RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 56, NUMBER 2 AUGUST 1997

Elasticity of entangled polymer loops: Olympic gels
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In this Rapid Communication we present a scaling theory for the elasticity of olympic gels, i.e., gels where
the elasticity is a consequence of topology only. It is shown that two deformation regimes exist. The first is the
nonaffine deformation regime where the free energy scales linear with the deformation. In theffinge
deformation regime the free energy is shown to scal€@aa>? where\ is the deformation ratio. Thus a
highly non-Hookian stress-strain relation is predictefil063-651X97)50408-9

PACS numbegps): 36.20—r, 05.90+m, 61.41+e

In this Rapid Communication we compute the scaling ofdepends on the concentration of preparation. One limit is the
the elastic modulus of an olympic gel. This name has beegyclization in the linear melt stat@ gedankerexperimenkt
created by de Genné$] since the configuration of such gels Such prepared topological gels will be important for motiva-
resembles very much the olympic rings. Olympic gels ardion of the following scaling analysis. Assume therefore a
very peculiar elastic materials as their elasticity does notondensed melt of linear chains. It is well known that the
come from crosslinks as in conventional rubbers. Actuallyexcluded volume forces are screened[dyl1]. The screen-
ideal olympic gels do not contain any crosslinks, but consising of the excluded volume can also be asserted to the strong
of concatenated rings only. In this sense the elasticity of suchterpenetration of lineaf= one-dimensional connectivity
materials is expected to be very different from classical rub<hains[12]. As a result, the chains behave Gaussian in the
bers and strong deviations from the non-Hookian deformamelt. If then each long chain is closed to a rifig gedan-
tion behavior[2,3] (as observed in the low deformation re- ken, the size of the ring polymer would not change. The
gime in conventional rubbersnust be expected. Actually, reason for this is that each ring & averagg concatenated
the elasticity of such olympic gels has not been calculateddy n=gI°NY2 where ¢ is the density of the melt, the
yet and we attempt to present a simple argument in thigypical size of a monomer, arid the degree of polymeriza-
issue. Apart from the case of synthetic materials these cortion. In the limit of scalingn can be identified by the wind-
siderations are important for biological systems too. It is welling number. Such natural conjectures have also been men-
known that highly entangled DNA rings exist and play antioned by Cate®t al.[13]. For a more rigorous definition of
important role in biology[4—7] the winding number in such gel-like systems we refer the

Unless, as in conventional soft materials, such as rubberseader to our previous publicati¢t0]. In this paper we had
the precise calculation of the modulus of topological gels isalready confirmed the scaling conjecture presented first by
difficult, the exact topological state of the gel must beCateset al.[13] by careful treatment of the Gaussian linking
known. Specifying topological states is a general problem imumber. The main result there was to show that the confor-
polymer physics and has been discussef8ilh The corre- mation of a ring in an unlinked melt of rings is naturally non-
sponding mathematical problem is the classification of knot$aussian, i.e., the siZRxN”, wherev<<1/2.
and links[9]. Despite its incompleteness already notefBil In the present work we treat denBeked olympic gels
in general the Gauss invariant is used in polymer physicsvithout solvent. The discussion of solvent free gels yields
because it is the most simple invariant that explicitly con-the “bare” scaling of the elastic modulus without additional
tains the polymer conformation in contrast to algebraic in-contributions from the excluded volume and swelling.
variants in knot theory. Even using the Gauss invariant, itis, To do this, we have to use nonconventional arguments,
in general, not very simple to describe the linking status ofbecause most of the theories for ideal, ordinary rubber net-
the network. Only for the easy case of a nonconcatenatedorks are “single chain theories,” i.e., all the elasticity of
melt of rings this seems to be possible, but here alreadthe network is computed by the contribution of the elasticity
many complications appegt0]. of one single network strand, which is then multiplied by

The synthesis and preparation of such gels is also a verthe number of elastically active chairi8]. These well-
difficult task. Some of the problems are already discussed iknown results can be summarized by the free energy of the
de Gennes’ bookl]. The crucial point is that the ring clo- network as a function of deformatioR=MkgTA?, where
sure of the chains must be carried out at concentrations larg&d is the number of active chains andis the deformation
than the overlap concentratiart. The reaction process is ratio of the chain. Although this seems to be very simplified,
carried out in two steps: First a certain amount of rings isthe results are in reasonable agreement with low deformation
cyclicized by end group reaction. Then further linear chainsexperiments and recent simulatiofi4], as long as higher
are added to the given sample. These additional rings arerder effects at large deformations are ignored. In this work
then cyclicized again. With variation of the concentrationwe put forward a scaling theory in a similar spirit. To do this
different entanglement numbers can be expected. The solve estimate the single ring behavior and conclude from this
vent must then be evaporated to get the bulk network. Ibasis the elasticity of the entire gel. For the subsequent
such an ideal synthesis the topological state of the networknalysis we need the following assumptions: the rings are not
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self-knotted; the topological state of the network can be dethe ring configuration stretches out. So far the requirements
scribed by a global winding number, which on the average have been satisfied by the simple scaling ansatz.
is the same for each ring in the network; and the direct in- The next task is now to find the asymptotic distribution
fluence of excluded volume effects is ignored.  Again,function for the typical size of the ring in the gel. A rea-
these assumptions seem to be crude, but these turn out to benable form of the distribution function is given by
sufficient for the type of analysis presented here. A mathP(r,N,n)=.7T1%(r/Ry), where./ " is a suitable but unin-
ematical formulation of the problem of elasticity of the teresting normalizationd determines the short distance be-
olympic gel will be presented elsewhdrEs]. havior and the functiorf(x) has to be determined. In fact,
In the following we start from a Flory-type estimate of the for the elasticity the knowledge of the scaling functibis
free energy of an entangled ring in an olympic gel, where thesufficient, because the power in front of the distribution
average winding number of each ring is assumed tmbe function yields only irrelevantlogarithmid corrections. To
The free energy of an entangled ring in a network can bdind the appropriate distribution function, we start from the

written as asymptotic behavior of the scattering function defined by the
size of the ring. Then, by standard methods, such as steepest
N R® descent Fourier inversiofl], it is easily found that the
F:kBTEJF consi< S, (1) asymptotic form of the distribution is given by
) ) ) ) ) ) r 5/3
Here the first term is the Gaussian elastic part of the ring in P(r,N,n)ocexp{ —(—> ] 3
the gel and the second term represents the pressure experi- R

enced by the ring that comes from all the surrounding rings

If the ring is not entangled with the others the second ter This asymptotic form will be sufficient in the scaling limit.

Mrhis is indeed the ke ti f th Togeth ith
3 i ; . y equation of the paper. Together wi
would readR/N obtained by replacing by n+1 in Eq.(1) Eq. (2) it yields the correct asymptotic behavior of the dis-

andn=0. Note that in .th's case the present ansatz for th‘?r'bution function. For low values of the average winding
free energy agrees with the one proposed by Cates an Limbern it contains the limits suggested fa3].

Eti:trsczglﬂezra?gngﬁtg%até r(]ja\tlsi?h rmg ?neltingé:]g\évnesviggr_ The olympic gel is considered to be entropy elastic. Thus
poly 9 9 we may conclude that the elastic free energy of the typical

ation, they exert a repulsive force per winding number from_. ~ " : . . o
inside and outside the ring, and consequently they do not g N the olympic gel as a function of its elongatienis

contribute to the packing pressure. By this, we mean that th ven by

dense melt of rings is as closely packed as possible. Thus 1

one ring experiences a pressure induced by the surrounding Fo(r)eT 153, 4
ones. The packing term is, however, reduced by the average nN?)#3

winding number. The factor @/in front of the second term L _— i
has its reason in the “screening” of the packing pressureThe tension is given by the derivative and thus we find a

Each of the other rings that is entangled with the ring poly-nonlinear force extension relationship due to the non-
mer under consideration, reduces the packing pressure. In ti@Aussian structure of the rings in the network, i.e.,

limit of the cyclization in the melt the free energy contribu-
tion must be of the order aD(1), since the rings must be f:T;
Gaussian. Note that the free energy described by Baloes (nN?)13
not contain an upper critical dimension. The interaction term

is therefore important in all spatial dimensions. Instead of anf he latter result is the force extension law for one ring in the
upper critical dimension it contains a limiting winding num- olympic gel, and corresponds to the according single-chain
ber such thaRe /N, corresponding to the melt cyclization deformation law in conventlonal. rubber thgory, i.d.,
gedankerexperiment. Minimization of the free energy with =(T/N)r [2]. Therefore(nonjHookian deformation behav-

23, (5

respect toR yields the size for the ring in the network ior in olympic gels cannot be expected. _
At this point we have the possibility to observe two dif-
Ry<n5N25, 2) ferent deformation processes and regimes. At low deforma-

tions the entanglements do not act as severe constraints, but
where all(to the purpose of this papeirrelevant constants have many degrees of freedom, similar to entanglements in
have been dropped. The latter equation has interesting comenventional rubbers. It has been shown that there the en-
sequences. For smalil the scaling results agree with those tanglements yield a “softening” of the modulus, if com-
proposed by Catest al. [13]. The rings appear compressed pared to the classical Gaussian the#y18,19. This soften-
in the melt. Similar findings have been put forward by aing of the modulus corresponds to the slippage and sliding of
more rigorous theory by us recenfl§0] and by numerical entanglements. This happens if the deformation of the indi-
simulations of the problerfil6,17]. On the other hand, if the vidual ring in the gel is such that only the mean contour
mean winding number is close to that given by the averagbetween two entanglements, i.8/n take part on the defor-
density of the system, i.enx/N, the ring is Gaussian at mation. This defines the deformation raig=(N/n)/(Ry)
melt cyclization conditions. In this case the topological ef-=(N/n?)%5, Note that\, in the melt preparation conditions,
fects are screened and the ring finds itself in a natural melivhenns /N, is O(1), which is physically sensible: At high
environment. If the winding number is larger, for example,degree of entangling the topological constraints act immedi-
nxN, then too many rings are connected with each other andtely as crosslinks from the lowest deformation. From the
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arguments presented (i, 18] the maximum deformation can the force needed for elongating the gel is constant, f.e.,
be estimated to\,,=O(yN/n). The latter is always less =TnMg in the low deformation regime. In terms of macro-
than A, as long asn<N?Y". For the validity of the scaling scopic variables it is given bf=(Tg)/N, whereg =MgN
arguments this must always be the case here. is the macroscopic density of the gel. Such a deformation
Consider first the low deformation regime<\,. In the  regime is not observable in classi¢highly entanglegigels,
low deformation regime of olympic gels the slippage of thebecause in olympic gels the degrees of freedom of the non-
topological constraints dominates. The main problem withcrosslinked polymers are much larger, leading to a very weak
the low deformation regime is that the relevant chain lengttsolid. This is, of course, because olympic gels consist only of
is not fixed[3,18,20. To see this point consider conventional entanglements.
rubbers, where the fixed length scale is given by the mesh At larger deformationsX>\g) the individual chains are
size. In such olympic gels a clear length sc@etleast in the deformed also, and the topological constraints act as
low deformation regimecannot be defined, because the sys-crosslinks. Therefore the free energy must be proportional to
tem is ruled by a large number of degrees of freedom. the effective number of constraints, i.®l1zn. In this case we
It has been shown that the deformation process can thewvbtain

be described by an effective distributionP(r)

=dep(N)P(r,N,n) function on the level of a single ring. F=Mgn\553= QE)\s/s_ (®)

As a consistent model we choose fiiN) the entanglements N

slack[21], p(N)«<exp(—N/Ny), which has been successfully ) _ . . .
applied to entanglement problentsee[3] and references Ob\_/loustMRn is the eff(_ectlve number of crossllnl_<s in the
therein. Ny is a mean excursion of the ring form the most (&ffin®) deformation regime, where the topological con-

probable conformation. The effective distribution is thenStraints act almost as crosslinks. The measured forie
given by the asymptotic form then given by the derivative of the free energy with respect

to the deformation, i.e., f=p(n/N)A%5, and is larger by a

_ r factor ofn due to the number of constraints but much weaker

P(r,Ng,n)<exp — anNZ/s , (6) in the deformation dependence when compared to classical
0

rubbers. In the latter case the force is roughly givenfby
which is consistent with Eq.2) since the mean size of the ;letl)N).)‘ (2] Thz Lactﬁr o;fl/(\_lln) In trr:e_forc? ﬁan Im- .
ring is not altered. The macroscopic free energy of an encced be interpreted by the effective mesh size of the olympic
semble ofMg rings (per unit volume is then given by mul- geII distance. h d ol lculati f
tiplying the above equation by the number of constraintsth n lsu?r.rt]aryf, vlve ave ?resentel a §|rr|1pe ca ?u a]flon ok
present. These are the number of entanglembhta. To € lasticity ol olympic gels as a classical example ot wea

: : solids. We found two relevant deformation regimes which
introduce the deformation we replacéy ARy and average are determined by the topological state of the network. The

thus over the conformation as in the simplest theories ir}irst is the nonaffine regime where the modulus is very weak
classical networks. The total free energy is then estimated b%deed and the scalin 9! d . y Wee
g is determined by the average winding
number and the degree of polymerization of the rings. In the
F=TMgnA, 7 second deformation regime the topological constraints act
similar as crosslinks. Therefore tliiew deformation\~ 1)
modulus is given bYG ine= € (n/N). When the mean wind-
The non-Hookian linear increase of the free energy is ening numbern is of the order ofyN then the modulus be-
tirely due to the large degrees of freedom of the constraints;jomes larger compared to the classical rubber. This case cor-
and is in some way similar to the low deformation regime inresponds to ring closure of the polymers in the melt state.
highly entangled rubbers, with strong entanglement slidingThis high modulus in the affine regime is naturally deter-
when the sliplink contribution becomes very we@ee|3] mined by the large number of effective crosslinks. We expect
for detailg. Consequently, the free energy of the olympic gelthat the present results have some applications in biological
is linear in the elongation, and the interesting result is that systems, too.
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