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Relaxation of the distribution function tails for gases with power-law interaction potentials
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The relaxation of rarefied gases of particles with the power-law interaction potedtiats/rs, where 1
<s<4, is considered. The formation and evolution of the distribution function tails are investigated on the
basis of the one-dimensional kinetic Landau—Fokker-Planck equation. For long times, the constructed
asymptotic solutions have a propagating-wave appearance in the high velocity region. The analytical solutions
are expressed explicitly in terms of the error function. The analytical consideration is accomplished by nu-
merical calculations. The obtained analytical results are in a good agreement with the numerical simulation
results.[S1063-651X97)03712-4

PACS numbgs): 52.25.Dg, 52.65.Ff, 51.18y

I. INTRODUCTION AND STATEMENT I -
OF THE PROBLEM EzJ[f,f]
The relaxation of the initial distribution function to the =J dw dude uo(u,u)[f(v)f(w')
equilibrium state is a classical problem of rarefied gas dy-
namics that is employed, particularly, as a test for fusion —f(v)f(w)], t=0. 1)

numerical simulations[1-3]. The knowledge of the

asymptotic behavior of the solution of the kinetic equation isThe differential scattering cross sectiotu, 1) is a function
useful for many plasma physics problerf$,5]. Among of the relative speed>0 andu=cos9<[—1,1]. The con-
these are the problems that consider plasma-wave interastruction of the cross sectian(u,u) with the given interac-
tions for wave phase velocities larger than the thermal veloction potentialU (r) is a well-known problem of classical me-
ity (for example, the lower hybrid and the electron cyclotronchanics[13,14. It should be noted that experimental data
heating [6—8]. The electron acceleration process by a dcconcerning the real intermolecular potentials are very far
electrical field and the formation of runaway electron tailsfrom being complete, therefore, in the theory of the Boltz-
are also widely studied in the laboratory and in the spacénann equation, the cross sectiofu,u) is usually assumed
p|asma app]ication§_1];|_ to be a known function.

In the present work we study the relaxation of a space For charged patrticles, in the case of_scattering at small
homogeneous gas consisting of one sort of particle. Th@ngles 6<6,<1, Boltzmann's equation is reduced to the
treatment is based on the Landau—Fokker-Planck—type Fokker-Planck equatiofl5,1€, which in the general case
type) equation, which is a model of Boltzmann’'s equation has the forn{12]
for arbitrary interaction potentials, and briefly considered in 5
Sec. I. Starting from the one-dimensional LFP type equation a_f:Bi[ J qu aij_Uin(i_ i)f(v)f(w)J
in Sec. Il, we solve the initial value problem for the power-  Jt o u? dvj Iw; ’
law interaction potentiald) = a/r3, 1<s<4 and study the )
asymptotic solutions in the high energy region for long
times. The analytical calculations are carried out on a physi\-"’here
cal level of precision. All asymptotic results are confirmed
by numerical calculations with high accuracy in Sec. lll. The
conclusion follows in Sec. IV.

The kinetic Boltzmann equation is the basic equation for a
rarefied gas dynamics modél2]. In the absence of particle For the Coulomb interaction the divergence of the first inte-
and energy sources as well as their sinks, the spatially ungral in Eq.(3) is connected with the Rutherford cross section
form Boltzmann equation for the distribution functibfv,t) singularity atu=1. To make the integration ovérreason-
is able it is necessary to set finite limits. As a result of some

physical motivations, in Eq3) B=2me*L/m?, whereL is
the so-called Coulomb’s logarithm.
In this paper we use the model of Boltzmann’s equation
*Permanent address: Keldysh Institute for Applied Mathematics[17,18], which approximates the integral operapf,f] (1)

_8n 2 _ 1 ik-r
B—FJ dkkSUk, Uk—(ZT)sf drU(r)e . 3

Russian Academy of Science, 125047 Moscow, Russia. for arbitrary potentials by an integrodifferential operator of
TAlso at Federal University of Fluminense, GMA, 24020 Nifero the LFP type. Equatiof2) cannot be a generalized form of
RJ, Brazil. Boltzmann’s equation for arbitrary potential because the first
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integral in Eq.(3) diverges even for the “step” potential: can obtain the well known classical LFP equation for plas-
U(r)=Ug for r<ryandU(r)=0 forr>ry. mas[12,13. Finally, for the so-called Maxwell's molecules
The physical idea underlying the construction of a mode[1,14] (s=4, U~ a/r?) the exact solution of the approxima-
collision operator is as follows. Note that in Boltzmann's tion equation(5) is the solution of the exact Boltzmann equa-
tequation the only quantity depending on the molecular intion (1) [19].
teraction law is the differential cross sectiofiu,cosd). We The points enumerated above are on the credit side for the
compare the real gas of particles with its analog having aneonsidered model. However, the intermediate potentials of
other cross sectiorr(u,cosd)=0 for > 6, where <1 is  the modeled gas may considerably affect the various local
the scattering at small angles. Hence in the model Boltzmanproperties of the solution of the model equations and of
equation the exact collision integral can be replaced by th&oltzmann’s equation. Indeed, an equation of LFP type con-
approximationj[f,f]~|A[f,f][14r 0(6o)], as 6,—0. How- tains an operator of the diffusion type, which leads to instan-
ever, the “cut-off” cross sectiofr(u,u) is not very similar ~ taneous smoothing of discontinuities in the initial conditions,
to the cross sectionr(u, ) because for real intermolecular and for Boltzmann's operator with a short-range intermo-
potentials the contributions from scattering at large and smalecular potential such discontinuities are preserved, since
angles have approximately the same order of magnitudéhere is some number of particles not experiencing collisions
Nevertheless, the last approximation could be used for arbfor any finite interval. This distinction emphasizes that the
trary cross sections, if the fundamental criterion of the chohatural sphere for the application of the model equats
sen approximation in the proposed model is the number ofases with potentials of an infinite radius of action, since for
identical moments of the exact and the approximate collisiohese potentials Boltzmann's equation itself must also pos-
integrals. Really, the most important macroscopic characteS€ss some smoothing properties. That is why, in this paper,
istics of a gas are the first moments of the distribution funcWe study the distribution function relaxation tails using Eg.
tion. Then, the problem consists in an adjustment of the neWp) for the long-distance soft potentidls~ a/r®, 1<s<4.
scattering cross sectian(u,u) in order to achieve the coin-
cidence of the macroscopic characteristics of the original Il. ASYMPTOTIC SOLUTIONS

with that of the model gases: . . o
We restrict ourselves to the case of the isotropic distribu-

. . tion function f(v,t)=f(|v|,t) and consider the initial-value
J dV¢(V)J[f,f]:j dve(v)I[f,f], (4)  problem for the finite initial conditions. At the instat 0,
the initial functionfy(v)="f(v,0) is located in the thermal
where ¢(v) is an arbitrary function. When this problem is Velocity regionv ~vy,. Our investigation is concentrated on
solved, then instead of Boltzmann’s integral equation, théhe formqtlon and evolution of the distribution function tails
simplified collision integral of the LFP type can be consid-for long times, agv|—c.

ered: For the isotropic distribution function, E¢p) can be writ-
ten as
~ T[ff]”“d (W)(U?8;— ujuy)
—= == w uo(u)(u®dj; — u;y;
at b8 au, I ﬂ_ii}f‘” af(v)
) ’ i i Zavlvlo dwQ(v,w)| wf(w) 70
X((?_vj_a_Wj f(V)f(W)} (5) . af (w) ,
of(0)——= 1, @)
Here

where the symmetric kern€(v,w) is

U(U)=J du dgo(u,u)(1—u) .
a

Q(v,w)= §03W3j_1dﬂ(1—M2)U0'(U),

1 2
=§f du déo(u,u)(1—pu?). (6)
u?=v2+w?—2vwu.

The moments of the exact collision integdlf, f] [Eq. (1)] The above equation should be completed by the conser-
with its modell[f,f] [Eq. (5)] coincide up to the tensor third | iion laws

order moment as well as up to the fourth order scalar mo-

ment irrespectively of the interaction potential form. That is, P

the equality (4) is valid for the functions ¢(v) p=477f dvv?f(v,t)=const,
={vjvy,viv,, 1,k1=1,2,3;v*. The same conservation 0

laws of the particle density, the moment and the energy, as

i Amm [«
well as the BoltzmanrH theorem are valid for the model _ dov?f(v,t)=const, t=0, @)

equation(5). It leads to the correct moment equations up to 3p Jo
Grad’s twentieth-moment approximati¢@4]. By inserting

the “cut-off” Rutherford cross section o(u,6)  wherep is the particle density and the temperatiirés ex-
=(e?/mu?)?sin~%(6I2) 5[ 0— O] into Eq. (6) we geto(u) pressed in units of energy. The unique equilibrium solution
~8m(2e?/mu?)?L, whereL=1Ing,% as6,,,—0, and one of the problem is the Maxwell distribution function

min?
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2

fM<v>=p<2w>3’2um3ex;{—;—2

Uth

the small fact0|x8’2<1 appears before the highdtte sec-
, U=V T/m. ond) derivative on the right hand side of E(.2). From this
it can be concluded that the equation changes its type and
works like a transport operator in the high velocity region
x—o, Having this in mind, we introduce ifl2), for sim-
plicity, the formal parametes before the second derivative.

We construct the asymptotic solution of K@) for a long
period when the relaxation in the thermal velocity region is
practically finished. Therefore, in the high velocity region

v>v 4, the nonlinear equatiof¥) can be approximated by the The result it
linear equation ou x1Pau e du
—+ —=- . (13
o pl o , T of ar p dx 209X
— = ——+4uf]]|.
2oV T\ g - ; -
at 8y2 dv v Now, if we let e~0, Eq. (13) collapses into a first order

i i ) _equation, and the equilibrium solutiar, (x) is simply trans-
Here we take into account the fact that in the high velocityported over the characteristics of this equation. The typical
region, the kemelQ(v,w) reduces t0Q(v,w)—7w%*  sojution has the form of a step function:
o(v)/6, asv —». Furthermore, for the power-law potentials,
we employ the cross sectian(u, ) =gs(u)u~ %S [14]. By 4—s
inserting this expression in E¢7), asv>vy,, we obtain for u(x, )=~ [ rP—xJ, P=2, 5, 1lss<4 (19

the last equation
The approximate solution(14) reflects correctly the
f _pgs 1 9 (9)  asymptotic law under which the wave front moves

a8 v2 dv

m Jdv

X¢(7)~ 7

where the notation
but does not describe the wave front structure.
1 5 In order to analyze the front structure, we shall transform
qs=277f_1dﬂgs(ﬂ)(1_:“~ ) (100 Eq.(13) using the previously obtained information about the
wave front law. By setting

is used. For instance, for the Coulomb potentsat 1, for-

. _p
mula (10) yields g;=32me’L/m. Then, from Eq.(9) the - X—7 u(x, 7= d(z,7)
well known linear LFP equation for plasmas follows. Further \/; ' ' T
we shall consider the equatidf) for the arbitrary interac-
tion potentialsU =e?/r®, 1=s<4. we can rewrite Eq(13) for the new functiong(z,7) as

For convenience we transform E@) in a suitable way

by intro_ducing the_ n_ew_dimensi_onless variables for the ip 1 (92¢ 1 4-P_1 2\ @-p) i
speed, time, and distribution function: _— = 1++Ve— —1|—.
(4+s)/2 (4-9)/2 or 292 p ‘/; P 7z
+5s)/2s _ —S)lzs
=2 xarsms - _PIs 478 X (15)
Uth ’ 8 S | U ' o )
Now let & tend to zero bukz remain finite. Then, under this
f(v,t)=Ffy(v)u(x,7), (12) conditional limit, Eq.(15) takes the form
where X=2s(4—s)/)(4+5s)?, and fy(v) is the Maxwell ap 1|3 zdp 1-p
distribution. By inserting Eq(11) in Eq. (9) we obtain for o1 2\ o2 YiaZl 7T ZT : (16)
the distribution functioru(x, 7)
U X Pou 192U 4—s The boundary conditions for the functiaf are the follow-

— —Z——  p=2——, 1<s<4. (12 ing:¢$—1, asz—— (behind the wave froptand$—0, as
gt p Ix 2 gx? 4+s z— (before the wave front The functiong(z,7) can be
constructed as a solution of an initial value problem for time
The type of the last equation gives us an idea about the>1 with the corresponding initial conditioms(z,1)= 7
wave character of a solution. Really, it is worth recalling that(— z) [compare with functior{14)]. By the proper changing
we are interested in the relaxation of the distribution functiongf variables, Eq(16) can be reduced to the heat equation

tails in the high energy regiox>1. Otherwise, we consider [20]. After that, the solution of Eq(16) can be obtained in
the period7 when the relaxation process is practically fin- the self-conserved form:

ished in the thermal velocity regior<1, i.e., the period

whenu(x,7)~1. Hence we solve the problem in the super- (1—y) |2
thermal velocity regiorx>1 in which the slow establishing d’(Z,T):(D(Z(m) ) ™1,
of the equilibrium solutionuy,(x) =1 occurs, andi(x,7)—0

asx—, The conditionx>1 can be taken into account by 1 (o

the new variabl&=x/xq and7= 7/x§, wherex,>1 is some d(z)= —f dy exp(—y?).
characteristic scale of the problem under investigation. Then, \/; z
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For y=1 only the first term is retained in the last expression

equal to 1. After this, one an find the quasistationarysince the coefficients of the sum vanish for mt= 2.

x— 7P

2

asymptotic solution of Eq12)
1-p
™1, y=2—-:..
p

=

In order to understand when solutigh?7) is valid, let us

1-y

T—77

u(x,r)wcb(

formulate again what was previously assumed. We consider

the kinetic equation in the high velocity regio>1 for a

time period that is much greater than the so-called collision

time =1 and in the vicinity of the wave front point;
~7P: (x— )< 7P The last inequality justifies the
transition from Eq(15) to (16) under the conditiom=1 and
gives us the following restrictions. The obtained solution
(17) is inapplicable, first, for the cold particles within the
velocity interval 0=x<x; and, second, for the particles out-
side the velocity regiorx=2x;. Practically speaking, both

Thus, having assumed the conditie® 1, we obtain the
simplified asymptotic solutioru(x,7) that will vary as a
function of y:

f (X_Tl/p) 1_,}/ 1/2
o AT )
(X—Tllp) 1 1/2
ux,7)~¢ P T(TIM) ) y=1,
(x— 7_1/p)( y— 1) 12
O| ——— , >1.
L V2 7 ) 7

Finally, we formulate the results obtained above for the
variablesv, t and for the distribution functiofi(v,t). Con-
sidering the LFP type equatiof¥) for the soft power-law

these restrictions have a small interest because with a gogubtentialsU~ a/r®, 1<s<4, we have constructed the ap-

accuracy, it may be reasonably supposed thHat7)~1 in
the first regionx<x;(7), andu(x,7)=~0 in the second re-
gion x=2x:(7).

We can simplify formulg17) taking into account the con-
dition 7>1. Since the final result will depend on we con-

sider three cases for the expression within lightface large

parentheses in formulél?7). For y<1 the expression (1
—y)(r—7") " tendsto (+ y)r %, and fory>1 it tends to
(y—1)7". The case ofy=1 is distinctive of others. Note
that y=1 corresponds te= 2. To derive the formula for this
limiting case, we rewrite the expressions as follows:

k

o [(1=y)In7™
Z m!

(1= (r=7) =1~ y)( TV

proximate asymptoti¢asv —oo, andt— <) solution

m |32 mo?2
fS(U,t)Np m ex —F
m 1/2 m (4—s)/2s
XU(U ? , %(?) . (18

The constant valug, is defined in Eq.10). The function
u(v,t) has the form of a propagated wave front that moves
under the law

4—3

—t
S

s/(4—s)
) (19

Uf(t):(

= r Z (1=y™In"r The functionu(v,t) is descried by three cases that are de-
Y .
m=1 m! pendent on the exponest
|
( —
Pl 2 s(2—s) va(4+s)/25 1=ss<2,
4+s '
u(o,)=4 PGy Y232, s=2, (20)
_ 1/2 _ (4*3)/25
@ (2(5 2)) 2s(4—s) v(f4—s)/sv(4+s)/25 . 2<s<A4,
L 4-s (4+s)?
where
_v—ug(t)
v(t)
The applicability conditions for the solutiof20) will take the following form of the enhanced inequalities:
v>1, vit)>1, |v—v(t)|<vs(t). (21

Noting thatu[v,(t),t]=1/2, we, as usual, define the front width as

u(v,t)

Ary=2 du(v,t)/dv

v=

v(t)

du(v,t)
dv

‘—l

UV=0¢
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Therefore, for the cases considered above we obtain

Vrsi(2-s), 1ss<?,
Ag(t)= V(D) ) s=2, o
s \ Y9 25(4—s)](s~2s
(3_2) Zl (4+S)2 [Uf(t)]z(s—Z)/s' 2<s< 4.

As can be seen, the front widtk(t) is substantially depen- with
dent on the exponerd in the interaction potential. Thus,

A(t) is a constant value for€s<2. Therefore, in this case a(v,w)=(n+4)[ow—(v*+w?],
the solutionu(v,t) has a character of a wave with a stable S
profile that does not spread for at-0. This fact, fors=1, b(v,w)=(n+4[vw+ (v +w)], n=(s—4)/s.

was discovered in the numerical calculatigiv,18 and a
corresponding analytical solution was constructed. Startin
from the values=2 the front width begins to grow in time
but has a weak logarithmic dependendg=~- JInt. The be-
havior of the solution still has the wave type. The fron
propagation velocityv¢(t) remains sufficiently larger than
the velocity of its spreading:

gositive values oh correspond to the stiff interaction poten-
lals (s>4), and negative values of correspond to the soft
interaction potentials (£s<4). The special classes of the
tparticle interaction, which are particularly explored in our
numerical calculations, should be mentioned. These are
charged particless=1(n=—3), and Maxwell's molecules,
s=4 (n=0). For the chosen dimensionless variables the
IA¢ 1t dA; 1 Aqt) density and the energy conservation laws are

doilot  du;  2Inug(t) v’ S , ,
p=J dv v?f(v,t)=1, 5=f dv v*f(v,t)=1, t=0,

In the case 2 s<4 the velocity of the wave front propaga- 0 0
tion dv¢/dt and the velocity of its dispersionA¢/dt are (24)

approximately equal: respectively. The thermal velocity is equal to unity,=1,

IA( ot dA, 4\ A, and the equilibrium solution of E423) is
—=—=( ——=|—, 2<s<4.
dveldt  dug SYRK: 3\ 372 3
fM(U)= —1/2(5) exp{ —Evz).
Obviously, in the case of Maxwell's molecules=4, the ™
behavior of the distribution function tail does not have the o o o ]
real wavelike character. At the initial instant, the distribution function is located in

The results of the numerical calculations are presented ifl€ thermal velocity region and has &function type:

the following section. They illustrate the obtained analyticalf(v.0)=8(v —1)/v?. o
results. To compose the difference scheme we replace the infinite

velocity interval[0,) by the finite segmentO,L], which is

chosen so as to take into account the high-energy particles.

As a rule, it is sufficient to také~(7—-8)v,. In the con-
The purpose of the numerical calculations is to compareidered domain we introduce the space-time mésh

the evolution of the same initial distribution function inagas=v;+hi.¢, i=1,2,...M—1,v,=0, vy =L;t“" 1=t*+ 7,

of particles with different power-law interaction potentials. k=0,1, . .. {°=0} and define the mesh functiomé, S,k[f].

[lI. NUMERICAL CALCULATIONS

We consider Eq(7): The following notation will be usedf; ,,=0.5(f,;+f;).

We approximate the integral by the trapezoid formula and
of 1 9|1 the derivatives by the central differences. Applying the inte-
it ks LSUN IR (23 grointerpolation method to Eq23), we obtain the implicit
ot 2p2dv|v .

difference scheme

where _
fli-fct 1 {Si+1/2 S (25)
oo af(v af (w T2 1 Viiwol
quv]:f dWQ(U,W) Wf(W) ( ) Uf(v) ( ) T Uihi+1/2[vl+l/2 Uit+12
0 Jdv ow

The boundary conditions ar®;,=0 at the pointv =0 and
For the case under consideration, the symmetrical kerndly=0 at the pointy =L. The initial distribution is approxi-
Q(v,w) can be written as follow§18]: mated on the mesh in the usual way, that is,
2(viy1—vi—q) ifvi=1,
0 otherwise.

a(v,w)(v+w)"" *+b(v,w)|v—w|""*
(n+2)(n+4)(n+6) '

QW)= f(vi,0>=[
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g(v,tyro

FIG. 1. The graph of the distribution functiom(v,t)
=f(v,t)/fy(v) normalized to the Maxwell distribution in the ve-

locity region 2<v/vy<<5 for different time instantd (arbitrary ) | ) ' . h
units). Time normalized to the electron-electron collision time is 10CIty region 2<uv/v<5 for different time instants (arbitrary

defined in Eq(11). The case corresponds to the Coulomb interac-Units). Time normalized to the corresponding collision time is de-
tion n=—3(s=1), U=alr. fined in Eqg.(11). The case corresponds to the valoe —1(s

=2), U=alr?

This approximation makes the number of particles and ki-
netic energy, as well, equal to unity. The difference schemeore relaxation and of the distribution tail relaxation are
is constructed on a symmetric pattern, and has a second ordgractically the same. In this case, the wave propagation ve-
approximation with respect to the velocity spd@d]. The |ocity and the speed of the wave diffusing are almost indis-
completely conservative difference scheme used h22¢  tinguishable(Fig. 3). Practically, the relaxation of the distri-
allows us to make calculations without numerical error accupution function in the thermal and superthermal velocity
mulation, except for machine errors. It must be emphasizegegions occurs simultaneously.
that the error in the numerical analog of the conservation
laws (24) is of the same order as the rounding machine error.

Now we briefly describe the results of numerical simula-

tions. An equation of the LFP type contains an operator of The relaxation process of a space uniform isotropic rar-
the diffusion type, which leads to instantaneous SmOOthlng Oéﬁed gas compose of one sort of partide is Consid&m_
discontinuities of the initial conditions. Very rapidly, the so- trical neutrality is supposédThe paper is exclusively con-

lution acquires a quasiequilibrium form in the thermal veloc-cerned with the asymptotic behavior of the distribution
ity region (O<v=<2) at the instant, that corresponds to the

so-called collision time. The characteristic tinhg weakly
depends on various values of the exponenh potentials g(v,t)1.0 -
U~ a/r®. In this region the distribution functions are close to .
each other throughout the entire relaxation process for dif 0.8 —
ferent valuess. As is expected, the main difference is ob-
served in the region of the distribution tails for>2. For
better representation of the numerical results in the high ve :
locity region, we introduce the functiong(v,t) 1
=f(v,t)/fy(v), which is the analog of the functiom(v,t) 0.4
in Eq. (18). Figures 1-3 show graphs of the functiay(,t)

in the velocity region 2 v <5 for different time instants and

FIG. 2. The graph of the distribution functiorg(v,t)
=f(v,t)/fy(v) normalized to the Maxwell distribution in the ve-

IV. CONCLUSION

0.6

for various parameters. All figures demonstrate a wave 02

spreading ofg(v,t) into the region of high velocities. For T

charged particles with the Coulomb interactios—=(1, n= 0.0 . 1
—3,U=alr), the functiong(v,t) is shown in Fig. 1. The 2.0 V/5'°
solution has the character of a propagated wave with a stab Vin

profile. For the potentials with £s<2, the tail relaxation

proceeds more slowly than the relaxation of the distribution £, 3. The graph of the distribution functiom(v,t)
function core. For the values<2s<3 the evolution of the  —¢(, t)f,,(v) normalized to the Maxwell distribution in the veloc-
distribution function tail still maintains the wave character. Itity region 2<v/v,<5 fop different time instants (arbitrary unit.

is shown in Fig. 2 that the wave front width grows slowly Time normalized to the corresponding collision time is defined in
with time for the cas&s=2, n=—1, U=a/r2. For the stiff Eq. (11). The case corresponds to the Maxwellian molecules
potentials 6=4) the characteristic times of the distribution =0, (s=4), U=a/r*
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function tails, ax — o, t—o, analytical solutions are expressed explicitly through the error
In the present work, the relaxation to the equilibrium statefunction. The analytical expressions for the wave front struc-
is considered on the basis of the nonlinear kinetic LFP typdure (20) and for the wave front widtl22) are dependent on
equation(5), which is the model of Boltzmann's equation. the interaction potential. Here, depending on whethas
The model is based on the replacement of the exact colliless than or larger than 2, the type of the distribution tail has
sional integral by an integrodifferential equation of the LFPa strong pronounced wave character. Particularly, in the case
type. The fundamental criterion of approximation chosen inof the potentialU = a/r® with exponent ks<2, the solu-
the proposed model is the number of identical moments ofion u(v,t) has a stable wave profile for the velocity region
the exact and approximate collision integrals. This criteriony >vy, during the relaxation process. And fex4 the dis-
is generally accepted for the construction of kinetic modelstribution function relaxation in the thermal and in the super-
The model equatiolb) possesses the basic properties of thethermal region occurs almost simultaneously.
Boltzmann equation. Nevertheless, the natural sphere of ap- The completely conservative finite difference schets
plications of this equation is in gases with interaction poten{provides calculations without error accumulation. The error
tials of an infinite radius of action. in the conservation law$24) is of the same order as the
The formation and evolution of the distribution function rounding machine error. Numerical simulation results pre-
tails are investigated for the arbitrary power-law potentialssented here are in good agreement with the obtained analyti-
U=a/r® where I=s<4 (s=1 corresponds to the Coulomb cal asymptotic solutions.
interaction of charged particles The initial distribution
function is located in the thermal velocity region. The con-
structed approximate asymptotic solutidnév,t) [Eq. (18)]
have a type of a propagated wave to the high velocity region. This work was partially supported by the State University
The wave front moves under the 1a@Q). The applicability of Rio de JaneirdUERJ), and Russian Federation Investiga-
conditions(21) of the solutiong18) are given. The obtained tions (RFFI) Grant No. 94-02-06688.
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