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Nonexponential dynamic relaxation of randomly branched polymers in good solvents
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Monte Carlo simulations were carried out to study the dynamics of randomly branched polymers in good
solvents. Two types of time scales were observed: fast relaxation times corresponding to the internal contrac-
tion motions and slower relaxation times corresponding to the overall rotational motions of the polymers. The
former is associated with autocorrelation functions that exhibit nonexponential decay behavior, a signature of
the dynamics of random systems. The latter is associated with the usual exponential decay behavior, typical of
linear or regularly branched polymef§1063-651X97)04912-X]

PACS numbes): 61.25.Hq, 61.20.Ja, 64.60.Ht

A wide range of naturally occurring and artificially syn- also determined and compared with scaling laws. In addition,
thesized polymers have randomly branched structlked  they tried to analyze the simulation data for the overall rota-
(see Fig. 1 for a sketghThe dynamic relaxations of various tion of the molecules. Unfortunately, the time duration of the
autocorrelation functions are important measurements usegbservation was not long enough for a conclusive determi-
to understand the microscopic motion of polymers under difnation of the relaxation behavior associated with the rota-
ferent physical conditions. For polymers of any structuretional motion. In this study, we examined the dynamic relax-
moving in a good solvent, the overall motion of the entireations of RBP’s at both short- and long-time scales.
polymer can be quantitatively described by the diffusive mo- For regularly branched or linear polymers, the analytic
tion of an object of radiusS, whereS is a characteristic calculation of various relaxation times is strongly related to
radius of the polymer. The internal relaxation modes, conthe identification of the primary normal-mode vibrations of
nected to the internal degrees of freedom, are closely corthe molecule in the condition[12]. As early as 1959, Zimm
nected to the structure of the molecule and are usually difand Kilb studied the normal mode relaxation time of star
ferent from one type of polymer to another. The randomnesgolymers in the condition[13]. Recently, this has also been
in the structure of randomly branched polymers produces aflone for star-burst polymers by Cai and CHéd]. The in-
interesting yet complex feature: The autocorrelation funciroduction of the excluded-volume interaction may signifi-
tions associated with internal degrees of freedom could excantly alter the scaling relation between, for exampland
hibit, as observed in the current study, a nonexponential rethe total number of monomebs, but the newr’s can always
laxation that is characteristic of many other randomlybe traced back to theif condition counterpart. There is no
disordered systems such as spin glag8sand randomly previous theoretical determination of the relaxation phenom-
sequenced, proteinlike polymew]. Despite current interest €na in RBP’s, even for the simplest case of a phantom poly-
in randomly branched polymef®BP’s) [1,2,5-9, the dy- mer in the ¢ condition. The main difficulty is conceptual:
namics of such molecules is not completely understood. Ifdow does one identify the normal modes for a randomly
this paper we present our recent results on the numeric&ltructured object? Computer simulations, however, can avoid
simulations of the Rouse dynamics of RBP’s. such difficulties by directly observing various autocorrela-

Bearing some similarities to RBP’s are regularly branchedion functions numerically.
polymers such as star and comblike polymers: All have over-
all spherical conformation and more than one relaxation
time. Grest and Murat studied the dynamicsfedrm star
polymers numerically by implementing a molecular-
dynamics(MD) simulation method10]. In particular, they O
have proposed characterizing the dynamic relaxation process
by using three different time scales: the elastic relaxation
time 7, rotational relaxation timer,,;, and entanglement

relaxation timer,,. These relaxation times are expected to Q
be short ), long (7o), and ultralong ¢e,) due to the
different physical mechanisms involved. The MD simula-
tions produced numerical results for observing the elastic @ ('5
time scale, but did not yield enough statistics for observing C?\

the other two time scales for which a scaling argument is

available. Su, Denny, and Kovac studied the dynamics of o

star polymers by using the bond-fluctuation Monte Carlo O/

(MC) model, focusing mainly on the relaxation phenomena

of shape fluctuationgl1]. The elastic relaxation times were FIG. 1. Sketch of a typical randomly branched polymer.
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The goal of this study is to examine the dynamics of
annealed RBP’s containing various numbers of monomer
and to find the relevant scaling behavior. The simulation of
the dynamics of these structures has proved particularly cha
lenging as the dynamic behavior of each polymer depends o A O
its particular branching structure. In principle, for a givén ) I 97
one would need to determine the autocorrelation function: " 5 ey
for many uncorrelated sample structures and determine th 107 7
structurally averaged autocorrelation function based on a L -
average over these structures. We have used the simpl I o
treatment of choosing only five independent representativ - s
structures for eaclN in our calculations. L

The importance of the random structure to the static con g
formational properties of RBP’s has been emphasized re 10' : e
cently[5,6]. For the presentation of the dynamical properties 10 N 10
below, we note that the mean-square radius of gyratior.

obeys a scaling lawS?)=<N?’, where »=0.5 for annealed FIG. 2. Radius of gyration of randomly branched polym(s%)
polymers[7,9] and »=0.45 for quenched polymef$]. Be- s the total number of monomel The straight line represents the
cause of the smaller gyration exponentompared 10 itS  asymptotic scaling bahavior in El) with v=0.49+0.1.
linear-polymer counterpartf,.,~0.6), randomly branched
polymers are much denser than linear polymers. The systenganching point, the move was rejected. This process was
studied in this paper all have annealed structures. continued until an equilibrium state was obtained. From an
The bond-fluctuation MC dynamics has been shown tqpitia| straight-line configuration, a relaxed state could typi-
effectively reflect the Rouse dynamics of actual systth8$  cally be reached within 5000 MC steps for even the largest
when the hydrodynamic interactions between differentstryctures of 200 monomers considered in this paper. After
monomers are ignorethe draining limiy. Since the volume  equilibration, positions of the monomers and the branching
interaction is automatically embedded in the bond fluctuatiorstrycture for five sample molecules were then recorded in
model, this method also qualitatively reproduces the physicahtervals of 16 MC steps. This procedure allowed for the
environment of polymers in a good solvent. _ change of conformational and structural configurations be-
We used an eight-site, three-dimensional bond-fluctuatiofpre the next sample structure was adopted and ensured the
algorithm to simulate the Rouse dynamics of the polymersgirctures were independent.
The algorithm was originally introduced by Carmenson and  1q confirm that the above algorithm indeed produces the
Kremer for simulating the dynamics of linear polymers; they gesired branched structure in the lattice environment, we
also showed that the MC dynamics obtained in this wayhayve examined scaling behavior of the radius of gyration and
effectively mimic the true long-time molecular dynamics. other conformation properties. As shown analytically by Pa-
Since a background cubic lattice system is adopted in thigisj and Sourlag9] and later confirmed numerically by van
model, the faster integer manipulation of the aIgorithmRenSburg and Madrdd] and Cui and Chef6], the mean-

makes it more favorable in comparison with other modelssqyuare radius of gyration of an annealed randomly branched

on the lattice and can be moved unit lengths along the six
lattice directions. Moves are accepted when the bonds join-
ing the monomers have lengths belonging to thelse?, (SH)=
J5,16,3,/10 and when monomers do not overlap. The
former constraint ensures that bonds will not cross each .
other, as shown by Carmenson and Kremer, while the lattewhere v=31 andR, is the center of mass. As shown by the
accounts for the excluded-volume interaction between mongplot in Fig. 2, the mean-square radius of gyrati@®?) dis-
mers. Interested readers are referred to RES] for a de-  plays the power-law behavior cited above with exponent
tailed description of the bond-fluctuation model. v=0.49+0.01, calculated from the last four points in the
The initial branching structures were built through an ex-curve, which is consistent with these previous studies. Note
tension of the bond fluctuation model to include additionalthat the relationshigS?)~N is the same as for linear poly-
cutting and pasting steps to deal with the branching strucmers in the# condition; the similarity is coincidental. We
tures of annealed molecules. The procedure is similar to thdtave also included in Table | other structral properties, such
used in the lattice-tree model of van Rensburg and Madras ias the average number of branching mononmyrsind the
their earlier study of the conformation properties of ran-average number of *spacer’ monomers between two
domly branched polymefd]. Starting from a linear chain of branching monomer$. These data are comparable to the
N monomers, we chose a free end at random and detachedrésults from our earlier stud] by using an off-lattice bead-
from the rest. The bond was then reattached to a random siteond algorithm for the case when the bead size equals the
located on the main polymer so that the new vector connectond length.
ing the new junction and the pasted monomer had one of the To simulate the Rouse dynamics of the molecules, we
lengths specified above. If the repositioning resulted in twostarted with five sample structures for eadhconstructed
overlapping monomers or a reattachment to an existingarlier. The branching structures were completely frozen so
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TABLE I. Structurally averaged static properties. 0.0
N (S?) ns |
11 15.4 2.15
26 373 6.22 1.52 = 10
51 72.6 13.0 1.77 3 s’
101 141.9 26.5 1.87 'E«:D" =
151 210.3 40.02 1.92 - 20}
201 278.6 53.5 1.82
that every move only involved the displacement of a mono- -3.0 . . -0.5
mer chosen at random to one of the six possible neighborin 0 20000 40000
sites according to the bond-fluctuation mofE]. The over- t

all dynamics of these structures can be characterized by vari- _ _

ous time scales. The first is related to the translational and F!G. 3. Autocorrelation functiorC,(t) vst for N=51 on a
rotational diffusion of the entire polymer in the solvent me- Seémilogarithmic plot(to the left scalg Note that the long-time
dium (a long-time relaxation proces&Ve also found that on beha_wor is essentlal_ly linear. An overlay @fx(t) for N=51 is

a shorter time scale the polymers deform and reorganize thef¥S° includedto the right scale

shape as the monomers move. This motion resembles the

radial elasti_c deform'ation. of a spherical elastic'object. The The calculations required for this study are substantial.
autocorrelation function displays a nonexponential decay. Ifqp example, since each sample structure requires 5
contrast, the internal relaxation of regularly branched poly-x 108 MC steps for atN=101 molecule, the total time used

mers is usually associated with a simple exponential decay, calculate the correlation functions for the five structures

(10,17 amounts to 2% 10° MC steps. The actual calculations were

Throughout this paper, all measures of time are given irharformed on a 175-MHz Silicon Graphics INDY worksta-
terms of MC steps, where one MC step consists of movingjgn.

each ofN randomly chosen monomers once. The ideal treat- Tne translational motion of the polymer is easily charac-

divide the simulation into many segments; within each seggssociated with the correlation function of the center-of-mass
ment one would observe the system for a substantial amount 2

. - . X vectorR,,
of time, during which all relaxation processes would have
time to complete. Then one would treat the starting point of

. = o) [— o) 2 =
each of these segments as if they were different members of Cair(1) =([Re(t) ~Rc(0)]%)=Dt. @

a statistical ensemble; the ensemble avefdgeoted by )  The Jast step defines the diffusion constBntQualitatively,
below would be performed over all of these segments of thgye expect that the diffusion constant displays the character-
simulation. In reality, however, due to limited computationalistic relationD« 1/N of a Rouse model. Our data agree with
time, we used an overlapping method to perform the entnjs scaling relation. To measure the rotational relaxation

semble average. The overlap is, however, sufficiently smallime, we used the correlation function of the end-to-end vec-
so that correlations between frames are not significant. Table =
- tor Rg,

Il shows the parameters used to calculate the autocorrelation
function for each sample structure. The second column rep- M
resents the total MC steps used for each run, in units of > <§.(t).§i(o)>
10° MC steps. The third column represents the time interval Coof)= i 3)
after which a new configuration is considered for the en- rot Mo '
semble average. The starting points of the overlapping seg- 2 (Ri2
ments were separated by time intervals that were longer than
the elastic relaxation times to be discussed below. The Iasth B i tor that starts f ior ch i |
column represents the time duration for which the autocorYVNereR; IS a vector that starts from a prior chosen externa

onomer to another external monomer. The sum is taken

relation functions were observed for their time dependenceg.n
over all other external monomers, with the number of free

external ends. Figure 3 displays the rotational correlation
function C,(t) for N=51, plotted against a semilogarithmic
scale on the left. There is a short period of nonexponential

TABLE Il. Measurement parameters.

N M(T:O;,?(l,ps ir?;:enr]\?al ;lrgg Sc:ﬁ\r/a:;ic:)r:] behavior in the initial portion of.the' curve, which has a time
scale comparable to the elastic time scale to be discussed
11 10V 2500 25000 below. We believe that this is caused by a direct coupling to
26 10V 5000 25000 the internal relaxation of the structure that defines the
51 200V 20 000 100 000 shorter-time scales. The curve to the right scale in Fig. 3
101 500M 50 000 200 000 shows an overlay of the correlation function for the change

in the magnitude of? for N=51, clearly demonstrating the
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TABLE lll. Rotational relaxation parameters. 1.0

N Trot Trot! N2 Trot/NS?

11 93094 771 39+1 00 N=t

26 6100:250 9.0+t0.5 38+2 §

51 28 0002800 10.&1 42+4 L‘;cn N=26

101 110 00€:29 000 10.8:3 41+10 = ~107 )

_iom' N=51
relation between the nonexponential portion of the rotation 207 Ne10 =
curve and the internal relaxation of the structure. The cross- "
over to the long-time exponential behavior occurs after the -k o o
internal dynamic relaxation completes. Note that the initial ' \ ,
. . ) . 1.0 2.0 3.0 4.0 5.0

portion of the relaxation curve might mislead the analyst. Log(t)

One could, for example, try to identify the initial portion of
the Co(t) curve W'.th a stretched eXponent'al de(?ay by mis- FIG. 4. Typical double-logarithmic plot for the correlation func-
take. In order to find the true relaxation behavior, we 0b-jon of S? [Eq. (6)], where logl) means log(t).

servedC,.(t) until the long-time behavior clearly displayed

a dominating simple exponential behavior. The rotationalyoqyuce a correlation function that measures the change in
process of the whole polymer is always accompanied by th@,q (adius of gyration of the branching monomes
internal reorganization of the monomers. It is not until the

process of reorganization has proceeded sufficiently that cor-

2 2 _/Q2\2
relations from activities such as the twisting and untwisting Cylt) = <5b(t)3b(0)>2 (Sp) ' o
of free ends become insignificant and the expected exponen- <%>_<Sb>2
tial decay behavior is observed. The relaxation time was cal-
culated from the exponential part according to where
In[C,o(t)]=const- ! )t (4) 13
o Trot] S= ;& (R-Ro)? ®

A very simple physical picture can be proposed to relate
the r.otational tim_e to_the diffusion consta{r]l_o]. Since the  andRP is the position of théth branching point and; the
rotational relaxation time should be approximately equal tohnumber of branching points of a given configuration. The

the time required for the polymer to diffuse through a dis-third autocorrelation function is for the change in the square
tance of its own diameter, characterized by the radius of; o magnitude of the end-to-end vecty

gyrationS, we can estimate the rotational relaxation time
2 2 2
T~ S D~ SPN~N2, (5) Clt)= <Re(t)|je(0)>;<2Re>2
< Re> - < Re>

9
We have listed in columns 3 and 4 of Table IIl the combi-
nations7,/N? and 7,,,/(NS?). Approaching a constant for
large N, these data confirm the expected scaling relation in
Eqg. (5). It can also be seen that the smaller polymdxs (
=11) produce a relatively smatt,/N2 compared to the 1.0
other values in the third column. Since the scaling relatior

S?~N does not hold for smaller polymers, the combination 05 |
S2N is a better estimate far,,;, as seen in the fourth column
of Table IIl.

The shorter-time scale dynamics of the polymer was an
other phenomenon of interest in this humerical study. In or-
der to obtain a complete picture of the relaxation process 0 o _g5 |
different components in the molecule, three aspects of th £
polymer were examined. The most important one is a mea
sure of the relaxation of the squared radius of gyration -1.0 ¢

ere

In[C, (1)] |
o
o

(S2(1)S%(0))—(S?)?
(sh—(s»z

Cee(t)= 6) -1.5

1.5 25 3.5 4.5 55
Loglt]

which provides a measure of the internal deformation of the

entire structure. To gain insight into the role that branched FIG. 5. Typical double-logarithmic plot of the correlation func-

monomers play in the internal dynamics of the polymer, wetion of S2 [Eq. (7)], where log() means log(t).
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FIG. 6. Typical double-logarithmic plot of the correlation func-  FIG. 7. Elastic relaxation timess, (circles, 7, (squares and
tion of Ré [Eq. (9)], where log{) means logy(t). 7. (diamond$ as functions ofN, averaged over the five represen-
tative structures.

M
Rgzi 2 (ﬁfnd_ ﬁgnd)Z (10) 0.82. The structurally averaged decay times for these three
i=1 correlation functions are also listed in Table IV. The shorter
. decay times folC4(t) reflect the fact that external monomers
and R is the position vector of théth free end of the move more freely with fewer constraints. The overall elastic
po'ymerlﬁgndthe position vector of the center of mass Of the relaxaﬁon Of the polymer inVOlVeS the Combined effeCtS Of
M external ends, anM the number of free ends. This func- the free ends, branched monomers, and linear parts between
tion provides a measurement of the relaxation process ass§l€ branched monomers. Constrained by extra bonding, the
ciated with the linear segments between the free ends. branching monomers are less mobile, having the slowest in-
These correlation functions reflecting internal dynamicsternal relaxation process among the three. Thus the relax-
are nonexponential in nature. In particular we propose fittin$’“On process ofS” is dominated mainly by that of the

the correlation functions using stretched exponential decayeranching monomers. . _ _ .
ing functions In an attempt to determine possible scaling relations, we

have plotted the short relaxation times vs the number of
t a
C(t)=ex;{—<—> .
T

monomers in Fig. 7 using a double-logarithmic scale. It ap-
(1)  pears from this plot that
This assumption is based on the observations of Figs. 4—6, Te TR N3 02, 12
which show that the correlation functiofsyp, C,, andC,
in double logarithmic plots display linear behavior. The re-Since theN used here is not sufficiently large, we are unable
sults of the data analysis are presented in Table IV. To furto make a conclusive estimate for the corresponding scaling
ther stress that the observed autocorrelation function is of axponent. The accuracy of these data points is further ham-
nonexponential nature, we have included in Fig. 4 an insepered by the determination of the exponents, which al-
that displays a typicaCs2(t) curve (N=51) on a semiloga- ready carry relatively large error bars. These statistical errors
rithmic scale. were estimated from combining the original statistical errors
The short relaxation time and the stretching exponentassociated with the fitting of the double exponential curve for
were determined from a least-squares fit of the simulatioreach given structure and the statistical erorrs associated with
data in Figs. 4—6 to Eq11). The «'s for C(t) andCy(t) the structral averaging.
have similar values, ranging from 0.62 to 0.95 depending on The scaling behavior for the short-time scale dynamics
the particular branching structure. The correlation functionobserved in this study is not fully understood. Though the
for the end monomer€,(t), however, decays much faster, simulation data were fitted to the stretched exponential func-
with a smaller stretching exponent ranging from 0.50 to tion in Eg. (11), the actual time dependence of these corre-

TABLE IV. Elastic relaxation parameters.

N TR ag Th ap Te e

11 37+3 0.62-0.83 222 0.70-0.82
26 92+8 0.70-0.90 13610 0.77-0.95 264 0.51-0.70
51 690+130 0.72-0.92 52680 0.69-0.88 274 0.50-0.60

101 5000-500 0.82-0.90 9136500 0.80-0.91 25660 0.55-0.61
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lation functions is still debatable. It is therefore desirable tosolution, in which the dynamics of a single RBP would be
analyze the relaxation process in more detail by an analytianportant. A NMR measurement, for example, could be use-
treatment. Even a calculation of the dynamical behavior oful to probe some of the nonexponential relaxation processes
randomly branched polymers in th@ condition would described in this paper.
clarify the underlying physics: The nonexponential behavior In summary, the bond-fluctuation algorithm has proved to
would already show up due to the random distribution of thebe an ideal model for recreating the Rouse dynamics of
segmental lengths. RBP’s, simulating the conformational properties and the
A number of other randomly disordered systems also distong-time scale dynamics that can be understood from other
play nonexponential relaxation dynamics. The autocorrelatheoretical treatments. We have observed in the simulation
tion functions of these systems were also fitted to thehat the scaling relationship@o1/N and 7., N? are valid
stretched exponential formula. Ogielski has conducted an efer randomly branched polymers up %=101. There are
tensive investigation of the nonexponential nature of the autwo important types of time scales. The long, rotational re-
tocorrelation function of the order parameter for spin-glasdaxation time is shown to obey the scaling behaviorN?.
systems. The stretching exponent was shown to have variothe results also show that the internal dynamics are nonex-
values smaller than unity, depending on the temperdRire ponential and are much faster, as demonstrated by the auto-
A more closely related example is probably the dynamics otorrelation functions for the radius of gyration and the
a linear heteropolymer chain, which relaxes from a nearsquared end-end distance. It also appears that these correla-
equilibrium state to a “native” state according to a stretch-tion functions may be represented by stretched exponential

ing exponent ranging from 0.38 to 0.54]. functions, with stretching exponents ranging from 0.50 to
There has been a great deal of resedsele, for example, 0.95.
references in Ref.1]) into the dynamics of dilute sol solu- This work was supported by the Natural Science and En-

tions, which are systems that contain polydispéige, non-  gineering Research Council of Canada. We would like to
uniform distribution ofN) RBP’s [1]. However, there has thank Philip Waldron for his critical reading of the manu-
been few experiments on the dynamics of a very dilute RBRscript.
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