
RAPID COMMUNICATIONS

PHYSICAL REVIEW E AUGUST 1997VOLUME 56, NUMBER 2
Elasticity of entangled polymer loops: Olympic gels
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In this Rapid Communication we present a scaling theory for the elasticity of olympic gels, i.e., gels where
the elasticity is a consequence of topology only. It is shown that two deformation regimes exist. The first is the
nonaffine deformation regime where the free energy scales linear with the deformation. In the large~affine!
deformation regime the free energy is shown to scale asF}l5/2 wherel is the deformation ratio. Thus a
highly non-Hookian stress-strain relation is predicted.@S1063-651X~97!50408-9#

PACS number~s!: 36.20.2r, 05.90.1m, 61.41.1e
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In this Rapid Communication we compute the scaling
the elastic modulus of an olympic gel. This name has b
created by de Gennes@1# since the configuration of such ge
resembles very much the olympic rings. Olympic gels
very peculiar elastic materials as their elasticity does
come from crosslinks as in conventional rubbers. Actua
ideal olympic gels do not contain any crosslinks, but con
of concatenated rings only. In this sense the elasticity of s
materials is expected to be very different from classical r
bers and strong deviations from the non-Hookian deform
tion behavior@2,3# ~as observed in the low deformation r
gime in conventional rubbers! must be expected. Actually
the elasticity of such olympic gels has not been calcula
yet and we attempt to present a simple argument in
issue. Apart from the case of synthetic materials these c
siderations are important for biological systems too. It is w
known that highly entangled DNA rings exist and play
important role in biology@4–7#

Unless, as in conventional soft materials, such as rubb
the precise calculation of the modulus of topological gels
difficult, the exact topological state of the gel must
known. Specifying topological states is a general problem
polymer physics and has been discussed in@8#. The corre-
sponding mathematical problem is the classification of kn
and links@9#. Despite its incompleteness already noted in@8#,
in general the Gauss invariant is used in polymer phys
because it is the most simple invariant that explicitly co
tains the polymer conformation in contrast to algebraic
variants in knot theory. Even using the Gauss invariant, it
in general, not very simple to describe the linking status
the network. Only for the easy case of a nonconcatena
melt of rings this seems to be possible, but here alre
many complications appear@10#.

The synthesis and preparation of such gels is also a
difficult task. Some of the problems are already discusse
de Gennes’ book@1#. The crucial point is that the ring clo
sure of the chains must be carried out at concentrations la
than the overlap concentrationc* . The reaction process i
carried out in two steps: First a certain amount of rings
cyclicized by end group reaction. Then further linear cha
are added to the given sample. These additional rings
then cyclicized again. With variation of the concentrati
different entanglement numbers can be expected. The
vent must then be evaporated to get the bulk network
such an ideal synthesis the topological state of the netw
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depends on the concentration of preparation. One limit is
cyclization in the linear melt state~a gedankenexperiment!.
Such prepared topological gels will be important for motiv
tion of the following scaling analysis. Assume therefore
condensed melt of linear chains. It is well known that t
excluded volume forces are screened out@1,11#. The screen-
ing of the excluded volume can also be asserted to the st
interpenetration of linear~5 one-dimensional connectivity!
chains@12#. As a result, the chains behave Gaussian in
melt. If then each long chain is closed to a ring~in gedan-
ken!, the size of the ring polymer would not change. T
reason for this is that each ring is~in average! concatenated
by n.% l 3N1/2, where % is the density of the melt,l the
typical size of a monomer, andN the degree of polymeriza
tion. In the limit of scaling,n can be identified by the wind
ing number. Such natural conjectures have also been m
tioned by Cateset al. @13#. For a more rigorous definition o
the winding number in such gel-like systems we refer
reader to our previous publication@10#. In this paper we had
already confirmed the scaling conjecture presented first
Cateset al. @13# by careful treatment of the Gaussian linkin
number. The main result there was to show that the con
mation of a ring in an unlinked melt of rings is naturally no
Gaussian, i.e., the sizeR}Nn, wheren,1/2.

In the present work we treat denselinked olympic gels
without solvent. The discussion of solvent free gels yie
the ‘‘bare’’ scaling of the elastic modulus without addition
contributions from the excluded volume and swelling.

To do this, we have to use nonconventional argume
because most of the theories for ideal, ordinary rubber n
works are ‘‘single chain theories,’’ i.e., all the elasticity o
the network is computed by the contribution of the elastic
of one single network strand, which is then multiplied b
the number of elastically active chains@3#. These well-
known results can be summarized by the free energy of
network as a function of deformationF}MkBTl2, where
M is the number of active chains andl is the deformation
ratio of the chain. Although this seems to be very simplifie
the results are in reasonable agreement with low deforma
experiments and recent simulations@14#, as long as higher
order effects at large deformations are ignored. In this w
we put forward a scaling theory in a similar spirit. To do th
we estimate the single ring behavior and conclude from
basis the elasticity of the entire gel. For the subsequ
analysis we need the following assumptions: the rings are
R1314 © 1997 The American Physical Society
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self-knotted; the topological state of the network can be
scribed by a global winding numbern, which on the average
is the same for each ring in the network; and the direct
fluence of excluded volume effects is ignored. Aga
these assumptions seem to be crude, but these turn out
sufficient for the type of analysis presented here. A ma
ematical formulation of the problem of elasticity of th
olympic gel will be presented elsewhere@15#.

In the following we start from a Flory-type estimate of th
free energy of an entangled ring in an olympic gel, where
average winding number of each ring is assumed to ben.
The free energy of an entangled ring in a network can
written as

F5kBT
N

R2
1 const3

R3

nN
. ~1!

Here the first term is the Gaussian elastic part of the ring
the gel and the second term represents the pressure ex
enced by the ring that comes from all the surrounding rin
If the ring is not entangled with the others the second te
would readR3/N obtained by replacingn by n11 in Eq.~1!
and n50. Note that in this case the present ansatz for
free energy agrees with the one proposed by Cates
Deutsch@13# for nonconcatenated ring melts. If, howeve
other polymers are entangled with the ring under consid
ation, they exert a repulsive force per winding number fro
inside and outside the ring, and consequently they do
contribute to the packing pressure. By this, we mean that
dense melt of rings is as closely packed as possible. T
one ring experiences a pressure induced by the surroun
ones. The packing term is, however, reduced by the ave
winding number. The factor 1/n in front of the second term
has its reason in the ‘‘screening’’ of the packing pressu
Each of the other rings that is entangled with the ring po
mer under consideration, reduces the packing pressure. I
limit of the cyclization in the melt the free energy contrib
tion must be of the order ofO(1), since the rings must be
Gaussian. Note that the free energy described by Eq.~1! does
not contain an upper critical dimension. The interaction te
is therefore important in all spatial dimensions. Instead of
upper critical dimension it contains a limiting winding num
ber such thatR}AN, corresponding to the melt cyclizatio
gedankenexperiment. Minimization of the free energy wit
respect toR yields the size for the ring in the network

RN}n1/5N2/5, ~2!

where all~to the purpose of this paper! irrelevant constants
have been dropped. The latter equation has interesting
sequences. For smalln the scaling results agree with thos
proposed by Cateset al. @13#. The rings appear compresse
in the melt. Similar findings have been put forward by
more rigorous theory by us recently@10# and by numerical
simulations of the problem@16,17#. On the other hand, if the
mean winding number is close to that given by the aver
density of the system, i.e.,n}AN, the ring is Gaussian a
melt cyclization conditions. In this case the topological
fects are screened and the ring finds itself in a natural m
environment. If the winding number is larger, for examp
n}N, then too many rings are connected with each other
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the ring configuration stretches out. So far the requireme
have been satisfied by the simple scaling ansatz.

The next task is now to find the asymptotic distributio
function for the typical sizer of the ring in the gel. A rea-
sonable form of the distribution function is given b
P(r ,N,n)5N r u f (r /RN), whereN is a suitable but unin-
teresting normalization.u determines the short distance b
havior and the functionf (x) has to be determined. In fac
for the elasticity the knowledge of the scaling functionf is
sufficient, because the power in front of the distributi
function yields only irrelevant~logarithmic! corrections. To
find the appropriate distribution function, we start from t
asymptotic behavior of the scattering function defined by
size of the ring. Then, by standard methods, such as stee
descent Fourier inversion@1#, it is easily found that the
asymptotic form of the distribution is given by

P~r ,N,n!}expH 2S r

RN
D 5/3J , ~3!

This asymptotic form will be sufficient in the scaling limi
This is indeed the key equation of the paper. Together w
Eq. ~2! it yields the correct asymptotic behavior of the di
tribution function. For low values of the average windin
numbern it contains the limits suggested in@13#.

The olympic gel is considered to be entropy elastic. Th
we may conclude that the elastic free energy of the typ
ring in the olympic gel as a function of its elongationr is
given by

Fs~r !}T
1

~nN2!1/3
r 5/3. ~4!

The tension is given by the derivative and thus we find
nonlinear force extension relationship due to the no
Gaussian structure of the rings in the network, i.e.,

f 5T
1

~nN2!1/3
r 2/3. ~5!

The latter result is the force extension law for one ring in t
olympic gel, and corresponds to the according single-ch
deformation law in conventional rubber theory, i.e.,f
5(T/N)r @2#. Therefore~non-!Hookian deformation behav
ior in olympic gels cannot be expected.

At this point we have the possibility to observe two d
ferent deformation processes and regimes. At low deform
tions the entanglements do not act as severe constraints
have many degrees of freedom, similar to entanglement
conventional rubbers. It has been shown that there the
tanglements yield a ‘‘softening’’ of the modulus, if com
pared to the classical Gaussian theory@3,18,19#. This soften-
ing of the modulus corresponds to the slippage and sliding
entanglements. This happens if the deformation of the in
vidual ring in the gel is such that only the mean conto
between two entanglements, i.e.,N/n take part on the defor-
mation. This defines the deformation ratiol05(N/n)/(RN)
>(N/n2)3/5. Note thatl0 in the melt preparation conditions
whenn}AN, is O(1), which is physically sensible: At high
degree of entangling the topological constraints act imme
ately as crosslinks from the lowest deformation. From
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arguments presented in@3,18# the maximum deformation ca
be estimated tolmax5O(AN/n). The latter is always less
than l0 as long asn<N1/7. For the validity of the scaling
arguments this must always be the case here.

Consider first the low deformation regimel,l0. In the
low deformation regime of olympic gels the slippage of t
topological constraints dominates. The main problem w
the low deformation regime is that the relevant chain len
is not fixed@3,18,20#. To see this point consider convention
rubbers, where the fixed length scale is given by the m
size. In such olympic gels a clear length scale~at least in the
low deformation regime! cannot be defined, because the s
tem is ruled by a large number of degrees of freedom.

It has been shown that the deformation process can
be described by an effective distributionP̃(r )
5*dNp(N)P(r ,N,n) function on the level of a single ring
As a consistent model we choose forp(N) the entanglements
slack @21#, p(N)}exp(2N/N0), which has been successful
applied to entanglement problems~see @3# and references
therein!. N0 is a mean excursion of the ring form the mo
probable conformation. The effective distribution is th
given by the asymptotic form

P̃~r ,N0 ,n!}expS 2
r

n1/5N0
2/5D , ~6!

which is consistent with Eq.~2! since the mean size of th
ring is not altered. The macroscopic free energy of an
semble ofMR rings ~per unit volume! is then given by mul-
tiplying the above equation by the number of constrai
present. These are the number of entanglementsMRn. To
introduce the deformation we replacer by lRN and average
thus over the conformation as in the simplest theories
classical networks. The total free energy is then estimated

F5TMRnl, ~7!

The non-Hookian linear increase of the free energy is
tirely due to the large degrees of freedom of the constrai
and is in some way similar to the low deformation regime
highly entangled rubbers, with strong entanglement slidi
when the sliplink contribution becomes very weak~see@3#
for details!. Consequently, the free energy of the olympic g
is linear in the elongationl, and the interesting result is tha
.
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the force needed for elongating the gel is constant, i.ef
5TnMR in the low deformation regime. In terms of macro
scopic variables it is given byf 5(T%)/N, where%5MRN
is the macroscopic density of the gel. Such a deformat
regime is not observable in classical~highly entangled! gels,
because in olympic gels the degrees of freedom of the n
crosslinked polymers are much larger, leading to a very w
solid. This is, of course, because olympic gels consist only
entanglements.

At larger deformations (l.l0) the individual chains are
deformed also, and the topological constraints act
crosslinks. Therefore the free energy must be proportiona
the effective number of constraints, i.e.,MRn. In this case we
obtain

F>MRnl5/35%
n

N
l5/3. ~8!

Obviously MRn is the effective number of crosslinks in th
~affine! deformation regime, where the topological co
straints act almost as crosslinks. The measured forcef is
then given by the derivative of the free energy with resp
to the deformationl, i.e., f >%(n/N)l2/5, and is larger by a
factor ofn due to the number of constraints but much wea
in the deformation dependence when compared to class
rubbers. In the latter case the force is roughly given byf
5%(1/N)l @2#. The factor of 1/(N/n) in the force can in-
deed be interpreted by the effective mesh size of the olym
gel distance.

In summary, we have presented a simple calculation
the elasticity of olympic gels as a classical example of we
solids. We found two relevant deformation regimes whi
are determined by the topological state of the network. T
first is the nonaffine regime where the modulus is very we
indeed and the scaling is determined by the average wind
number and the degree of polymerization of the rings. In
second deformation regime the topological constraints
similar as crosslinks. Therefore the~low deformationl'1!
modulus is given byGaffine>%(n/N). When the mean wind-
ing numbern is of the order ofAN then the modulus be
comes larger compared to the classical rubber. This case
responds to ring closure of the polymers in the melt sta
This high modulus in the affine regime is naturally dete
mined by the large number of effective crosslinks. We exp
that the present results have some applications in biolog
systems, too.
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