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The basic features of correlated ion stopping in plasmas are demonstrated by employing two opposite
extremes of cluster structures, a statistical model with a spatial ion distribution of Gaussian shape and the
highly regular configuration oN-ion chains and cubic boxes. In the case of the ion chains the resonant
character of correlated stopping due to the interference of the excited wake fields is discussed in detail. The
general behavior of correlation effects is summarized and its dependence on the ratio of cluster size and
interion spacing to the screening length in the plasma, as well as the ratio of the cluster velocity to the mean
electron velocity in the target, is stressed out. The validity and applicability of the dielectric response formal-
ism used for describing correlated stopping is critically reviewed. A scheme is presented to extend the linear
formalism to weak nonlinear situations that occur, in particular, for small highly charged clusters at moderate
or low velocities. For the Gaussian cluster a fit formula is given, which allows a fast and accurate calculation
of the enhancement of stopping due to correlation effects and applies for all degrees of degeneracy of the
electrons and arbitrary cluster velociti¢$1063-651X97)00907-0

PACS numbds): 52.40.Mj, 34.50.Bw

I. INTRODUCTION the literature. The basic phenomena in correlated ion stop-
ping are demonstrated in Sec. Il by employing three generic
The interaction of fullerenelike, carbonlike, or metallic examples of cluster structures, Gaussian cluskéiains of
clusters with solids and hot plasma targets has recently atens, and ions on the vertices of cubic boxes. In the Gaussian
tracted a lot of attention concerning the investigation of thecluster the ions are distributed around the cluster center at
cluster structures themselves, as well as the use of cluster-ighistances according to a Gaussian-like probability as a statis-
beamgCIB) as drivers to compress the target and to producdical description for the ion debris created by the fragmenta-
high energy densities in matter. In this context CIB are prodion process. In contrast to such a statistical model for the
posed as a promising driver for heavy ion inertial fusioncluster structure thé&-ion chains and the cubic boxes ion
(ICF) [1,2]. There the interest is mainly in particles with arrangements represent the opposite extreme of a well-
energies of a few keV per nucleon which interact mostlydefined highly regular ion configuration which may exhibit
with the target electrons. Because such clusters will fragmeraidditional phenomena due to possible interferences in the
quickly on a femtosecond time scale when hitting the targetexcited wake fields. As will be outlined, the quality and
one has to consider an ion debris with some atomic unitgjuantity of the basic correlation effects are mainly deter-
relative distances between the ions. Within the dielectric formined by the ratio of the typical length scale of or in the ion
malism the correlation effects on the stopping, in such situcluster (..) compared with the screening length of the target
ations, were already submitted to a number of investigationgplasma ) and the ratio of the ion-cluster velocityto the
first on dicluster stoppind3], later on arbitrarily largeN mean velocity(v,) of the target electrons. The arrangement
clusters[1,4—6. While in these works the target was a fully of several ions determines the polarization of the plasma and
degenerate electron jellium, recent investigations also adhe creation of the induced electrical field and, thus, the cor-
dressed the cases of partially degenerate plagmpsnd relation effects on the stopping power as the force on the
classical electron plasm#&8-10Q as well. Also, at variance ions due to the induced field at their locations. For typical
with the dielectric linear response description, nonperturbaion interdistances and a size of the cluster small compared to
tive approaches have been used to study dicluster stopping e screening length in the target plasmg)( the ions alto-
low velocities and in fully degenerate electron targetsgether create the target response. Thereby, the induced field
[11,17. is the same as one produced by a single large charge and
To investigate the effects of correlated stopping in a CIByields an enhancement of the stopping. In the opposite case
driven ICF scenario a wide range of target conditions for theof large distances between the ions, with respect to the
ion or ion-cluster interaction within the absorber or converterscreening length, each ion acts, more or less, like an isolated
have to be considered. Due to the enormous heating, orien on the target, however, the excited wake fields may in-
starts with a solid(jellium) target in the beginning of the terfere constructively or destructively and thereby enhance or
ion-beam pulse which turns a partially degenerate plasmeeduce the stopping compared to the case of uncorrelated
into a dense, high temperature, and classical plasma. Tstopping. The different underlying physics vyields different
cover the full width of target conditions and phenomena in-features of correlated stopping depending on the target con-
volved in correlated ion stopping we concentrate in this paditions, the cluster velocities, and the number of ions in the
per on a general qualitative discussion of correlated ion stopeluster, as will be illustrated for the examples in Sec. 11l and
ping and a review on the involved basic features rather thasummarized in a more general overview in Sec. IV. In Sec. I|
devoting us to very specific situations as already addressed ime briefly review the dielectric linear response formalism,
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56 CORRELATED ION STOPPING IN PLASMAS 971

which we employ to describe correlated stopping, and crit-and an ideal target for electron densitias>2.6X
cally discuss the validity and applicability of this commonly 10?® cm™3(r,<1/2a?~1.84) or temperaturesT>3.7 eV.
used approach. Further, we introduce a scheme to extend tience, except for the very early time of heating an ICF
linear response treatment of the stopping of ion clusters to target by an(cluster) ion beam, we deal with an ideal elec-
semilinear regime to account fdweak nonlinear effects tron target. Within the boundaries given by the condition
which become important, in particular, for small and highly ¢£<1, we, however, allow in our considerations for any de-
charged clusters at moderate or low velocities. In addition, gree of degenerady, to include classical plasmas as well as
fit formula for the enhancement of stopping for the Gaussianhe electron jellium in solids. For these ideal plasmas we can
cluster is presented in Sec. Ill which is applicable for alluse the dielectric functioms (k,w) determined in the well-
degrees of degeneracy of the target plasma and any clustienown random phase approximati¢RPA) for free electron
velocity. This formula provides, besides a fast evaluation otargets at any degenera6s.g.,[17]).

the enhancement, a good understanding of the physics of

correlated stopping. As a basis of future work, it allows a A. Dielectric linear response formalism
cheap but reliable estimate of the correlation effects on the ) ) )
range and energy deposition of ion debriscluding the Within the dielectric formalism, the external charge den-

Coulomb explosion of the cluster, so far neglected here as iRy
most of the published investigations on correlated stopping.

p(r,t)=f d3rp(r')3(r’ —(r—vt))
Il. ION-CLUSTER STOPPING IN PLASMAS

The whole slowing down process of an ion cluster, after =2 2,e8%(r—(r—w)) (3
fragmentation and initial ionization have taken place, which '
are subjects of great interest by themselves, involves th
stopping power on the cluster, the evolution of the charg
states of the ions, and the Coulomb explosion. A descriptio
of ion-cluster stopping, hence, requires a simultaneous tre
ment of all these processes including besides correlation e
fects on the stopping power the, up to now open, questions g
correlation effects on the charge states as well. Some firs
work on this task, ignoring correlation effects on the ion 1 K-V
charges, is reported ifiL3,14 for the energy loss of g S= —3f d3k-—- Im
clusters. Here, we concentrate completely on the stopping €o(27) k
power for a given cluster configuration, i.e., for given posi- -
tions, velocities, and charge states of the ions, as it mayiere, p(k) is the Fourier-transformed charge densifr)

&f an ion-cluster projectile oN pointlike ions with charges
Z;e} located afr;}, which all move through the target with
he same projectile velocity (“frozen configuration” of
elative positiony results in the general expression for the
topping powerS=—dE/ds [7,18], where dE/ds is the
hange of the projectile energy per unit path length,

-1

kv PRk @

occur at a certain time within the slowing down. and

To investigate the basic aspects of correlated stopping we
employ the dielectric linear response formaligis,16. S (=K D(K) =2 724 7.7
There the stopping is determined from the electrical field Po(=K)pq(k) ; . ; mén nem

induced in the target plasma by the charge distribution of the
clusterp(r,t) and the corresponding dynamical response for
a momentum transfée and an energy transfer is provided
in terms of the dielectric function(k, ). We only consider
electronic stopping by an ideal free electron target with denThe use of pointlike ions in Eq$3)—(5) serves to restrict the
sity n and temperaturd, where the kinetic energy of the forthcoming discussion to the basic phenomena and repre-
electrons always exceeds their potential energy and the idgents real ions of extensiah if d is small compared to the

xXexdik-(ro,—rmll|. 5)

ality parameteg is smaller than unity, that is, wavelengths of the electron&,=7%/m(v,)>d, where(v,)
is the relative velocity(v,)=(|ve—V|), averaged over the
(Ep) e? 2a°%r electron distributionf(ve). When the extension of the ions
(Ey) 4meoalErt+kgT) 110 ecomes important, non-point-like charge distributions o

each ion qi(r), with [d® qgi(r)=Ze and p(r)
. _ =2,q;(r;—r), can be introduced in the above description by
wherer,=ala, with a=(4m7n/3)" Y and a, the Bohr ra- i
dius ®S=(kBT3/EF deno(te: the) degree o? degeneraEy replacing Eq.(3) through p(r,t)=2;q;(ri=(r—vt)) and
the Fermi energy, and=(4/97)Y3=0.521 . . .. Forclassical ~ P(~K)p(K)=ZnZmexdik-(ra—rm)]an(—k)am(k)  (see
plasmas®>1, the paramete turns into the classical

plasma parametdr = e/ 4meksTa =2a°r /6. Rewriting For purposes of practical interest, as the determination of
the conditioné<1 as an inequality for the temperature, we correlation effects on the heating of a target which is |r_rad|-
have ated by a CIB, one wants to know the averaged stopping of

an ion cluster rather than the stopping of individual clusters,
KT 202r.—1 which may differ in the detailed structure, the size, the or.i—.
B V> 252 , 2) entation, the charge states of the ions, and so on. Hence, it is
136 e a’r useful to study the average of E@) over an ensemble of
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ion clusters with varying configuratiod&;}, {r;}. To sim-  energy of the ion cluste@when fragmentation and ionization
plify this further, we assume equal charges of the ionshave already taken place=or an ion cluster wittN ions of
Z;=Z, leading to the ensemble-averaged stopping per pafaveragegichargeZe and massv, and an initial size, the

ticle [4,5] kinetic energyE. (peru) gained by the ions during the re-
A pulsion is around
(SyiN= 2 f Y { 1 v, ® 72N a
= —— M| ——————— ,
€o(2m)° k2 " e(k,k-v) Ecso.027m(r—;J keV, (8)

where 3 (k)= (p(—k)p(k))/NZ?%? is the static structure _ _ _ _ _
factor of the ensemble of ion clusters. Introducing the pairWhereu is the atomic mass unit ara, is the Bohr radius.

distribution functiong(r;—r;) of the ion clusters one gets ~FOr most heavy ion clusters of interest, the eneEgyis
much lower than the initial energy of the ioks (typically

3 , 10-1000 keV peu) and the corresponding spread of veloci-
E(k)zlJ’f d°r g(r)exp(—ik-r), (7 ties is small compared to the actual cluster mean velacity
during the largest part of the slowing down.
with  the  normalization condition 3(k=0)=1 The straggling strongly depends on the projectile velocity

+[d3 g(r)=N. It should be emphasized that the averagingand target parameters as well as on correlations effects,
procedure above yields an average on the stopping powers nfostly in a very similar manner as the stopping poydd]|

an ensemble of clusters, and is not the stopping of an exand no general statements on the importance of straggling on
tended charge densifp(r)) resulting from an average on the velocity spread are available at present. In particular, it is
the cluster densitieg3). The stopping of an extended charge not evident, that straggling is negligible in this context.
distribution{p(r)) tends to zero in the limit of large clusters, =~ From different charge states of the ions, distributed
that is, for a growing extension of the charge distributionaround some mean val¢#), large changes in the individual
[{p(r))—0], while Eq.(6), in this case, approaches the stop-velocities may be expected due to the strong dependence on

ping of isolated, individual iongg(r)—0,% (k) —1]. the charge ¢;<Z?), in particular, for weakly charged pro-
jectiles where already small variations in the charge states
B. Applicability of the linear response treatment yield large changes in stopping relative to the stopping in

average.

While the contribution of nuclear stopping by the target
ions is always negligible compared to the electronic stopping
for the considered projectile velocities which are much

justified as long as the ion cluster represents a weak pertup-'%lhe.r than_ trr:ehtherm'al erIQC|t|es of tue target |0ns,'tt)he|r
bation on the target plasma. For ion clusters of probably higlf®''Sions with the projectile lons can, however, contribute

total charges and rather moderate energies around 1O%gnificantly to the velocity spread of the cluster ions. To

keV/u, nonlinear effects are a more serious problem than fof Simate the importance of this effect one has to compare the

very fast single ions. We shall discuss the validity of a lineal!Me sc_ale of the ct!uster sIO\r/wvmg with _thg [t_]lr‘(r;e S(_:ale forjuch

response for ion clusters and in particular, the treatment ofcattering events etwe.ent_ e.target. iomish densityn, an

correlated stopping in a semilinear regime in Sec. I1C.  chargeZ:e) and the projectile iongwith Ze) at the cluster
The stopping power expressiad) implies that the in- velocity v. Disregarding the screening by the electrons, the

duced electrical field in the comoving cluster frame is Sta_%ortrﬁsgondding coIIisic;n rate can t;? ot;taintlald bﬁ, using thti
- : - - utherford cross section, accounting for all collisions with,
tionary on a time scale, 1 the inverse of the plasma fre- 9

quency, and the response time of the electron target. TFor example, deflection angles in the center of mass system
a

o i — 2 2,.-3 H
consider the stopping powé#) as a snapshot in the whole hrgerdthand90 : Th|§ rate—dqrnt(ZtZIe /47TEOM)hU (with ;
slowing down process allows only for changes in the clustef"® reduce r_nasa) epends strongly on the ¢ arge states o

the involved ions, as well as on the cluster velocity.

configuration and velocity, which are slow on this time scale. . .

Besid | h e Sin th locitvo due to the st The evaluation of the amount of velocity spread needs
.e5| €s slow changes<s in _e velocityy due 1o e Stop- yetajled investigations. A first step extending the dielectric

ping powerS and change< in the charge states due to response description to clusters with small velocity spreads,

ionization and recombination, this further requires a suffi-which results in an explicitly time-dependent stopping

ciently small spread; — v in the velocities of the ions around power, was performed by Lontano and Raimojal] for hot

the _C_Iuster mean velo<_:|ty to avoid fast changes in the relativgnd classical target plasmas. Despite open questions, post-

positions. While the first two processes undergo only slowhoned to a future work, we believe it reasonable for an over-

variations in time for most cases of interest, it is not ObViOUS\/ieW on the features of correlated Stopping to give all ions
that the velocity spread remains always small enough. Thehe same velocity; =v.

main sources for the velocity spread are the Coulomb explo-
sion due to the repulsion of the ions, the straggling in the
stopping power, various stopping powers caused by different
ion charges of the cluster members, and also collisions with The linear response descripti¢f) and(6), at present the
target ions. most powerful theory to account for correlation effects in ion
The contribution to the velocity spread by the Coulombstopping, is restricted to weak perturbations of the target
explosion can be roughly estimated from the initial Coulombcaused by the ion projectiles. In particular, for small ion

Before proceeding further, we look briefly on the pre-
requisites to apply the widely used general appro@ghor
the description of correlated stopping.

First of all, the employment of the linear response is onl

C. Validity of linear response for ion clusters
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clusters with high total charge, this restriction may become avhere b, is the classical collision diameter
very serious one and has to be studied carefully. We firsby=Ze?/(4me;mv?). Inspecting Eq(10) we have to distin-
recall the condition for the validity of Eq$4) and(6) in the  guish two situations.

isolated single ion limifN=13(k)=1] and then extend (@) The linear regime Since V(0)=V,i(r), the local
these considerations to arbitrary ion distributions. condition for a weak perturbatioiLO) is satisfied globally
for
1. Weak coupling for single ions

To quantify the strength or degree of the perturbation on n= i:@: lim (1)< 1 (11)
the target electrons as caused by a single ion, we first estab- Ameghiv, X g 2
lish an estimate for the local potential energy;(r) of a
target electron in the field of the moving ion by where we have introduced the Coulomb or Bloch parameter

2 7, which reads for the averaged relative velogiiy)
4 r r
Vei(r)= Armeor 1—exn( _}(—r) eXp( e C) zZe? Zarg 12

1= Amegh(vy)y  (1+0/2+ (vivp)d) T2
Here the factor<[ 1—exp(—r/X,)]/r is a simple approxima-
tion for the expectation value of the electron-ion interactionHere we approximated the mean electron velo¢ity) by
Z€e%l4me,r, when the electron is represented by a wavea simple interpolation between the Fermi velocity and
packet centered at distancefrom the ion and of width the thermal velocityv,,=(kgT/m)¥? as (ve>2=v,2:+vt2h
X,=fhlmv, corresponding to the relative velocity and (v,) by (v Mve={ve)?+v2)Yve=[1+0O/12+(v/
v, =|ve—V| (the reduced mass is replaced by the electron )22 since® =2v3/vZ. The characterization of a weak
massm for heavy projectile This factor accounts for quan- perturbation by the assumptiofl0) in connection with
tum diffraction effects at short distancesx,, while the condition(11) is confirmed by the behavior of the electron
exponential factor exp{r/\s) added on top accounts for the densityp;, induced by the potentiab,=Ze/4meyr of an ion
screening at large distances. Here we assume a velocity det rest ¢ =0). A calculation of the induced density at posi-
pendent screening lengiy of the form\ = (v,)/wy forall  {ion r=0, using the linear response relatiop, (k)=
densities and temperatures, whére¢ denotes the average Ze /e (k,w=0)—1], vyields piy(r=0)/po 7, that is, the
over the electron distributior(ve) and w,=(e’n/meg)®  jnduced density is small compared to the unperturbed density
the plasma frequency. The potential enengy(r) decays [, —en for small 5. Further, the linear regime of a small
monotonically with increasing for arbitrary . andAs. To  Bjoch parameter coincides with the applicability of the first
avoid misinterpretation we emphasize that the approximativgorn approximation for the ion-electron scattering, valid in
expression for the potential energg) will be used in the  the high energy regime<1. In fact, instead of deriving the
following to derive a definition of a linear, semilinear, and a syopping expressiof#) from the induced electrical potential,
nonlinear ion-target coupling regime, and to develop a corit can be obtained alternatively from the energy and momen-
rection to the linear response stopping for ion clusters inym transfer in ion-electron scattering events calculated in
order to extend it from linear into semilinear regime. Expres+ne first Born approximation for thelynamically screened
Sont) seves ol i urose, ot domsrer e 2 v o a st 0K, i,
. . . ., ; . L =Zelk%epe(k,w) for a single ion(Born-RPA[22]). In par-
interaction. Thus its explicit form is of minor significance as

long as both important physical phenomena, the wave natu;[éCUIar’ for parameter,n, T, in agreement with Eqg11)

of the electrons and the collective screening, are modele nd(12) the stopping has a pure quadratic dependence on the

sufficiently well. While screening results in a decay faster harge, as indicated in E(6).
than 1f on distances of the order of )\, the wave nature (b) The semilinear regimeRelations(11) and (12) dem-

of the electrons modifies the Coulomb potential on a scalé)nStrate that the coupling always remains within the linear

~ X, resulting for decreasing in a transition from the 1/ {g%giggrcs:ggcgnr%(;g?gtgr\?gggilge\;elﬁlc't':s&igfj?;re f‘glrshi h
behavior toV(r—0) «1/x,, when the wave packet is cen- NP ' 9

tered on the ion. This behavior is approximated by the sim lcharge stateZ. A usual way to overcome the limitation of
X ) pp y the P'he dielectric formulation to the linear regime and, hence, to
exponential formV(r)o[1—exp(r/X,)]/r (9). At low ion

velocities this agrees with the well-known approximation foreXtend the linear response treatment to a larger set of param-

an effective ion-electron potential in the semiclassical ”miteters, Is the restriction of thieintegration in Eq(4) through

[21], when the thermal velocity of the electrons is inserted ascertaln upper cutoffy, . Of course, at the expense of intro-

. . ducing some arbitrariness. The corresponding semilinear re-
relative velocityv, .

o . ime is characterized as follows. We reconsider the local
The projectile represents a weak perturbation on a targ s ) .
) - . condition for a weak perturbatiofi0) and look for a critical
electron, if the potential energy from E(®) is smaller than

. Lo 2 distancer >0, so that forr>r [i.e., Vi(ro)>Vei(r)] the
the gnergy of the electron, that is, tzhe kinetic gn (/2 local condition for a weak perturbatiofi0) holds, which
(for ideal plasmas FromV;(r)<muv,/2 we obtain the cor-

. . definesr through
responding inequality

Vo(r) b ; - o(ro)=s3. (13)
p(r)=—p = 0[1—exp(——) exp{——)sz,

mu; T x| A The ion now represents a strong perturbation rferr, a
(10 weak one for>r . and, of course, no perturbation forof
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the order ofA ; and larger, where the ion potential is screenedthe plasma due to the dielectric function. Subsequently, this
out completely. From this we establish the necessary condeffective screening length enters the binary collision treat-
tion ment and the stopping powé;.. Since screening has to
obey certain constraints, e.g., complete screening of the pro-
Fe<<hs (14)  jectile charge, such a procedure does not result in a consis-
tent description in general, while it remains consistent within
for using a linear response description. Then, roughly spealq first Born approximation as discussed[29]. Here we
ing, the volumexr? where the perturbation is strong and its focus only on the semilinear regime. There, the region of
contribution to the stopping are very small compared to thestrong perturbation close to the projectile is per definition
whole interaction volume: )\2 and the total stopping, respec- small compared to the region where the linear respdtins
tively. We thus intend to exclude this small region of strongis, first Born is valid. Thus screening, which takes place at
perturbation from the linear response treatment, while takingarge impact parameters, is negligibly affected by the strong
into account its small contribution, by introducing a suitably perturbation and remains close to the linear response behav-
defined cutoffk,, in the k integration in Eq.(4), with  ior.
Ky~ 21/ Comparison(16) now suggests the choice of the cutoff
To proceed, we turn to the binary collision treatment as ark,,=2/x,(1+ y?*5?)*2. Beyond the linear regime, for
alternative approach to the stopping of single ipa3—27. n>1(bg>X,), we havek,=2/yx,n~1/b,, whereas the
There the stopping arises from averaging binary collisions otiefinition of the critical distance. by Egs.(10) and (13)
the ion with not mutually interacting electrons, while the [for r >x, and r.<\ according to Eq.(14)] yields
collective medium response is considered, in part, by replac2/r .~1/b,. In the linear regimen<1 of the Born RPA
ing the pure Coulomb ion-electron interaction bgtatically  no cutoff is needed at all, nevertheless, we can emgjpy
screenedYukawa potential, where the screening length is as defined above, because né&y=2/x, and it coincides
an external parameter. In the linear regime 1, the Born-  with the cutoff originated from the behavior of the dielectric
RPA result(4) is, of course, superior to a first Born approxi- function and is intrinsic to the Born RPA. In any case, we
mation in the binary collision model, since the Born RPA have b,<\ and x,=a(3/2)Y(£(1+02)Y% (v, lve)?\g
automatically accounts for the screening and, in addition, fok £2\ <)\ (for an ideal plasm&<1), which are the pre-
the dynamic polarization processgsasmon excitation The  conditions for deriving expressiai5).
binary collision approach yields identical results only in the  |n summary, we obtain from comparing with the binary

limit of static response —0) when the corresponding collision approach, a recipe to determikg from 7 andr
static screening length is used and fits the Born RPA at higlyy defining

velocitiesv > (v,), if one introduces the velocity dependent

screening length\s=v/w,. However, the binary collision 2 L
description is not restricted tg<<1, and works, for known X1+ 222 nN<3

. . . (1+y°79%)
N\s(v), at all Coulomb parameters including the limje>1 k= 17)
of classical trajectories. Based on the expressions obtained in m 2

[24-29 the binary collision stopping powes,. for any ion
velocity v and degenerac§) can be approximated by

1
}(r[1+(7/2)2+(rc/}(r)2]1/2, 77>2-

As a consequence, the stopping power gets a logarithmic
: (15  dependence on the charge in the semilinear regime in addi-
tion to the quadratic one. In a classical plasrfie{1) with
which approaches the exact resul@6,27 in the limit ~ Debye screening ang>1, r.=2b,, we recover in Eq(17)
A>byg,X, . Here X, and 7 are defined as above, inserting the commonly _u;ed cutqfkm= 1/by and in the definition
the relative velocity(v,) = ((ve)2+0v2)¥2 Iny=0.577 . . . is (14) of the's.emllmear regimer (=2by<<\) the weak cou-
Euler's constant anch(v) is a linear function inv for pling condition
v<(ve) and goesxv 2 for v>(v.). For its explicit form
see, €.9.}27]. This result can now be compared to the stop- 2_bO: z <1 (18)
ping powerS,,,, obtained in the linear response formalism Ns  2mn\3[1+(v/vg)?]¥?
(4) (for N=1) when the k integration is restricted to
k<k;. Sqmis of the same form aS, (15), i.e., a velocity = where the ion charge state has to be small compared to the
dependent function times a logarithmic term and, ignoringnumber of electrons in the dynamical screening sphere with
some unimportant differences in the corresponding functions i(v) = \p[ 1+ (v/v4,)2]Y? [30].
h(v), the ratio of both stopping powers reads We will add some remarks to stress the content of the
preceding consideration. Using the cutofk,,=2/
Spe _IN(2hg) —In[A, (1 + y2n*)1? X.(1+v?5%) Y2 in the dielectric linear response results in
Skm In(Km\s)

nothing else but a quantal-classical Bloch modification of

stopping forp=1 [23,24,26,27,3]L We do not only intend
Here the velocity dependent effective screening lengtho reproduce this well-known form of the Bloch correction
As(v) is taken from the linear response stopping powhr but also to establish the connection between the local
with cutoff k,,ScmeIn(k\g), Wherek,, is the external pa- strength of perturbatiop(r) (10) and the cutoff parameter
rameter and\((v) is provided by the dynamical response of k;, as obtained in recipg17), where k,=kqy(r;) for

In

Spe=2%h(v)

1
— §|n(1+ 'y2772)

s
A,

(16)



56 CORRELATED ION STOPPING IN PLASMAS 975
7n>1/2 with ¢(r;) =1/2[see Eq(13)]. In Sec. Il C 2 we use
this relation to derive an approximation for the Bloch modi-
fication for the stopping of ion clusters. There, an exact cal-
culation of the Bloch contribution to stopping is not easy to 4
achieve, in general, since it requires the knowledge of the
scattering phase shift for the complex scattering potential o
an ion cluster including multiple scattering events. So far we 3
only addressed the Bloch modification of stopping for semi-
linear ion-target coupling. There are also possible correction
due to a higher order target response, as contributicfrs
(Barkas (see, e.9.;32,33)), which might compensate in cer-
tain situations, at least in part, the always negative Bloct
term [31]. For the determination of the recipe to obtain the
cutoff k., for a single ion(17) or an ion cluster as given
below, these higher order contributions are of no, or minor
importance, because they have to be added both to the line
response expression with cut@f,, and the binary collision
stopping powelS,.. The screening behavior should only be P SN oHEN A S S S ——
affected slightly, since higher order response contribution: 16 18 20 22 24 26 28
remain always small compared to the leading linear respons log ,,(n/cm™2)
term in the linear and semilinear regime. They may, how-
ever, alter the final results for the stopping power with re- FIG. 1. The different regimes for the description of the energy
spect to the linear response and Bloch terms only. The exess of ions in an electron plasma of densitynd temperatur@.
tension of the dielectric treatment of cluster stopping into thelhe dashed curveg= 1/2 separate the linear reginme<1/2 at high
semilinear regime, discussed below, takes only into accouriemperatures and densities from the semilinear regime, which is
the Bloch type correction related to small impact parameterdocated between the linear regime and the nonlinear regime bound-
We assume that it is usually the more important correction2'y represented by the dotted cunigs'A=15. From right top to
since strong coupling occurs only at sm@bmpared to the [€ft bottom, both dotted curves correspond Z’b<Ur>2:152 and
screening lengthdistances. Nevertheless, further investiga-15/27, respectively, wherg,) scales i{v)(n, T) = (vi+vin) ™
tions are needed to determine the possible higher order pd"é nonideal targets are located below the solid cujvel, the
larization effects on ion cluster stopping for semilinear cou-J¢9enerate targets below the dashed-dotteddinel .
pling.

To underline the significance of the semilinear regime foreven for large velocities within the semilinear region, while
small clusters with high total charge, which are equivalent inthe linear one lies far beyond.
their behavior to highly charged single ions, we show in Fig.
1 the target parameters(T) corresponding to the linear,
semilinear, and nonlinear regime for an ion of charge state
Z=15 and different relative velocitie&,). The boundary For ion clusters things are much more involved, since the
which separates the linear regime at high temperatures argkrturbing potential is the sum of the potentials of the cluster
high densities from the semilinear one is indicated by theconstituents and a comparison with a binary collision theory
dashed curves forp=1/2 given by definition(11) for  is not possible any more, except for the case of a pointlike
ZI{v,) = 15, 5, 1 with(v,) in units of (ve)=(vE+v3)¥2  cluster where the cluster size as a whole is small compared to
For Z=15 this corresponds to an ion velocity small com- X, . Hence, we propose to extend the above considerations
pared to the mean electron velocityz{v,), @ medium ve- for single ions to an appropriately defined cluster potential,
locity v=<3(v,), and a high velocity ~15v,), as well as to  in order to get the conditions for weak perturbation, as well
all other combinations of the san®(v,) resulting in the as the cutoff required for a cluster in the semilinear regime.
samen [see Eq(12)]. The dotted curves separate the semi- We start with the potential energy for an electron in the
linear from the nonlinear regime at low temperature and lowfield of the whole cluste¥ .. as a superposition of the single
densities employing the conditidm /\¢=1, obtained by an ion expressionV; given by Eq. (9), Vce(r)==;Vei(lr
approximative solution of Eq(13) for rc~\s as an upper —r|), where we assumed for simplicity equal charges of the
limit of r. in definition (14), whereby/\;=1 is plotted for ions. As for a single ion, the strongest perturbation is caused
Z=15 and (v,)=1 {(ve) and 3 (ve). The curve at the ion locatiorr;. In the cluster, the potential energy at
(vr)=15 (ve) would already be outside the considered pa-the position of, for instance, thgth ion V (r=r;) may,
rameters. These curves also apply to other valued ahd  however, exceed the single ion value at the origin
(v,) for the sameZ/(v,)3xby/\s. Hence, Fig. 1 shows that V,(r=0) due to the vicinity of the otherN—1) ions. For
the linear regime for highly charged ions or clusters at lowmeasuring the strength of the perturbation it is thus reason-
velocities lies at extreme temperatures and densities, whilable to choose the position of an ion in the cluster as the
the semilinear regime covers a much larger region and foorigin and to perform subsequently an average overNhe
modest velocities already the whofeT region of interest possibilities. This establishes the following mean potential
for the given chargeZ=15. For higher charges one stays energy for an electron in the field of the cluster:

n=1/2, Z/wp =15

~~

N

TR TEN TR TR AR RRI RRRR RN IR RESRAERI RN AR RE RN A RRRNET!
'l
7/
’
~

log 1o(k BT/eV)

_._____._______—"\\

2. Weak coupling for ion clusters
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1 where r,,=rp—rm, S¢ the single ion stopping
(V(r))= NZ 2 Vei([ri—rj—r[) S;=C,(rnm=0), andC, the pair correlation function
! Car=—5 fd3kk'\7| — 1 lexpik
=Vq(r)+ NZ l% Vei(lri—=rj=r]). (19 2(r)= eo(2m)° bl brareey exp(i .r),( |
24

However, to provide a useful tool to determine the quantities hich d d | th t lel and
of interest, some further averages @A(r)), at least an an- whic d‘?p?” ts ?ﬂy OT e i%mponer;lsrpbar?he an
gular one, are still necessary. If we are interested again in ghRerpendicular to the velocity. This emphasizes the impor-

. - ance of the detailed studies of ion pali53,8,9,34 and
common features of correlated stopping rather than in thé.mple structures built up on a few pali§,10). To quantify

roperties of a single, selected cluster, an average over . . ,
brop g g ﬁe effects of correlations on the cluster stopping we define

ensemble of clusters, as described above for deriving tht h t fact the total cluster Stoopi ith
mean stopping powe(6), results in an averaged expression € enhancement tacteras the fotal clus egs OppIrgy wi
respect to the isolated particle stoppiBgZ,S;

({V)) which reads with the help of the pair-distribution func-
tion g(|ri—r;|) (assuming a spherical cluster s C
€

. 5 =327, Ys 7S 29
(V) =Velr) + [ & Val[F-rDa(T). 0

As a boundary for the binary correlatio@, we have
This averaged quantit§(V(r))) now allows us to define the |Ca|<|Sy| and|C/Sy|<(=,Z,)?~=,Z5 from the definition
linear and semilinear regime and the parametdén a man-  above. Because the total stopp@®¢4) and(6) is of the same
ner analogous to the single ion case considered above. B3ign asS;, we get
introducing the quantity,., the definitiong10) and(13) are

altered to (2 Zn)z
V() 1 . Ose<-— (26)
‘Pc(r):«Tv?ﬁsir ‘Pc(rc)zi- (21) ¢ E Z%

Keeping in mind thatp(0)= % [Eq. (11)] for a single ion, we
suggest as an extension of the single ion cds@ to ion
clusters the choice of a cutoff for clusters

with e<1 belonging to the case of a reduction of stopping by
correlations while the upper limits represent the complete
coalescence of the clusters. For clusters of equal charges this

2 simplifies to O<e<N. These definitions and ratios are inde-
X1t 2020 e(0)<3 pendent of the plasma parameters and apply to hot classical
c ([ 1+ 77 ¢c(0)] plasmas as well as to electron jelliuri€0) provided that
Km= 22 the coupling remains within the linear regime. In the semi-
22 15, @o(0)>1 linear regime the function€, depend on the whole cluster
X[1+(y2)%+(ro/X,)? 1" 7° ' structure via the cutofk, (i.e., ro). The stopping of the

. ) cluster cannot be constructed only by calculating and sum-
with ¢¢(0) andr from Eq.(21). Except for the linear Born- i 015 the pair correlation€,(r ) for the relative posi-
RCPA regime ~ 1/2N7=Neg(0)=maxe(r)), where .o rn—rm. Now, the knowledge on the total distribution
kn~2/X, , the delicate interplay of cluster and target param-g¢ the ions{r;} is required and Eq(23) is replaced by
eters requires a detailed study @f andk?, for the ion clus- S=EnZ§S§+EnEm£nZanC§(fnn1), where the subscript

ters of interest. We resume these investigations for the eXjenotes this dependence on the whole structure. That is, Eq.
amples discussed below. (24) changes to

D. Some provisional conclusions and definitions . e?
Ciry=——-—
A= 2w

We conclude this section on the description of the stop- Ik|<KE, e(k,k-v)
ping of ion clusters by summarizing some general features (27
contained in the stopping formuldd) and (6). In the pure
linear regime[ ¢.(0)<1], the linearity and the connected and S;=C3(r,,=0). The boundaries given in E¢6) re-
superposition principle allow the correlated part of the stopmain valid. However, one usually cannot expect the upper
ping to be entirely built up by two ion pair contributions, one for complete coalescence. In this liméN, the en-
where each pair already exhibits every basic feature of coancement divided bi for a cluster ofN ions with charge
related stopping. This can be expressed by reformulating E&, is just the ratio of the stopping power of a single ion with
(4) as a contribution of single isolated ions and a correlatiorchargeNZ to N? times those of a single ion with charge
part C, which is the sum of binary contributions This quantity is shown in Fig. 2, as function of the velocity

v and for differentN,Z and parameters of the target plasma
_ 2 _ 2 using the cutofk,, andk, determined by the definitior(d7)

S_; Z”Sﬁc_; Z“Sﬁg mE,én ZoZmCallnm), and (13) and (22) and (21) with ¢.(r)=Ne(r). The addi-

(23 tional dependence of the stopping power on the charge in the

explik-r),

k-v
dskF Im
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havior of ion debris of various ion distributions produced in

1.0 E the fragmentation process of the cluster ions when impacting
E the plasma.
0.9 Rewriting Eq.(6) by settingk:-v=w, the ensemble aver-
] aged stopping power per ion for the Gaussian cluster takes
0.8 the form
() 7% fk;; dkfku o 1
_ N v2rPelo Kk Jo 40¢ M ek w)
w g 2,2 2 2
3 Ze c exp— ko
0.8 +(N—1)ﬁ—f"mdk—p( )
3 v2m€y)o k
0.53 ko 1
; X . dw w Im cko)
0.43
g =2Z2Si+(N—1)Z2CS, (29
0~3:'I'|'|'|'|-|'|l|'|'|'|l|'|'|l|l|l|l|l|l

0 2 4 6 8 10 12 14 16 18 o9 WhereS{,CCin the_ semilinear regime depend on the whole

cluster structure via the cutokf,; see Eqs(20)—(22). Then,

S{ represents a single particle stopping contribution in the
FIG. 2. Enhancement/N for a cluster ofN ions with charge presence of the cluster and is in general not identical to the

stateZ in the case of complete coalescence and for different targe?‘tOpplng powglsl of an 'SOlff"ted ion of the Same charge
densitiesn and temperature¥ as a function of the cluster veloc- State. In the lineakBorn) regime such a cutoff is not re-

ity v scaled in units okve)(n,T)=(v2+v3%)Y2 For an electron quired, but coincides with the intrinsic cutoff of
jelium  (T=0) with n=1.61x10% cm 2 (r,=1) and IM[1/e(k,®)] and S{=S,. The correlation parC3 is the
Z=1, N=20 (dashed-dotted curyeand classical plasmas with averaged pair correlation function E(R7) as well as the
T=12 eV, n=4x10%° cm™3, Z=1, N=20 (solid), Z=1, N=  total correlation part of stopping divided By(N—1). We
100 (dotted, and T=300 eV, n=1022 cm 3, Z=1, N=20 mainly focus the discussion of correlated stopping of the
(short-dashedl Z=10, N=10 (long-dashejl The curves are trun- Gaussian cluster on the enhancemegnivhich now reads
cated when the nonlinearity becomes too strong for the present
description to be valid. (S) S5 (03

€= NZZSl_Sl+(N 1) 5, (30)

v

semilinear regime results in a considerable lower enhance-

ment in a wide range of target condition, in particular, for | the limits of large velocities >(v) (any degeneragyand
high chargeNZ and modest velocities. For high velocities fqor 1oy velocities for highly degenera® <1 and classical
the semilinear regime merges into the linear regime angyiasma®>1, an analytical evaluation of the stopping power
e—N, while for small v the nonlinear regime may be gien by Eq.(29) with the RPA dielectric functiofi17,22 is
reached ifr .— A according to conditior{14). For cases in  hassible. By an interpolation between these analytical ex-
Fig. 2 where this happens the corresponding curves are trurﬂ)‘ressions we derived a formula for the enhancenaeat all

cated ar.>0.2%,. v and®, which agrees well with the numerical solutions for
For an ion cluster with finite size, results on the enhance<s>/(szsl) and allows for a fast calculation of the en-
ment in the semilinear regime will be given in Sec. IIl. hancement. This interpolation formula is expressed in terms
of a functionZ, which is connected to the enhancement for
IIl. RESULTS FOR SOME GENERIC EXAMPLES the Gaussian cluster by
A. Spherical ion clouds of Gaussian shape £(0,0.K%) 0,0k
1Vialvm 1YrTm
As a first example we study the stopping of a spherical €=W+( Y 0.0k (39
“iivm 1~vm

ion cloud, where the ions are distributed independently of
each other around the center of the cluster with a Gaussia&hd wheret is defined as
probability density resulting in
2 22
expl—o“é
¥ r? {000 =2 200 1 (14 02p2)explo?8?)
ex _E , B+ o

g(r)=(N—1)(4mz
X[Ey(a?(B?+ 6%)—Eq(0°B?)]
S (k)=1+(N—1)exp —k?d?), (29
+E4( 0'252) — E1(0'2K2), (32

with the distance between two ionand the rms radius as

a measure for the cluster size. This ion configuration allowsvith the exponential integrdf;(z) = [, exp(—t)/tdt and the
for a relatively easy mathematical treatment, but, nevertheeoefficients 8,6 adapted to fit the exact solution in the
less, represents a rather useful model to investigate the bknown limits
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[
—

3.819 3
3+ §®+o.4o&2(—+—®)

2 ]

e 0.408 2 e K(1+U3). 103

(1+ 2 0)(1+0v?) 1+ kv o

(33 ]

81

Here v is scaled in units of the mean electron velocity 73

(ve)=ve(1+0/2)Y2 ¢ in units of \y and k in 1/\,, with ]

the static screening lengiy=(ve)/ w, . This scaling behav- w ©7

ior of £ and, hence, of enhancemantassigns an important 5]

role to the ratioss/\¢ andv/(v.) as decisive parameters to 3

characterize correlated stopping. 4

The cutoffsk,, andkf, entering the functiort are given 3]

by definition (17) for k,, and by evaluating Eqg20)—(22)

for the Gaussian cluster to obtdify . Insertingg(r) Eq. (28 273

in Eq. (20) yieldsr, as the solution ofp.(r;)=1/2, where 13

¢c(r) has the explicit form . ]

N—1 by 1 11 0.001 0.0t 0.1 1 10 100
e e R | ’

(39 FIG. 3. Enhancemen¢ for a Gaussian cluster di=10 ions

. ) ) . ) ) with charge stat&=1 as function of the cluster size in units of
with the single ion expressiof10) as defined in the preced- the screening length\ o(n,T) =(v o)/ wp=(v2+v3) Y w,. The
ing Section,/ the dynamical screening lengki=v,/w,  curves show the results of the presented interpolation formula and
=No(1+ v2)1 2 and the crosses the corresponding exact numerical evaluations for a jel-

lium (T=0) withn=1.61x10?* cm™® (r,=1) and cluster veloci-
1 o2 r r o ties v/{ve)=v/vg=6 (long-dashed curyeand 10 (short-dashexd
x| = &R 2| 8P — % erf —%er
r r o
—ex;{ —) erfc(—+—) A
A 20 A\ nential integral E;(z) for small and large arguments
(Iny=0.577...)

X and for a classical plasma witi=12 eV, n=4x10?° cm 3 for
vl{ve)=v/vp=0.1(solid), 3 (dotted, and 6(dashed-dotted

Here erfc is the complementary error function —In(z)—Iny+0(2), z<1

erfc(z) = 2/\mf s exp(—td)dt.

Ay

_ (35) pose, more closely, we first recall the behavior of the expo-

The resulting influence on the stopping, respectively, the B2~ exp(—2) 1 1 2 o 1 1
enhancement, due to the dependence of the cukfffk,,, on z —ZT 2O 7] '
the cluster and ion parameteXs o, Z, andv will be dis- (36

cussed later. For the moment we set the cutoffs tdrom which we obtairy in the special case of complete coa-
ki, =km=2/X,. For this setting, Fig. 3 shows the enhance-lescencer=0 as

ment e as function of the cluster size obtained by Egs. 2 K2( B2+ 62)

(31)—(33) (curves compared to the exact numerical solu- Z(v,O,K)=m—l+|n T 2E (37)
t|9ns of Eq.(ZQ? (crossek for a cluster ofN=10 ions for resulting in the enhancemer{o=0) already presented in
different velocitiesvy and two sets of target parameters, cor—Fig 2

responding to an electron jellium and a classical plasma. The = I (KS/ B)2

agreement of formuld31) with the exact result is almost n[(kn/B)"+1]—1 <
perfect for high and low velocities where it was fitted to the {(v,0K%) In[(kn/B)°+1]—1"

analytic results and displays deviations of some percent fofe(o=0)= NTkmm

intermediate velocities. The presented expres$&i) thus {(0,0.km) In(vk:,)

allows rather accurate and fast calculation, and can be used k)’ v>1,
. . In(vkm)

in future work to include the, so far, neglected Coulomb (39)

explosion into the description of the cluster slowing down by

replacing the cluster size by a time dependent one(t).  Where we usedky/B.ky/B>1 andvky,,vk,>1, respec-
Using a simple model for the explosiar(t), such a proce- tively, valid for the considered I_inear and _semilinear regimes.
dure yields a fast and valuable overview on the effects of the For the general case of arbitrasythe different values of
Coulomb explosion for the various target and cluster condi#3: &, andx are directly related to three different correlation
tions of interest, which is hardly achievable with very expen-rf€égimes.

sive full calculations. In addition, Eq$31)—(33) are much
more suitable for a good understanding of the basic aspects
of correlated stopping and the physics behind it than original For ok;,<1, which implies alsoocB,05<1, because
expression Eq(29). Inspecting Eqs(31)—(33), for this pur-  B(v,0)~1, §<kf, and ki,>1, all exponential integrals

1. Short range correlations: Complete coalescence
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in ¢ can be expressed asymptotically for small arguments 2. Long range correlations:  Single ion stopping

through E4(z) ~—=In(z)~Iny. This results in {(v.o.kg, In the limit ok$,,08,06>1, that is, cluster large com-
<1lo)~{(v.0,ky,) given by Eq.(37) and e~€(0c=0) EQ.  pared to the screening lengthrs\~max(1/3,1/5)
(38). The physical origin for this behavior is obvious from ~(1/8%+v?)2 (in the used scalingthe contribution of the

the definition ofkf,, where we haver<1k;~A, in the correlation part to the stopping vanishes like

linear regime andr<1/k;,~r in the semilinear regime, re- 1 exg — 0262)
spectively. While in the linear regime the cluster is smaller{[v,o>max1/8,1/8) ks> Uol~—4m2— —o =
than the electron wavelength and thus appears as pointlike, B o(pF )
the radius .~ bg remains smaller than the distance of closest B2
approach of the classical trajectories for most of the electrons X 1—m

in the semilinear case. This is consistent with the form of the

cluster potentialp; (34) evaluated in the two corresponding (40
limits of small o and behaves for large as 1b*. This qualitative behavior
can also be deduced simply from the original expression for
r the stopping6) with the structure factof28). For the present
1—ex;< - }(_) for o<X;, r=X,<Ns  Gaussian cluster without any further structure the limit of
' long range correlations is just the limit of isolated ions.

N by

ec(r)= Nb
r . .
—Oexy{ _ _) for o<ry, r~r.>x,. 3. Intermediate range regime
r s When the cluster is not pointlike, that isk;,>1, but
smaller than the screening lengthissmax(1/3,1/6), the en-
(39  hancement shows a logarithmic increase with decreasing
cluster sizeo, where{ can be approximated as
BZ O_ZB252
pre LTivinl g, ool
Cs .
(o kn>1o) =19y - in02s2), of<loé>1 (41)
—Iny—In(c?5?), oB>1,06<1.
|
In summary, we have for a given velocitya dependence of In(vkS,) —Iny+In(v¥d?)
the enhancement on a growing cluster sizer, which is €= +(N—
. In(vk,,) 21In(vkgy)
characterized by a constant value for small clusters
o<1Kk:,, by a change to a logarithmic decrease starting at 14 (N—1 In(v) _N+1 42
o~k¢, and persisting unti- reaches thédynamical screen- ( )In(vz) 2 (42)

ing length. Finally one approaches the isolated, single ion

e c -

limit 6._>1 for larger 7 Becaysekm aqd the dynamlcgl where the terms to the right represent the limit-oo, hence

screening length\¢ are increasing functions for increasing In@)—  and K&k 2Xo/X %0 The  result
m m 0 r .

cluster velocities, the boundaries of 'Fhe C!ogarlthmlc depen—e(v_mo)_)(,\H1)/2 has to be considered mainly as a math-
dence ono are extended to smaller via k;;, at one end of

) ) ' ematical one, because we deal with a description of corre-
the scale and to larger via A at the other one. This velocity |4ieq stopping, which is restricted to nonrelativistic veloci-

dependence as well as the dependence of the target CONgss. Depending on the given parameters of the cluster and
tions on the transition to the regime of complete coalescencg,e target this limit may, however, be reached already for
is nicely pictured by the various cases of Fig. 3, wherss  nonrelativistic velocities and has the following physical
given on a logarithmical scale. meaning. As known, the stopping of a single ion at high
In this context, it is also of interest to have a look at thevelocities is to one half due to single particle excitations and
case of large velocities for a cluster with fixed sizer. In to the other half to collective excitations of plasma waves.
particular, we regard the conditions>1 (in units of(ve))  The wavelength\, of the plasmons excited with the phase
and a velocity which is sufficiently high so that the cluster iSveIocity v is Np=2mv/w,, that is, in scaled values
both non-point-like ¢k;>1) and small compared to the Np=2mv. For this plasma waves with,>o the cluster
dynamical screening length, that is in the dimensionless appears as pointlike and the stopping of the cluster by
guantitiesc<v. Becaused~ 1/v and thuso6<1, 6<3, we  collective excitations is the same as the stopping by collec-
have {(v,0,kS) ~ — Iny—In(a?lv?) while ¢(v,0,k=KS k)  tive excitations of a single ion with the total charyZ.
~ 2 In(kv). This results in the enhancement The single particle excitations resolve the cluster structure
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v FIG. 5. Enhancemen¢ for a Gaussian cluster dfi=60 ions

and velocityv/(ve)=4 as a function of the cluster sizein units
FIG. 4. Enhancement for a Gaussian cluster of ions with Of No(n,T)=(ve) w,=(vE+vi) Hw,. For plasmas withT=
Z=1 as a function of the cluster velocity in units of (ve)= 12 eV, n=4x10" cm™® and ions with charge sta@=1 (solid
(w2+v2)Y2 For a target plasmd=12 eV, n=4x10%° cm®  curvg, T=0, n=1.61x10** cm3, Z=1  (dashed-dotteq
and clusters wittN =20 ions and a size=0.05(solid curvg, 0.5  T=300 eV, n=10°? cm®, Z=1 (short-dashed and Z=5
(dotted, 5 (dashed-dottad For clusters oN= 100, o = 5 with the (long-dashed In each case, the dotted curves exhibit the enhance-
same target conditiongshort-dashed and for a jellium target ment for a pure linear behavior of the stopping when nonlinear
T=0, n=1.61x10%* cm™ 2% (r,=1) (long-dashed curye The effects which appear in the semilinear regime are neglected.
cluster sizeso are in units of the screening lengthy(n,T)
=(ve) wp. The enhancement obtained by taking the nonlinear effects

; e . g
and correspond t&N times the single particle contribution contained irk, mte account Is .s_hown in Figs. 5 and 6 for a
for single ions with chargeZ. This yields in summary cluster ofN = 60 ions at velocities =4 and 10 for various

an enhancement e=(S)/NZ2S, =[ (NZ)%/2-+NZ/2]/NZ2 Farget conditions and ion ehargEsThe enhancement e_xhib—
—(N+1)/2. The velocity dependence of the enhancement i§S the typical logarithmic increase for decreasigstarting
shown in Fig. 4 for different cluster sizes numbersN of when the cluster size becomes smaller than the dynamical
ions and target parameters, again for the setting
ki,=kn=2/X, as in Fig. 3. While the trend is visible, the E
high velocity limit (N+ 1)/2 still lies far away for the given 60 Fre
velocity range and parameters. It can be reached only
through the weak logarithmic dependence o€, given by
Eq. (42). For high numbers of ions and cluster sizes of the
order of the dynamical screening length a considerable en-
hancement arises at high velocities. It remains, nevertheless, 40
small compared to the achievable limit~N/2. Such in-
creases of correlated stopping for high velocities have be
documented also for other cluster configuratifh85] with
comparable values of the cluster size with respect to the E
screening length. 203
To investigate the behavior of enhancement including the E
semilinear regime the corresponding cutoffs

kS =k%(N,Z,v,0) andkn=kmn(Z,v) have to be determined 107

following the procedures developed in the preceding section E

and then included in the expressions for the enhancement. 0 F—r o
This will change the maximal achievable enhancement, as 0.001  0.01 0.1 1 10 100
already demonstrated, and, in particular, the dependence on g

the ion numbeN. However, for a lot of cases one remains  F|G. 6. Enhancement for a Gaussian cluster ®i=60 ions as
within the linear regime, namely, for large or weakly chargedin Fig. 5 but now for a velocity v/(ve)=10 and for
clusters and at high velocities. There tNedependence is T=12 eV, n=4x10° cm 3, Z=1 (solid curvé and Z=5
purely linear for a giverr as suggested by the definitions (long-dashel) T=0, n=1.61x10°** cm 3, Z=1 (dashed-dotted
(29—(31). andT=300 eV, n=10?2 cm 3, Z=1 (short-dashed
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screening length which grows with velocity. This increase 0.
stops at a certain cluster size and approaches a constant val
of maximal enhancement, which lies, for most of the pre-
sented cases, well below tlaepriori limit e=N reached by
the dotted curves, which are obtained by ignoring the effect
of an increasing perturbation on the target for decreasing -0.04
and setting:,=ky,, which is independent oas. At the point
where the enhancement reaches this constant value, tt -o0.06
shrinking cluster is no longer a weak enough perturbation to 4§
remain within the linear regime. The behavior of the en-
hancement is thus monitored by the additional dependenc
on the cluster charge and reaches for a further decrease of tt
size o the maximal achievable enhancement in the semilin-  -9-10
ear regime. This reduction of the enhancement is significan
even at relatively high cluster velocities and will become  -¢.12
more and more important for higher charge states and num
bers of ions. 0.14

To improve the simple model of the Gaussian ion distri- T2 A6 e 10 12 14 18 18 20
bution, an additionalinterna) structure can be introduced,
which accounts for the spacing between the ions as one ex
pects for real ion debris, as a consequence of the initial ar- ) _ _
rangement before fragmentation and of the mutual repulsion FIG. 7. Relatlvg d|fferenf:eAe n the enhancements for a
during the slowing down. Intending to take this into aCCoum,Gaussmn cluster WIth gnd Wlthout |nterngl strzuc;[};re as a function
in quite a general manner, as well as to benefit from the' € cluster velocity |n02%n|t59§<ve>:(vF+vth)_ and for tar-
efforts for the description of the Gaussian cluster, we agai etsT=12 e_V’ n=4x10" cm = and CIUSt.erS WithN =60 ions

; . . o and a sizes=0.2 (long-dashed curye 5 (solid), 10 (dashed and

employ a Gaussian profile for modeling this internal struc-N:?_OO’ #=10 (dotted. The dashed-dotted curve belongs to

ture by T=0, n=1.61x10** cm 3, N=60 ando=10. The cluster sizes

o are in units of the screening lengiy(n,T)=(v)/w,, the ion
N—1 a2 (2 charge state i=1 in all cases.
- X
N=—3z— exg — —
g( ) X32_ 1(47702) % 40_2)

-0.02

-0.08

v

2
r
l - eXF< 2) :| , i i i i
4s viations between both enhancemeatsind e with and with-
out internal structure given by

2
o €

— — 1/3 ¢ Cc
X=1+?. (43 Ae=3 € {(v,0/N" k) + (v, 0,kp)

€ {(0,0K)+(N-1){(v,0,KS)

(46)

Here o is again the measure for the cluster size as a whole,

while s deﬂ_nes a typ|ca_l interion spacing. In contradiction O.f As it becomes immediately clear by inspecting the relevant
the preceding model without internal structure, the probabll-definitions the difference ikS.. for the two cases. is rather
ity in the improved model to find two ions at the same posi- ' m . '

tion, is zero and strongly reduced for mutual distancessma” i‘“o! was neglgcted In depvmg& € Because
r<s. Because the volume occupied by one ion is of theg,(v"f’km) IS a monotonically QecreaS|ng funqt!on m‘. the
order 53, while the whole cluster has a volume of about difference/A e is always negative and the additional |r!ternal
o3, 0%3~N. For further simplification we chose structure of the cluster reduces the enhancement. This reduc-

0%s?=N?P=1 in order to gety¥?=(1+0?/s?)3¥2=N. tio_n is.shown not as functiop af but of thg cluster velocity
With this choice the structure factor has the simple form v in Fig. 7, where the relative changes in the enhancement
A€ are plotted for different cluster sizes and target condi-

1 o \? tions. For small clusters<1 (long-dashed curyethe clus-
2(k)=1+N eXF(—kZUZ)—NeXF{—kZ(W/@) ” ter behaves as pointlike, where the internal structure is of
(44) minor importance and the reduction in the enhancement
takes a rather small almost constant value when the velocity

while the corresponding enhancement reads is large enough, so that the electrons may resolve the struc-
ture[ o/N¥3=1/k (v)]. For large clusters of the order of the
{00k L(v,okS)  L(v,0/NY3KE) dynamical screening lengtho(~v, in the present scaling
Eg:g(l),o,km) T {(v0ky  {(v,0ky pronounced reductions occur at certain velocities depending

(45) on the cluster size- and ion numbeN, where the minima in
A€ are located at velocities,, proportional to the mean
with ¢ from Eqg. (32). In an analogous manner, expressioninterparticle spacing/NY? (solid, short-dashed, and dotted
(34) for ¢(r) has to be modified using the functions, and  curves, while in the chosen units a variation of the target
A ,nus to obtain the corresponding values ferandk?,. To  conditions at givero andN only slightly affect thev, lo-
investigate the additional effects, we regard the relative decation (dashed-dotted curye This reduction in the
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stopping for large clusters, and medium or high velocities, is S 72a2 N-1

a consequence of destructive interference between the ex- —=27 SC+ 2y E (N—v)

. N 2m%ey N2

cited plasma waves, and were reported also for other types of

clusters with internal structuris,35]. A particular situation i dk (ko

in this regard concerns very large structures, such as ion f mT dwwcos< vL )

beams or bunches of ions corresponding to the limit 0 0

o,N—w for a constant ion density, that is, ol

s=oa/NY3=const. For sufficiently larger at a given veloc- 1 722 (¢ ko sir? NZ_

ity, the beam, or bunch as a whole, is larger than the dynami- =— f m do O
0 sinz(—)

2v

-1 }
e(K, )

cal screening lengtle>v, and the long range correlation
limit applies where the correlation contribution
N{(v,o,kS), in the enhancement45), vanishes like
NZ~N/o*~N"Y3¥s* [cf. Eq.(40)], and the enhancement, in X Im
fact, always represents a reduction of stopping
e.=[{(v,0,ky) — {(v,s,kp) 1/ {(v,0ky)<1. This reduction with the single ion stopping: as defined in Eg(29), while

due to destructive interference depends only on the mean iaihe stopping per ion for a chain extended perpendicular to its
spacings and increases with the density of the beam ore|ocity (v.Le,) takes the form

bunch. Such behavior for beams or large clusters was already

discussed in Ref§36,37). S_ g, 2€ 2”§ i, dk
N~ 2SI e N ]

(49

B. N-ion chains

v -1
X Jok dw wJO(vL\/kz—(w/v)z) |m[m},

(50

From the rather general and statistical description of cor-
related stopping discussed above, we now turn to chains of
ions as an example of a well defined, highly regular struc-
ture. In particular, such arrangements allow for significantyhereJ, is the Bessel function of the first kind.
interference effects of the excited wake fields and the study To determinek’, for the chains according to the recipe

of N-ion chains will complete the spectrum of the basic fea-estaplished in Sec Il, we employ the angular average
tures of correlated ion stopping.

For a chain ofN (pointlike) ions with chargeZe and an ((V(r)))
equal distancéd. between two neighboring ions, the charge eel(r)= mvr
density of this configuration is
1
N =¢(r)+ 2 2 d cosde([rp—rm—r|)
p(r)=2Zed(x)8(y) 2, s(nL-2), (47) n min 2J-1
n=1

N—-1
=<p<r)+b7$2 (N=7)

v=1

A 1
vl rv)\_s

} , (51)

where the extension of the chain is chosen inzldirection.

The relevant product of the Fourier-transformed charge den-
sity of the chain, which enters expressidn for the stopping
power, takes the form

1 1
r—+—

_A'VL }(r )\S

with the ion spacings,—r,=(n—m)Le,, the single ion
expressionyp [cf. Eq.(10)], and

Pa(—Kpk) &

L= Y exdik(n—m)L] 1) A Ir—wvL| r+wvlL
Z%€e n=1 m=1 AL I A b B B e

N-1 (52
=N+2 >, (N—wv)cogvk,L) _
v=1 We reconsider the enhancementS/NZ2S, for the total

SIF(NK,L/2) stop_pingS of the parallgl and transversﬁpgrpendicula}r
=__ = (48  chain Eqgs.(49) and(50) with respect to the single ion stop-
sinf(k,L/2) ping S, of isolated ions, that isS; = C,(r =0), Eq. (24) with
cutoff k., Eq. (17). The resulting enhancement for a chain of
N=10 ions withZ=1 is shown in Fig. 8 as function of the
For such highly anisotropic structures we expect, of course, mterion distance. for different velocities, target conditions,
strong dependence of the stopping on the orientation of thand orientations of the chain. In general, we recover the be-
chain with respect to its velocity. For velocities parallel to havior as seen for the Gaussian cluster with a transition from
the chain, that i¥=ve, andw=Kk-v=k,v, the stopping per vanishing enhancemest=1 to a constant value~N, when
ion is given by L decreases fronb>\, to L<<\y. This qualitative agree-
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FIG. 9. Enhancement for a chain of ions withZz=1 and scal-
ing as in Fig. 8 now detailed for larde. For transversal orienta-
tion, N=10, v =10 (long-dashed curyeand parallel orientation
N=10, v=6 (solid), N=100, v=1 (short-dashed merging with
long-dashed curve for largér) andN=100, v=6 (dotted for a
target plasmas oT=12 eV, n=4x10?° cm 3; parallel orienta-
tion, N=10, v=6 in a target withT=0, n=1.61x 10?* cm 3
(dashed-dotted

FIG. 8. Enhancement for a chain withN=10 ions ofZ=1 as
a function of the interion spacind. in units of \o(n,T)=
(vl wp=(vE+vi) ¥ w,. Transversal orientation of the chain
with a velocity ofv =10 (long-dashed curyeand parallel orienta-
tion for v =6 (solid and 10(short-dashed all cases for a target
plasmas off=12 eV, n=4x10?° cm 3, and parallel orientation
with v=6 in a targefT=0, n=1.61x 10?4 cm™® (dashed-dotted
The velocities are scaled in units @f,). Again, the dotted curves
display the enhancement for a pure linear behavior of the stoppin

when nonlinear effects are ignored. alake fields for small velocities, strong interferences of the

plasma waves excited at high velocities may occur. In gen-

eral these interferences are destructive and yield a reduction
ment with the Gaussian cluster is almost perfect for transverof stopping compared to the isolated ion valwe<(l) such
sal chains(long-dashed curye The parallel chains behave gas in the regiol.~5-10 in Fig. 8 and between the peaks in
quite similarly forL <\, but show new additional features Fig. 9. Constructive interference, which results in a signifi-
for large L where some resonant structures énappear. cant enhancement of stopping, occurs at certain values of
These structures are due to constructive interference of the, where the ions in the chain are in phase with the excited
excited plasma waves. Before we turn to further discussvaves. Here, the wave with the strongest amplitude complies
these interference effects, we will remark on some additionalyith the dispersion relation Rgk)=k-v and can travel in
features in Fig. 8. The onset of the increase ¢dr decreas- phase with the ion chain fok=2mn/L. Taking w(k) in
ing L is located at the same interparticle distafsealed in  ynits of w, and Resn(k<1)=1, the resonance condition
No(n,T)=(vE+v{) Y w,] for the same velocity but dif-  Rew=2mnuv/L for a velocityv =6 reads in the chosen scal-
ferent target conditiongsolid and dashed-dotted curyes ing L=127n=L=37.7,75.4... . The twofirst possible
The value for the enhancement in the limit of complete coavalues agree roughly with the peak locations in Fig. 9. The
lescence is the same for the parallel and transversal chain discrepancy is due to the fact that we have, for nonvanishing
the same velocity(short-dashed and long-dashedrhe k=2#/L, higher plasmon frequencies &€k)>1 instead
somehow strange behavior of the enhancement which decay$ Rew(k<1)=1, as used for our estimate. This shifts the
again at lowL for decreasingL (solid and short-dashed peaks to lowerlL and introduces a difference between the
curves may be an artifact of the used procedure to work outplasma conditiongsolid and dashed-dotted curyebecause
ki, through the spherical averaggl). Such an averaging is, the dispersion relation fde>0 explicitly depends om, T in
of course, less suitable for an anisotropic chain than for ahe used scaling. The plasma mode, which is selected by the
spherical structure as the Gaussian cluster. However, thidispersion relation, dominates more and more the resonance
concerns only some medium range of smalin the limit of ~ for an increasing number of ions which contribute to the
sufficiently smallL when the whole chain appears pointlike, wave excitations. This enforces the resonant enhancement
we recover the correct enhancement of a single charge. Figgnd  shifts it toward the corresponding values
ure 9 shows in more detail the larde region where the L=2wnv/ Rew(n27/L) (solid N=10 and dotted\N=100
resonant structures are located. No such structures aweirves. This behavior is witnessed more distinctly in Fig. 10
present for a transversal chdlong-dashed curyeas well as  as resonance with respect to the velocity for a fixed ion
for a parallel chain at low velocities=1 for which no en- spacing L. The enhancement exhibits with an increas-
hancement exists in thisrange. While there ar@lmos) no  ing length of the chain, a more and more pronounced
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FIG. 10. Enhancement for a parallel chain of ions with FIG. 11. Enhancement for a parallel chain of ions with
Z=1 and interion distanck =50 as a function of the velocity in ~ £=1 ata velocityo =10 as a function of the interion spaciagfor
a classical plasmas af=12 eV, n=4x10%° cm™3 for different different ion numbersN=10 (short-dashed curyge 50 (long-
ion numbersN=10 (long-dashed curye 20 (short-dashed 50 dashegl 100 (dashed-dottegl and 200(solid). The dotted curves
(dotted, 100 (solid), andN— = (dashed-dotted The spacind. is displgy again the e_nhancgme_nt for a pure linear behavior. Target
scaled in \o(n,T)=(ve)/wp=vin/w,=\p, the velocity v in conditions and scaling as in Fig. 10.
(Ve)=vtn -

course already happens at lowlerfor larger N. Together

peak with a sharp edge for a large number of ibhs> o with further resonance effects this yields rather strong varia-
towards low velocities(dashed-dotted curye Applying  tions of the enhancement with respect to the ion number at
the dispersion relation for this case with=-50 and a classi- ion spacings arountd~1. This can be nicely demonstrated
cal plasma Re(k)~(1+3k?)2 (with k in 1/\p) yields regarding the enhancement as a functiorNofor different
v=[(L/27)%+3]*?=8.14 in perfect agreement with the ob- fixed interion distancek as shown in Fig. 12. The enhance-
served edge. For lower velocities only plasma waves witment grows monotonically wittN at smallL (long-dashed
shorter wave lengthL/n(n>1) can be in phase. These curve but shows strong oscillations for medium(solid and
waves, when exited by one ion in the chain, reach only alashegl For largeL outside the resonandeee Fig. 11the
smaller number of further ions because they are stronglgnhancement rapidly decreases to valeesl for small N
damped. For an increasing number of ions their contributiorand than remains constant for lar§e (not shown. This
to the total stopping does not increase as well and the erfeature is opposite to the behavior within resonafutzshed-
hancement due to this waves is indeed reduced for growindotted curve which saturates t&>1. In contrast to these
N. For the same reason the enhancement due to the wa¥eatures for parallel chains, the transversal chains show for
with lengthL saturates to a maximum fi\—oc. Beyond the all L an increase with subsequent saturatisnch as the
edge towards highey, the wave with lengtiL no longer dotted curvg where the final enhancement for larlyein-
obeys the dispersion relation but is still excited, howevercreases monotonically with shrinking distandes
with decreasing amplitude for increasimg For velocities
larger than shown in Fig. 10 the destructive interference fi-
nally results in a reductione<1) as also apparent at low
velocities. In order to further highlight the topological dependence of

The dependence on the number of ions is addressed oncerrelated ion stopping, we think it instructive to add to the
more in Fig. 11 which gives an impression of tNedepen-  above highly significant examples a third one interpolating
dence of the enhancement for parallel chains with differenbetween them. This explains why we consider, in Figs. 13
distancesL between the ions. For large we recover the and 14, three distinct target temperature stopping cases for
resonant structure with its sligit dependence as discussed N=8n pointlike equal charges distributed on verticesron
above, while the enhancement for smhllstrongly grows successively embedded cubic boxes. The stopping conditions
with increasingN (note the logarithmic scale far). Larger  with target parameters <kgT<10 eV, n=10'° cm 3,
enhancements for largé, however, drop down for increas- corresponding to a classical target>1, and a projectile
ing L at smallerL values than those for smalléf. This  velocity v =3vy,, are typical of a realistic cluster ion-dense
arises, because a chain no longer appears as pointlike if itdasma interaction experiment achievable with presently ex-
total length exceeds a certain sikd~1/k (v), which of isting hardware. The given arrangement 0¥1,...,4

C. Embedded cubic boxes
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100 =8(n—1)/7. Thelatter value is very close to the observed
. T R with some deviation foN=4X8=232 due to the strong

50 ] ////’ intrabox contributionC3, of the smallest box with size
. -~ \p/8. From the founR values we may, however, conclude

that the embedded cubic boxes behave in the considered re-
gime like a compact and homogeneous arrangement despite
their highly ordered and specific form. The essential message
conveyed by these cubic box results is that a three dimen-
sional arrangement of pointlike charges is likely to produce
enhanced and correlated stopping. Such behavior remains
obviously at variance wittN-chain behavior in comparable
conditions which can also produce negatively correlated
stopping for someN values. The box arrangement in the
above intermediate range regime behaves rather similar to
the Gaussian cluster. This confirms that the Gaussian model
is quite universal and useful for an averaged description of
the stopping of ion debris.

50 100 150 200 IV. SUMMARY
N

From the examples given in the preceding section, as well
as from our own studies and published investigations
[5-10,18,34-3pon further cluster configurations we obtain

FIG. 12. Enhancement for a chain of ions withZz=1 and the following general picture of correlated stopping.
velocity v =10 as a function of the ion numbaél for different fixed

interion spacingd. = 0.03 (long-dashed curye 0.3 (short-dashex A. Basic features of correlated ion stopping
1.2 (solid), and 61.5(dashed-dottedfor parallel orientation. The _
dotted curve exhibits transversal orientation &ne0.3. Target 1. Short range correlations

conditions and scaling as in Fig. 10. The size\ . of the whole ion cluster is much smaller than

the static screening lengtty. More accurately, it should be

boxes is chosen so that the largest box has an edge lengi5jier than the relevant spatial resolution of the electrons,

equal to the target plasma screening lenggi=vn/wp, the ¢ g Ne<1KS <M\, in particular, in the linear regime
first inner box has.p/2, the foIIowm_g one\p/4, and the last M.<1, (see Sec. Il AL This corresponds to the limit of
one Ap/B. So the presently conadgred enhanced Sto.pp'ngomplete coalescence where the ion clusters behave as a
documems the so Cal.'?d |_ntermed|ate range effects In th§*|ngle pointlike ion with a charge equal to the sum of the
a_lbove d'sp"’?‘yed c_IaSS|f|cat|on. The sum of l_)mary_ Contrlbu'charges of all its constituents and the stopping is character-
tions C,, which builds up together with the single ion stop- ized as follows

ping S, the total stopping, can be decomposed into intraboX  the energy loss of the ion cluster grows monotonically

] S a A i
and interbox contributionsCj; andCjj , respectively, with the numbeiN of its constituents, that is, with increasing
total charge at fixed cluster size. The corresponding increase

S=NZ2S,+72> >, Ca(r,,) in the enhancement is linear M within the linear regime
voopEv and less than linear~N In(constN) in the semilinear re-
gime. The latteN dependence is deduced from the defini-
=NZ2S,+272>, C3+722, ; ct, (53)  tions (17), (22), and(38), wherek®~k./N and reflects the
i g+

kind of Bloch modification discussed in Sec. Il C. It might

, . change when, in addition, higher order response contribu-
where S;,Cp, and r,, are defined as in Eq(23) and  jons are included, which could shift e dependence again
v,u=1,... N with N=8n and i,j=1,...n. Nonlin-  c5ser to a linear behavidicf. the behavior of the charge
ear effects can be assumed to be small under the presefidpendence ifid1]). In the essential nonlinear regime a be-
conditions and are neglected here, thatk§=kn. The  hayior ~N°5 can be proposed out of molecular dynamics
enhancement=S/NZ°S, displayed in Fig. 13 is increasing simulations[38,39 for the stopping of single ions which
W|th N but at a different pace fOI’ VaI’iOU'E. Th|S behaVior Sca|es approximative'yuQl-5 in the tota' Charg@ in th|S

with N andT agrees qualitatively with those of the Gaussianregime_

cluster presented in Figs. 3, 5, and 6. The relative import- The correlated stopping is independent of the exact cluster
ance of the interboxes and intraboxes correlations i%tructure as |0ng as the total Charge remains unchanged_
addressed in F|g 14 in terms of the Corresponding ratio The Stopping is a|Ways enhanced Compared to that of un-
R=23;%;,Cj/ZCf. This ratio also increases witN but  correlated individual ions.

in an almost identical way for the three considered tempera- The dependence of the enhancement on the ion-cluster
tures. Assuming that the binary contributior8,(r,,)  velocity is moderate and mainly determined by the transition
can be replaced by a mean val{@,) we haveEiEj;ﬁiCiej from the linear to the semilinear into the nonlinear regime
=8x8n(n—1)(C,), =;Ci=8X7n(C,) and hence R for decreasing velocity. The related reduction of the stop-
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ping, thereby, corresponds to the dependence on the toti

20
charge, i.e., ofN, as outlined above.
18
2. Long range correlations 16
The size of the whole ion cluster and the typical correla- 14

tion length) . (distances between the ignis of same order
or larger than the dynamical screening length=\qv. Here 1
every ion of the cluster acts as an individual charge with a

N

—
o
T T S I T O TN W T T S A T (N VS O AN O A

possible correlated behavior due to the interference of the
excited long ranged wake fields. This may yield enhanced o s
reduced stopping for constructive or destructive interference
respectively. The typical features of this type of correlated 6
stopping are the following.
The dependence on the numhidrof involved ions is 4
weak. The reduction or the enhancement of stopping due t >
the interferences saturates when more and more ions contril
ute for a fixed interionic distance, . In particular, the maxi- 0 +r—r T
mal stopping per ion always remains of the order of a few 5 10 15 20 25 30 35
times the stopping of individual ions even for a large number N

of ions.

In general a reduction of stopping by destructive interfer-  F|G. 13. Enhancement for N=8n unit charges displayed on
ence occurs corresponding to a suppression of plasmon ex¥ertices ofn successively embedded cubic boxes. The cubic edges
citations with wavelengths larger than the typical distancesire successivelyy, Ap/2, Np/4, and\p/8. The overall projectile
Ne- velocity is v=3uvy,, the target density im=10' cm™3 and the

Enhancements of stopping by constructive interferencearget temperatures ard=0.93 eV (solid curve, 4.31 eV
are possible for velocitieg where the ion cluster is in phase (dashed and 7.37 eMdotted.
with the excited plasma waves and the resonance condition
Rew(k.=2m/\)=K-V is fulfilled. Because the damping B. Conclusions
of the plasma waves has to be sufficiently small these inter-
ferences can only occur for high velocities where the reso-
nance condition yields small; values for which Ino(k;)
becomes negligible.

There is a strong dependence of the correlation effects on
the cluster structurk. and the ion-cluster velocity via the
resonance condition.

In addition, a strong dependence on the target conditions
is withessed as well. For nonideal plasma the interelectro 3.5
correlation will reduce the plasmon mean-free path whict
results in a stronger damping of the plasma waves and
suppression of the interference effept9,39. 3.0

We have critically reviewed the dielectric formulation of
correlated stopping in the nonrelativistic regime. In particu-
lar, a careful distinction has been made between a Born-RPA
reg|me with no momentum cutoff in the stopping quadrature,
which advocates the standard linear regime and a quasilinear
regime with short range cutoff included, corresponding to a

3. Intermediate range correlations

When the cluster sizes and correlation lengths are of th 2.5
order of the screening length and hence lie in between bot g
previous regimes, the physics of correlated stopping is mor
complicate than in both “pure” cases. The intermediate re- 2.0
gime through which transition between the above regime:
takes place is mainly characterized by exhibiting simulta-
neous features of short range and long range correlation r
gimes.

The size and topology of the cluster strongly affect the
dependence on the ion numblr In general, there is an
increase of the enhancement with as for short range cor- .o +r—r—rrrrrr—r—rrrrrr—r
relations. 5 10 15 20 25 30 35

Depending on the cluster structure reductions of stoppiny N
due to destructive interference may occur, but there is no
enhancement by constructive interference. Therefore, the ve- FIG. 14. RatioR of interboxes to intraboxes correlated stopping
locity dependence of correlated stopping is less pronouncesbntributions for then successively embedded cubic boxes with
than in the long range correlation regime. N=8n unit charges and box sizes and parameters as in Fig. 13.

P T I S I S N N T N N T N N N
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Bloch modification of the stopping power. We presented aan approximation formula. In future work, this formula
scheme to derive the requested cutoffs for such a correctiomight be used to perform guantitative studies of the stopping
with arbitrary given ion arrangements. We discussed the coref ion debris including the Coulomb explosion. In this con-
sequences of these nonlinear effects in this quasili(seani-  text the outlined extension beyond the standard linear Born-
linean regime on the stopping enhancement through somgpA regime will become important as well. Long range ef-
selected examples. Here, the observed enhancements achigyts (with respect to\ ) as observed for aN chain parallel

able in the semilinear regime, which are often strongly reyg ;, gre essentially ascribed to target plasmon excitation. In
duced compared to the linear regime, should be consideraglis case destructive interferences may turn the correlated
as lower bounds. They might increase again tovyards the_“r‘gtopping negative and hence reduce stopping compared to
ear response prediction when higher order medium polarizanhe uncorrelated case. All together we showed how rich and
tion effects(Barkag are included. At this point further inves- giverse correlated stopping is and displayed the considerable
tigations are needed to determine these contributions for thgajitative and quantitative differences, as well as the com-
stopping of ion clusters in the semilinear coupling regime. mqn features by ion arrangements as distinct as the Gaussian

As demonstrated, the ratios of overall cluster size andpnerical distributionN chains and embedded cubic boxes.
nearest neighbor interdistance, respectively, to the plasma

target screening lengthg, allow in connection with the ratio
of overall drift velocity v to the mean electron velocity
(ve) in the target to classify the expected effects connected We acknowledge valuable discussions with G. Maynard
with correlated stopping. In the case of an ion cluster with aand the support of this work by the Centre National de la
Gaussian spherical distribution even a quantification of thékecherche Scientifique. G.Z. thanks the Deutsche Fors-
stopping enhancement in terms of these ratios is provided bghungsgemeinschatft for financial support.
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