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Sources and sinks separating domains of left- and right-traveling waves:
Experiment versus amplitude equations
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In many pattern forming systems that exhibit traveling waves, sources and sinks occur that separate patches
of oppositely traveling waves. We show that simple qualitative features of their dynamics can be compared to
predictions from coupled amplitude equations. In heated wire convection experiments, we find a discrepancy
between the observed multiplicity of sources and theoretical predictions. The expression for the observed
motion of sinks is incompatible with any amplitude equation description.@S1063-651X~97!51308-0#

PACS number~s!: 47.54.1r, 03.40.Kf, 47.20.Bp, 47.20.Ky
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Since its inception@1#, the amplitude equation approac
has grown to become an important organizing principle
the theory of nonequilibrium pattern formation—it has n
only enabled us to uncover a number of general feature
near-threshold pattern dynamics, but it has also allowed u
understand the influence of boundary conditions, defects,
Many qualitativeandquantitativepredictions have been suc
cessfully confronted with experiments@2#. The most detailed
and successful comparison with experiments has been m
for the type of systems for which the theory was origina
developed, hydrodynamic systems that bifurcate to a stat
ary periodic pattern. For traveling wave systems, the rang
validity of the appropriate amplitude equation is, howev
much more an open question, both because the theore
derivation has been performed for only a few systems@3#,
and because direct tests are difficult. Moreover, in prac
complications often arise due to the presence of additio
important slow variables@4#. Nevertheless, when the ampl
tude equations include all the necessary terms and respe
the proper symmetries, it is not unreasonable to hope
these equations still provide a goodqualitative description
outside their proper range of validity; this has indeed be
found to be the case in a number of systems~e.g., traveling
waves in binary mixtures and liquid crystals@2,4#!.

It is the aim of this paper to point out that sources a
sinks that separate patches of traveling wave states can
vide a clear way of testing the consistency of the experim
tal observations withgeneric qualitativepredictions from
amplitude equations. Sources and sinks are distinguishe
whether the group velocity points outwords or inwards—s
Fig. 1. They occur in a wide variety of systems where op
sitely traveling waves suppress each other—in directio
solidification @5#, the printer instability@6#, eutectic growth
@7#, as well as in convection@8,9#—but their properties have
remained largely unexplored. We illustrate the idea we
forward with experiments on traveling waves occurring in
liquid heated by a wire just below the surface@8–10#. In the
parameter range we have been able to explore, the ex
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mental properties of sources and sinks we observe areincon-
sistentwith the behavior predicted by the standard coup
amplitude equations for the near-threshold behavior of o
dimensional traveling waves@2#,

~] t1s0]x!AR5«~11 ic0!AR1~11 ic1!]x
2AR

2~12 ic3!uARu2AR2g2~12 ic2!uALu2AR ,

~1a!

~] t2s0]x!AL5«~11 ic0!AL1~11 ic1!]x
2AL

2~12 ic3!uALu2AL2g2~12 ic2!uARu2AL .

~1b!

In these equations, we have used suitable units of space
time, andAR is the amplitude of the right traveling mod
e2 i (vct2kcx) and AL the one of the left traveling mode
e2 i (vct1kcx). Furthermore« is the control parameter which
measures the distance from the threshold of the instabilit
«50, and the parametersc02c3 are related to the linear (c0,
c1) and nonlinear (c2, c3) dispersion of the waves. It is wel
known that, strictly speaking, the above equations only a
as the lowest order amplitude equations if the linear gro
velocity s0 is of order«1/2 @11#; nevertheless, the equation
are frequently also used whens0 is finite at threshold, unde
the assumption that they still provide an adequate qualita
description@12#.

When the coupling parameterg2 in Eq. ~1! is larger than
1, the left- and right-traveling waves suppress each other@2#,
and the system evolves to a state consisting of patches w
eitherAL or AR is zero. Within such a patch, asingleampli-
tude equation suffices, and the group velocity term can
removed by a Galilean transformation. Many experimen
and theoretical studies have focused on this situation
which the theory seems to give a reasonable account of
qualitative observations@2#. Here, we wish to study the
sources and sinks that connect these patches of left-
right-traveling waves~see Fig. 1!. These coherent structure
involve bothamplitudesAR andAL ; therefore the group ve
locity terms cannot be removed, and they probe the appl
bility of Eq. ~1! to real patterns with finite group velocitys0.

s-
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In our experiments, we have explored the ran
0.25&«&0.5—we cannot make accurate measurements
low «'0.25 since the convection then becomes too wea
make careful measurements. Although we therefore can
study the limit «→0 systematically, which in principle is
necessary to study the validity of~1!, we do believe that we
effectively probe small amplitude convective patterns:
flow is weak, and there are no systematic trends as« is
lowered. Moreover, the relative frequency difference of
waves is so small (1/25 to 1/50) and the pictures of@8,9#
show that in this range sources are wide objects; both ob
vations indicate that an adiabatic approximation appears
tified.

Our experimental setup, shown in Fig. 2, is a simple s
tem based on an electrically heated wire immersed below
surface of a fluid@8–10#. Beyond a critical heating powe
Qc , traveling periodic modulations appear at the surface
a forward Hopf bifurcation@8,9#. The apparatus is similar to
the one used in@8,9# but the design of the Plexiglas cell
somewhat different and larger~5531536 cm!, so that the
sides are further away from the wire. Both top to bottom a
lateral views are possible in our setup; in particular, the
eral view proved especially useful for recording the tim
series signals. A tungsten wire with a diameter of 0.1 mm
heated by means of an electrical current and immersed in
in the middle of the cell and parallel to the longest side. T
viscosity of the GE SF 96 silicone oil is 0.5~1 S51
cm2/S!. Both the voltage across the wire and the heat
current were continuously monitored to check that their v
ues did not change during the measurements. Four spr
~two on each end of the cell! provide the necessary tension
keep the wire parallel to the surface of the fluid through
the cell. A pair of micrometers attached to the ends of

FIG. 1. Definition of sources and sinks.~a! Illustration of
sources and sinks as coherent structures in terms of the behav
the amplitudesAL and AR of the adjacent left- and right-travelin
waves. A source is defined as a coherent structure at which w
with total group velocitys pointing outward are generated, and
sink is one between waves with group velocitys pointing inwards.
~b! Illustration of the kinematics of sinks and sources in terms of
properties of the adjacent waves, for the case that the group vel
s has the same sign as the phase velocity~as in the experiment
where s'vph/3!. In this case, the definition of sources and sin
given under~a! agrees with the intuitive notion that the waves trav
away from a source and into a sink. The thin lines indicate lines
constant phase of the traveling waves. In accord with our exp
mental observations, illustrated in Fig. 3~b!, we have drawn a cas
with two stationary and symmetric sources, each generating w
with different wave numbers and frequencies, and one sink mo
according to the phase matching rule, Eq.~2!. According to this
rule, every constant phase line coming in at the source from the
matches up with a constant phase line coming in from the righ
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cell enables us to carefully adjust the wire-surface distan
A shadowgraph technique is used to record the signal ge
ated by the waves. The cell is illuminated with unpolariz
white light. Two photodetectors can be placed at adjusta
positions along the wire, and the light signal captured by
detectors is sent to a digital oscilloscope. This temporal s
nal has a very local character as a result of the diverg
geometry from the light source towards the acquisition pla
It therefore allows us to measure the local frequency v
accurately, even though the relation between the signal
the surface modulations is quite nonlinear due to the stron
inhomogeneous temperature distribution in the direction p
pendicular to the wire. Since a single measurement may
several hours due to the long times needed for the fluid
reach a steady state condition, the temperature of the
rounding was carefully controlled.

The picture of the typical sequence of events can
drawn as follows@8,9#. Having chosen an adequate depth f
the wire, domains of left- and right-traveling waves emer
after the powerQ is turned on ~our control parameter
«[Q/Qc21). These patches are separated by sinks
sources. Sources in our experiment send out waves to
sides, while sinks have oppositely traveling waves coming
from both sides. Once transients have died out, the sou
stay at some fixed position while the sinks generically mo
either towards a source~in which case they usually annihilat
each other! or a boundary~thus also disappearing from th
scene!. A typical example is shown in Fig. 3~b!. The time
that a simple state, say one with two or three sources
sinks, remains in the cell is quite arbitrary; in the end
source usually is the longest living object@9#. A space-time
plot of a source solution in this regime is shown in Fig. 2
@9#, while sideways snapshots of regions of the cell with
source and a sink are shown in Figs. 3~c! and 3~d!.

Our main experimental observationsconcerning the dy-
namics of sources and sinks are the following:~i! The rela-
tive motion of sinks and sources is independent of their se
ration, and so there does not appear to be a long-ra
interaction between them.~ii ! Sources always have zero ve
locity, vso50, and are symmetric: the wave number and f
quency of the outcoming left-traveling mode are always
same as those of the outcoming right-traveling mode. T
data that illustrate the stationarity of the source are show
Fig. 3~b!, while the fact that the waves emerging from
source are symmetric is illustrated by the photodetector d
of Fig. 3~a!. In this figure, the frequencies of the signals fro
the detectorsD1 andD2 at both sides of the left source ar
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FIG. 2. Schematic drawing of the experimental setup. The
quencies of the traveling waves can be probed at two positions
photodetectors. The distance between the surface of the liquid
the wire was varied from 1 to 3 mm.
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exactly the same, and so are those of theD3 andD4 signals
taken around the other source.~iii ! While sources are station
ary and symmetric, they are not unique: each source se
out waves with a well-defined frequency and wave numb
but different sources send out different waves — compa
e.g., the two sources of Fig. 3~a!: the frequency of the signal

FIG. 3. Experimental results.~a! Example of the signals from
the photodetectors placed at various positions in between so
and sink solutions, as indicated. Typical signal amplitudes are a
a factor 8 above the noise level. The absolute value of each sign
arbitrary, especially the frequency is relevant. Note that the
quencies of the two waves sent out by each separate sourc
exactly the same, but that the two sources send out different wa
As a result, the sink is sandwiched between different incom
waves.~b! Example of traces of the position of sinks and sources
the experiment, as drawn schematically in Fig. 1~b!. ~c! and ~d!
Snapshots of regions of the experimental cell with a source~c! and
a sink~d!, taken from a sideways video image of the cell. Note
symmetry of the pattern around the source, which is roughly in
middle of ~c!, and the asymmetry of the pattern around the si
which is just right of center in~d!.
ds
r,
e,

of D1 andD2 is different from those ofD3 andD4 . We take
this as evidence that in these experiments at least a
parameter family of sources exists.~iv! As Fig. 3~b! illus-
trates, sinks typically move. Moreover, most of our sinks a
found to move in such a way that the incoming phasesmatch
at the sink@13,14#: in the frame traveling with the sink, the
frequencies of the waves coming in from both sides are eq
and no phase difference builds up across these sinks.
was already illustrated in Fig. 1~b!. If we write the two ap-
propriate incoming modes ase2 i (vRt2 ikRx) ande2 i (vLt1 ikLx),
then the velocityvsi

match of such a sink is simply

vsi
match5

vR2vL

kR1kL
. ~2!

This relation implies that when a sink is sandwiched betwe
two sources, it moves away from the source with the larg
frequency and its velocity is completely determined by t
properties of the adjacent sources.

We now confront these results withtheoretical predic-
tions. Since the pattern occurs via a forward Hopf bifurcati
@8,9#, the generic amplitude equations are given by Eqs.~1!.
We takeg2.1 since traveling wave states occur, and sin
the group velocity is about a third of the phase velocity
this experiment, we allow the linear group velocitys0 to be
of order 1. Note that for our analysis,we do not needknowl-
edge of the values of the other parameters occurring in
~1!.

Property ~i!, the absence of long-range interactions b
tween sources and sinks, is consistent with the fact that
plitudes at both sides of source and sink solutions appro
their asymptotic value exponentially fast, as in the sing
mode equation@Eq. ~1a!# with AL50 @15,16#.

To compare with observations~ii ! and~iii !, we have ana-
lyzed the generic existence and multiplicity ofsourcesolu-
tions of Eq.~1! with an extension of previous counting arg
ments @15# for solutions of the form AR5e2 iv0tÂR(x
2vsot) andAL5e2 iv0tÂL(x1vsot). Our analysis@17# shows
that independent of the specific values of the paramet
source solutions of Eq.~1! genericallycome in discrete sets
In particular, one typically expects there to be only aunique
symmetric source solution withvso50, and numerical simu-
lations of Eq.~1! confirm this. This is in clear contradiction
with the experiments, where we find a continuous family
them.

We now turn tosinks, which according to~iv! move in the
experiments with a velocity~2!. Can the phase matchin
property of the sinks underlying this equation be reprodu
at all in an amplitude approach based on Eq.~1!? The answer
is no. To see this, note thatvsi

match is according to Eq.~2!
given in terms of thetotal frequenciesvR , vL and wave
numberskR , kL of the incoming modes. In an amplitud
expansion, these are written as an expansion about their
cal values, e.g.,vR5vc1vAR

wherevAR
is the frequency of

the amplitudeAR of the right-traveling mode, etc. In terms o
these, the experimentally observed velocity of pha
matching sinks becomes
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vsi
match5

vAR
2vAL

2kc1kAR
1kAL

, ~3!

which underscores once more the fact that this velocity
pends on both the fast and the slow spatial scales. Howe
as an amplitude description is based on an adiabatic elim
tion of the fast scales, the amplitude equations~1! do not
involve the parametersvc and kc associated with the fas
scales. So, although families of moving sink solutions
exist for Eq.~1!, there is no mechanism in these equations
single out the velocity~3! as the selected velocity of sinks

In summary, our results demonstrate thatgeneric proper-
tiesof sources and sinks in traveling wave systems, like th
multiplicity and dynamics, allow a simple yet powerful com
parison between experiments and amplitude equation
H
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scriptions. For the heated wire convection experiment in
range 0.25&«&0.5 our experiments are inconsistent with
amplitude description. Although a final conclusion mu
await further study of the«→0 limit, our results point to two
important issues. First of all, they question the soundnes
using Eqs.~1! for systems with finite group velocitys0. Sec-
ondly, they provide a clear example of the possible imp
tance of nonadiabatic effects~coupling of the slow and fas
scales@18#! in sinks, even though the two are widely sep
rated, as the relative frequency modulationDv/vc ~which is
comparable to the ratio of the typical sink velocity and t
phase velocity! can be as small as 1/50 in our experimen

R.A. is grateful to N. Kwasnjuk for help in constructin
the experimental cell.
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