2 rhythnicardiac alternansin an atrioventricular nodal conduction model. The LTDF
controller is effective at suppressing alternans by stabilizing the map to one of a set of unstable fixed points.
Additionally, we show that alternans can be prevented by tracking the period-1 rhythm past the point where
bifurcation occurs, and that the method is robust to both measurement error and experimental noise. Finally, we
demonstrate that this method is simpler to implement and more effective than the OGY chaos control method
which was used recently to stabilize the same sysf&h063-651X97)51208-9

PACS numbep): 87.22—-q, 07.05.Dz, 05.45:b

[. INTRODUCTION rhythm, then bifurcates into a period-2 rhytHaiternang at
about cycle number=200 eventually alternating between
values of about 113 and 148 rfeee Fig. 13)]. R, eventually
rr](%gtches the steady-state value~gbl ms.

In a recent study by Christini and Collif8] it was dem-

In a recent study by Suet al. [4] an empirical model of
electrical conduction through the atrioventricu{&V) node
was developed based on stimulus-response measureme
from six isolated rabbit hearts. The model was represented
by the following nonlinear discrete-time relation: (a)

a
A 1=F(ALHD=Anint Rt 1+ Biexp(—Hi/7e0), (1)

whereH; is the interval between bundle of His activation and
the subsequent atrial activati¢ime AV nodal recovery time
during cardiac cycle, A, ; represents the time interval be-
tween cardiac impulse excitation of the low interatrial sep-
tum and the bundle of Higthe atrial-His interval during
cyclei+1, A, and 7, are positive constants, and

k=-03
Oy = 0 ms

Ro=yexp(—Ho/7sa0) 75

Ri-1=Riexd — (Ai+Hi)/tat] +vexp(—Hi/7¢ay), 0 1000 2000 3000

201 ms-0.7A;, for A;<<130 ms

- 500 ms-3.04;, for A,;=130 ms, 50 (b)

Bi

in which Hg is the initial H interval and bothy and 7, are

positive constants. S+g;
Sunet al.[4] found that when the rabbit hearts were elec-

trically stimulated near the sinoatriébA) node at a fixed 38

time period following Bundle of His activatiofthe His to

stimulus interval, 05), the A intervals could demonstrate an

alternating time series characteristic of reentrant tachycardia.

This was simulated in the modél) by substituting the con- 25 _ ,

stantS interval for H; with S<57 ms(as demonstrated in

[3,4]). Under this conditionA; starts out as a period-1 0 1000 2000 3000

T
|

i
FIG. 1. LTDF control of the map Eq.l). (@) Times series of
*Author to whom correspondence should be addressed: Depark, prior to control (from i=0-999), during control fromi
ment of Psychiatry and Behavioral Sciences, University of Texas=1000 to 1999 usingy;= —0.3S, and with controller inactivated

Medical School, 6431 Fannin Dr., Rm. 5.202, Houston, TX 77030-(for i>1999. (b) Corresponding time series &+ g; with S=45
1501. Electronic address: mbrandt@pedl.med.uth.tmc.edu ms.
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FIG. 2. Plot of the controlled mafi) for values ofk in Eq. (9) '

vs A (the final stabilized target trajectory &) with S=45 ms
(solid plot), andS=50 ms(dotted plo}.

onstrated that an adaptive version of the OGY chaos control
method[1] could be used to stabilize the nonchaotic alter-
nating rhythm produced by the above model. They also
showed that this method could be used to prevent alternans

in the model if control was applied prior to its onset. The 25 : :

OGY method has previously been used to stabilize unstable 0 1000 2000 3000
periodic orbits in several chaotic biological systems such as i

the rabbit septum and rat hippocampal slice prepard@dn

using small parameter perturbations. FIG. 3. LTDF control of the map Ed1) with zero-mean Gauss-

Here we describe a one-step linear time-delay feedbacian white noise¢; (o,=1 ms added toS. (a) Times series o\,
(LTDF) controller that can stabilize the mod@) to one of a  (A; measured with precision of 0.2 ingrior to control (from i
set of period-1(and, if necessary, period-thythms. A simi-  =0-999, during control fromi=1000 to 1999 usingg;=
lar controller was used by us recently to successfully stabi=0.3S, and with controller inactivatedfor i>1999. (b) Corre-
lize nonchaotic as well as chaotic versions of theétemap  sponding time series @+ ¢ +g; with oz=1 ms, andS=45 ms.
with and without additive Gaussian white noigd. A moti-
vation for this work is the fact that certain physiological Of the system model. Rather, we prefegathat depends
systems produce stochastic, nonchagtionlineay behavior ~ Only on previous system state values. .
that may be more easily stabilizéahd with a simpler imple- We first demonstrate that LTDF control using theval-

mentation using LTDF control rather than the OGY method. Ues leads to stabilization of the model to a period-1 rhythm
under some restrictions. Siné& may be more readily ac-

cessible in an actual preparation thanwe then show that
LTDF control usingH; is successful under far less restrictive

The controlled form of the mafl) is conditions than LTDF control using; .
A simple design for the self-tuning gain is

IIl. METHOD

A =f(A H)+g, 2 ~
i+1 ( | I) gl ( ) giZkAi+l (3)
whereg; is a self-tuning control input to be automatically
determined during each cardiac cycland would be imple-
mented through stimulatory pacing as describef4in
The objective of the design is to find a simple and imple-
mentableg; to achieve the goal of automatic control, i.e.,

with k constant and&i+l an estimate ofA;, ; based on a
predictive model of the data constructed from previous out-
puts. For the original systerfi) a short time following the
period-2 bifurcation, linear autoregressive modeling of the
A;’s leads to the approximation

Ai—>A as i—ow y Ai-%—l%Ai—l' (4)

whereA is the desired target atrial-to-His interval. This in- Equation(3) then becomes

terval is usually(but not necessarijyan unstable fixed point

(UFP) of the original map1). When the control objective is gi=kAi-1 ®)
finally realized,e;=A;— A will be equal to a smallideally  and Eq.(2) becomes
zerg constant at the time iteration halts. We ultimately de-

sire ag; that does not depend explicitly on prior knowledge Ai1=T(A H)+KA 1, (6)
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FIG. 4. Target tracking to avoid alternans. The controbier
=—0.3Sis activated at=200 and turned off at=2000.(a) Time

series ofA;, (b) corresponding time series &+ & +g; with o
=1 ms, andS=45 ms.

This controller turns out in practice to be more stable and
effective than Eq(5). Its success can be verified mathemati-
cally as follows. We first observe that for the system stabi-
lized to a period-1 trajectornh; will be less than 130 m&ve
demonstrate this explicitly in the results belowherefore,
only the first branch of the parametgr is used in Eq(1);
namely, 8;=201-0.7A;, which is always positive. Conse-
quently,

Ai1=T(A H))
=Anint Ri 1+ Biexp(—H;/7e)>0.

Observe also tha#;,; is monotonically decreasing as a
function of H;, sinceH; is within all of the negative expo-
nential terms in the functiorA;, : exd —(A+H)/ 7,
exp(—Hi/r,), and exptH,/ne). Therefore, for the con-
trolled system

Ai1=f(A,H)+kH;

to be asymptotically stable, we construct a Lyapunov func-
tion of the formV,=A? which satisfies

Viei—Vi=AZ - A
=[f(A;,H))+kH_{]?
—[f(A_1.Hi_p) +kH; _,]?
<0 fori—o,

provided thatk is negative. This is becausd )>0 de-
creases and a positive constahis substituted foH; (as
discussed further belgwAs a result, the feedback-controlled
system is stabilized by an arbitrary negative control dain

in which the additive control term conveniently depends onlyQualitatively, use of a large negative gain leads to more
on previous values of the system variable. In order to restable control in the sense thét, ; —V; will be more nega-

establish period-1 control of mdft) we need only determine
the value of the constant parameker
We now show that use of gain E(p) yields stable con-

trol. SubtractingA from both sides of Eq(6) gives
A= A=F(A H)+KA_ —A,
or, with e(*V=(A, ., —A) ande,("D=(A,_;—A),
e V=f(A H)+(1+ke VA ;. (7
From Eq.(4) this simplifies to
e V=(1+k)e("V . (8)

Clearly, the stability condition satisfigd +k|<1, or —2
<k<0. Observe moreover th&(*) must have the same
sign ase;(" Y as a further consequence of E4). Hence, for
Eq. (8) to hold, (1+k) must be positive, which restricts the
gain stability condition to be- 1<k<<0. Note that the ana-
lytic condition —1<<k<<0 is an approximate one due to Eq.
(4) and may be slightly different in practice.

For LTDF control usingH; [and analogous to E@5)] we
specify that

gi=kHj_;. 9

tive.

Ill. RESULTS

We limit our discussion of results to the use of tHe
(S) feedback controller Eq(9) [6]. In the following ex-
amples we use the constams,;,=33 ms, 7,..=70 ms,
Tiar= 30 S, andy=0.3 ms as employed i8,4]. Figure 1a)
shows the time series of both the uncontrolled and controlled
nonstochastic mapEq. (1)]. The first 1000 iterations are
without control followed by 1000 iterations with the control-
ler activated, followed by 1000 iterations with the controller
turned off. In this figur&k=—0.3, andS s set initially to the
constant 45 ms. Figure() shows the corresponding value
of S+g; at each of the 3000 iterations. When the controller
is on (from i =1000 to 2000 the negative feedback af,=
—0.3S effectively shortens the natur8linterval as shown.

Figure 2 is a plot of the controlled map for valueskoin
Eqg. (9) vs A (the final stabilized target trajectory 8f) with
S=45 ms(solid line) and S=50 ms. For the former case,
period-1 control is achieved fd«<—0.27 and period-2 oth-
erwise. For S=50 ms (dotted ploj period-1 control is
achieved fork<<—0.14 and period-2 otherwise. Figure 3 is
analogous to Fig. 1 with the exception that zero-mean Gauss-
ian white noise&; has been added 8 (o,=1 m9 andA;
has been measured with a precision of 0.2 ms to simulate the
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effect of measurement noig&]. As shown, this leads to a more intuitive implementation than the OGY chaos control
form of “noisy” control [5,8]. Finally, Fig. 4 is an example method.

of tracking in order to avoid the alternans before it occurs. (ii) Once the pathological rhythm is diagnosgtereby
The controller is activated at=200 prior to when the sys- identifying the systemit is easily controlled through linear
tem would normally bifurcate. This eliminates the alternansfeedback using a single tunable gain parameter without nec-

at the expense of a slightly lowéabout 10 msA; (A, plus  essarily having to determine the UFP as in the OGY method.

simulated measurement efrolhe controller is then inacti-  (iii) In addition to the UFP of the original system, a range
vated ati=2000 showing restoration of the alternating Of fixed point trajectories can be achieved using our method.
rhythm. This provides a wider latitude in choosing a desired target
trajectory (see Fig. 2 than the OGY method which only
IV. DISCUSSION AND CONCLUSIONS targets the UFP.

Based on various computer simulations, our method is

We presented a simple method based on LTDF control foalso as robust to noise inputs and measurement error as the
stabilizing a nonchaotic, pathologic model of the heart, withOGY method. Arguably, the most attractive feature of the
and without both random noise and simulated measuremefTDF controller is its ease of use in setting the feedback
error. Christini and Colling3] demonstrated that a modified gaink. As shown in Fig. 2k should be set initially to zero,
version of the OGY method could be used to stabilize thisand then slowly “dialed down”(increased in the negative
map to its unstable periodic orbit. However, the method dedirection until the point in time when the alternating pattern
scribed here has several compelling advantages over the prhalts and period-1 is restored. Clinically, this may lead to a
cedure used Q3] for controlling this particular system: more straightforward pacemaker design and subsequent

(i) The LTDF controller is a computationally simpler and implementation.
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