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Ohm’s law for plasmas in reversed field pinch configuration

E. Martines and F. Vallone
Consorzio RFX, corso Stati Uniti, 4, I-35127 Padova, Italy

~Received 13 January 1997!

An analytical relationship between current density and applied electric field in reversed field pinch~RFP!
plasmas has been derived in the framework of the kinetic dynamo theory, that is assuming a radial field-aligned
momentum transport caused by the magnetic field stochasticity. This Ohm’s law yields current density profiles
with a poloidal current density at the edge which can sustain the magnetic field configuration against resistive
diffusion. The dependence of the loop voltage on plasma current and other plasma parameters for RFP
experiments has been obtained. The results of the theoretical work have been compared with experimental data
from the RFX experiment, and a good agreement has been found.@S1063-651X~97!06706-8#

PACS number~s!: 52.25.Fi, 52.55.Hc
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I. INTRODUCTION

Generally speaking, devices for magnetic confinemen
fusion plasmas are characterized by transport proce
which are anomalous, in the sense that they are not de
mined simply by interparticle collisions. As an example,
tokamaks transport of the moments of order 0 and 2 of
electron distribution function, namely, particle number a
mean energy, is anomalous. On the other hand, the first o
moment, current density, is not transported, but rather g
erated and absorbed locally in a classical fashion. The r
tionship between current density and electric field is th
given for a stationary tokamak plasma by a simple Ohm
law with Spitzer conductivity@1#.

Not so simple is the situation for plasmas in reversed fi
pinch ~RFP! configuration@2#. Besides the fact that particl
and energy transport are anomalous as in the tokam
Ohm’s law itself is not classical. This is mandatory if th
configuration is to be sustained against resistive diffusion
experimentally observed: in fact the toroidal field rever
requires a poloidal current density in the outer region, wh
according to the Spitzer Ohm’s law cannot be driven by
toroidally applied electric field.

The process which allows the sustainment of the toro
field reversal is called dynamo. Different mechanisms h
been proposed to explain it. One of them, the magnetohy
dynamic ~MHD! dynamo, suggests that the current dens
results form a local balance between the dissipation, whic
collisional as in Spitzer theory, and a generation given by
applied electric field and an additional term, the dyna
electric field, resulting from coherent MHD fluctuations
velocity and magnetic field@3#. On the contrary, the kinetic
dynamo theory~KDT! suggests that generation and dissip
tion are both classical, but there is in addition a signific
transport of field-aligned current density caused by the
chasticization of the magnetic field lines induced by the h
magnetic fluctuation level@4#. Presently, the MHD dynamo
is supported by three dimensional~3D! MHD simulations@5#
and by direct measurements of the dynamo field@6#, whereas
in favor of KDT there are simulations made with a 3
Fokker-Planck code@7# and the observation in the edge r
gion of all RFP experiments of a superthermal electron po
lation @8#. It is to be mentioned that, while the magnetic fie
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inside the reversal surface (r /a,0.8–0.9) is certainly sto-
chastic, the stochasticity of the outer region is a matter
debate.

In this paper the problem of Ohm’s law in RFP plasmas
addressed within the framework of KDT. In order to treat t
problem analytically, an ansatz is made concerning the sh
of the electron distribution function, on the ground of the
retical considerations and experimental results. Other
sumptions are then made about the density and tempera
profiles, and a particular model is adopted to describe
magnetic field profiles. Under these hypotheses, and ass
ing low-collisionality conditions, a relationship between cu
rent density and applied electric field is derived from kine
theory in Eq.~29!, and from that the relationship betwee
plasma current and loop voltage in a RFP experiment is
tained in Eq.~37!. These two formulas are the main results
this paper.

The paper is organized as follows. In Sec. II the probl
is formulated, and the basic kinetic equation to be solved
written. In Sec. III the method used to solve it is describe
In Sec. IV the first two moment equations of the kine
equation are deduced, and are then solved in Sec. V to y
the required Ohm’s law. In Sec. VI this Ohm’s law is used
obtain a relationship between loop voltage and plasma
rent in RFP plasmas. Finally, conclusions are drawn in S
VII.

II. FORMULATION OF THE PROBLEM

We shall consider a plasma in cylindrical geometry, f
which the only not ignorable coordinate is the radial on
The symbolsa andR denote the minor and major radii of th
machine. The plasma has on-axis electron temperatureT0
and on-axis electron densityn0. The ion population, de-
scribed by an effective chargeZ, is supposed to have tem
perature and density equal to the electron ones throug
the plasma. The on-axis magnetic field is denoted byB0.

Some useful derived quantities are the on-axis elect
thermal velocity

v05AT0 /m, ~1!
957 © 1997 The American Physical Society
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958 56E. MARTINES AND F. VALLONE
wherem is the electron mass, and the on-axis collision tim

tc5~4pe0!
2

m2v0
3

4pe4n0lnL
, ~2!

wheree is the elementary charge and lnL the Coulomb loga-
rithm. Finally, the on-axis critical electric field for runawa
generation is@9#

Ec5
4pe3n0lnL

mv0
2

1

~4pe0!
2 . ~3!

In the rest of the paper, unless explicitly indicated, te
peratures and densities will be normalized toT0 and n0,
magnetic fields toB0, velocities tov0, time to tc , and the
radial coordinater is intended normalized toa. Distribution
functions are normalized ton0 /v0

3.
The starting point to attack the problem is the KDT equ

tion @4#, a drift kinetic equation for the electron distributio
function which considers the effects due to the applied e
tric field, to collisions, and to diffusion caused by the ma
netic field stochasticity~hereafter called for simplicity sto
chastic diffusion!. The distribution functionf depends on
r , on the parallel velocityv i , and on the perpendicular ve
locity v' .

The KDT equation assumes, in stationary conditions,
general form

E~ f !5Cei~ f !1Cee~ f !1D~ f !, ~4!

where the Ohmic termE( f ) represents the toroidally applie
electric field effect,Cei( f ) is the electron-ion collision term
Cee( f ) is the electron-electron collision term, andD( f ) is
the term describing stochastic diffusion. It is worth noti
that, without this last term, the solution of Eq.~4! obeys the
classical Ohm’s law with Spitzer conductivity.

The Ohmic term is given by

E~ f !52Ei
] f

]v i
, ~5!

whereEi(r ) is the magnetic field aligned component of t
applied electric field, normalized toEc .

The stochastic diffusion term has the form@10#

D~ f !5
uv iu
r
L~rDMLf !, ~6!

whereDM(r ) is the magnetic field line diffusion coefficien
normalized toa2/(v0tc); the operatorL is

L5
]

]r
2
EA

v i

]

]v i
, ~7!

whereEA(r ) is the radial ambipolar electric field, normalize
to ae/T0.

The electron-ion collision term, restricted to pitch-ang
scattering, is given by@11#

Cei~ f !5
nZ

2v3sinu
]

]uS sinu ] f

]u D , ~8!
e

-

-

c-
-

e

where the alternative coordinate system (v,u) for the veloc-
ity space has been introduced. The electron-electron collis
term is not specified, because it is not necessary for the
of the paper.

III. RESOLUTION METHOD

Equation ~4! is a three dimensional partial differentia
equation, which can be solved numerically with a consid
able computational effort@7# or through simplifying hypoth-
eses, as, for example, in@4#. In this paper the aim is to obtain
an analytical expression for Ohm’s law in a RFP, and the
fore we adopt the approach of deriving the moment eq
tions of Eq.~4! and solving them assuming a suitable dist
bution function.

The assumed distribution function is a Maxwellian with
drift parallel to the magnetic field and with equal parallel a
perpendicular temperatures, that is,

f ~v i ,v' ,r ;u!5
n

~2pT!3/2
expS 2

~v i2u!21v'
2

2T D , ~9!

where u is the drift velocity. The parallel current densit
associated to this distribution function, normalized
en0v0, is j i52nu. Expression~9! will be simplified with
the further assumption thatu!1 ~verified in practical situa-
tions!, which gives

f. f 0S 12
uv i

T D , ~10!

where f 05 f (v i ,v' ,r ;0) is the nondrifting Maxwellian.
Assuming givenn(r ) and T(r ) profiles, the only un-

knowns of the problem areu(r ) and the ambipolar field
EA(r ), which is nota priori known. To determine these tw
quantities we have used the first two moments of Eq.~4!,
obtained multiplying the equation respectively by 1 and
v i and integrating over the velocity space. The two ensu
equations are two ordinary differential equations in the u
knownsEA(r ) andu(r ).

In principle, one could think to extend the method to t
second order, keepingT(r ) as a further unknown, thus gain
ing information not only about momentum transport but a
about energy transport~assuming electrostatic contribution
to be negligible!. However, such an approach would not ta
into account effects such as the anomalous ion heat
which is known to be important in RFP plasmas@2#. There-
fore we have chosen to imposeT(r ) and to concentrate on
the momentum balance.

IV. MOMENT EQUATIONS

In this section the first two moment equations of Eq.~4!
are evaluated, without making any hypothesis about the
tribution function, except that it goes to zero fast enou
when the parallel and perpendicular velocities go to infini

The zero order moment ofE( f ) is zero, and so are thos
of the collision terms, since electric field acceleration a
collision processes both conserve particle number and do
yield radial transport. The only nonzero contribution ste
from the stochastic diffusion term, yielding the equation
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56 959OHM’S LAW FOR PLASMAS IN REVERSED FIELD . . .
1

r

d

dr
~rGn!5Sn . ~11!

Here the particle flux is given by

Gn52E DMuv iuLf d3v ~12!

and the source term is

Sn5EAE uv iu
v i

]

]v i
~DMLf !d3v. ~13!

As already pointed out in@10#, the stochastic diffusion
term ~6! is obtained in the non-collisional regime, and
therefore not correct for low-energy electrons. This is
reason for the appearance of the spurious source term~13!.
This term vanishes under the assumption thatDM dpepends
on v i and goes to zero asv i→0. As indicated by the author
of Ref. @10#, such dependence stems out if the derivation
the stochastic diffusion term is carried out including in t
equation a Krook collision term. In such a case, the form
Eq. ~6! remains unchanged, provided that

DM5DM
0 1

11L/l
. ~14!

In this equationDM
0 is the magnetic field line diffusion co

efficient according to the usual definition,L is the magnetic
fluctuations’ longitudinal autocorrelation length, andl is the
particles’ mean free path. Considering the dependencel
on n andv i , Eq. ~14! can be rewritten as

DM5DM
0

v i
4

v i
41a0n

~15!

having introduced the on-axis collision parame
a05L/v0tc .

As a consequence of Eq.~15!, the zero order momen
equation reduces toGn50. Plugging the assumed distribu
tion function into this expression leads to

2DM
0 S n8

n
2
T8

2T
1
EA

T D I 51DM
0 T8

T2
I 750, ~16!

where the prime indicates differentiation with respect tor
and the family of integralsI k has been defined as

I k5E
0

` v i
k

v i
41a0n

f 0d
3v. ~17!

Equation ~16! does not containu(r ) and can therefore be
used to evaluateEA(r ).

A similar procedure for the first order moment gives t
equation

1

r

d

dr
~rGu!5Su2Ein1

nuZ

3A2pT3/2
, ~18!

with
e

f

f

r

Gu52E DMv iuv iuLf d3v, ~19!

Su5EAE uv iu
]

]v i
~DMLf !d3v. ~20!

The electron-electron collision term does not contribute
Eq. ~18!, since momentum is conserved in like particle
collisions.

V. OHM’S LAW

Once the equation forEA has been solved, Eq.~18! gives
u(r ). To do this, one must first solve the integrals~17!. Al-
though this can be done exactly, the resulting solutions
too complex. Therefore we have adopted the simplifying h
pothesis thata0n/4T

2!1. This indicates a low collisionality
regime throughout the plasma. The resulting expressions
the integrals are

I 352EiS 2Aa0n

4T2D n

2A2pT
, ~21!

I 55nA T

2p
, ~22!

I 75nA2

p
T3/2, ~23!

I 954nA2

p
T5/2. ~24!

With these solutions, the expression for the ambipo
electric field resulting from the zero order moment equat
is the same as that obtained in paper@10# that is,

EA

T
52

n8

n
2
T8

2T
. ~25!

The insertion of this solution into Eq.~18! leads to a
second order differential equation foru(r ). In order to solve
it, we shall now make the hypotheses of uniform density a
temperature profiles. The first one is in agreement with
perimental results from the RFX experiment@12#, and should
be valid in large experiments as long as plasma refuelin
due to neutral influx from the wall. The second one has b
inspired by measurements of the edge superthermal elec
distribution function made on the MST and TPE-1RM20 e
periments with electrostatic energy analyzers~EEAs!, which
are well fitted assuming a drifting Maxwellian with temper
ture comparable to the on-axis electron temperature@13,14#.

The hypotheses made lead to the equation

u9~r !1
1

r
u8~r !2

Z

12DM
0 u~r !5Ap

2

Ei~r !

2DM
0 , ~26!

which in the limit of zero diffusion reduces to the Spitze
like Ohm’s law
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960 56E. MARTINES AND F. VALLONE
u0~r !52
6

Z
Ap

2
Ei~r !. ~27!

It is worth noting that the conductivity given by Eq.~27! is
equal to that calculated with 2D Fokker-Planck codes@11#
for the caseZ51 and differs slightly from it asZ increases
~25% discrepancy forZ55).

In order to obtain from Eq.~26! an explicit relationship
betweenu ~which is equal to2 j i , since we have assume
n51) andEi, a model for the magnetic field profiles has
be assumed, although in principle Eq.~26! could be solved
numerically self-consistently with Ampere’s law to calcula
such profiles. The model adopted here is the polynom
function model~PFM! @15#, which gives the magnetic field
componentsBz(r ) andBu(r ) in terms of the single param
eter u0. Since the parallel electric field is still a nonline
function of Bz and Bu , an approximate expression of th
form

Ei5E0~11Ar21Br41Cr6! ~28!

has been adopted, withA51.78u021.63u0
2, B521.13u0,

and C50.94u0. This expression reproduces very well th
exact one for allr and all values of the pinch paramet
Q,2 @Q5Bu(a)/^Bz&#.

The boundary conditions chosen for Eq.~26! are
u8(0)50 andu8(1)50. The first one is dictated by symme
try considerations and the second one is in analogy to R
@4#. The resulting solution is

u~r !5u0~r !1aI 0~Axr !2Ap

2

6E0

Z F4Ax 1
B

x2 ~64116xr 2!

1
C

x3 ~23041576xr 2136x2r 4!G , ~29!

whereI 0 is the zero order modified Bessel function and t
parameterx5Z/12DM

0 has been introduced. The integratio
constanta is given by

a5Ap

2

12E0

ZAxI 1~Ax!
SA12B13C1

16B172C

x
1
576C

x2 D .
~30!

FIG. 1. Parallel current density predicted for RFX by the Ohm
law deduced in this paper, superposed to the Spitzer profile.
al

f.

Relationship~29! is Ohm’s law for the RFP. An example
of the current density profile given by it is shown in Fig.
together with the Spitzer one. This figure is obtained with
plasma parameters listed in Table I, which are representa
of a typical 600 kA discharge in the RFX experiment. T
parallel current density profile given by Eq.~29! does not
change sign in the outer region, and thus is able to sustain
configuration. The on-axis current density is 10% less th
the Spitzer value, while at the edge a current density of 2
kA/m2 is found, consistent with measurements made in
edge of RFX with an EEA@16#.

VI. RELATIONSHIP BETWEEN LOOP VOLTAGE AND
PLASMA CURRENT

Projecting Eq.~29! in thez direction and integrating ove
the plasma cross section, the plasma current, normalize
en0v0a

2, is obtained as

I p5I cl1I an, ~31!

whereI cl is the contribution due to the Spitzer part of Ohm
law, andI an is the rest. The classical current is given by

I cl5Ap

2

6E0

Z
P0~u0!, ~32!

where

P0~u0!5
1

2
1
A

2
1
A212B

6
1
BC

6
1
C2

14
1
AB1C

4

1
B212AC

10
. ~33!

The anomalous part is

I an5Ap

2

6E0

Z S 2P1~x,u0!1P2~x,u0!
I 0~Ax!

x11/2I 1~Ax!
D ,
~34!

having defined the two functions

TABLE I. Typical plasma parameters for a 600 kA discharge
the RFX experiment.

R 2 m n0 331019 m23

a 0.457 m DM
0 1024 m

Vloop 30 V u0 1.45
T0 275 eV Z 2
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P1~x,u0!5
A218AB/312B213AC124BC/513C2

x
1
8A2164AB1256B2/31144AC1336BC11512C2/5)

x2

1
32~8AB124B2172AC1216BC1297C2!

x3 1
1024~2B219AC154BC1135C2!

x4

1
36864C~4B127C!

x5 1
2654208C2

x6 , ~35!

P2~x,u0!54~576C116Bx172Cx1Ax212Bx213Cx2!2. ~36!

Inverting the relationship betweenI p andE0 one finds the required dependence of the loop voltageVloop on the plasma
current, which is now given for convenience of use inSyste`me International~SI! units:

Vloop5RclI pF~u0 ,x!, ~37!

with the classical resistance

Rcl5
T0
3/2a2~4pe0!

2

4A2pmZe2RlnL

1

P0~u0!
~38!

and

F~u0 ,x!5
P0~u0!

P0~u0!2P1~x,u0!1P2~x,u0!I 0~Ax!/@x11/2I 1~Ax!#
. ~39!
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The adimensional parameterx is expressed in SI units as

x5
pZe4n0a

2lnL

3DM
0 T0

2~4pe0!
2 . ~40!

Equation~37! shows that magnetic diffusion introduces
the classical Ohm’s law a multiplicative anomaly factorF
which depends on the magnetic field lines’ diffusion coe
cient throughx, and tends to 1 asDM

0 goes to zero.
Figure 2 shows the dependence of the loop voltage on

plasma density given by Eq.~37! in 600 kA RFX discharges
for different values of the magnetic field lines’ diffusion c
efficientDM

0 . These curves were obtained assuming a po
law dependence of the electron temperature on plasma
sity, with coefficients deduced from experimental data.
the same graph experimental values of the loop voltage
plotted as solid points, each point representing an ave
over many shots, with error bars showing standard de
tions. Taking the lower ends of the error bars as an indica
of the best performance achievable for each density, th
values show a good agreement with the model
DM
0 5531024 m. The point at the higher end of the dens

range tends to be higher, probably due to the effect of ra
tion losses.

The value required forDM
0 yields an average radial mag

netic field fluctuation levelbr /B.3%, according to the
usual quasilinear relationship

DM
0 5LS brB D 2, ~41!
-

e

er
n-
n
re
ge
a-
n
se
r

a-

with L5a. This apparently high value can be justified co
sidering the effect of locked modes, which are present in
RFX discharges, forming a strong localized magnetic per
bation @17#. A local estimate ofDM

0 obtained from energy
flux measurements taken away from the perturbation gi
values one order of magnitude lower@18#. If this is represen-
tative of the value attainable on the whole torus upon
moval of the localized perturbation, the model predicts t
such removal could lead to a reduction of the loop voltage
the order of 5 V.

FIG. 2. Loop voltage plotted against plasma density for 600
discharges on the RFX experiment. Lines correspond to predict
given by the model for different values of the magnetic field li
diffusion coefficientDM

0 : from bottom to topDM
0 50, 1025 m,

531025 m, 1024 m, 231024 m, 531024 m, 1023 m. Circles
represent experimental values of the loop voltage: each circle i
average over many shots, with error bars indicating standard de
tions.



e-
ex
no
re
io
in
on
de
be
fo
ns

ap-
is
rive

rent
tly
eri-
f-

n-
c-

962 56E. MARTINES AND F. VALLONE
VII. CONCLUSIONS

In the framework of KDT an Ohm’s law has been d
duced for plasmas in RFP configuration. The resulting
pression gives parallel current density profiles which do
change sign in the outer region, and are therefore in ag
ment with the observed sustainment of the configurat
against resistive diffusion and with observations concern
superthermal electrons. Even without making assumpti
about the magnetic field profiles, the current density is
scribed by an ordinary differential equation which can
coupled to Ampere’s law to give a self-consistent model
the magnetic field. The Ohm’s law could find applicatio
f
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ri-
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t
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n
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r

wherever a simple analytical relationship between the
plied electric field and the resulting current density
needed, for example, in studies about poloidal current d
and related wave propagation@19#.

The relationship between loop voltage and plasma cur
which stems from this work has been shown to correc
reproduce a set of experimental results from the RFX exp
ment for a value of the magnetic field lines’ diffusion coe
ficient of the order of 531024 m, which can be justified
taking into account the effect of locked modes. The relatio
ship could find an application for scaling studies in conjun
tion with suitable scaling laws for the poloidalb and for the
magnetic fluctuation level.
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