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Simple model of evolution with variable system size
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A simple model of biological extinction with variable system size that exhibits a power-law distribution of
extinction event sizes is presented. The model is a generalization of a model recently introduced by Newman
[Proc. R. Soc. London Ser. B63 1605 (1996]. Both analytical and numerical analysis show that the
exponent of the power-law distribution depends only marginally on the growthgratewhich new species
enter the system and is equal to that of the original model in the ¢jmite. A critical growth rateg,., below
which the system dies out, can be found. Under these model assumptions stable ecosystems can only exist if
the regrowth of species is sufficiently faf81063-651X97)09912-1

PACS numbsdis): 87.10-+e, 05.40+]

The fact that extinction events seem to be episodic on all To our knowledge, models with variable system size have
scales, as noted by Ra[ip], has aroused much interest in the only been studied by Vandewalle and Ausld8] and by
last few years. Throughout the history of life on Earth thereHead and Rodgefd.0]. But in both cases the models do not
have been many small extinction events, but very big onegxplain the distribution of extinction events seen in the fossil
have happened only rarely. A histogram of the frequency ofecord. The model of Vandewalle and Auslool is a tree
extinction events of different sizes indicates a power-law disimodel that grows infinitely, while the model of Head and
tribution p(s)=s"", wheres denotes the number of species Rodgers reaches a steady state in which no major extinctions
that go extinct in one event ami{s) denotes the frequency OCCUr- AS far as we know, none of the models with variable
of events of sizes. system size up to now considered can explain the distribution
There are two mechanisms to explain mass extinctionsc.’f extinction events seen in the fossil record. .
On the one hand, it is argued that coevolution can drive large But every mechanism prqposed .for' th? explane}tlon of
proportions of an ecosystem into extinction and produce oxNass extinctions must) explain the distribution seen in the

tinction events on all scales. Ecosystems might drive themf—OSSII record, andii) face the fact that the number of species

selves into a critical state in which a small char the is not constant, but is reduced significantly after a major
: . i I " ge‘;).,” extinction eventA priori it is not at all clear if a mechanism
mutation of a single specigsan trigger an “avalanche” that

L ) roducing a certain distribution of extinction events will
may span the whole system. For this kind of dynamic Ba how the same distribution when the constraint of a fixed

etal. [2] have coined the name self-organized criticality system size is released. Therefore it is very important to
(SOOQ. Several simple models of evolution exhibiting SOC study models with variable system size.

have been proposed, among them models by Kauffman and we propose here a generalization to the coherent noise
Johnser{3], Bak and Sneppef¥], and Manrubia and Pac- model used by Newman, where the refilling of the system is
zuski[5]. done in finite time. Newman’s model is defined as follows.

On the other hand, it is argued that mass extinctions findChe system consists ®f species, each possessing a thresh-
their origin in external influences. That situation is modeledold x; of tolerance against stress, chosen from a probablity
by some recent work of Newmdi6]. He used a model be- distributionpy,.s{X). At each time step, a stressis gener-
longing to the new class of so-called “coherent noise” mod-ated at random with a distributigng,.<{ 7), and all species
els recently introduced by Newman and SneppdnThese with x;<<# are removed from the system and immediately
models are clearly not SOC but they nevertheless show eeplaced with new ones. Furthermore, a small fracfioof
power-law distribution of avalanche sizes. Newman com-+he species is chosen at random and given new thresholds.
pared his model with the analysis of the fossil record per-That corresponds to a probability éffor every species to
formed by Raup. The exponentclose to 2 that arises in this undergo spontaneous mutation.
model is in good agreement with the fossil record. Thus In our model the fraction of species with<<# is re-
Newman came to the conclusion that there is no evidence fanoved permanently from the system, but in every time step
SOC as the major driving force for extinction. there is some growth of new species.

It can be generally observed that the majority of the mod- Note that the generalized model, like the original one,
els for biological evolution and extinction up to now consid- does not include explicitly interaction between species.
ered work with a fixed number of species. This is a majorThere are two reasons to justify this model assumption.
drawback since it is in clear contrast with the biological re-Firstly, previous worf11] has shown that the coherent noise
ality. After a major extinction event, the number of speciesdynamic is very strong and can dominate interaction dy-
in the ecosystem is significantly reduced, and the process afamic. Secondly, the investigation of a model without inter-
regrowth of new species can take a long time. The fossihction, which can reproduce important features of the fossil
record [8] shows that the process of growth of species isrecord, helps to clarify the influence of species’ interaction
commonly interrupted by extinction events. on mass extinctions.
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FIG. 1. The evolution of the system sikkin time. The param- FIG. 2. The distribution of extinction events for a system with
eters argg=4x10 °, ¢=0.05,f=10"°, andNpa—=1000 with ex-  exponentially distributed stress;=0.05 andN,,,=10 000. The
ponentially distributed stress. growth rate is, from bottom to tog=4x 105, g=0.002,g=10.

It can be seen that the power-law behavior does depend only mar-

The amount of newly introduced species per time stegjinally on the growth rate. The curves have been rescaled so as not
should be proportional to the number of already existing speto overlap.

cies, with some constant of proportionality (the growth

ratg. This gives an unbounded exponential growth, which isoccur. A plot of the distribution of extinction eventsig. 2)

in good agreement with the data of Bent@i. However, shows a power-law decrease. Variation of the growth rate
since recourses on Earth are finite, the growth of the speciasyer several orders of magnitude does change the exponent
must be limited as well. Therefore, we believe it is justified only slightly.

to introduce a logistic factor (Z N/Ny5), whereN,,, is the We can explain the exponent of the power law by extend-
maximal number of species that can be sustained with thﬁqg the analysis of Sneppen and Newman to our model. The
available resources. With this factor it is possible to workprobability that species leave a small intendx of the

with a finite model. A few comments on the fact that in time-averaged  distribution RX) is proportional  to

S?vtgrrmela}ngmax is probably not constant in time will be [f+pmov(-,(x)]ﬁx)a wherep,o.{x) is the probability that a
For the above reasons we want our system to grow aq{s-ifaetc":fe‘;vggrégre;heolg‘;‘:‘ng'ttir?gsg,r eZ?' tLheebl g;stae\r;an?t;e
ing to the diff tial ti ; . A
cording to the differential equation «(1—N/Nya0 - The rate at which the intervalx is repopu-
N lated is then proportional fof (1 — ) + ga(1— @) |Pinresd X)
n) (1) in the limit At— 0. In equilibrium the rates of species’ loss
and repopulation balance, and we find the master equation

Since our model is discrete, in time as well as in the number _ -
of species, instead of Eql) we use the corresponding dif-  [f+PmovdX)1p(X) =[f(1—a)+ga(l—a)]pwmresiX)-
ference equation 3

N(t)N a9t Note that we had to replace by its time-averaged value
No N 1) —N(1), (2)  and that we can always take the lintit—O0 in the steady
max state. After rearranging E@3), we find

AN(t+At)=

whereAt is one simulation time stefusually set equal to)1 Ditreci(X)

As AN has to be an integer, we use the fractional park f p(X)=[f(1—a)+ga(l—a)]——melZ (%)

as the probability to round up or down. In the lingjt-0 f+ Prmove X)

(which corresponds tat—0) Eg.(2) reduces to Eql). In

the limit g— Eq. (2) becomesAN=N,,—N, which  Equation(4) can be solved if we choose how to normalize

means that our model reduces to the original one in the limijp (x) and a. Since we can think of the system as containing

of an infinite growth rate. Nmax SPecies at any time step, from which there Mractive

~ Now we can formulate our model: we skt=1. Atevery  andN,,.—N dead, it makes sense to normalize the sun of

time step, a stress valug is chosen and all species w_|th and p(x) to unity, viz.,

X;<n are removed. Then, an amouliN of new species is

introduced into the system. Finally, a fractiérof the spe- o

cies is assigned new thresholds. 1= a-l—j p(x)dx. (5)
A typical evolution of the system sizd in time is pre-

sented in Fig. 1. The process of growth of new species is o —

constantly disrupted by small extinction events. From time tol Nat implies, nevertheless, that we do not normaji{g) to

time, bigger events, which disturb the system significantlyunity. Rather,[ p (x)dx gives the ratioN/Nay.
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— FIG. 4. The time-averaged distribution(x). The parameters
FIG. 3. The average system sikevs the growth ratg. We ;5e4 areg=0.002, o=0.05, andf=5x10"* with exponentially

. 2 . AP
used exponentially distributed stress with=0.05 andf=10"".  gisipyted stress. The solid line is the analytic expression, the
The solid line is the analytic expression, the points are the S'mU|aboints are the simulation results
tion results. '

o o g=0.002, 7=2.05+0.1 for g=4x10"° (for exponentially
For a we find, apart from the trivial solutiom=1, the  distributed stressg=0.05,f=10"°, Fig. 2. The exponent
solution @= (A— f)/g, with decreases slightly with increasirgy For g=10, we have
already good agreement with the exponent found by New-
Pinrest X) man and Snepp€lY] for g=c°, viz., 7=1.85+0.03.
dx. (6) An interesting feature of the original model by Newman
and Sneppen is the existence of aftershocks, a series of
smaller events following a large one. These aftershocks have

_1:
f+ Pmovd X)

For p(x), we find their origin in the fact that after a large event the introduction
of new species reduces significantly the mean threshold

Hx)=A( 1— AT\ PestX) _ 7 value, thus increasing the probability to get further events.

g /f+PmovdX) Since the existence of aftershocks is a result of the immedi-

. _ ate refilling of the system after an event, we cannot neces-
We thus have the interesting result that apart from the overallarily expect to see aftershocks when the refilling is done in

factor 1— @, which determines the average system size, thdinite time, especially at a small growth rate. Numerical
shape ofp(x) is identical to that found by Sneppen and Simulations show that there are aftershocks for larger values
of g, but wheng approacheg., aftershocks cannot clearly

Newman. Since only the shape(x), but not the overall ) o . . .
factor, is responsiblg for the r?:\sve)r-law distribution of ex- _be |d§nt|f|ed anymore. The region where this happens IS that
tinction events(for details sed7]) we find that, within the " Which the average system size decreases rapidly ith

time-averaged approximation, the exponerdf the power- For these values af, the typical time the system needs to

e < Gt e sane o e vl sl T s s vt s
even for very smalby. yp | - g.

If we take the limitg—os in Eq. (7) we can restore the 3, the region in which we do not find aftershocks is between

—q — -5 _ —4 : )
expression found by Sneppen and Newman, which was to be glc—f1.3>< 10 arf1d ab?ut.g—5>< %O ) _/?hltyplctal ex
expected since our model reduces to the original one in th4t'P'€ Tor a SEries ot events in a system vgthlose tog. IS

limit. In the region of very smalyj, we can read off from Eq. presented in Fig. 5.

(7) that the system breaks down at a critical growth rate Snheppen and Newman argued that the existence of after-

go=A—f. This is the case when the growth rate is so smaIIShOCkS might provide a measure to distinguish between

that the regrowth of species cannot compensate the succ cqherent-nplse driven systems and SOC systems. This is cer-
. .2 : ) ainly true in the sense that systems exhibiting aftershocks
sive extinction events. Every system wigk< g, will even-

A .__are better candidates for coherent-noise driven systems rather
tually end up withN= 0, regardless of the number of species han for SOC B imulati h hat th
at the beginning of the simulation than for systems. But our simulations show that there
: . ) e systems without clear aftershocks that still should be
For the simulation results presented here we have use

) - . ~~Classified as coherent-noise driven.
exponentially distributed stress only, €. We have focused on logistic growth since we believe it is
P stresé 7) = €Xp(— /o) a. We did simulations withN,,,,, be- 9 g

. suitable for the study of mass extinctions. In principle it is
tween 1000 and 10 Oopjlgure 3 shows the dependence Bﬂssible to use different types of growth. We have done
the average system siZ¢ of g. We can clearly see the some simulations with linear growth, where in every time
breakdown of the system gt . A measurement of the time- step a fixed amount of new species is introduced into the
averaged distribution of thresholggx) is presented in Fig. system, as long ad <N,,,.. These simulations indicate that

4. The exponent of the power-law distribution of extinction the respective type of growth used does not affect the appear-
events is found to be=1.9+0.1 forg=10,7=2.0x0.1 for  ance of a power-law distribution with exponent almost inde-
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be to chang&\ ., after every extinction, e.g., up or down by
chance and by an amount proportional to the size of the
event. This is motivated by the fact that bigger events are
expected to be correlated with a more profound restructuring
of the ecosystem, and as simulations show we still find
power-law distributions with exponents=2. The behavior
of such a system has a very rich structure with long times of
relatively little change(stasi$ and sudden bursts of evolu-
tionary activity (punctuated equilibrium where a major ex-
tinction event is followed by a regrowth of species to a sys-
tem size much bigger than the one before the event. The so
found curves of the system si2¢ agree qualitatively well
with the fossil record8].

We have generalized a coherent noise model to a model

FIG. 5. A series of extinction events. The parameters used argith variable system size. The most important feature of co-

g=4x10"% ¢=0.05, andf=5x10"* with exponentially distrib-
uted stress. Aftershocks cannot clearly be identified.

pendent from the growth rate. But whether aftershocks a

herent noise models, the power-law distribution of event
sizes with an exponent close to 2, does not change under the
generalization. This means that the validity of Newman’s

approach to explain biological extinction with a coherent

h n tem with linear arowth aftershock n b?\oise model is not affected by the regrowth of species in
choose. In a syste ear gro altershocks can by time. An interesting new feature that emerges from a

seen clearly even for small growth rates. . . variable system size is the existence of a critical growth rate
If we want to use a coherent noise model with variable

system size as a model of biological evolution, some remarkgg

about the meaning dfl,,,, are necessary. The fact of allow-

ing the regrowth of species in finite time, instead of refilling

the system immediately, represents a first step closer to re

ity. But for ecosystems it is certainly not a good assumption

to keep the maximal system sikg,,, fixed, since the num-
ber of species an ecosystem can contain depends on the

. Systems witlg<<g. will always end up withN=0 after

me time. Therefore in a world in which the regrowth of
species is too slow to compensate external influences no
table ecosystems can exist. In the framework of our model
ve conclude that the process of mutation and diversification
of species at sufficiently high rate is necessary for the stabil-
iil'gx of life on earth.

teraction of species themselves. Therefore, a next step could We thank Stephan Altmeyer for stimulating discussions.
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