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Relaxation of the distribution function tails for gases with power-law interaction potentials

I. F. Potapenko,* A. V. Bobylev,* C. A. de Azevedo, and A. S. de Assis†

State University of Rio de Janeiro, 20550 Maracana,̃ Rio de Janeiro, Rio de Janeiro, Brazil
~Received 20 May 1997; revised manuscript received 4 August 1997!

The relaxation of rarefied gases of particles with the power-law interaction potentialsU5a/r s, where 1
<s,4, is considered. The formation and evolution of the distribution function tails are investigated on the
basis of the one-dimensional kinetic Landau–Fokker-Planck equation. For long times, the constructed
asymptotic solutions have a propagating-wave appearance in the high velocity region. The analytical solutions
are expressed explicitly in terms of the error function. The analytical consideration is accomplished by nu-
merical calculations. The obtained analytical results are in a good agreement with the numerical simulation
results.@S1063-651X~97!03712-4#

PACS number~s!: 52.25.Dg, 52.65.Ff, 51.10.1y
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I. INTRODUCTION AND STATEMENT
OF THE PROBLEM

The relaxation of the initial distribution function to th
equilibrium state is a classical problem of rarefied gas
namics that is employed, particularly, as a test for fus
numerical simulations @1–3#. The knowledge of the
asymptotic behavior of the solution of the kinetic equation
useful for many plasma physics problems@4,5#. Among
these are the problems that consider plasma-wave inte
tions for wave phase velocities larger than the thermal ve
ity ~for example, the lower hybrid and the electron cyclotr
heating! @6–8#. The electron acceleration process by a
electrical field and the formation of runaway electron ta
are also widely studied in the laboratory and in the sp
plasma applications@9–11#.

In the present work we study the relaxation of a spa
homogeneous gas consisting of one sort of particle.
treatment is based on the Landau–Fokker-Planck–type~LFP
type! equation, which is a model of Boltzmann’s equati
for arbitrary interaction potentials, and briefly considered
Sec. I. Starting from the one-dimensional LFP type equa
in Sec. II, we solve the initial value problem for the powe
law interaction potentialsU5a/r s, 1<s,4 and study the
asymptotic solutions in the high energy region for lo
times. The analytical calculations are carried out on a ph
cal level of precision. All asymptotic results are confirm
by numerical calculations with high accuracy in Sec. III. T
conclusion follows in Sec. IV.

The kinetic Boltzmann equation is the basic equation fo
rarefied gas dynamics model@12#. In the absence of particle
and energy sources as well as their sinks, the spatially
form Boltzmann equation for the distribution functionf (v,t)
is
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] f

]t
5 Ĵ@ f , f #

5E dw dmdf us~u,u!@ f ~v8! f ~w8!

2 f ~v! f ~w!#, t>0. ~1!

The differential scattering cross sections(u,m) is a function
of the relative speedu.0 andm5cosuP@21,1#. The con-
struction of the cross sections(u,m) with the given interac-
tion potentialU(r ) is a well-known problem of classical me
chanics@13,14#. It should be noted that experimental da
concerning the real intermolecular potentials are very
from being complete, therefore, in the theory of the Bol
mann equation, the cross sections(u,m) is usually assumed
to be a known function.

For charged particles, in the case of scattering at sm
anglesu<u0!1, Boltzmann’s equation is reduced to th
Fokker-Planck equation@15,16#, which in the general case
has the form@12#

] f

]t
5B

]

]v i
H E dw

u2d i j 2uiuj

u3 S ]

]v j
2

]

]wj
D f ~v! f ~w!J ,

~2!

where

B5
8p5

m2 E dkk3Uk
2, Uk5

1

~2p!3E drU~r !eik–r. ~3!

For the Coulomb interaction the divergence of the first in
gral in Eq.~3! is connected with the Rutherford cross secti
singularity atm51. To make the integration overk reason-
able it is necessary to set finite limits. As a result of so
physical motivations, in Eq.~3! B52pe4L/m2, whereL is
the so-called Coulomb’s logarithm.

In this paper we use the model of Boltzmann’s equat
@17,18#, which approximates the integral operatorĴ@ f , f # ~1!
for arbitrary potentials by an integrodifferential operator
the LFP type. Equation~2! cannot be a generalized form o
Boltzmann’s equation for arbitrary potential because the fi

s,
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7160 56POTAPENKO, BOBYLEV, de AZEVEDO, AND de ASSIS
integral in Eq.~3! diverges even for the ‘‘step’’ potential
U(r )5U0 for r ,r 0 andU(r )50 for r .r 0 .

The physical idea underlying the construction of a mo
collision operator is as follows. Note that in Boltzmann
tequation the only quantity depending on the molecular
teraction law is the differential cross sections(u,cosu). We
compare the real gas of particles with its analog having
other cross section:s̃(u,cosu)50 for u.u0 whereu!1 is
the scattering at small angles. Hence in the model Boltzm
equation the exact collision integral can be replaced by
approximationĴ@ f , f #' Î @ f , f #@11O(u0)#, asu0→0. How-
ever, the ‘‘cut-off’’ cross sections̃(u,u) is not very similar
to the cross sections(u,m) because for real intermolecula
potentials the contributions from scattering at large and sm
angles have approximately the same order of magnitu
Nevertheless, the last approximation could be used for a
trary cross sections, if the fundamental criterion of the c
sen approximation in the proposed model is the numbe
identical moments of the exact and the approximate collis
integrals. Really, the most important macroscopic charac
istics of a gas are the first moments of the distribution fu
tion. Then, the problem consists in an adjustment of the n
scattering cross sections̃(u,m) in order to achieve the coin
cidence of the macroscopic characteristics of the orig
with that of the model gases:

E dvf~v!Ĵ@ f , f #5E dvf~v! Î @ f , f #, ~4!

wheref(v) is an arbitrary function. When this problem
solved, then instead of Boltzmann’s integral equation,
simplified collision integral of the LFP type can be cons
ered:

] f

]t
5 Î @ f , f #5

1

8

]

]v i
H E dw us~u!~u2d i j 2uiuj !

3S ]

]v j
2

]

]wj
D f ~v! f ~w!J . ~5!

Here

s~u!5E dm dfs̃~u,m!~12m!

5
1

2E dm dfs~u,m!~12m2!. ~6!

The moments of the exact collision integralĴ@ f , f # @Eq. ~1!#
with its modelÎ @ f , f # @Eq. ~5!# coincide up to the tensor third
order moment as well as up to the fourth order scalar m
ment irrespectively of the interaction potential form. That
the equality ~4! is valid for the functions f(v)
5$v ivk ,v ivkv l , i ,k,l 51,2,3; v4%. The same conservatio
laws of the particle density, the moment and the energy
well as the BoltzmannH theorem are valid for the mode
equation~5!. It leads to the correct moment equations up
Grad’s twentieth-moment approximation@14#. By inserting
the ‘‘cut-off’’ Rutherford cross section s(u,u)
5(e2/mu2)2sin24(u/2)h@u2umin# into Eq. ~6! we gets(u)
'8p(2e2/mu2)2L, whereL5 lnumin

21, as umin→0, and one
l
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can obtain the well known classical LFP equation for pla
mas@12,13#. Finally, for the so-called Maxwell’s molecule
@1,14# (s54, U;a/r 4) the exact solution of the approxima
tion equation~5! is the solution of the exact Boltzmann equ
tion ~1! @19#.

The points enumerated above are on the credit side for
considered model. However, the intermediate potentials
the modeled gas may considerably affect the various lo
properties of the solution of the model equations and
Boltzmann’s equation. Indeed, an equation of LFP type c
tains an operator of the diffusion type, which leads to inst
taneous smoothing of discontinuities in the initial condition
and for Boltzmann’s operator with a short-range interm
lecular potential such discontinuities are preserved, si
there is some number of particles not experiencing collisi
for any finite interval. This distinction emphasizes that t
natural sphere for the application of the model equation~5! is
gases with potentials of an infinite radius of action, since
these potentials Boltzmann’s equation itself must also p
sess some smoothing properties. That is why, in this pa
we study the distribution function relaxation tails using E
~5! for the long-distance soft potentialsU;a/r s, 1<s,4.

II. ASYMPTOTIC SOLUTIONS

We restrict ourselves to the case of the isotropic distri
tion function f (v,t)5 f (uvu,t) and consider the initial-value
problem for the finite initial conditions. At the instantt50,
the initial function f 0(v)5 f (v,0) is located in the therma
velocity regionv;v th . Our investigation is concentrated o
the formation and evolution of the distribution function ta
for long times, asuvu→`.

For the isotropic distribution function, Eq.~5! can be writ-
ten as

] f

]t
5

1

v2

]

]vH 1

vE0

`

dwQ~v,w!Fw f~w!
] f ~v !

]v

2v f ~v !
] f ~w!

]w G J , ~7!

where the symmetric kernelQ(v,w) is

Q~v,w!5
p

8
v3w3E

21

1

dm~12m2!us~u!,

u25v21w222vwm.

The above equation should be completed by the con
vation laws

r54pE
0

`

dvv2f ~v,t !5const,

T5
4pm

3r E
0

`

dvv4f ~v,t !5const, t>0, ~8!

wherer is the particle density and the temperatureT is ex-
pressed in units of energy. The unique equilibrium solut
of the problem is the Maxwell distribution function
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56 7161RELAXATION OF THE DISTRIBUTION FUNCTION . . .
f M~v !5r~2p!23/2v th
23expF2

v2

2v th
2 G , v th5AT/m.

We construct the asymptotic solution of Eq.~7! for a long
period when the relaxation in the thermal velocity region
practically finished. Therefore, in the high velocity regio
v@v th the nonlinear equation~7! can be approximated by th
linear equation

] f

]t
5

r

8

1

v2

]

]vFv3s~v !S T

m

] f

]v
1v f D G .

Here we take into account the fact that in the high veloc
region, the kernelQ(v,w) reduces toQ(v,w)→pw3v4,
s(v)/6, asv→`. Furthermore, for the power-law potential
we employ the cross sections(u,m)5gs(m)u24/s @14#. By
inserting this expression in Eq.~7!, asv@v th , we obtain for
the last equation

] f

]t
5

rgs

8

1

v2

]

]vFv324/sS T

m

] f

]v
1v f D G , ~9!

where the notation

qs52pE
21

1

dmgs~m!~12m2! ~10!

is used. For instance, for the Coulomb potential,s51, for-
mula ~10! yields g1532pe4L/m. Then, from Eq.~9! the
well known linear LFP equation for plasmas follows. Furth
we shall consider the equation~9! for the arbitrary interac-
tion potentialsU5e2/r s, 1<s,4.

For convenience we transform Eq.~9! in a suitable way
by introducing the new dimensionless variables for
speed, time, and distribution function:

x5F v
v th

G ~41s!/2s

X~41s!/4s, t5t
rgs

8

42s

s F X

v th
G ~42s!/2s

,

f ~v,t !5 f M~v !u~x,t!, ~11!

where X52s(42s)/)(41s)2, and f M(v) is the Maxwell
distribution. By inserting Eq.~11! in Eq. ~9! we obtain for
the distribution functionu(x,t)

]u

]t
1

x12p

p

]u

]x
5

1

2

]2u

]x2
, p52

42s

41s
, 1<s,4. ~12!

The type of the last equation gives us an idea about
wave character of a solution. Really, it is worth recalling th
we are interested in the relaxation of the distribution funct
tails in the high energy regionx@1. Otherwise, we conside
the periodt when the relaxation process is practically fi
ished in the thermal velocity regionx,1, i.e., the period
whenu(x,t)'1. Hence we solve the problem in the supe
thermal velocity regionx@1 in which the slow establishing
of the equilibrium solutionuM(x)51 occurs, andu(x,t)→0
asx→`. The conditionx@1 can be taken into account b
the new variablex̃5x/x0 andt̃5t/x0

p , wherex0@1 is some
characteristic scale of the problem under investigation. Th
y

r

e

e
t
n

-

n,

the small factorx0
p22!1 appears before the highest~the sec-

ond! derivative on the right hand side of Eq.~12!. From this
it can be concluded that the equation changes its type
works like a transport operator in the high velocity regi
x→`. Having this in mind, we introduce in~12!, for sim-
plicity, the formal parameter« before the second derivative
The result it

]u

]t
1

x12p

p

]u

]x
5

«

2

]2u

]x2 . ~13!

Now, if we let «'0, Eq. ~13! collapses into a first orde
equation, and the equilibrium solutionuM(x) is simply trans-
ported over the characteristics of this equation. The typ
solution has the form of a step function:

u~x,t!'h@t1/p2x#, p52
42s

41s
, 1<s,4. ~14!

The approximate solution~14! reflects correctly the
asymptotic law under which the wave front moves

xf~t!;t1/p

but does not describe the wave front structure.
In order to analyze the front structure, we shall transfo

Eq. ~13! using the previously obtained information about t
wave front law. By setting

z5
x2t1/p

A«
, u~x,t!5f~z,t!,

we can rewrite Eq.~13! for the new functionf(z,t) as

]f

]t
5

1

2

]2f

]z2 2
1

p

t12p21

A«
F S 11A«

z

t1/pD ~12p!

21G]f

]z
.

~15!

Now let « tend to zero butz remain finite. Then, under this
conditional limit, Eq.~15! takes the form

]f

«t
5

1

2S ]2f

]z2
2g

z

t

]f

]z D , g52
12p

p
. ~16!

The boundary conditions for the functionf are the follow-
ing: f→1, asz→2` ~behind the wave front!, andf→0, as
z→` ~before the wave front!. The functionf(z,t) can be
constructed as a solution of an initial value problem for tim
t.1 with the corresponding initial conditionf(z,1)5h
(2z) @compare with function~14!#. By the proper changing
of variables, Eq.~16! can be reduced to the heat equati
@20#. After that, the solution of Eq.~16! can be obtained in
the self-conserved form:

f~z,t!5FXzS ~12g!

2~t2tg! D
1/2C, t.1,

F~z!5
1

Ap
E

z

`

dy exp~2y2!.
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We now return to the variablex and suppose again« to be
equal to 1. After this, one an find the quasistationa
asymptotic solution of Eq.~12!

u~x,t!'FXx2t1/p

A2
S 12g

t2tgD 1/2C, t.1, g52
12p

p
.

~17!

In order to understand when solution~17! is valid, let us
formulate again what was previously assumed. We cons
the kinetic equation in the high velocity regionx@1 for a
time period that is much greater than the so-called collis
time t@1 and in the vicinity of the wave front pointxf
;t1/p: (x2t1/p)!t1/p. The last inequality justifies the
transition from Eq.~15! to ~16! under the condition«51 and
gives us the following restrictions. The obtained soluti
~17! is inapplicable, first, for the cold particles within th
velocity interval 0<x!xf and, second, for the particles ou
side the velocity regionx>2xf . Practically speaking, both
these restrictions have a small interest because with a g
accuracy, it may be reasonably supposed thatu(x,t)'1 in
the first regionx!xf(t), and u(x,t)'0 in the second re-
gion x>2xf(t).

We can simplify formula~17! taking into account the con
dition t@1. Since the final result will depend ong, we con-
sider three cases for the expression within lightface la
parentheses in formula~17!. For g,1 the expression (1
2g)(t2tg)21 tends to (12g)t21, and forg.1 it tends to
(g21)t2g. The case ofg51 is distinctive of others. Note
thatg51 corresponds tos52. To derive the formula for this
limiting case, we rewrite the expressions as follows:

~12g!~t2tg!215~12g!S tg (
m51

`
@~12g!lnt#m

m! D 21

5S tg (
m51

`
~12g!m21lnm t

m! D 21

.

y

er

n

od

e

For g51 only the first term is retained in the last expressi
since the coefficients of the sum vanish for allm>2.

Thus, having assumed the conditiont@1, we obtain the
simplified asymptotic solutionu(x,t) that will vary as a
function of g:

u~x,t!'5
FS ~x2t1/p!

A2
S 12g

t
D 1/2D , g,1,

FS ~x2t1/p!

A2
S 1

t lnt
D 1/2D , g51,

FS ~x2t1/p!

A2
S g21

tg D 1/2D , g.1.

Finally, we formulate the results obtained above for t
variablesv, t and for the distribution functionf (v,t). Con-
sidering the LFP type equation~7! for the soft power-law
potentialsU;a/r s, 1<s,4, we have constructed the ap
proximate asymptotic~asv→`, andt→`) solution

f s~v,t !'rS m

2pTD 3/2

expS 2
mv2

2T D
3uXvS m

T D 1/2

,t
pgs

8 S m

T D ~42s!/2sC . ~18!

The constant valuegs is defined in Eq.~10!. The function
u(v,t) has the form of a propagated wave front that mov
under the law

v f~ t !5S 42s

s
t D s/~42s!

. ~19!

The functionu(v,t) is descried by three cases that are d
pendent on the exponents:
u~v,t !55
FS 2

As~22s!

41s
v fV

~41s!/2sD , 1<s,2,

F„

1
3 ~ lnv f !

21/2v fV
3/2

…, s52,

FS S 2~s22!

42s D 1/2F2s~42s!

~41s!2 G ~42s!/2s

v f
~42s!/sV~41s!/2sD , 2,s,4,

~20!

where

V5
v2v f~ t !

v f~ t !
.

The applicability conditions for the solution~20! will take the following form of the enhanced inequalities:

v@1, v f~ t !@1, uv2v f~ t !u!v f~ t !. ~21!

Noting thatu@vv(t),t#51/2, we, as usual, define the front width as

D f~ t !52U u~v,t !

]u~v,t !/]vU
v5v f ~ t !

5U]u~v,t !

]v U
v5v f

21

.
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Therefore, for the cases considered above we obtain

D f~ t !55
Aps/~22s!, 1<s,2,

Ap lnv f~ t ! , s52,

S ps

s22D 1/2F2s~42s!

~41s!2 G ~s22!/s

@v f~ t !#2~s22!/s, 2,s,4.

~22!
-
,

le
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As can be seen, the front widthD f(t) is substantially depen
dent on the exponents in the interaction potential. Thus
D f(t) is a constant value for 1<s,2. Therefore, in this case
the solutionu(v,t) has a character of a wave with a stab
profile that does not spread for allt.0. This fact, fors51,
was discovered in the numerical calculation@17,18# and a
corresponding analytical solution was constructed. Star
from the values52 the front width begins to grow in time
but has a weak logarithmic dependence:D f;Alnt. The be-
havior of the solution still has the wave type. The fro
propagation velocityv f(t) remains sufficiently larger than
the velocity of its spreading:

]D f /]t

]v f /]t
5

dD f

dv f
5

1

2 lnv f~ t !

D f~ t !

v f~ t !
, s52.

In the case 2,s<4 the velocity of the wave front propaga
tion ]v f /]t and the velocity of its dispersion]D f /]t are
approximately equal:

]D f /]t

]v f /]t
5

dD f

dv f
5S 22

4

sDD f

v f
, 2<s,4.

Obviously, in the case of Maxwell’s molecules,s54, the
behavior of the distribution function tail does not have t
real wavelike character.

The results of the numerical calculations are presente
the following section. They illustrate the obtained analytic
results.

III. NUMERICAL CALCULATIONS

The purpose of the numerical calculations is to comp
the evolution of the same initial distribution function in a g
of particles with different power-law interaction potentia
We consider Eq.~7!:

] f

]t
5

1

2v2

]

]vH 1

v
S@ f ,v#J , ~23!

where

S@ f ,v#5E
0

`

dwQ~v,w!Fw f~w!
] f ~v !

]v
2v f ~v !

] f ~w!

]w G .
For the case under consideration, the symmetrical ke
Q(v,w) can be written as follows@18#:

Q~v,w!5
a~v,w!~v1w!n141b~v,w!uv2wun14

~n12!~n14!~n16!
,

g

t

in
l

e

el

with

a~v,w!5~n14!@vw2~v21w2!#,

b~v,w!5~n14!@vw1~v21w2!#, n5~s24!/s.

Positive values ofn correspond to the stiff interaction poten
tials (s.4), and negative values ofn correspond to the sof
interaction potentials (1<s,4). The special classes of th
particle interaction, which are particularly explored in o
numerical calculations, should be mentioned. These
charged particles,s51(n523), and Maxwell’s molecules
s54 (n50). For the chosen dimensionless variables
density and the energy conservation laws are

r5E
0

`

dv v2f ~v,t !51, E5E
0

`

dv v4f ~v,t !51, t>0,

~24!

respectively. The thermal velocity is equal to unity,v th51,
and the equilibrium solution of Eq.~23! is

f M~v !5
4

p1/2S 3

2D 3/2

expS 2
3

2
v2D .

At the initial instant, the distribution function is located i
the thermal velocity region and has ad-function type:
f (v,0)5d(v21)/v2.

To compose the difference scheme we replace the infi
velocity interval@0,̀ ! by the finite segment@0,L#, which is
chosen so as to take into account the high-energy partic
As a rule, it is sufficient to takeL'(7 – 8)v th . In the con-
sidered domain we introduce the space-time mesh$v i 11
5v i1hi 11 , i 51,2, . . . ,M21, v150, vM5L;tk115tk1t,
k50,1, . . . ,t050% and define the mesh functionsf i

k , Si
k@ f #.

The following notation will be used:f i 11/250.5(f i 111 f i).
We approximate the integral by the trapezoid formula a
the derivatives by the central differences. Applying the in
grointerpolation method to Eq.~23!, we obtain the implicit
difference scheme

f i
k2 f i

k21

t
5

1

v i
2hi 11/2

FS
i 11/2

v i 11/2
2

Si 21/2
k

v i 11/2
G . ~25!

The boundary conditions areS3/250 at the pointv50 and
f M50 at the pointv5L. The initial distribution is approxi-
mated on the mesh in the usual way, that is,

f ~v i ,0!5H 2/~v i 112v i 21! if v i51,

0 otherwise.
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This approximation makes the number of particles and
netic energy, as well, equal to unity. The difference sche
is constructed on a symmetric pattern, and has a second o
approximation with respect to the velocity space@21#. The
completely conservative difference scheme used here@22#
allows us to make calculations without numerical error ac
mulation, except for machine errors. It must be emphasi
that the error in the numerical analog of the conservat
laws ~24! is of the same order as the rounding machine er

Now we briefly describe the results of numerical simu
tions. An equation of the LFP type contains an operator
the diffusion type, which leads to instantaneous smoothin
discontinuities of the initial conditions. Very rapidly, the s
lution acquires a quasiequilibrium form in the thermal velo
ity region (0<v<2) at the instantt0 that corresponds to th
so-called collision time. The characteristic timet0 weakly
depends on various values of the exponents in potentials
U;a/r s. In this region the distribution functions are close
each other throughout the entire relaxation process for
ferent valuess. As is expected, the main difference is o
served in the region of the distribution tails forv.2. For
better representation of the numerical results in the high
locity region, we introduce the function g(v,t)
5 f (v,t)/ f M(v), which is the analog of the functionu(v,t)
in Eq. ~18!. Figures 1–3 show graphs of the functionsg(v,t)
in the velocity region 2,v,5 for different time instants and
for various parameterss. All figures demonstrate a wav
spreading ofg(v,t) into the region of high velocities. Fo
charged particles with the Coulomb interaction (s51, n5
23, U5a/r ), the functiong(v,t) is shown in Fig. 1. The
solution has the character of a propagated wave with a st
profile. For the potentials with 1<s<2, the tail relaxation
proceeds more slowly than the relaxation of the distribut
function core. For the values 2,s<3 the evolution of the
distribution function tail still maintains the wave character
is shown in Fig. 2 that the wave front width grows slow
with time for the cases52, n521, U5a/r 2. For the stiff
potentials (s>4) the characteristic times of the distributio

FIG. 1. The graph of the distribution functiong(v,t)
5 f (v,t)/ f M(v) normalized to the Maxwell distribution in the ve
locity region 2,v/v th,5 for different time instantst ~arbitrary
units!. Time normalized to the electron-electron collision time
defined in Eq.~11!. The case corresponds to the Coulomb inter
tion n523(s51), U5a/r .
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core relaxation and of the distribution tail relaxation ar
practically the same. In this case, the wave propagation
locity and the speed of the wave diffusing are almost ind
tinguishable~Fig. 3!. Practically, the relaxation of the distri-
bution function in the thermal and superthermal veloci
regions occurs simultaneously.

IV. CONCLUSION

The relaxation process of a space uniform isotropic ra
efied gas compose of one sort of particle is considered~elec-
trical neutrality is supposed!. The paper is exclusively con-
cerned with the asymptotic behavior of the distributio

-

FIG. 2. The graph of the distribution functiong(v,t)
5 f (v,t)/ f M(v) normalized to the Maxwell distribution in the ve-
locity region 2,v/v th,5 for different time instantst ~arbitrary
units!. Time normalized to the corresponding collision time is de
fined in Eq. ~11!. The case corresponds to the valuen521(s
52), U5a/r 2.

FIG. 3. The graph of the distribution functiong(v,t)
5 f (v,t) f M(v) normalized to the Maxwell distribution in the veloc-
ity region 2,v/v th,5 fop different time instantst ~arbitrary units!.
Time normalized to the corresponding collision time is defined
Eq. ~11!. The case corresponds to the Maxwellian moleculesn
50, (s54), U5a/r 4.
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function tails, asv→`, t→`.
In the present work, the relaxation to the equilibrium st

is considered on the basis of the nonlinear kinetic LFP t
equation~5!, which is the model of Boltzmann’s equatio
The model is based on the replacement of the exact c
sional integral by an integrodifferential equation of the LF
type. The fundamental criterion of approximation chosen
the proposed model is the number of identical moments
the exact and approximate collision integrals. This criter
is generally accepted for the construction of kinetic mode
The model equation~5! possesses the basic properties of
Boltzmann equation. Nevertheless, the natural sphere of
plications of this equation is in gases with interaction pot
tials of an infinite radius of action.

The formation and evolution of the distribution functio
tails are investigated for the arbitrary power-law potenti
U5a/r s where 1<s<4 (s51 corresponds to the Coulom
interaction of charged particles!. The initial distribution
function is located in the thermal velocity region. The co
structed approximate asymptotic solutionsf s(v,t) @Eq. ~18!#
have a type of a propagated wave to the high velocity reg
The wave front moves under the law~19!. The applicability
conditions~21! of the solutions~18! are given. The obtained
lle
e
e

li-

n
f

n
.

e
p-
-

s

-

n.

analytical solutions are expressed explicitly through the e
function. The analytical expressions for the wave front str
ture ~20! and for the wave front width~22! are dependent on
the interaction potential. Here, depending on whethers is
less than or larger than 2, the type of the distribution tail h
a strong pronounced wave character. Particularly, in the c
of the potentialU5a/r s with exponent 1<s,2, the solu-
tion u(v,t) has a stable wave profile for the velocity regio
v@v th during the relaxation process. And fors<4 the dis-
tribution function relaxation in the thermal and in the sup
thermal region occurs almost simultaneously.

The completely conservative finite difference scheme~25!
provides calculations without error accumulation. The er
in the conservation laws~24! is of the same order as th
rounding machine error. Numerical simulation results p
sented here are in good agreement with the obtained ana
cal asymptotic solutions.
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