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In this paper we study the transfer of information between colliding solitary waves. By this we mean the
following: The state of a solitary wave is a set of parameters, such as amplitude, width, velocity, or phase, that
can change during collisions. We say information is transferred during a collision of solitary WaaredB if
the state oB after the collision depends on the statefobefore the collision. This is not the case in the cubic
nonlinear Schrdinger, Korteweg—de Vries, and many other integrable systems. We show by numerical simu-
lation that information can be transferred during collisions in ¢henintegrable saturable nonlinear Schro
dinger equation. A seemingly complementary feature of collisions in this and similar systems is radiation of
energy. We give results that show that significant information can be transferred with radiation no greater than
a few percent. We also discuss physical realization using recently described spatial solitary light waves in a
saturable glass mediuf51063-651X97)05812-]

PACS numbg(s): 42.65.Tg, 42.81.Dp, 89.86h

I. INTRODUCTION dinger equation$NLSES [3-8]. Generally, solitons in these
systems, including the saturable NLEENLSE), can change
A solitary wave can carry information in its envelope am-amplitude and velocity after collisions. We emphasize that
plitude, width, and position; its group and phase velocitiesthis is not in itself sufficient to meet our criterion of compu-
and its carrier phase; and this information can be exchanget@t'_f_’r?a"y Intet(estltrrl]g.t i 1 ational
in collisions with other solitary waves. This paper is devoted € properties that areé usetul for our computational pur-
to the question of whether such information transfer can ocPoses are the Opposite of those usually conSIde_re_d useful in
. that i ul basis f tation Wh”ecommumcatlon optics: At least some of the collision prod-
curin a way that 1S usetul as a basis for compu . ucts must effect a nontrivial transformation of information in
still preserving patrticle identities. If this is possible, it sug-

) o the colliding waves. The reason for this is that general com-
gests that general computation can be performed via 'meraciB'utation requires a transformation of information in basic

ing waves in a uniform medium, such as a nonlinear opticalogic operations. Unfortunately, many commonly studied
material. _ _ _ _systems that support waves do not have this behavior. For
In the usual conception of optical computing, one buildsinstance, because of linear superposition, colliding plane
discrete gates based on the propagation of light and thejaves in a linear medium do not interact, i.e., do not undergo
essentially mimics the construction of a conventional com-any state changes, and therefore cannot have information in-
puter. We describe here an alternative approach to buildingeraction among colliding waves.
an all-optical computer, using only solitary waves in a ho- An example of a system in which collisions cause a
mogeneous nonlinear optical medium. In our approach, proehange of state but nevertheless cannot transform informa-
grams and data are encoded as streams of solitary wavesn in a nontrivial manner is the cubic nonlinear Schro
which are injected into the medium at a boundary and comeinger equatio3NLSE). In order to perform a computation,
pute via the information transfer effected by solitary-wavesolitary waves must carry information from one collision to
collisions. the next; such information must be coded in parameters that
A general Turing-equivalent model for such “gateless” are not constant. However, in the 3NLSE system, the state
computation, theparticle machinge was introduced if1,2]. parameters that cause the information transfer are themselves
By exploiting the fine-grain parallelism of particle systems,invariant: The only change of state occurs in the spatal
this model supports fast and efficient execution of many optemporal position and carrier phase, and this change de-
erations, including arithmetic and convolution. Briefly, par- pends only on the amplitudes and velocities of the envelopes
ticle machines treat solitary waves as particles whose collief the incoming solitons. We conjecture |8,10] that all
sions can change particle states, thus performingolitary-wave collisions in integrable systems have this prop-
computation. Such computation requires that if solitaryerty and we show that particle machines based on such sys-
wavesA and B collide, then(i) some part of the resulting tems are very limited in computational power. In particular,
state ofA depends on the state Bfand(ii) (this is essential these particle machines are not Turing equivalent. We must
the state oB is changed by collisions. In a word, informa- therefore look to solitary waves in nonintegrable systems for
tion should be transferred from one wave to the other incomputationally useful collisions.
“interesting” ways. For solitary waves to carry information, they must also
There is much already known about the phenomenologypreserve their integrity after a sequence of collisions and lose
of collisions in nonintegrable versions of nonlinear Sehro negligible energy through radiation. These requirements are
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apparently antagonistic to the information-transform capabilalgorithm. In[10] we show that only at most cubic-time
ity necessary for computation, but our goal is to find system&omputation can be done on a particle machine that models a
that meet all these requirements. The results shown here sugystem in which collisions transfer at most trivial informa-
gest that the SNLSE describes such a system. tion. This upper bound on such a system’s computation time
proves that this system cannot be Turing equivalent since
universal computation can take an arbitrarily long time.
Moreover, solitary-wave interactions in this system are com-
To be more precise about the definition ioformation  putationally very limited, and designing algorithms based on
transfer, suppose that a medium supports a set of solitarghese interactions appears tedious and impractical. It is un-
waves. Then a selected set of properties that can changéear whether or not collisions supporting only trivial infor-
during a collision define atate $A) of a waveA, whereas mation transfer can encode any useful computation at all.
a set of constant wave properties that are unaffected by col- Solitary-wave systems in which collisions transfer non-
lisions define aridentity I(A) of A. Note that we may define trivial information are more readily applicable to encoding
different types of stateS and identitied for the same type computation. We have shown [i0] that such a system can
of wave. Denote byA’ the solitary waveA after a collision be Turing equivalent provided the solitary-wave state
with wave B. Then a collision ofA with B supports the changes are sufficiently complex.
transfer of information ifS(A’) depends org(B) for some
S(A) andS(B); otherwise, the collision transfers only trivial IV. THE NLS EQUATION AND ITS SOLUTIONS
information[if S(A') depends on only(B)] or no informa-
tion [if S(A")=S(A)].

II. INFORMATION TRANSFER

To study the information-transfer capabilities of NLSE

We illustrate the above definition using the cubic NLSESOI'tar.y wavg;, we|f|(st re\\//|vew the .gne-glmferlllsmnal fNLS
and the saturable NLSE systems. The cubic NLS equatioﬁ?ur?t'?\lnl_gn Its so lit'fgfs' e consider the following form
supports solitons whose variable states are phases and Whooset € equatiorj4,12]
constant identities are amplitudes and velocities. Collisions au 52U
of such solitons transfer only trivial information since the —i—=a—=+N(u|)u. 1)
phase shifts due to soliton collisions are a function of only at X
the amplitudes and velocities, i.e., the identities, of the coI-Herex is space is time, u is the complex amplitude of
liding solitons. On the other hand, the saturable NLSE sys- ' '

tem gives rise to solitary waves whose variable state includevsvaves described by the equatianjs real, andN(|u|) is a
9 Y onlinear function ofu|. For the 3NLSEN(|u|) =k|ul?; for

phases, amplitudes, and velocities. This system supports ccﬁ—] ! 2 2
lisions that transfer nontrivial information since the state"'© SNLSE,N(|u)=m-+k|u[*/(1+][u[*), wherek and m
gre real constants.

changes due to collisions are a function of the states of th ) ) . . .
g The nonlinearityN(|u|) determines the integrability of

colliding waves. Eg. (1) and the existence of closed-form solitary-wave solu-
tions. To find solitary waves, either analytically or numeri-
lll. COMPUTATIONAL POWER cally, we assume that each such wave consists of an enve-
lope modulating a sinusoidal carrier wave. Followiig],

To examine how information transfer relates to computasy e make the ansatz

tional power, we briefly review the notion of Turing equiva-

lence, or computational universality. Informally, a Turing u(X,t) =D (X~ ugt)e iUt 2
machine is a computational model in which programs and

data are stored on an infinite tape of discrete cells. A readwhere ® (x—ugt) is the envelopeg' **~Ud) is the carrier,
write head processes information by reading cell contentsandu, andu, are the envelope and carrier velocities, respec-

writing new cell contents, and moving back and forth alongtively. We find that the carrier functiof is given by
the tape, all according to a transition function that considers

both the state of the head and the symbol read from under- Ue

neath the head. The machine can enter a special “halt” state, O(X=Ucl) = 5 (X—Uct) + ¢bo, )
which signals the end of computation and the presence of the

machine’s final output on the tape. where ¢ is an arbitrary constant. The envelope functibn

It is generally acceptetby virtue of Church’s thesigl1]) can be found from
that given enough time and space, a Turing machine can
implement any algorithm; that is, in terms of the results that B(x—ugt) d®
can be computed, a Turing machine is as powerful as any X— Ugt f
computer. A computational system is Turing equivalent, or ®(0) \/ 2
computation universal, if it can simulate a Turing machine. a® —Zf N(|@[)de
While this property is not absolutely necessary for a system
to perform useful computation, universality neverthelessvherea=(u2—2ugu.)/(4a).
serves as a good measure of a system’s computational poten- If the integral in Eq.(4) can be evaluated analytically and
tial. used to solve Eq) for the envelope functiod (X— ut),
Intuitively, in order for a computation to take place in a then Eq.(2) gives an exact expression for a solitary wave, as
solitary-wave system, colliding waves should interact ands the case with the 3NLSE. Otherwise, the integral and
transfer information that is necessary to execute steps of af(Xx—Uuct) can be computed numerically, using boundary

)



56 INFORMATION TRANSFER BETWEEN SOLITARY WAVES ... 7269

conditions chosen to yield solitary waves. We explain how to
do this to obtain the SNLSE solitary waves used in our nu-
merical simulations.

We consider the following form of the SNLSE:

_au_&zuJr . klu|? :
"ot = M T ®

Herem andk are real constants. Solitary-wave solutions are
of the form of Eq.(2), where the carrie® is given by Eq.

(?I)')f.' The envelopeb can be found from Eq4), which sim- FIG. 1. Trivial information transfer in collisions of 3NLSE soli-
plifies to tons. The initial relative phases of the solitons in the left and right
graphs are 0.2b6 and —0.45w, respectively; velocities are-0.2.
¢ Jd)(x—uet) dd © Phase and spatial shifts, though not apparent from these graphs, are
X—Ugt= , . . .
e 5(0) \/CCD2+ K In(1+<I>2) a function of only the constant amplitudes and velocities.

of two colliding solitons cannot be made precisely equal. To
test the robustness of the results in Fig. 3 we ran experiments
= : ) . with unequal amplitudegsamplitude ratios of 1.1, 1.3, and
& (*)=0, \_/vhereA |s_the maximum amphtud_e of the_ en- 2.0) and found the results to be quite similar, except that the
vglope and is determmed by, and u.. The integration magnitude of the effect was even greater.
yleldsx—uet asa funct|.on of the envelope(x—uet). We It might appear that in the perfectly symmetric case, when
invert the result of the integration to Comp“te _the envglopqhe relative phase is zero, there should be no amplitude
@(lx—uetl) as %funhctlon Ok —Uet. We multiply t:us nulmerl- change. That is, a nonzero value of the amplitude change at
cal envelope by the exact carr@Eq. (3)]. to plot solitary ;a4 relative phase shift would imply that energy is trans-
waves on a discrete one-dimensional grid and use numerical a4 from one wave to another thereby spontaneously
methods to study the behavior of propagating and collidingOreaking the symmetry. To explain this apparent problem,
waves. . . we first note that what is plotted is a change in amplitude, not
Note that SNLS.E solitary waves are cha_lractenzed py foufanergy. A nonzero value of the amplitude change at zero
parameters: amplitudeA], envelope velocity ), carrier  o|ative phasewhich is indeed a symmetric situatipthen
velocity (uc), and phase ¢o). Using Eq.. (6), it can be  means that the amplitudes of both solitons change. There are
shown that any two oA, u, andu determine the third. We  ree ways that this can happeii: Radiation can decrease
may chooseg, freely, so that there are three degrees Ofihg energy of both solitonsii) the amplitudes can change,
freedom in choosing the initial state of a SNLSE solitaryp 4 change in width can compensate to preserve energy,
wave. and (iii ) the collision products can breathe, which in fact
makes the amplitude poorly defined.

wherec= a—m-—k. We evaluate the above integral numeri-
cally using the boundary conditiongb(0)=A and

V. INFORMATION TRANSFER IN COLLISIONS
OF NLSE SOLITARY WAVES VI. RADIATION AND REUSABILITY

In the integrable 3NLSE system, solitary waves are true |n general, computation encoded in a NLSE system must
solitons whose collisions can change only their envelope poreyse solitons after they have been involved in multiple col-
sition and carrier phase; envelope amplitude and velocitiegsions. To behave like the particles of a particle machine,
are conserved. In addition, the spatial and phase shifts qhese solitary waves should be stable; more specifically, col-
colliding solitons depend only on their constant amplitudesjsions should preserve the identities of solitary waves and
and velocities. Thus such collisions transmit only trivial in- generate negligible radiation.
formation and are computationally very limited, as we dem-
onstrate in10]. (See Fig. 1. X—

The nonintegrable SNLSE gives rise to solitary waves
whose collisions support nontrivial information transi@ee =
Fig. 2) In particular, phases, amplitudes, and velocities can == \ =§
all change as a function of the parameters of the colliding! @%&\%
waves. We have observed that the most computationally us§ =—— .
ful collisions occur when the solitary waves have a low rela-] =— g
tive speedapproximately 4.0 and belowThe magnitude of = -
information transfer decreases gradually as the relative spee ==
of the waves increases. To estimate this magnitude, we mee
sured the amplitude and velocity changes following colli-
sions of low-velocity waves at various initial phases. In Fig.  FIG. 2. Nontrivial information transfer in collisions of SNLSE
3, the normalized amplitude change is plotted as a functiogolitary waves. The initial relative phases of the waves in the left
of the relative phase of two colliding solitary waves. and right graphs are 0.25and — 0.45m, respectively; velocities are

In practice, it is reasonable to expect that the amplitudes-0.2.
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FIG. 4. Fusion of two solitons after collision. In the case shown,
the two solitons approach each other with velocitie®.2 and their
amplitudes are both 1.0.

early in a variety of nonintegrable systerf¥s3], and pre-
dicted theoretically for a wide range of non-Kerr materials
by Snyder and Sheppalid], certain regimes of operation
can lead to breathers and more dramatically to the fusion of

FIG. 3. Information transfer for collisions of two SNLSE soli- colliding waves and the birth of new waves. We show ex-
tary waves. Here information transfer is defined as the fractionafmples of fusion in the saturable NLSE in Fig. 4.
change in the amplitude of one solitary wave; that is, the transfer is Breathers, fusion, and the birth of new particles may be
equal toAA;/A;, whereA; is the initial amplitude of the right- useful for computation in our context, but are more difficult
moving wave and\A, is the amplitude change due to collisions. to study and characterize than collisions that conserve the
The solid, dashed, and dotted curves show information transfer foéhape and number of particles, especially because they often
collisions of two waves with amplitudes 1.0 and velocitie§.5, seem to be accompanied by more radiation. In fact, our defi-
*1.5,and+10.0, respectively. The relative phase is in multiples of i of information transfer is not applicable to these situ-
7. Note that in the low-velocity cag@olid line) near zero relative

ations. However, the idea of information transfer may be

phase there is significant radiation and breathing in the collision lizable to all int i ide cl f t
products, making the amplitude poorly defined. What is shown igeneraiizable 1o a interactions in a wide class of noninte-

the result of measuring the amplitude peak at a fixed time. grable systems. - _
When wave velocities are very low<(1.0) and relative

Numerical results reveal that information transfer and raphases are approximately in the range 0.0-0.3, collisions
diation often go hand in hand. Soliton collisions in the produce breathers, or waves whose amplitude pulsates regu-
3NLSE system are perfectly elastic and generate no radidarly, that cannot arise from E¢2). However, we observed
tion, but such collisions support only trivial information that other collisions result in waves that can be specified by
transfer, as we have seen. In the SNLSE system, larggq. (2).
amounts of radiation tend to accompany large magnitudes of To test the hypothesis that collision products are of the
information transfer. However, much like other known non-same form as the original waves, we measured the ampli-
integrable NLSE systemfgt], the SNLSE system supports tudes, envelope velocities, and phases at the peaks of waves
collisions that transfer information and yet generate onlyafter collisions; we then used these parameters to plot
small amounts of radiation. More specifically, our numerical“fresh” waves and to compare their characteristics with
studies have revealed the following. those of the postcollision waves. In particular, we compared

(i) When at least one of the solitary waves is moving at &he carrier velocities of the fresh and postcollision waves and
high speed(approximately 4.0 and abojetheir collision  observed what happens in collisions between two fresh
generates negligible radiation and supports no measurablgaves and between two postcollision waves. The results do
information transfer. (This phenomenon in generalized suggest that the postcollision waves have the form of(Eqg.
NLSE systems was mentioned by Snyder and Shegand We estimated radiation for the collisions of Fig. 3 by

(i) When the relative phase,=, the collision is the finding the fixed-size section of the numerical-solution grid
same as in the above case, regardless of the value of tlvgith the lowest root-mean-squarécns) norm of the grid
relative speed,. points.(We use circular boundary conditions in our numeri-

(i) When both waves have low speedelow 4.0) and cal simulations, so that any radiation generated by collisions
0= ¢y<r, the collision is accompanied by larger amountsremains in the systemldeally, this rms norm should be very
of radiation and information transfer. However, ¢égtends  close to zero for solitary waves. Numerical error caused by
towardsr, both radiation and the magnitude of information the discrete nature of time and space in the grid contributes
transfer decrease. Faf,> /2, very little or no measurable some noise, which we measured for the analytically solvable
radiation is generated. case of the 3NLSE by comparing numerical results with ex-

The solitary waves that emerge from collisions in theact solutions. Based on these investigations, it appears that
SNLSE system may or may not be of the form given by Eq.our simple measure of radiation gives a good general idea of
(2), depending on the initial wave parameters. As observethe usefulness of various collisions for computation. In Fig.

relative phase
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x#=0 and the dominant nonlinearity in the dependence of
refractive index on electric field intensity is due ¥+ 0.
This is the case for centrosymmetric and isotropic materials
[14] and includes optical fibers in which soliton transmission
has been demonstrated over long distarj¢&slg|.

The nonintegrable SNLSE is applicable to simulating
various physical phenomena, including the nonlinear effects
of laser beam propagation in various mefld The SNLSE
also describes the recently discoveredt-(l)-dimensional
photorefractive optical spatial solitons in steady sfaz17]
and the optical spatial solitons in atomic media in the prox-
imity of an electronic resonandég].

Both the 3NLSE and the SNLSE describe temporal soli-
tons; with the transformatiobh— z, both equations also de-
scribe spatial solitons, witk andz being the transverse and
longitudinal directiong19,20. In practice, spatial solitons
appear better suited for computation because temporal soli-
tons require long distances to propagate. In addition, spatial
do . 4s T T T T T T T solitons also exist in 21 dimensiong17,18, offering an

relative phase additional degree of freedom and suggesting the possibility

o o ) of implementing two-dimensional universal systems such as
FIG. 5. Radiation due to collisions in the SNLSE system. Ra-the pilliard-ball model of computatiof21].

diation is computed by finding the section of the numerical-solution

grid with the lowest rms norm of grid points, using sections of size VIIl. CONCLUSIONS

N/10, whereN is the size of the entire grid; radiation is taken to be

this lowest rms norm. The solid, dashed, and dotted curves show The analytically solvable 3NLSE supports only soliton

radiation for collisions of two solitary waves with velocities0.5,  interactions that transfer only trivial information and is thus

*1.5, and+10.0, respectively. The relative phase is in multiples of ynlikely to support a useful computational system such as the

. particle maching1,2]. The nonintegrable SNLSE supports
o ] ] solitary-wave collisions that transfer nontrivial information

5, radiation is plotted as a function of the relative phase ofng generate acceptable radiation and offers promise for en-

two colliding waves. ~ coding general computation through the particle-machine
The SNLSE solitary waves that appear to hold promisgngdel.

for encoding computation have relative speeds from about The next step in this line of work will likely involve
0.2 to 4.0 and relative phases whose absolute values ranggarching for configurations of collisions that can be used for
from about 0.2 to 0.87. Frauenkronet al. report[7] nu-  simple computations, such as ripple-carry addition. Such an
merical studies of a quintiC perturbation of the cubic NLSEajgonthm was imp|emented using the solitons of a filter au-
and show that radiation in that systenQ$e?), while energy  tomaton[22] and we believe that spatial SNLSE solitary
exchange is first order, a general indication that the phenomyayes support sufficiently general interactions to implement
ena involved in information transfer can dominate radiationthis algorithm in systems of £1 dimensions. Spatial

in nonintegrable variations of the NLSE. solitary-wave systems of 21 dimensions also offer possi-

bilities for encoding computation.

0.04

radiation

0.02

VII. PHYSICAL REALIZATION
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