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We present detailed numerical results for phase-separation kinetics of critical binary mixtures in the vicinity
of a surface that exerts a long-ranged attractive force on one of the components of the mixture. We consider
surface potentials of the forwi(Z)~Z~", whereZ is the distance from the surface amg 1,2,3. In particular,
we investigate the interplay of the surface wetting layer with the dynamics of domain growth. We find that the
wetting layer at the surface exhibits power-law growth with an exponent that depemjsronontrast to the
case with a short-ranged surface potential, where the growth is presumably logarithmic. From correlation
functions, we identify characteristic length scales in directions parallel and perpendicular to the surface. We
observe a regime of accelerated growth in the parallel direction and critically examine some possible expla-
nations for this[S1063-651X%97)02212-5

PACS numbeps): 68.10—m, 68.45.Gd, 64.75.g

[. INTRODUCTION thoughL , (7)<L(7) because of the preferred orientational
direction due to the layered structure at the surface.

There has been much experimental and theoretical interest In our earlier work, we cautioned that the case with a
in the phase separation kinetics of binafyR) mixtures in  d-function surface potential is experimentally somewhat un-
the presence of a surface with a preferential attraction for ontalistic because surfaces generally exert long-ranged power-
of the components of the mixtuf@—3]. Typically, the sur- law potentials. In this paper, we extend our previous work to
face is completely or partially wetted by the preferred com-nvestigate the kinetics of phase separation near surfaces t_hat
ponent and becomes the origin of anisotropic spinodal de€Xert long-ranged forces on the preferred component. Again,

composition waves, which propagate into the bulkWVe focus on the case of “strong” surface fielfds|, where

perpendicular to the surface. This phenomenon has been i€ surface is completely wetted by the preferred component

ferred to as “surface-directed spinodal decompositi¢a]. in equilibrium.

The morpholoav of these waves depends critically on th The problem of surface-directed spinodal decomposition
morp gy > depenc 'y ehas also been investigated numerically by a number of other
relative strengths of the surface field, th8 interfacial ten-

authors[7-9] for cases with both short-ranged and long-

sion, and thermal noise, which determine whether the surfacl%lnged surface fields. These studies focus on the opposite

is completely or partially wetted by the preferred cpmponent"mit from ours, viz., the surface field is weak compared to
In recent work we formulated a phenomenological modekyarma noise and the interfacial tension, so that the surface

[5,6] for surface-directed spinodal decomposition in the pres;g only partially wetted by the preferred component. In this

ence of surfaces that exert a short-rang&dunction) poten-  sjtyation, a strong universality characterizes domain growth

tial on the preferred component. Our modeling was based ofnd results for this limit are summarized in Rgf]. The

a master-equation formulation of an appropriate microscopigesults we present here are complementary to those in Refs.

model, viz., the semi-infinite Ising model with Kawasaki [7-9].

spin-exchange kinetics. We have used this phenomenological This paper is organized as follows. In Sec. Il, we describe

model to obtain extensive numerical resiii$ for this prob-  our model. Section Il presents details of our numerical

lem in the limit where the surface field leads to a completesimulations and results therefrom. We end this paper with a

wetting of the surface by the preferred component. Our resummary and discussion of our results in Sec. IV.

sults can be briefly summarized as follows. First, our model

was able to replicate the experimentally observed morphol- Il. DETAILS OF MODELING

ogy [4] of surface-directed spinodal decomposition waves. '

Second, we found that the growth of the wetting layer did In our earlier study of surface-directed spinodal decompo-

not appreciably interfere with domain growth because of thesition with short-ranged surface forcg8], the appropriate

extremely slow kinetics of wetting. Nevertheless, there was ghenomenological model consisted of the Cahn-Hilliard

marked anisotropy of coarsening domains in the vicinity of(CH) equation, which is widely used to model phase separa-

the surface. These domains were characterized by timeion in the bulk[3], supplemented by two boundary condi-

dependent length scales perpendicular and parallel to the suiens at the surface. The surface field only appeared in our

face, which we refer to ak, (7) and L(7), respectively, ~model through the boundary conditions because of its short-

wherer is the time. We observed that bdth (7) andL(7) ranged nature.

obeyed the Lifshitz-Slyozo«LS) growth law L(7)~ 7%, In the present study, we consider a surface located at
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Z=0, which exerts a long-rangggower-law potential on

the preferred component of the mixture, i.e.,

—h,, z<1
={ h
V@) -1 z=1,
Zn

whereh; measures the strength of the potential amspeci-
fies its range. The potential is set to be constan&Zfarl so

D

as to control the divergence of the power-law fornZat0.

We arbitrarily consider the potential to be nondifferentiable

96(R,0,7) . ap(R,Z,7)
T=h1+g¢(R,0,7)+ Y7 L 3
4 S 3 3
0= 77 d(R,Z,7)— H(R,Z,7)
1 N
+=V2p(R,Z,7)—V(Z) (4)
2 z=0

atZ=1 (in dimensionless unitgs]). Clearly, the precise lo- In Egs.(2)—(4), #(R,Z,7) is the rescaled order parameter as
cation of the point of nondifferentiability is irrelevant be- g function of dimensionless spad&,Z) and timer [6]. The
cause all length scales diverge with time. Then our phenomeoordinatez measures the distance from the surface and the

N : ~_spinodal ¢oorginatesk lie in the plane parallel to the surface. Equa-
decomposition with the surface potenti&Z) as in Eq.(1)

enological model for  surface-directed
has the form(in dimensionless unitg5])

Ip(RZ,7)

= -V ¢(R,Z,7)— p(R,Z,7)°

1 .
+§V2¢(R,Z,T)—V(Z)

in conjunction with the boundary conditions

Time = 30

)

tion (2) is the usual CH equation for phase separation in the
bulk, with an additional term in the chemical potential due to
the surface potentia¥/(Z). The boundary condition in Eq.
(3) rapidly drives the order parameter at the surface to its
equilibrium value and is identical to that for the short-ranged
case[6]. The phenomenological parametgrsand y in Eq.

(3) are related to the bulk correlation length, as explained in
Ref. [6]. Finally, the boundary condition in Ed4) is the
usual no-flux condition, which enforces conservation of the
order parameter at the surface.

Time = 90

300

Time = 900

300

Time = 9000

X

0 400
X

FIG. 1. Evolution pictures from a two-dimensional Euler-discretized version of our model inBg$4) for spinodal decomposition in
the presence of surfaces that exert a long-ranged attractive force on one of the components of a binary mixture. The lattidé,sidd was
(Nx=400N,=300) and the discretization mesh sizes w&re=0.03 andAX=1.0. The surface is located 20 and was modeled by the
boundary conditions in Eq$3) and(4). Flat boundary conditions were applied at the other end inZtliérection and periodic boundary
conditions were applied in th& direction. The parameter values wédrg=8, g=—4, andy=4 and the potential was specified by 3,

corresponding to nonretarded van der Waals interactions. The static equilibrium for these parameter values corresponds to complete wetting
of the surface. The initial condition for this evolution consisted of uniformly distributed small-amplitude random fluctuations about a zero

background, i.e., a critical quench. Regions with positive order parangetéd (say, A rich) are marked in black, whereas those with
negative order parameter<O (say,B rich) are not marked. The dimensionless evolution times are specified above each frame.
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surface makes the problem considerably more complicated
e and we will again rely on numerical simulations of E(®—

oo (4) to obtain late-stage results.
e
—-— 1=9000

. [ll. NUMERICAL RESULTS

We have simulated Euler-discretized versions of Egs.
) (2)—(4) on two-dimensional lattices of sizhyX N, with
f B PN Nx=400 andN,=300. The surface was locatedZt 0 and
! \ B ma I e is modeled by the boundary conditions in E¢3). and (4).
S o Flat boundary conditions were applied at the other end in the
/ Z direction and periodic boundary conditions were applied in

/ the X direction. In this fashion, we attempt to model semi-
- infinite systems, with one free surface A+ 0, while bulk
0 ‘ 20 40 60 80 behavior is approached for large The discretization mesh
sizes used werd 7=0.03 andAX=1.0, which were some-
what finer than those used in our earlier studies, i.e.,
A7=0.05 andAX=1.5[6].

The initial conditions for each run consisted of the figld

0,(2T)

FIG. 2. Laterally averaged order parameter profigyZ, ) vs
Z for the evolution depicted in Fig. 1. These were obtained by
averaging the order parameter function in tKedirection for a

this picture, one can verify that the system evolves towards comtlons about a zero background, mimicking the homogeneous
plete wetting of the surface: note the two-step relaxation of theSyStem before the quench. We only consider the case of
order parameter profile. The decay starts from a surface value conflitical quenches,” i.e., a symmetric binary mixture at criti-
siderably larger than the bulk order parameter véieich is ¢=1 cal concentration. All statistical quantities presented here
in our dimensionless unitsThe profile then stays at the bulk value Were obtained as averages over 200 independent runs.

of ¢=1 over some distance and finally decays frapa=1 to The fixed parameter values in our simulations were
¢=—1, corresponding to the interfacial profile between coexistingg=—4 and y=4. (See Ref[6] for a discussion that moti-
A-rich andB-rich phases. vates this choicé.We used the long-ranged potentid{Z)

in Eq. (1) with field strengthsh,=2, 8, and 12 and expo-
The bulk CH equation has proven analytically intractablenentsn=1, 2, and 3. The potential with=3 corresponds
as yet because of its strong nonlinearity, in conjunction withto the usual case ghonretardeflvan der Waals interactions
the constraint of order-parameter conservation. Therefordjetween the surface and the preferred component. The cases
studies of bulk phase separation in the asymptotic regima=1,2 are not common, but could possibly be engineered in
have relied upon numerical simulations of this equation omppropriate experimental situations. In the results presented
equivalent coarse-grained modgl€]. The introduction of a  subsequently, we will specify only the valueshgfandn, as

300

FIG. 3. Analogous to Fig. 1,
but for parameter valuet,=8
and n=o (corresponding to a
s-function surface potential
These parameter values also cor-
respond to a completely wet static
equilibrium.

Time = 900 Time = 9000

300 -

0 400
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g and y were not varied in our simulations. 5 ‘ ‘ ‘

Figure 1 shows the temporal evolution of a disordered T=30
initial condition for the casd;=8 andn=3, which corre- T
sponds to an equilibrium situation in which the surface is —-— =900

completely wetted by the preferred component. In the frames
of Fig. 1, regions with a positive order parametsay, A
rich) are marked in black and those with a negative order
parameteKsay, B rich) are not marked. The surface rapidly
develops arA-rich layer that is followed by &8-rich layer
and these layers grow with time. In the early stages 80),
there is a second-rich layer following aB-rich layer, but it
breaks up in the later stages. Because of the ongoing accre-
tion of the componenA on the surface layer, the region in
the vicinity of the surface is depleted i and the domain ;
morphology is dropletlike rather than bicontinuous, as in the 0 20 40 60 80
bulk. This is particularly evident at later times, e.g= 9000.
Thus, in the late stages, the morphology in order of increas- rG, 4. Analogous to Fig. 2, but for parameter valbgs: 8 and
ing Z is as follows:(a) an A-rich layer at the surfacdb) a p=«.
B-rich layer, (c) A droplet (off-critical) morphology withA
as the majority phase, and) a bicontinuous morphology istic wavelength(which is 27 in our unit9, is present at
associated with spinodal decomposition in the bulk. early and intermediate times but not at late times. In the late
Figure 2 shows the laterally averaged order-parametestages, the growing wetting layer at the surface and the sub-
profiles ¢,(Z,7) vs Z corresponding to the evolution de- sequent depletion region replace the oscillatory structure. It
picted in Fig. 1. These profiles are obtained by averaging thés interesting to note that subsequent to the depletion region,
order parameter along thé direction for a typical run and there is another region of an enhanced order parameter with
subsequently averaging over 200 independent runs. For clagpproximately the same thickness as the depletion layer. This
ity, we only show the region witZ=<80. In the bulk, spin- is a consequence of coarsening in the bulk, where the system
odal decomposition waves are isotropic and randomly oritends to minimize the interfacial energy and thus forms drop-
ented. Therefore, the averaging procedure specified abovets of the A-rich phase between thB-rich layer and the
gives rise to a “flat” profile¢,(Z,7) ~0. However, near the bicontinuous morphology, as seen in Fig. 1.
surface, this procedure gives rise to the systematic profile Before we proceed, it would be appropriate to compare
seen in Fig. 2 because of the anisotropic surface-directetihese results with our earlier results, obtained in the context
spinodal decomposition wavé4]. of a é-function surface potential, correspondingrecc in
It is seen that the hallmark of surface-directed spinodaEg. (1). Figure 3 shows evolution pictures for the case with
decomposition, viz., a profile that oscillates with a characterh,;=8 andn=«, also corresponding to a completely wet

0,(Z1)

Time = 30

FIG. 5. Analogous to Fig. 1,
but with h,=8 and n=1. This
form of the potential is somewhat
unphysical, but may be possible to
engineer in a suitable experiment.
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T=30 ----n=1(x=0.30)

=90 e n=2{x=0.21)

e 7= 900 —-— n=3(x=0.16)
—-— T=9000 3r

4.2
In(R, (1)

N
T

4‘0 6‘0 80 3 (; S-l)
z Infz)
FIG. 6. Analogous to Fig. 2, but with;=8 andn=1. FIG. 7. Time dependence of first zeRy(7) of laterally aver-
aged order-parameter profiles for surface-directed spinodal decom-
static equilibrium[6]. To facilitate a comparison, we have Position. We present data on a log-log plot fo~1, 2, and 3,
used the same initial condition for the evolutions depicted irfenoted by the specified line types. The solid lines denote the best
Figs. 1 and 3. The final frames of these figufasr= 9000) linear fits tq the vario'us data sets and the numbers specified are the
differ up to a depth oZ~ 70, giving a measure of the dif- corresponding best-fit exponents, denotedka$he error bars on
ference between thé-function potential and the van der € exponents are:0.01.
Waals potential. We will quantify this difference shortly.
Figure 4 shows the laterally averaged profiles correspondinguence of the fact that the surface field and resultant wetting
to the evolution depicted in Fig. 3, plotted on the same scal@henomena are deemphasized with respect to spinodal de-
as Fig. 2. composition, so one obtains LS growth laws for all quanti-
For completeness, Fig. 5 shows evolution pictures for thdies. Our second observation is that Lipowsky and Hudg
caseh; =8 andn=1. Of course, the interaction potential in have analytically studied the growth of wetting layers in the
this case is somewhat unphysical, but this example clarifiesase of stable or metastable homogeneous binary mixtures
the extent to which the effect of the surface can be “felt” and have formulated growth laws for various dimensionali-
inside the bulk. Again, the initial condition for the evolution ties and values af. Their studies show that the thickness of
is the same as that for Figs. 1 and 3. Figure 6 shows ththe wetting layerR;(7)~ 7, with x=1/4, 1/6, and 1/8 for
laterally averaged order-parameter profiles corresponding to=1, 2, and 3, respectively. For the case with nonconserved
the evolution in Fig. 5. order parameter, LipowsKyl 2] predicted exponents twice as
A guantitative measure of the temporal evolution oflarge, viz.,x=1/2, 1/3, and 1/4 fon=1, 2, and 3, respec-
surface-directed spinodal decomposition waves is the firsively. We emphasize that these exponents are obtained in
zero crossindR;(7) of the profiles shown in Figs. 2, 4, and the context of systems that are in thermal equilibrium in the
6. This quantity is also a measure of the thickness of thdulk, whereas we consider systems that are far from equilib-
growing wetting layer. Figure 7 is a log-log plot Bf(7) vs  rium in the bulk. As regards the growth of wetting layers in
r for the field strengtth,=8 and the cases with=1, 2, unstable binary mixtures, it has been claimed by other au-
and 3. As observed earli¢6], the case witm=c« (not de- thors that the LS growth law would characterize the growth
picted herg shows barely any growth of the surface layerof the wetting layer{7]. Our results demonstrate that this
over the large time window considered. The data sets show @aim is not correct and is valitht least numericallyonly in
reasonable power-law behavior over the time range considhe limit of partially wet surface morphology. Clearly, it
ered. The solid lines superposed on the data sets correspowguld be relevant to formulate general analytical principles
to the best linear fits. The corresponding best-fit exponentfor the growth of wetting layers in phase-separating binary
arex=0.30, 0.21, and 0.16 farx=1, 2, and 3, respectively. mixtures.

The error bars on these exponent values-af01. As we We next consider the scaling behavior of real-space cor-
will see later, these growth exponents are universal acrossrglation functions, which are useful in characterizing the dy-
range of values foh;. namics of fluctuations. We defing-dependent correlation

At this stage, we would like to make two relevant obser-functions parallel and perpendicular to the surfac¢éds
vations. First, the dependence of the growth exponent on the
nature of the surface potential is in contrast to the universal-
ity observed by other authofg—9]. These studies consid-  CI(X.Z.7)=(#(X1,Z,7) (X1 +X.Z,7)) =($(X1,Z,7))
ered the opposite limit of weak surface field and high inter- U B(X+X.Z 5
facial tension and thermal noise, where the surface (¢t X.2,7)), ®
morphology is only partly wet and botA- and B-rich do-
mains are in contact with the surface. In that case, one ob- -

' G,(Z,,Z,7)=(¢(X,Z, X,Z+2Z4,7))—(d(X,Z,

serves thaR;(7) obeys the LS growth law, i.eR;(7)~ 73, LZuZ={$X.Z, 1) $( 127 ~($X2Z.7)
for a variety of surface potentials. This is a possible conse- X{(P(X,Z+Zy,7)). (6)
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In Eq. (5), the angular brackets refer to an averaging over
200 independent runs and also an integration o4erSimi-
larly, in Eqg. (6) the angular brackets refer to an averaging 12
over initial conditions and an integration ov€r We extract
length scales from the correlation functions as the distances
over which they decay to half their maximum values, which
areG(0,Z,7) andG, (0,Z,7), respectively. The characteris-
tic length scales in the parallel and perpendicular directions
are denoted ak(Z,7) andL, (Z,7), respectively.

Figures 8a)—8(c) superpose data from different times for
the normalized correlation functid®(X,Z,7)/G(0,Z,7) vs
X/L\(Z,7) for three different values oZ. The parameter
values aréh; =8 andn=3. Figure §a) corresponds tZ =4,
which lies well inside theéA-rich layer at the surface. In our
earlier work[6], we had not considered the possibility of
scaling inside the enriched layer. Figuréa8demonstrates
that there is a reasonable scaling of the data ug/tg~2,
though the tail region is still drifting. For purposes of com- Z=20
parison, the scaled bulk correlation function is also shown in
Fig. 8(@) (as a solid ling The scaled correlation function for ' ' )
Z=4 clearly differs considerably from the bulk correlation
function. This is a consequence of the strongly off-critical
nature of the background &=4. As a matter of fact, a
simple analysis of linear fluctuations for the one-dimensional
CH equation about such a background shows that the corre-
sponding normalized correlation function has approximately
the form

G(X,Z,0/G,0,Z1)

XIL(ZD

0 7=840
01=1680 |
©1=2520

o T=3360
*1=4200
Bulk

G(X,Z,1)/G0,2,1)

, (@)

G(X,Z,T)~<1_X_2> Xp( X?

G|(0Z,7) ~ 8ar

daTt

where a=3¢o(Z)?—1, with ¢o(Z) being the background
value from the equilibrium profile. The above form is valid
in the region where local equilibrium has been established
and wheregy(Z) is large and does not vary rapidly with

The length scale associated with these fluctuations is
L(Z,7)~ 2,

Figures &b) and &c) clarify the dynamical evolution of
the scaled correlation function more clearly. In Fidh)3
which corresponds td =20, the scaled correlation function
for 7=2840 is closest to the bulk form and evolves in time
towards a form corresponding to an off-critical morphology,
as the wetting layer penetrates deeper into the bulk. The
same trend is seen in Fig(d, which corresponds t@ = 24.
There is a sharp contrast between these results and our earlie
results for thes-function potential6] in that we can clearly
observe the dynamical effects of growth of the wetting layer
in the present case.

To stress this point further, Fig(& plotsL|(Z,7) vs 7 03
for Z=20,24,28 and the bulk. We do not present results for XL(Z9
Z<20 because the data are too ragged to discern any sys
tematic trend, in spite of thg reasonable scaling et 20. FIG. 8. Scaled plots of depth-dependent real-space correlation
The Iength_—scgle' data for different values offollow the functions in the direction parallel to the surface. The correlation
bulk behavior initially and then cross over to a faster growthnctions are obtained as described in the text. We superpose scaled
as the effect of the wetting layer is felt. The crossover is lategtg for G|(X,Z,7)/G|(0.Z,7) Vs XIL\(Z,7) from dimensionless
for larger values oZ and the results in this figure should be times 840, 1680, 2520, 3360, and 4200, denoted by the specified
correlated with the inward propagation of profiles in Fig. 2.symbols. The length scale(Z,7) is defined as the distance over
Figure 9b) plots the data of Fig. (@) on a log-log scale and which the correlation function decays to half its maximum value.
clarifies the crossover behavior. Subsequent to the crossoveor purposes of comparison, we also present the scaled bulk corre-
the accelerated growth seems to fit a faster growth lawation function as a solid line. Data are presented(&®Z=4, (b)
Ly(Z,7)~ 72 though we do not have sufficiently extended Z=20, and(c) Z=24.

G,(X,.Z,0/G,(0,Z,7)
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1.2

" ot1=840
21=1680
® ©1=2520
2 1=3360

" * 7=4200

Lz

G(Z,ZD/G0.Z7)

. .
0 2000 4000

25

FIG. 10. Superposition of data for the normalized correlation
function in the perpendicular direction, i.e.,
G,(Z,,2,71G,(0,Z,7) vsZ,/L,(Z,7). We present data f£=0
and dimensionless times=840, 1680, 2520, 3360, and 4200, de-
noted by the specified symbols.

20 -

In(L(Z,D)
.

We next consider the dynamical behavior in the direction
perpendicular to the surface. Figure 10 plots the normalized
correlation functionG, (Z4,Z,7)/G,(0,Z,7) at Z=0 vs
Zi/L, () for dimensionless times =840, 1680,

Bulk 2520, 3360, and 4200. The correlation function exhibits
05 : s reasonable scaling and clearly follows the functional form of

In(z) the laterally averaged profiles in Fig. 2. This plot suggests

that the thickness of the growing wetting layer and that of the

FIG. 9. (a) Time dependence of the length scale in the directionsypsequent depletion layer are always of the same order of
parallel to the surface, vizl(Z,7) vs 7. We present data for magnitude. Figure X&) plotsL, (Z,7) vs 7 for Z=20,24,28
Z=20, 24, and 28, denoted by the specified symbols. Data for thgng the bulk and should be correlated with Fi¢g)9Figure
bulk Iengt'h scale are denoteq by the solid liti®.A log-log plot of 11(b) is a plot of Fig. 118) on a log-log scale. The picture
t_he data in(a). The dashed lines have slopes 1/3 and 1/2, respecg, o+ emerges is that both the perpendicular and parallel
tively. length scales follow the LS growth law until they experience

the effect of the wetting layer. At that stage, the parallel
data to make a conclusive statement in this context. As wéength scale shows accelerated growth, whereas the perpen-
had pointed out earlier, fluctuations about a highly off-dicular length scale exhibits decelerated growth and can even
critical background exhibit a growth law 7¥2. However, freeze. This “freezing” does not mean that there is no tem-
we should emphasize that the background profile at the vaporal evolution; rather, the poirk “leaves” the region of
ues ofZ considered in Fig. 9 is not strongly off critical at the bicontinuous morphology and becomes part of the droplet
time of crossovefsee Fig. 2 Thus the data in the crossover region and later the depletion region, whergasz, still lies
regime may be associated with the orientational effect of thén the region of bicontinuous morphology. This change in
layered structure at the surface. In that case, the data shoutharacter of the correlation offsets the growth seen in the
exhibit the LS growth law, but with a larger prefactor than in corresponding profiles in Fig. 2. This strong interplay of wet-
the bulk. The deceptively larger exponent in Figb)9is a  ting and phase separation was not seen in our simulations for
possible consequence of attempting to fit crossover data tothe o-function potential, where the wetting layer moved too
power-law form. slowly to have any discernible impact on spinodal decompo-

It is also possible that the”(z,r)~71’2 behavior is a sition [6]. In the S-function case, we only observed the ori-
transient regime, caused by the breakup of the bicontinuougntational effects of the ordered structure at the surface.
morphology into elongated droplets, oriented parallel to the We have also obtained similar results for the cases with
wall on the average. These droplets have a strong tendendy =8 and n=1,2. Essentially, the main features are the
to compactify subsequently. It is possible that this mechasame as above, but all effects are more marked. In the inter-
nism leads to a transient regime of faster growth before thest of brevity, we do not present these results here. We have
isolated droplets disappear again to “feed” the growing wet-also obtained detailed results for other valueshef For
ting layer and the subsequent depletion layer, while new isoeompleteness, we will present some representative results for
lated droplets form farther inside somewhat later, etc. different values ofh; here. Figure 12 compares evolution

1.0 -
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0 2000 4000

25

(b)

In{L(Z,%)
-

Bulk

05 - -
In(t)

FIG. 11. (a) Analogous to Fig. @), but for the perpendicular
length scald_, (Z,7). (b) A log-log plot of data in(a). The dashed
line has a slope of 1/3.

Time = 900

pictures for the cases withy =2 andn=3,. (To facilitate a
comparison with previous evolution pictures in Figs. 1, 3,
and 5, we always use the same initial conditidrResults for
n=c are shown in the two upper framésorresponding to
7=900 and 900Pand it is clear that these parameter values
correspond to a partially wet morpholog§], with both A-

and B-rich domains in contact with the surface. Results for
the casen=3 are shown in the two lower frames and corre-
spond to a plated or layered morphology. Figure 13 is a
log-log plot of R;(7) vs 7 for laterally averaged profiles in
the cases witth;=2 andn=1, 2, 3, and«. The data for
the cases witm=1, 2, and 3 again exhibit a reasonable
power-law behavior and the growth exponents are compat-
ible with those forh;=8 (see Fig. 7. However, in the case
with n=0o0, the growth ofR,(7) is appreciably larger than
before, though not systematic enough to be properly charac-
terized. This behavior should be compared with earlier re-
sults for the growth of surface “layers” in the case with
partially wet morphology8,9].

Finally, we mention results for the cadg =12 and
n=1, 2, 3, ande. Again, the thickness of the wetting layer
exhibits a power-law behavior with best-fit exponents
x=0.31, 0.21, and 0.16 fon=1, 2, and 3, respectively.
These exponents are in agreement with those in Figs. 7 and
13. Furthermore, results for the=< case are similar to
those forh,=8 and do not exhibit a power-law behavior.

IV. SUMMARY AND DISCUSSION

Let us end this paper with a summary and discussion of
our results. In previous worlé], we have presented a model
[and detailed numerical results for surface-directed spinodal
decomposition with a short-ranged surface potential. In Ref.

Time = 9000

300

FIG. 12. Evolution pictures
similar to those shown in Fig. 1,

but for the field strengtth;=2.
The two upper frames correspond
to n=o (§-function potential

Time = 9000
. and the two lower frames corre-

spond ton=3. All other param-
eter values and simulation details
are the same as in Fig. 1.

0 400 0

400
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the wetting layer always exhibits LS growth when the binary

Ef;gfg'?i mixture in the bulk is undergoing spinodal decomposition.
251 . n-3(x=015) We believe that this claim is valid only in the limit of a

~——— Delta-function

partially wet surface morphology, with domains rich in both
phases being in contact with the surface. These results of
ours should be verifiable experimentally. Furthermore, we
also hope that our numerical results will facilitate a generali-
zation of the analytic treatment of Lipowsky and Huy44],

who considered the growth of wetting layers in stable or
metastable homogeneous binary mixtures.

The second observation is that our present results clearly
enable us to see the interplay between wetting and spinodal
decomposition. In our previous wof], the growth of the
. . ‘ wetting layer was so slow that it was not possible to see the
8 5 oo ® dynamical effect of the wetting layer on phase separation. In

our present work, we can follow the emergent anisotropy of
domain growth as the surface-directed spinodal decomposi-
tion waves penetrate into the bulk. In particular, we can track
the evolution of the depth-dependent correlation function
parallel to the surface from the “bulk” form at early times to
a form corresponding to an off-critical morphology at late
times. Simultaneously, we also observe the acceleration and
deceleration of length scales parallel and perpendicular to the
surface, respectively.
o Finally, in the present study, we have also examined the
6 we glso formullated tools for the proper characterization ogca"ng of fluctuations deep inside the wetting layer at the
domain growth in the presence of a surface. The preserjyrface. It is somewhat surprising that the correlation func-
paper is an extension of our previous work to the case of gon parallel to the surface inside the layer exhibits reason-
surface that exerts long-ranged forces on the preferred conable scaling even though the associated length scales show
ponent of a binary mixture. In particular, the present work isfairly erratic behavior numerically.
more relevant to experimental situations, where the surface The problem of surface-directed spinodal decomposition
usually interacts with molecules of the binary mixture viahas evolved as the result of a close interaction between ex-
long-ranged van der Waals interactions. Our model in thigperimental studies and numerical simulations. We hope that
paper is a simple extension of our earlier model for the casthe present set of numerical results will also prove amenable
with a S-function potential[6] and we use similar tools to to experimental investigation.
characterize domain growth. However, we obtain a number
of different results that we would like to highlight below.
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FIG. 13. Analogous to Fig. 7, but for the field strendth=2.
Furthermore, in this case, we also present data for the rtase,
corresponding to @-function surface potential. The dashed line has
a slope of 1/3. Again, the error bars on the specified exporxeats
+0.01.
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