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The kinetics of an initially undercooled solid-liquid melt is studied by means of a generalized phase field
model, which describes the dynamics of an ordering nonconserved#igdy., solid-liquid order paramejer
coupled to a conserved field.g., thermal fielg After obtaining the rules governing the evolution process, by
means of analytical arguments, we present a discussion of the asymptotic time-dependent solutions. The full
solutions of the exact self-consistent equations for the model are also obtained and compared with computer
simulation results. In addition, in order to check the validity of the present model we compare its predictions
with those of the standard phase field model and found reasonable agreement. Interestingly, we find that the
system relaxes towards a mixed phase, depending on the average value of the conserved field, i.e., on the initial
condition. Such a phase is characterized by large fluctuations af teld. [S1063-651X97)05505-0

PACS numbefs): 64.60.Cn, 64.60.My, 64.60.Ak

INTRODUCTION ond is a temperature shift field subject to a diffusion equation
supplemented by a source term. The model can be cast in the
In the past few years considerable effort has been devotefdrm of coupled partial differential equations for a noncon-
to the study of systems far from equilibriurh]. Well-known  served order parameter interacting with a time-dependent
examples are provided by phase separating systems, initiallyonserved field. Its dynamics is very rich since it displays
prepared in a state of equilibrium, and rendered unstable bfeatures characterizing both the pukeand the puré8 mod-
modifying a control parameter such as temperature, pressurels as it is revealed from the analysis of the structure func-
or magnetic field. To restore stability they evolve towards ations at different times. In other words, after a rapid initial
different equilibrium state determined by the final value ofevolution one observes an intermediate stage in which the
the controlling fields. Such evolution can be very slow and isgrowth is curvature driven and an asymptotic regime during
often characterized by nonuniform, complex structures inwhich diffusion-limited behavior is seen.
both space and time. The PFM, introduced and physically motivated by Langer
Two simple dynamical models, often called mode[2] [6] provides a theoretical framework for many natural pro-
and modelB [3], have been introduced in the literature in cesses. It is designed to treat situations where the relaxation
order to understand kinetic ordering phenomésee also dynamics of the order parameter associated with the presence
[4,5]). Model A describes the growth process, when the ordenf a liquid or a solid is coupled to the diffusion of heat
parameter is nonconserved, whereas m@led appropriate released during the change of state.
if the order parameter is conserved. In the first case, the late An example is the growth of a solid nucleus from its
stage growth is driven by the tendency of the system to miniundercooled melt, a phenomenon encountered in rapidly so-
mize the energy cost due to the presence of interfaces bédifying materials, such as metals, where the growth is lim-
tween regions separating different phases. Thus, as the cuted by the rate of transport of the heat of fusion away from
vature decreases the process slows down and the domain sibe solid-liquid boundary7]. As the heat released by the
L(t) grows in time according to the la(t)~t*2 In the  solid accumulates at the interface, it slows down the growth
conserved case, the approach to equilibrium is limited by théecause diffusion must act over a thicker and thicker region.
diffusion of the aggregating material, as larger domains cafThis mechanism has implications also in the morphology of
grow only at the expense of smaller ones. The average sizée growing phases and is responsible for the instability of a
L(t) increases proportionally t6'?, where the dynamical planar solid-liquid interface with respect to a perturbation of
exponentz is 3 for scalar order parameters and 4 for vectorits shape; one realizes immediately that a protrusion of the
order parameters. solid phase into the liquid advances faster than its neighbor-
Another model, known as the phase field mod@#M), is  ing regions because it explores a region where the undercool-
somehow intermediate betwednandB and consists of two ing is greater, so its growth becomes faster. The solid-liquid
fields coupled bilinearly: one field represents a nonconservegurface tension eventually provides the necessary balance
ordering parameter, with typ&-dynamics, whereas the sec- and prevents the interface from being eroded by fluctuations
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of very short wavelengthg,9]. uid phase andpg in the solid phase. One then employs a
Another very closely related problem is the growth of thefield-theoretic free-energy functional of the form

solid phase in multicomponent solutions, where one of the

components is to be diffused away from the interface in or-

der to form a stable cryst@f]. In the present paper, we shall Flo]= ef dx
confine the discussion to the thermal case for the sake of

clarity and investigate the kinetic ordering of a spherical Ver'wheref(g&) is a function of the order parameter with the
sion of the phase field model. This study extends our previ- : .
ous investigation§10—12 to include a nonvanishing order prf'f;”y of having two minima of equal depth &= ¢, and
parameter. In our opinion it can be useful because it provideg_ S

the few models whose static properties can be obtained ex- The constant has dimensions of energy over volume and
prop Is for the moment arbitrary. The gradient term represents the

%(:rtlélzalr? S;bggyzde'?ﬁ,ﬂs'rgg?lgg;ﬁ%W,qufnfﬁxaaﬁgnti ZT:\:]' nergy cost necessary to create an inhomogeneity in the sys-
Y g y y em and the quantity has the dimension of length and is

n.umgncal methqu. We note that in the f'el.d of Orderlngassomated with the scale over which an inhomogeneity in the
kinetics there exist only a few models for which the relax- : o :

. ; ; . ; ._system vanishes. Upon minimizirig[ ¢] with respect tog
ation can be studied without performing extensive NUMETICA hd selecting the nonuniform localized solution of the varia
calculations. In particular the late-stage behavior of pro-. 9 . .

. S tional Euler-Lagrange equation corresponding to the lowest
cesses with conserved dynamics is hardly observable nu-

merically due to computer limitationgl2,13. Besides the value of the Gibbs free energy one obtains the surface ten-

examples cited above, this study may be of some help isiono of the model, which is proportional to the correlation

treating analytically some models introduced recently WithIength
'Ehe] aim of describing irreversible aggregation phenomena o~ €t )
14].

In the present paper we generalize the model, introducegind thus to the interface thickness. The numerical coefficient
previously by two of ug10,11], to the case of off-critical s of order 1 and will be ignored because it does not influ-
guenches, e.g., to initial conditions corresponding to nonvagnce our discussion.
niShing values of the fields. The structure of the paper is the In order to include undercoo”ng or overheating effectsi

following. In order to make the paper self-contained we havg e, a temperature different froffy,, we introduce a dimen-
included two sectiongél and Il) where we recall some basic sjonless field

notions, which lead to the thermodynamic derivation of the

phase field mode[6,15—17 and the construction of the Cp

Lyapunov functional, from which the coupled equations of u) =1 [TX)=Tw] 3
motion of the PFM can be derived. In Sec. Il we state the

spherical phase field model and write explicitly the closed seproportional to the local temperature sHift(x) — Ty ]. The

of equations, which we discuss qualitatively in Sec. IV. Inconstants, andL are, respectively, the specific heat at con-
Sec. V comparisons with numerical simulationsdr2 at  stant pressure and the latent heat of fusion per unit volume.
zero temperature are illustrated. The predictions of therhe |ocal fieldu acts as an external field, conjugate to the
spherical model are compared with those of a more realisti@rysta"me order parametep, favoring the solid phase for
scalar order parameter phase field model and the similaritieg< o and the liquid phase far>0. Foru=0 the two phases
and differences are stressed in the Conclusion. coexist.

As usually done for a first-order phase transition, metasta-
bility is taken into account by eliminating in favor of u via
a Legendre transform. One then introduces the Gibbs poten-

Let us consider a material that under suitable conditiongial
of pressure and temperature can exist in two distinct thermo-
dynamic phases: a liquid and a solid. If the pressure is held _ _ d
constant at the value corresponding to solid-liquid equilib- Clul=Fl4] )\Ef X ux) (), @
rium and the temperatufk is varied one can favor the solid ) )
phase forT<T,, or the liquid phase fof >T,,, whereT,,  Where¢=¢[u] is obtained from
is the melting temperature at which the equilibrium first- SF[ ]
order transition takes place. One usually calls an undercooled —— = —)\eu(x) (5)
melt a material brought below its melting temperature, but o(X)
still in the liquid phase. ) ) ) .

We shall consider the situatioh<T,,, which is experi- andX is a nondimensional parameter. A convenient way to
mentally and technologically more interesting. Beldyy the ~ r€laté to the known thermodynamic parameters is to con-
value of the thermodynamic Gibbs potential of the soligsider the entrppy_ difference between the pure uniform solid
phase is lower than that of the liquid phase, which is only{¢= ®s) and liquid (¥=¢,) phases at the melting tempera-
metastable. A convenient way of studying the solidificationtUré- This is related to the latent heat by the relation
process is to adopt a phenomenological Ginzburg-Landau LV
description by introducing a suitable crystalline order param- S—S=—, (6)
eter ¢, which assumes the conventional vakigin the lig- T

52
E(V¢)2+f(¢)} (1)
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whereS, andS; are the entropies of the liquid phase and ofthe approach to equilibrium is described by
the solid phase, respectively, amis the volume of the

. : . ap(x,1) 5
system. By using the thermodynamic relation e -
' y g y n X, G[ ¢,u]
G
—<==-S (7 =—Ty[—&V?p+1'(#)—u], (15
) i . where the last equality is obtained using E4). If the field
Eq. (3), and the expressiof) for uniform fields, we get u varies on time scales much longer than those dtfcan be
LV G G c considered “quenched” and E@15) would be the standard
i + Fid =\eV(¢p— qﬁs)rp, (8) nonconserved TDGL equation, or modkel
M #. Ty b5 Ty In the phase field model and in the absence of external

sourcesu(x,t) is assumed to evolve on time scales of the

from which we obtain same order of magnitude as thosegptowards a homoge-

L2 neous configuration. The time evolutionwis now coupled
A= m © o that of ¢ and cannot be neglected anymore. In fact, when
a piece of material solidifies it expels some heat and the
whereA¢= ¢ — ¢s. surrounding liquid melt warms up, causing the average tem-

Next consider a solid spherical drop of radiBs-¢ im-  perature to increase. When a region of solid melts in turn it
mersed in an undercooled meli<{0). The Gibbs potential adsorbs some heat and the liquid becomes colder.

G with the drop is[see Eq.(4)] As a consequence, E6L5) has to be supplemented with
- an equation fou. The thermal fieldu(x,t) is subject to the
G=GO+)\eu?R3A¢+4sza, (100  Fourier equation of diffusion of heat plus an additional

source term that represents the latent heat of solidification,
where the first term is the Gibbs potenti@l without the —accompanying the appearance of the solid phase.

droplet, the second term is the gain in replacing the liquid The energy balance requires that the latent heat released
with a solid in the droplet, and the third term is the cost inat the transition equates the temperature change of the melt
creating a surface separating the liquid and solid phases. Iultiplied by the specific heat, i.e.,

equilibrium no energy is needed to create the dropleG $®

stationary with respect to variation dR. By imposing &U(X’t):szu(X't)_iM' (16)
8G=0 we readily obtain the critical nucleation radiRg, ot Agp  at
do whereD is the thermal diffusivity and the last term on the

right-hand side is the amount of material that crystallizes per
unit time and is thus proportional to the heat released during
where the first-order transitioi6]. The coefficientA ¢ guarantees
5 the correct energy balance. Notice that the last term repre-
do:_g (12)  sents a source of heat whewp(x,t)/dt is negative, ie.,
Agre when the system solidifies, or a sink when it melts, for posi-
tive d¢p(x,t)/adt. In other words, since we are considering a
closed system the total amount of solid produced is propor-
tional to the change of the average temperature of the sys-
20C,Ty tem.
dO:T' (13 The two dynamical equationd5) and (16) can be ob-
tained from a unique Lyapunov function&l, which plays
Finally, from Egs.(9) and(12) it follows that we can write the role of the time-dependent Ginzburg-Landau potential in
the dimensionless parameteras the ratio two length the present problem. In order to establish the forn¥ofve
perform the transformation

m;

is a capillarity length, which, using the expressiomofEqg.
(9), can be written as

A= E 14
do 9
U=u+ A_ (17)
where we have defined £=(2/A ¢) o [cf. Eq.(2)]. We see ¢
ﬂ;]at A |shsmarlll prow_ﬁled tlhe |T1terfa<:|al thickness is much g eliminateu in favor of the new fieldU. One can then
shorter than the capillary length. write Eqs.(15) and (16) as
Il. PHASE FIELD MODEL dP(X,1) oF (18
=Ty |
In this section we shall introduce relaxational dynamics at Sh(X.0) |
into the model. A large body of work in the area of dynamic
phase transitions has focused on the time-dependent JU(x,1) _ , OF (19)
Ginzburg-LandauTDGL) model because of its ability to at SU(x,t) ¢’

describe a variety of problems. In equilibrium the field
¢(x) minimizes the Gibbs potenti@. Thus we assume that with the Lyapunov functiona13,12]



80 MARCONI, CRISANTI, AND IORI 56

AN ¢ \? $* ¢
—(V¢)2+f(¢)+—(U—g) } f(¢)=-g (——7)- (29)
(20

f[th]:fdd

which is even and has two equal minimadat ¢,=—1 and

Note that the dynamics df} is conserved. When the tem- ¢=¢,=1, so thatA¢p=2. The parameterg gives the
perature field vanishes, i.&J,= ¢/A ¢, the functional7 has  strength of the local constraint. In the limit of a large positive
two equivalent minima, corresponding to two spatially uni-value of g the field ¢ can take only the valueg and ¢,
form solutions: the uniform solid and liquid phases. In gen-(Ising-like variables
eral, Eqs(18)—(20) generate a complex dynamical behavior The phase field model described by E(s3)—(20) con-
that has been the object of some studies. tains all the relevant ingredients necessary to describe the

In the long-time limit we may expect that while be-  phase separation occurring in solid forming melts. However,
comes homogeneous, the crystalline figldoughly assumes due to the local nonlinear terms contained in the function
only the two valuesp, and ¢;. If this is the case, from the f(¢) the solution of the dynamical equatiofs8)—(20) are
knowledge ofU andu we can compute the fraction of vol- far too difficult and are known only for some special situa-
ume occupied by the two phases. Indeed, we can writéions. In the general case the known results follow from di-

d=xshst X ¢, Wherexg andx, are the fractions of volume Mmensional arguments.
occupied by the solid and liquid phases, respectively, and the To overcome this difficulty, an alternative strategy is to
overbar denotes spatial average. From @d) and the con- modify the model into a simpler one, yet maintain the gen-
dition xg+x,=1, we get eral properties. This can be achieved by replacing the local
quartic term in Eq(24):
x|=—$+u—u_, sti—u-i-u (21

Ad Ad (25)

1 2
f 4% B(x)*— f d'x (x)2
whereu=u is the asymptotic value arld is the initial value
its dynamics being conserved. From this it follows that if the

asymptotic value ofl is zero, i.e., the system relaxes towardsume In the following we shall denote it asgtobally con-

a two-phase coexistence, the fraction of volume occupied by oinag modebr spherical modef18—20, in contrast to the
each phase is determined only by the initial valugJofWe  ,0del (18—(20) where the constraint is loci21,27.

also notice that when the system starts with an undercooling The price one pays for this change is the loss of sharp
u=—1 and an order parametsn(t=0)=1, i.e,, U, the la- interfaces between two coexisting phases. Abraham and
tent heat produced is just enough to heat the meIt at the fin®obert [23] showed several years ago that the spherical
equilibrium temperature=0. In such a case the final vol- model in a zero external field displays two ordered phases
ume fraction of the solid is simplys=1/2—U and attains its  below the critical temperature, but no phase separation.

This kind of constraint is much softer than Eg4) since it
does not act on each site, but globally over the whole vol-

maximum forU = —1/2. o Equivalently, one can say that a planar interface between two
The functional 7 decreases with time, as can be showncoexisting phases is unstable due to the presence of long-
using Eqs(18) and (19): wavelength excitations analogous to spin waves, an instabil-

ity much stronger than the one due to the presence of capil-
dF q lary waves in the scalar order parameter dasg25. As a
E:J dx consequence, while this choice is very convenient for ana-
Iytic calculations, it changes the structures of the nonuniform
SF \? VSF \? solutions in the static limit. Nevertheless, in spite of this fact,
Ly m SU(X,t) = the model has a rich phenomenology, as we shall see below,
and the approach to equilibrium remains highly nontrivial.
(22) From Egs.(20), (24), and (25) the potential F for the

- J ddx
spherical model reads
So far we have discussed purely deterministic evolution of

SF  ag(xt)  SF  au(x.b)
Se(x) ot sun ot

the order parameter and of the thermal field. Noises can be
added to both equations to represent the effect of short- F ¢, U]= fdd —(V¢)2 P>+ AU?
wavelength fluctuations; in this case Eg2) does not hold.
9(( 0 42|
Ill. SPHERICAL PHASE FIELD MODEL —AUS I+ _V( f d ¢ ) ' (26)
The choice of the local functiofi(¢) is somehow arbi- which, substituted into
trary, as long as the general property
lim f + 23 aabll) UT+ n(x,t 2
= e} _— = — R
¢lmm (é) (23) pn ¢5¢(X,t)f[¢, I+n(xt), (@27

and two equal minima fowb= ¢5 and ¢= ¢, are satisfied. JU(X,1) —DV2 S F b UT+Ex,1), (28)

An often used form foif () is ot SU(x,t)
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determines the time evolution of the fieldsandU [26]. We M gg(k,t)= =T 4 E2k*+r+gm?(t) +gS(t)],

added to the evolution equations a noise term to simulate the

effect of short-wavelength fluctuations. The two fielgdsind Myu(K D) =T 4N, Mygk,t)= DAK?,

¢ are independent Gaussian fields with zero mean and two-

point correlations: Myu(k,t)=—2DNK?. (39

(p(x,t)p(x",t"))y=2T; ', 8(x=x")8(t—t"), (29 wherer=—g+A/2 and, in the limitV—c, the quantity
S(t) is the integratedp-structure function
(E(X,DEX",1))=—2T; D V28(x—x") 8(t—t"),

(30 sit1=y | a%(g0c080c,0) - o)
(n(x,1)&(x",t"))=0, (31
where T; is the temperature of the final equilibrium state, :Ek (¢(k,t) ¢(—k,))c (40)

whereasD andI, are the kinetic coefficients appearing in
Egs.(27) and (298). andm(t)=(¢).

It is useful to separate the spatially uniform component of As a consequence, we have
fields ¢ andU. Thus introducing the Fourier component of

the fields we have ar;—it)=M¢,(,,(O,t)m(t)+M(,,U(O,t)Q(t), 1)
— ik-x
p00=20 (k) e, (k) 200
— =0 (42
- d —ik-x
=(1V) f dx $(x) e 32 expressing the conserved nature of the fidldand
and 19
25 Corop(K)=M ,4(K,1)Cyy(K,t) + M 4y (k, 1) Cpy(k,t)
d(k,t)=m(t) S o+ Sp(K 1), (33
+T,Ts, (43
U(k,t)=0Q(t) oo+ sU(K,1), (39

J
where _both 8¢ and_6U are zero for k=|k|=0, = Cyu(kt)=Myy(k)Cyy(k,) +[Myy(k,t)
m(t) = ¢(t), andQ(t)=U(t).

To study the behavior at finite temperature it is also +M 4o(KD1C 4u(k, 1) + M 4u(k, 1) Cyy(k,t),
useful to introduce the equations of motion for the three (44)
equal-time real-space connected correlation func-
tionS C¢¢(r,t)=<¢(R+I’,t)qS(R,t))c, C¢U(r,t):<¢(R 1
+r,t)U(R,t))., and Cyy(r,t)=(U(R+r,t)U(R,t))., 27 Cuu(k, ) =My 4k, 1) Cyu(k,t) + Myy(k,t)Cyy(k,t)
whose Fourier transforms are the structure functions. The
average( ) is over the external noises and ¢ and initial +DTK% (45)
conditions.

Due to the special form of the nonlinear term in the equa- We note that a closure at the same level would have been
tion of motion, the set of evolution equations for the aver-obtained in the framework of a Hartree approximation for the
agesm(t),U(t) and the correlation functions is closed. In- model with local constraint described by E¢$8) and (19).

deed, in the Fourier space these read However, within the present model Eq41)—(45) are exact
k) and not the result of an approximate decoupling of the cor-
J 't i
<l'>07t SE 00+ k), (35) relations.
IV. LONG-TIME BEHAVIOR
dU(k,1) ) ) ) ) _
Fram Fu(k)+&(k,t), (36 In this section we shall discuss the behavior of the spheri-

cal phase field model for long times, i.¢->>. The results
will be compared with those of direct numerical simulation
in Sec. V.
We assume that at the initial time we have an undercooled
liquid with some_supercritical solid seeds. This means that
Fa(K)=M 44kt (K, ) +M4y(k,HU(K 1), (37) u<0, while m= ¢ lies in the interval (0,1). For a generic
initial configuration, the undercooled liquid is not in equilib-
Fu(k)=Mygkt) é(k,t)+Myy(k,HU(k,t), (38 rium. Thus, at the initial stage the relaxation of the fiélds
only slightly modified by the dynamics of the slower field
where the matrix elements are given by U, which can be considered “almost quenched.” During this

whereF , , are the Fourier transforms of the first term on the
right-hand sides of Eq927) and (28). From Eq.(26) we
have



82 MARCONI, CRISANTI, AND IORI 56

stage the size of the solid seeds grows with time, while théor large enough values @i] Eq. (51) has a single solution,
maximum of the structure function is located ka0 and  positive foru>0 and negative fon<0. These correspond to
grows with time. If this regime is long enough, one cana liquid phase above the melting temperature, i.e., positive
recognize a typical nonconserved order parameter dynamica andu, and a solid phase below the melting temperature,
domain growth proportional to*2, i.e., negativen andu. As |u] decreases two additional solu-

This kind of behavior persists until the typical size of the tions eventually appear. One of these is unstable while the
domains reaches that associated with the consdovéidld.  other represents a metastable spatially uniform state; i.e.,
At this time the dynamics of the two fields becomes stronglysolid above the melting temperatune>0) and liquid below
correlated and the conserved order parameter dynamithe melting temperatureuk0). These solutions, however,
eventually dominates. As a consequence, ¢héeld slows are unstable against fluctuations; indeed, the presence of
down, since the coupling with the conservddfield acts as  S(t), which vanishes only fot—c, prevents the dynamics
an additional constraint, while(t) becomes nearly constant from reaching these metastable states. Therefore, for any
and equal to the asymptotic value, i.e;~ ¢., . value ofu_the_physical solution of E(51) is the most nega-

The crossover tim¢, can be readily estimated from di- tive one foru<0 and the most positive one far>0. For
mensional arguments. An inspection of E¢®5) and (36)  smallu we havem=[1—2(\/g)u] sgru.
reveals that under a suitable transformation of parameters, in A more detailed analysis of the approach to equilibrium
which At—t, the dimensionless parametercan be traced can be done by employing a quasilinearization procedure,
out. i.e., we assume that the quanti®(t)=r-+gm(t)?+g(t)

This means that the crossover timeto the conserved can be treated as a constant, along different pieces of the
dynamics is also of order-1/\. It can be shown that the trajectory[10]. One can verifya posteriorithat the assump-
Langevin equation§35) and(36) obey detailed balandd 1]  tion is valid and leads to useful predictions. Since the behav-
and that the stationary probability density is ior at T;=0 is representative of the entire dynamics in the

L ordered phase wher<T,., we also sef;=0, without los-
ing relevant information.
PS,[¢>,U]ocexp< B T_f H¢’U])' (46 Assuming the quantityR(t) to be nearly constant, Egs.
(33) and(36) become a linear system whose solution has the
Using this we easily get the equilibriup¢ correlation  form
function, which reads
. p(k,t)=c (k) e+ e, (k) e~
f
($9)= i gsi gz’ 47 Uky=cj(k) e+ Mty (k) e ™, (52)

The appearance of an ordered phase, withO for tempera-  wherew . (k) andw_(k) are the eigenvalues of tHd ma-
turesT; below the critical temperaturg;, is revealed by the trix,

divergence of th&k=0 mode. This implies that the equilib-

rium (i.e., whent— ) value ofm must satisfy the equation 1
( ) b a w:(K)=3 {—T 4(£%K*+R)—2D\K?

r+gS+gm?—\/2=0. (48)
4 21,2 212 21,2
On the other hand, from the equation of moti@1) m must =VIT (£ +R)+2DNK*]+ 4T DAK?).
be the solution of (53
rm+gm>+gSm-AQ=0. (49 For timet>1 the dynamical behavior of the solution is de-
' . . termined by the larger eigenvalug, (k). For large values of
The simultaneous solution of Eq@l8) and (49) requires k? the eigenvaluev, (k) decreases as k?; thus, to discuss

the behavior of the solutions after the initial transient a
smallk expansion ofw, (k) is sufficient. The form of this
expansion depends on the signRfft). WhenR(t) is nega-
Stg/e the appropriate expansion ef, (k) is

m=2Q, (50)

which, via Eq.(17) together withA ¢ =2, impliesu=0. This
means that the system relaxes towards a nontrivial pha
coexistence state, with nonvanishing order parameter and di-

verging smallk fluctuations. w4 (K)=T 4R|—

One sees that the conditigB0) can be satisfied only for

—1/2<Q=1/2. I Q Ile_s outside this mt_erval the system Notice that in the regime where E(p4) is valid there is a
does not relax to a mixed phase, but instead settles in & mpetition between the curvature te £2, which repre-
spatially uniform state without zero modes. Indeed, in this P fé”, P

caseS(t) vanishes andn relaxes for long times to the value sents the driving force of the dynamics of the pure model
. 9 A, and the termD\?/|R| due to the coupling to the heat
given by|[cf. Eq. (41)]

diffusion. For R(t)>0, the representation E@54) breaks

2

r gZ—D)‘— k2 (54)
’ IR[]™

rm+gm*—AQ=—gm(1—m?) —\u=0. (51  down and one must instead consider the expansion
We note that Eq(51) is equivalent to saying that a spatially _ L _ 2 L4
uniform field ¢(x) is a stable minimum of the potentid. @+(k)=2Dx 2R 1)k eak?, (59
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wherec, is a positive coefficient. 15 :

Since the value oR(t) as well as its sign changes along
the trajectory, one must employ either E§4) or (55), de- !
pending on the stage of the growth process. On the othe
hand, this kind of analysis is not applicable in the crossove
region wherem(t) and S(t) vary too rapidly andR(t)~0, o
but this fact does not invalidate our findings. ~

All the relevant behaviors can be classified according tcg 05 -
the value of the conserved fie@. To this purpose one must
treat separately the cas€@s>0 andQ<0.

Let us consider first the cas®<0 and assume
m(t=0)~1, i.e., the system initially is formed by an under-

T

cooled liquid. In the initial stage the field$ and U are 2t

nearly uniform and characterized by small fluctuations. In

the evolution equation fom, U plays the role of a constant Ry 3 °

field of valueQ; hence m
om FIG. 1. Schematic behavior @fm/dt as a function ofm, from
— = Ly [ROMH—AQ] (56)  Eq.(56).

describes the relaxation af in a static fieldQ. During such ~Parametem. For small negative values afQ, m/dt nearly
a stage the system relaxes towards the nearest fixed point tHatiches the horizontal axis and the evolutiomobecomes
makes the right-hand side of E(6) vanish. Equating to  Very slow.

zerodm/dt we get the relation Let us now turn to th&>0 case. In this case, from Eq.
(57) it follows thatR(t) >0, so that the relevant expansion is
Q Eq. (58). In analogy with theQ<0 case, from Eq(58) we
R(t):)\a’ (57 conclude that ifQ>1/2, the phasen~1 is stable, and the

final state is pure, i.e., it is characterized by small spatial
which is negative fom>0 andQ<0, so that the relevant fluctuations.
expansion is Eq(54). Thus the liquid phase is unstable, as For smaller values 0@, i.e., 0<Q<1/2, the coefficient
can be seen from E@54); in fact, as long asn(t) remains  Of the term of ordek? of the eigenvaluev . is positive and
positive the system develops strong fluctuations about ththe peak ofC,4(k,t) is located at a finite wave vector. This
uniform modek=0. Such a regime lasts for a time of order causes an instability of the initial pure phase-1 and the
t.~ 1/\, after which the fluctuations eventually drive the sys-appearance of a mixed phase, characterized by a lower, but
tem towards negative values of the order parameter so as &ill positive, value ofm(t).
reduce the free-energy cost.

In the successive stage the system becomes prevalently V. NUMERICAL RESULTS

solid, which is signaled by the change of signrof Also
R changes sign, so the expansiofigl) becomes invalid.
However, for timed> 1/\, long after the transition, the evo-
lution of m slows down again, i.eqm/dt=0 andR>0, so
that Eq. (55) is appropriate. Using the resulb7), the rel-
evant form ofw , (k) is

In what follows we shall consider the zero-temperature
dynamics because it is known to be representative of the
subcritical behavior. We have compared the numerical re-
sults with the predictions of the preceding section and found
good agreement.

We have solved numerically the equations of moti85)

m and(36) in two dimensions by using a simple Euler second-
w+(k)=D)\(2——1)k2—C4k4. (58  order algorithm and a discretization of the integrals on an

Q N XN bidimensional lattice. We used periodic boundary con-
ditions. The parameters employed are

Such expression shows that whener#@Q<1, all modes

of finite wave vector are damped and one cannot observe =1, g=1/22, N=4A/€,

growing modes: the system relaxes towards a spatially uni-

form state. Iy=la, D=¢€/8A, (59

On the other hand, i/2Q>1 fluctuations are large up to
a finite wave vector, because the fastest growing mode iwith e=0.005, A=0.1, ande=10. The time step used is
located at a finit&k. This case corresponds to a phase that isA\t=2x10"° and a lattice spacéx=0.01. Different values
spatially nonuniform with large fluctuations. Asymptotically, of N were used; here we report the results for 256.
m=2Q and the peak positiok,, moves towards vanishing The system was initially prepared in a nonuniform initial
values ofk. This scenario is typical of the conserved orderstate formed by 70% of undercooled liquid and the remain-
parameter dynamics. Indeed, as done in Réf8,11], it can  ing 30% of seeds of solid randomly distributed. This ensures
be shown that in this regime the dynamics exhibits multiscalthat at the initial time the order parametaft=0) is posi-
ing [10]. tive and the correlations are small. As long as these two
In Fig. 1 we report the behavior @/ ét versus the order conditions are met, the results are not too sensitive to the
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FIG. 2. Typical behaviors of the order paramateas a function FIG. 3. Order parametem as a function of time for

of time for () Q>1/2, (b) 0<Q<1/2, (c) —1/2<Q<0, and Q=-0.3077 and different values ok; from right to left
(d) Q<-12/2. In all runs shown here we started with \=128,170,200,300,500. The plateau increases @dscreases. Ini-

m(t:O):054’ while the other parameter Wer&) mt:0)20.4, tlally the parameters amn=0.385 andu= —0.5. The dashed line
Q=0.67, m(»)#2Q; (b) u(t=0)=-0.2,Q=0.07, m(x)=2Q;  denotes the value@.
(c) u(t=0)=-0.4, Q=-0.13, m(»)=2Q; and (@)
u(t=0)=-1.0,Q=-0.73,m(«) #2Q. When the system starts from an undercooled state, i.e.,
u<0 at the initial timg[cases ) —(d) in Fig. 2], despite the
initial solid-liquid fraction. The thermal fieldi was taken to  fact that the liquid state is unfavorabl®,increases for short
be uniform, u;;(t=0)=u(t=0), with both positive and tmes. The system then evolves towards a liquid state,
negative values. According to E(L7), the conserved field  tends to saturate to a fixed valuel, and the fluctuations are
U was chosen to be equal to small. This state is, however, unstable with respect to fluc-
tuations, and indeed after a tinhg we observe a transition
towards the asymptotically stable state, which depends on
the value ofQ<1/2.
The timet, is a decreasing function of, as can be seen
The model exhibits two different long-time regimes as farin Fig. 3, where we reportn as a function of time for
as the temperature field is concerned. The snapshots of thel/2<Q<0 and various values of. In Fig. 4 we report
field ¢ indeed reveal that changing from positive values oftc versusk for the curves of Fig. 3. The line is the theoretical
the conserved fiel to negative values the long-time mor- predictiont.~1/\. In this figure we defind, as the time
phology changes. FoR>0 one observes solid drops im- such that mim(t)=2Q. Other definitions are possible, for
mersed in a liquid and<0, whereas foQ<0 liquid drops  example, whemn(t)=0 or any other fixed value. All these
become trapped in a solid matrix ang=0. This is in agree-  definitions leads to the same scaling with
ment with the general results of thermodynamics. For
quenches with positiv€) the minority phase is the solid,
thus we expect the solid drops to have positive curvature
Indeed, relating the curvatuv€ to the temperature field, we
obtain from the Gibbs-Thompson conditiors —doK [7] a
negative value ofi for Q>0. On the contrary, upon crossing N
the Q=0 line, the solid becomes the majority phase and
changes sign since the curvature relative to the solid is neg: )
tive. .
In Fig. 2 we show the behavior of the order parametel )
m as a function of time for the four distinct regimes. In all
cases at the initial time we hawe=0.54. We note that in the
case/Q|> 1/2 the system evolves towards a spatially uniform
state, which is a liquid above the melting temperature foi
Q>1/2 and positive initiau(t=0) [case &) in the figurd
or a solid below the melting temperature fQr<1/2 and 01
negative initialu(t=0) [case () in the figurd. This state
minimizes the potentialF. In the casdQ|<1/2 the system
evolves towards a phase equilibrium state at the melting tem- FIG. 4. Crossover timé, as a function of\ for the curves of
perature: we have far—«, u=u=0 andm=2Q, in agree-  Fig. 3. The dashed line is the scaling\1/The crossover time is
ment with the analytical results of Sec. IV. defined as mirm(t)=2Q.

Uij(t=0)=u_(t:0)+% #i;(t=0). (60)

100 1000
A
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FIG. 5. Snapshot of theé field for the global constraint case ardl/2<Q<0. The lattice index is reported on the axis.

The scenario depicted here remains valid also for the local In such a description the temperature shift from the coex-
constraint case. This has been checked by numerically intéstence temperature plays the role of an annealed field, which
grating the appropriate equations. The main difference bechanges during the process and settles to a value determined
tween the local and the global case shows up at the morphdy energetic considerations. Its dynamics are slow compared
logical level, as can be seen in the snapshots of Figs. 5 and fo that of the order parameter field and the latter becomes
As one can see, while the phase field model with local coneventually slaved by the first.
straint has a sharp domain wall, the model with the global The long-time state can be either a pure state with van-
constraint presents smoother interfaces. We stress that dighing correlations, in the limiT;=0, or a mixed state with
spite this difference the circularly averaged correlation funcdarge spatial fluctuations in the order parameter. The type of
tions and the structure factors for the two cases are quitequilibrium reached depends on the initial value of the spa-
similar. In Figs. 7(globa) and 8(local) we report the circu- tial average Q of the field U. Indeed, in the case
larly averagedg¢ correlation for the situations of Figs. 5 —1/2<Q<1/2, the system shows a tendency towards sepa-
and 6(circles, as well as for the cag®|>1/2 (diamond$.  ration into two phases in proportions given by the rule
The average radius of the drops is identified by the first zeren=2Q and one observes drops of the minority phase in a
of correlation functions. sea formed by the majority phase. At the same time the ther-

While the simulations confirm the scenario described inmal field u vanishes, indicating that=T,, in the whole
Sec. IV, we cannot extract the power-law exponent predictegolume. The number of the drops decreases with time to
by the nonconserved ordered parameter dynamics at shatiinimize the free energy of the system, but for long times
times, as well as those of the conserved order parametgfie total amount of solid remains fixed because the heat re-
dynamics for long times. Indeed, finite-size effects preventeased by a growing solid drop can only be adsorbed by a

us from reaching the conserved regime. shrinking solid drop. As a result, the solid order parameter
¢ becomes nearly conserved, being mediated by the con-
CONCLUSION served heat field. At this stage the dynamics of the crystalline

order parameter becomes a genuine conserved order param-
We have studied a model that reproduces many of theter dynamics. One can, in fact, observe multiscaling if the
features that render appealing the scalar phase field modeblume of the systems is large enough. The existence of
and analyzed its equilibrium and off-equilibrium properties.inhomogeneous structures is mirrored in the presence of the
We transformed the original scalar model into a model withpeak in the structure factor at finite wavelength and the phe-
global couplings, which is more amenable to analytic inveshomenon is similar to the Ostwald ripening. The undercool-
tigations. ing initially present is not sufficient to promote the transfor-
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FIG. 6. Snapshot of thé field for the local constraint case andl/2<Q<0. The lattice index is reported on the axis.

mation of all the liquid into the solid state, and some drops ofreaches two-phase coexistence asymptotically.

either phase remain trapped into the other. (iii) In the above range d®, the correlation function is
To summarize the results we have established the followlarge and centered at finite values of the wave vektor

ing rules governing the evolution. (iv) If |Q| exceeds the threshold value 1/2 the system
(i) The fieldU is constant in time. evolves towards a spatially uniform state with~—1 and
(i) The order parametem(t) as t—o tends to the vanishing correlations andh is no longer equal to Q. In

asymptotic value m=2Q, if Q falls in the range this caseu reaches an equilibrium value that is nonzero and

[—1/2,1/2. This fact in turn implies that the spatial average the system is out of two-phase coexistence.

value ofu over the system vanishests 0 , i.e., the system (v) Therefore, larger values of the undercooling cause the
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FIG. 7. Circularly average@¢ correlation function as a func- FIG. 8. Circularly averaged ¢ correlation function as a func-
tion of the lattice index for the global constraint case obtained nution of the lattice index for the local constraint case obtained nu-
merically: circles representQ|<1/2 and diamonds refer to merically: circles refer to|Q|<1/2 and diamonds represent
|Q|>1/2. |Q|>1/2.
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melt to crystallize completely and thus correlations are aseonsequence, no nucleation barrier needs to be overcome in
ymptotically suppressed as the system reaches an homogte transformation from liquid to solid. In the initial state

neous state.

long-wavelength fluctuations grow and the system becomes

The above features are interesting because they mimic thenstable. The nucleation barrier is proportional to the surface
behavior of the more realistic phase field model with localtension associated with the creation of a kink in the scalar

constraint.

model, whereas in the model with global couplings the en-

We finally remark that perhaps the most serious flaw ofergy gaps between the ordered phase and the instanton solu-
the model is that it suffers from the same problem as th§jons j.e., the uniform solutions of the equation, vanish in the
spherical model. In contrast to the local constrained phasgfinite yolume limit. Thus the mechanism described is non-
field model, which displays a region of metastability of theArrhenius-Iike. This is also reflected in the absence of true

liquid phase in thep-T plane, between the coexistence line
and the spinodal ling27], the globally constrained model is
always unstable inside the two-phase coexistence line. As

phase separation since the width of a domain wall diverges
in the limit of a vanishing pinning fieldh ash™12[23].

[1] A.J. Bray, Adv. Phys43, 357 (1994.

[2] R. Glauber, J. Math. Phy$N.Y.) 4, 294 (1963.

[3] J.W. Cahn and J.E. Hilliard, J. Chem. Phg8, 258 (1958.

[4] P. Hohenberg and B.l. Halperin, Rev. Mod. Phy§, 435
(2979.

[5] 3.D. Gunton, M. San Miguel, and P.S. SahniFPhase Tran-
sitions and Critical Phenomenadited by C. Domb and J.L.
Lebowitz (Academic, New York, 1983 Vol. 8, p. 267.

[6] J.S. Langer, Rev. Mod. Phys2, 1 (1980; Science243 1150
(1989.

[7] For comprehensive reviews, sBynamics of Curved Fronts
edited by P. Pelcg¢Academic, New York, 1988 Solids Far
From Equilibrium edited by C. Godrehe (Cambridge Univer-
sity Press, Cambridge, 1992

[8] W.L. Mullins and R.F. Sekerka, J. Appl. Phy&5, 444(1964).

[9] H. Miller-Krumbahaar and W. Kurz, iMaterials Science and

Technologyedited by R.W. Cahn, P. Haasen, and E.J. Kramer

(VCH, Weinheim, 199}, Vol. 5.

[19] A recent reference about the dynamics@fn) models is A.

Coniglio, P. Ruggiero, and M. Zannetti, Phys. Re\6®& 1046
(1994.

[20] S. Ciuchi, F. de Pasquale, P. Monachesi, and B. Spagnolo,

Phys. ScrT25, 156 (1989.

[21] The present spherical model defined by E2p) is different

from the O(n) spherical model discussed in previous papers
[11]. In that case both the order parameter and.tHeeld were
vector fields coupled bilinearly. However, the two models in
the infinite-volume limit and in the limit of infinite compo-
nents generate identical equations for the average fields and
their correlations, although the physical interpretation remains
different for the two models.

[22] Stanley has shown the equivalence of the spherical model and

ann-component spin model in the limit @— o in the case of
translationally invariant systems. H.E. Stanley, Phys. Réy.
718(1968.

[10] U. Marini Bettolo Marconi and A. Crisanti, Phys. Rev. Lett. [23] D.B. Abraham and M.A. Robert, J. Phys. 18, 2229(1980.

75, 2168(1995.

[11] U. Marini Bettolo Marconi and A. Crisanti, Phys. Rev.58,
153 (1996.

[12] M. Conti, F. Marinozzi, and U. Marini Bettolo Marconi, Eu-
rophys. Lett.36, 431(1996.

[24] J. Weeks, J. Chem. Phy&7, 1306(1977.
[25] The equilibrium properties of interfaces have been studied in

the mode-coupling approximation by U. Marini Bettolo Mar-
coni and B.L. Gyorffy, Physica A59, 221(1989; Phys. Rev.
A 41, 6732(1990.

[13] J.B. Collins, A. Chakrabarti, and J.D. Gunton, Phys. Rev. B[26] Notice that the values of the coupling parameters of e

39, 1506(1988.

[14] P. Keblinski, A. Maritan, F. Toigo, and J.R. Banavar, Phys.
Rev. E49, R4795(1994; Phys. Rev. Lett74, 1783(1995.

[15] O. Penrose and P. Fife, Physicaé®, 107 (1993.

[16] S.L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R.
Corriel, R.J. Braun, and G.B. McFadden, Physic&® 189
(1993.

[17] R. Kupferman, O. Shochet, E. Ben-Jacob, and Z. Schuss, Phys.

Rev. B46, 16 045(1992.
[18] The model has been introduced in a slightly different form by
T.H. Berlin and M. Kac, Phys. Re&6, 821 (1952.

term andU ¢ in Eq. (26) have not been chosen independently,
as assumed in Reff11], but their ratio was fixed to guarantee
the correct energy balance as explained in Secs. Il and I.

[27] Although the notion of a spinodal line signaling a sharp tran-

sition from a nucleation mechanism to a spinodal decomposi-
tion mechanism is not exact in systems with finite-range inter-
actions and the transition is gradual, still the concept of
spinodal has a heuristic vallisee, for example, the article by
Binder about spinodal decomposition: K. Binder Materials
Science and Technologgdited by R.W. Cahn, P. Haasen, and
E.J. KramenVCH, Weinheim, 199]].



