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Effect of shear flow on the stability of domains in two-dimensional phase-separating
binary fluids

Amalie Frischknecht
Department of Physics, University of California, Santa Barbara, California 93106-4030
(Received 18 July 1997

We perform a linear stability analysis of extended domains in phase-separating fluids of equal viscosity in
two dimensions. Using the coupled Cahn-Hilliard and Stokes equations, we derive analytically the stability
eigenvalues for long wavelength fluctuations. In the quiescent state we find an unstable varicose mode that
corresponds to an instability towards coarsening. This mode is stabilized when an external shear flow is
imposed on the fluid. The effect of the shear is seen to be qualitatively similar to that found in experiments.
[S1063-651%97)01512-2

PACS numbeis): 68.10—m, 64.75+g, 47.20.Hw, 47.15:x

I. INTRODUCTION Our goal is to understand these stabilizing effects of shear

flow. As a first step towards elucidating these effects, we

Phase-separating binary fluids form complex patterns ofonsider a strictly two-dimensional system. We expect the
domains at late times after a temperature quench into a@perative physical mechanisms in the two-dimensional fluid
unstable state. The morphology of the domains is determinet® be somewhat different from those in the three-dimensional
by factors such as the volume fractions of the two phases, théase, but the mathematical techniques and physical insights

viscosities of the two phases, and any externally appliedleéveloped here will be of use in the future for three-
forces[1,2]. Of particular interest to us is the effect of ap- dimensional calculations. We consider late times after an ini-

jal temperature quench into the unstable region of the phase

plying an external shear flow to a phase-separating binary$ h h . d of d . fth
fluid. This question is of technological importance becausd!!@dram. when the system is composed of domains of the
wo phases close to their equilibrium concentrations and

many industrial processes involve binary mixtures in a flow . . )
y b Y separated by well-defined interfaces. We will, however, re-

fr':(lﬁ' hTng fmi\llhrir(]:?ltecr::]l Ereo%?rrgﬁsl dzgfeergegnbth?hgom ?(;Qain the dynamics of the concentration field in our analysis,
flowp 9y, gly y so that the interfaces between domains have a finite width
: . . We model the fluid using the coupled Cahn-Hilliard and

At late times after a temperature quench into the tWoy,,ier.Stokeg(for creeping flow equations as described in
phase region of the phase diagram, a phase-separating fluih; || This is in contrast to the work of San Miguelal.
consists of domains of the two phases of typical $%€),  [18], who did an analysis of the stability of domains in two-
which coarsen with time generally as a power IRft)>t“  dimensional binary fluids, using only the Navier-Stokes
[1,3]. The presence of a shear flow dramatically alters thesquation and treating the interfaces as mathematically sharp.
kinetics of the phase separation. The shear flow deforms the |n Sec. 11l we linearize our equations for the general case
domains, interfering with their growth so that it competesof a system with any number of flat interfaces and develop
with the thermodynamic force driving the phase separationsome useful mathematical machinery. In Sec. IV we apply
Many theoretical[4-7] and experimenta[8-10 studies our methods to the case of a single interface and reproduce
have investigated the effect of the shear flow on the growtlsome well-known results. In Sec. V we turn to our main
of the domains and the exponentin this work we focus on  focus, the stability of a single domain in the form of a strip
a different aspect of the effect of shear: Eventually the binaryin three dimensions, a flat shgef one phase, immersed in
fluid tends towards a dynamic, nonequilibrium steady state imn infinite region of the other phase as illustrated in Fig. 1.
which the coarsening instability is stopped by the shear flowye impose a shear flow along thedirection by applying a
[5,11,13. The morphology in this stationary state is very constant shear stre$k,. In this paper we take the viscosity
anisotropic[8]. In relatively weak shear, the domains are of the two phases to be equal, so that the flow field of the
somewhat deformed, whereas at higher shear they can be-

come highly elongated along the flow direction. A “string Iy

phase” consisting of macroscopically long cylindrical do- —

mains forms when the two phases are both percolated B

[13,14. This is surprising since a long cylinder of fluid at i

rest would normally break up via the Rayleigh instability N Ia—‘——- .
[15,16), a hydrodynamic instability. The string phase appears

to be a fairly robust phenomenon, appearing in both critical z

and off-critical polymer mixturegl3] and in critical micellar p

solutions[17]. Thus the shear flow both opposes the thermo-

dynamic instability driving phase separation and stabilizes 1A

these highly anisotropic domains against hydrodynamic in-

stabilities. FIG. 1. Geometry of a single lamellar domain of phase
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unperturbed system is linear. There are two linearly indepenwhere gradients ind induce fluid flow. Equationg2.2)—

dent perturbations of the lamellar domain alongxtexis. In ~ (2.4) are the same as those of “model Hiithout the ther-

the “zigzag” mode the two interfaces fluctuate in phase,mal noise termsused to study critical binary fluidg20].
whereas in the “varicose” or “peristaltic” mode they fluc- These equations have been used extensively to study phase
tuate out of phase. We find that in the absence of the sheaeparation in binary fluidg3].

flow the zigzag mode is stable, whereas the varicose mode is The first step in a stability analysis is to derive the steady-
unstable to long-wavelength perturbations. We use a tightstate solutions to the equations of motion. With the geometry
binding approximation to include the effect of the shear flow.of Fig. 1 in mind, we assume thdt andu are functions oy

In Sec. VI we observe that the shear flow mixes the twoonly and look for time-independent solutions. The Cahn-

modes so that above a critical shear ratethe lamellar Hilliard equation(2.2) has steady-state solutions satisfying

domain is stable. We conclude with some discussion in Sec. SE
VII. 5= —KV2D—r,®@+gd3=p=const, (2.5

Il. MODEL EQUATIONS
where o is the exchange chemical potential. Near a single
We consider a simple binary fluid with one scalar orderinterface, we can takg=0 and the concentration has the
parameter®, the difference in concentration between theysual “kink” solution
two components. We use the usual Ginzburg-Landau form

for the coarse-grained free energy of a symmetrical mixture ro ro
o = Etanh KV = petanty/ &, (2.6

1 1 1
F[Cb]zf dr(—K(V(I))Z——r(,<I>2+—g<I>4 . (2. _ _ o
2 2 4 where the width of the interface between the two coexisting

. phases is the thermal correlation lengts 2K/ry. For a
wherer, andg are positive constants so that we are belowSystem of many lamellar domains, E@.6) gives the con-

:Eg ﬁg?;(:tsggg Zur\;e;tlgftlf;é\;v%p?ﬁ;e glege!gndf'\t/It:g'ngr']r_]gcentration profile at each interface when the domain size is
9 us p vau much larger thar¢. We note that there is a surface tension

centration in the two bulk phases at equilibrium: associated with the presence of an interface, which is just the

\ﬁ excess free energy per unit area at the interfadg

=*\/—==* .

g e wa . dq’s>2 2\/§K1/2rg/2 2§r(2) .
0’: = = . .

The equation of motion fo® is the Cahn-Hilliard equation —o dy 39 39

with a convective coupling o to the velocity fieldu: ) _ ) o
In the stationary state in shear flow there is no velocity in the

L) , OF y direction. We impose a constant shear strHgsso the
ot w Vo +MV 5D (2.2 stationary velocity satisfies
Here M is a concentration-independent mobility. Since we Ug= 'yy3<, (2.8

are interested in the late stages of phase separation, we ne-

glect all thermal fluctuations. The equation for the velocity iswhere

the Navier-Stokes equation for an incompressible fluid, gen-

eralized to include the coupling of the order parameter to the -1
velocity field [19]: Y=

du oF is the shear rate
— +p(u- =9pVU+Vd——-VP. 2. - o . . - .
P ot p(U-V)u=nVautv od v 23 It is convenient to rewrite our equations in dimensionless

form by scaling lengths by the correlation length, the con-
In this paper the viscosity) will be taken to be independent centration by its equilibrium magnitude in the bulk phases,
of ®; hence there is a single viscosity for the fluid indepen-and time by the natural diffusion time involving the mobility
dent of the concentration pattern. The press@rés deter- M in the Cahn-Hilliard equation. The velocity is scaled by
mined by the incompressibility condition the correlation length over the diffusion time:

V.u=0. (2.9 _ \/ﬁ r
r=r R:E,

We will consider only low Reynold’s number flow so the
convective term (- V)u in the Navier-Stokes equation can
be ignored. We will also assume that the fluid is sufficiently — Mr3  2Mr,
viscous that the velocity responds instantaneously to slow :tT:t 2
changes in®; we can then neglect the inertial terfn/dt
and the resulting equations describe “creeping” or Stokes
flow. The term coupling the concentration to the velocit _3
pling y b=
field in Eq. (2.3 leads to a capillary force at interfaces, @
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— K I3 0=V.v. (3.5
u=u =u ,
Mrj¢  2Mrg : . _ _ -
HereW; is a function of the stationary concentration profile:
2
PPt P ,
2K ¢g Ws(Y)ZF =—1+3¢5(y). (3.9
#s(Y)

Note that the new dimensionless correlation lengtl§ is1.
In dimensionless form the equations of motion are now  For a single interface at=0, W,(y) =2—3 secRy, so that
the nonconstant part &/ is isolated near the interface.

In this work we are interested in perturbations along the
flow direction that are perpendicular to the planar interfaces.
Any such perturbation can be written as a sum over Fourier

1 components along the direction, so we take our perturba-
—=VP, (2.10 tions to have the plane-wave forms
n

o> 1 1
—=—u-VO+ V% — -V°O—- D+ P°
at 2 2

. (29

1 11— _—
o:V2u+:\ﬁ(—§v2q>—q>+q>3
n

_ — eikx—wt, V=V eikx—wt. 3.
o 211 $=(y) ) (37

e will consider long-wavelength fluctuations for which

<1. Note that in the following we takleto be positive, so
thatk represents the magnitude of the wave vector. First we
__ Mgy 4Mryy consider the hydrodynamic equations. If we substitute the
n=——= ) (2.12  expression forv given in Eq.(3.7) into the equations of

K 30¢ motion (3.4) and(3.5) for v we find that we can solve them

exactly in terms of a Green'’s function. First we introduce the
tream function¥’, defined by

We see that the system is characterized by the dimensionle
parameters:

In dimensionless form, the concentration and velocity pro
files derived above for a single interface parallel to the flow®

are
_ _ A oY
dy(y)=tanhy, (2.13 OG0 UyT T o 3.9
U_s(_)=7y;<- (2.149  The incompressibility conditiof3.5) is then automatically

o satisfied byW. The two components of the Navier-Stokes
The dimensionless shear raje= ytq is simply the product equation(3.4) can be used to eliminate the pressBrdeav-
of the shear rate and the diffusion tinhgy=é&%/Mr, and ing a fourth-order ordinary differential equation for
thus represents a second dimensionless parameter that chdf= #(y)expikx—wt):
acterizes the strength of the shear flow.

) ik 1 1
Ill. STABILITY ANALYSIS Pl —2k2y" + KA yp= 7(1% SKh= 5"+ Ws(y) b |.

In this section we will develop an overall strategy to ex- (3.9
amine the stability of any number of lamellar domains. We
perform a linear stability analysis about the stationary stateslere primes indicate differentiation with respectytoThe
derived above. We begin by considering small perturbationdoundary conditions are that and its derivative vanish at
about the stationary solutiortee will drop the bars over the infinity. This equation can be formally solved using a
dimensionless variables in the rest of the discussion, exce@reen’s function to obtain thg component ofv that is

on the parameten for clarity) needed in the concentration equati@nd):
P=P e BD uy=—ikuty)
V=Uu-—us. 3.2

1 fm )
=— dy'(L+kly—y' e v Yipi(y")
To linear order in the perturbatiorf andv the equations of 4Apk) - y y=y'l Psly
motion become

o ips 9 1 (_3 X

+2-V2

1 1
SK2D(Y )= 50" (Y +Wely ) p(y) |.
&_IZ_UYW_US& 2 V2+WS(Y)>¢1

2 53 (3.10

146 1 This givesv, in terms of an integral oved.

0=V2y+ 107_5< _ §V2+Ws(y)) HY—VP, (3.4 Next subs'tltut|ng.Eq(3.7) into the poncentratlon equation
n 9 (3.3 results in an eigenvalue equation fo(k),



56 EFFECT OF SHEAR FLOW ON THE STABILITY €. .. 6973

do . 1{ d2 system is translationally invariant, so that any solution that
w(k)¢=vyd—s +ikyyop— v 2) corresponds to a translation of the interface by some amount
y dy dy is also a solution. Thus §—y+dy we can write
y 1 d? N 1 K2 W 31 dos
Ed_yz > s(Y) ¢, (31D d(y+dy)= o+ d—ydy+---,

where we have used= yy. A real, positive value ofs(k) SO it must be that
indicates stability(damping of the perturbation. Note that q
this is essentially an integro-differential equation in whigh bo= bs =secRy (3.17

acts as an integral operator gn dy

We cannot solve Eq(3.11) exactly so an approximate ] ) ] o )
method is needed. To develop our calculational approach wé also a solution. It is easy to verify that this is the case, with

first consider Eq(3.11) without the flow terms: corresponding eigenvalue= 0. This is the lowest-lying ei-
genvalue of Eq.(3.12 for a system with a single planar
1/ d? 1d2 1 interface andk= 0 [23]. We can use the variational principle
wp=—5| —— 21l == —+ K2+ W(y) | . (3.16 to calculate the stability eigenvalues near this-0
2\ dy 2dy? 2 , A :
translational mode for more general situations by assuming a

(312 tral function formed by appropriate linear combinations of

This equation is applicable to the perturbations of domains ifi"€ Single interface solutiof4]. To use Eq/3.16 we also
a binary solid and was used by Lang22] to describe coars- Nneed to determine the conjugate functigp. By definition
ening mechanisms in binary alloys. Note that E2j12 has the conjugate function satisfies

the form

2
wp=TFg, (3.13 F¢o=—§<—y—k2)'$o(y)=¢o(y)- (3.19

where we have defined the operators _ - ) ) _
We can easily solve fog$, by using a Green’s function, with

1/ d? boundary conditions thab, and &/, vanish at infinity. We
F=——(——k2), 3148 pog 3o and o Y
2 dy2
1d 1 doly)= f Cdy T e Yigy). (319
F=— 2 —+ k2 +Wy(y). (3.14h —e K

The conjugate function is thus obtained by substituting the
If ¢, is the set of eigenfunctions of E(B.13 and we define  desired trial functiong, into Eq. (3.19).

a set of “conjugate” functions by To summarize the results of this section, we have linear-
_ ized the equations of motion, expressed them parametrically
I'én=on, (3.19  interms of the wave numbéz and solved the hydrodynamic

. equations fow, as an integral ove$. The eigenvalue equa-
then one can show thdt and F are Hermitian operators o (3.11) can be solved approximately in the absence of the
(although their product is npas long as the, and¢, obey  two flow termsl[i.e., Eq.(3.12] by evaluating Eq(3.16
periodic boundary conditions or vanish at infinity. We noteusing an appropriate trial function. The methods used to in-
that the eigenvalues, are real and the eigenfunctions and clude the flow terms will be explained in the following sec-
their conjugates are orthogonal: tions.

(;;m,qﬁn)zf_ B (y)bo(y)dy=0 for n£m. IV. DISPERSION RELATION FOR A SINGLE INTERFACE

As an example of the variational technique, consider the
dispersion relation of a single flat interface separating semi-
infinite domains of the two phases. We initially neglect hy-

rodynamic effects and focus on solving E8.12 for w(k).
For a single interface located st=0 our trial solution is

Then for any pair of trial functiongs, and ¢, obeying the
same boundary conditions, we can find an upper bound o
the lowest eigenvalue from a variational relatiofi22,23

(¢o,Foo) exactly ¢o=¢.=secRy. There is only one term iF ¢,
Omin< Foda) (3.16  sincedy is a solution to Eq(3.12) for k=0:
0:,%0
2
Here the parentheses again indicate inner products. Fo=| — l d_+ £k2+2—3 secRy | (sechy)
To apply Eq.(3.16 we need a good trial functiog,. It is 0 2dy? 2

easy to determine an exact solution of E&12 in the par-
ticular case when we have a single flat interface present and

1
— 12
when ¢ is a function ofy only (k=0). We note that the 2k secfly.
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Using Eq.(3.19 for the conjugate functiomb,, we find

- = 1
¢o(y)=f _dy’ exp(—kly—y’|)secty’

* ! 1 !
=J_wdy KoyY

2
=E—2In cosly+0O(k),

+ ... |sechy’

where we have expanded the exponential for sidlbng
wavelengths This expansion is not uniform ip, but is jus-
tified since the integrand is only nonzero for smgll and

because we will only neeg, for small values ofy in the

subsequent analysis. The normalization integral is simply

_ @ 2
(qﬁo,gbo):f_wdy(E—Zln cosly+ O(k) | secRy

:%—2(2—2In2)+0(k).

Next we apply the variational theore(8.16) to obtain

_(¢o,Féo) _ 2k?/3
O Gorbe)  Ak—2(2—2In2) T O(K)

1
~ L3 4
= 6k +0O(k?),
4.0
where we have retained only the lowest-order terni.irf

we rewrite this relation in dimensional units, we find

1
w=-Dk3¢+0(k%

3 4.2

whereD =Mr, is a diffusion constant. This result has been

obtained previously by Jasnow and Zia3] and by Shi-
nozaki and Oon@25]. It also agrees to lowest orderknwith
the perturbative calculation by Bettinson and Rowlaf2&.
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and there will be a corresponding lack of concentration in

regions of negative curvature, creating a concentration gra-
dient along thex axis. The flux across the interface caused

by this gradient is roughly A ¢, wherev is the velocity of

the interface. That velocity in turn is just the rate of change

of the amplitudeA of the perturbation, so

dA
UA¢:¢ea:¢ewA~D|V|¢-

The concentration gradient i ¢|~kd¢; putting every-
thing together, we find

DewA~DAK E e,

so thatw~Dk3¢ as advertised.

We can include the lowest-order hydrodynamic effects on
the dispersion relation by performing a perturbative calcula-
tion to first order ink. We write the full eigenvalue equation
(3.11) in the form

I'Fp+Vop=wde, (4.9

where the “unperturbed” problem is simply E¢(B.12):

1 d* 1d® 1,
PF¢o=—5 _y_k _Ed_y2+§k +Ws(Y) | ¢o

with wo=k3/6 and ¢,=secRy from the variational result
(note these solutions are exact for 0). The perturbatioV
contains the flow terms

dos . .
V=vyd—ys+lkyy¢.

We expectv, to be proportional to a power d&f (since for
k=0 there should be no induced velocity in thelirection,
soV itself is proportional to a power df and is therefore

The eigenvalue is positive so the single interface is stable, aimall for long wavelengths. Expanding and ¢ in powers

least to long-wavelength perturbations.

of k and multiplying Eq.(4.4) on the left by the correspond-

The phy_sics here is strai_ghtforvx_/ard. We know that outsi_de;ng left eigenvectord, one can show in the usual way that
a curved interface there is a slight excess concentratioRe |owest-order correction @ in perturbation theory is

which is given by the Gibbs-Thomson relatif?i]

Sp= X 4.3

¢= RAG’ 4.3
where o is the surface tensiory is the susceptibilityR is
the radius of curvature of the interface, aep=2¢,, is the

_($oVdo)
(Bordo)

We solve for the velocity field by substituting, into Eq.
(3.10:

4.9

w3

miscibility gap. In our case the curvature of the interface is
1/R=AK?, whereA is the amplitude of the small perturba-
tion. The susceptibilityy is x t=duldp=r, in the bulk
phase. The excess concentration due to the curvature is there-
fore

1 Jw :
Vo= —— dv' (1+kly—=y' e Ky=y'l
e Ay (T+kly=y'])

1
X sechy’ ( 5 k’secRy’ )

Ko

¢er 0

where we have used E@.7) to eliminates. This excess
concentration will occur outside regions of positive curvature

S~ ~Ak2§¢ev K [« k
=—1 dy'[secHy’ +0O(k?)]= —=+0(k?),
8n) = 67

(4.6
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where we have again expanded the exponential for skaall 2m/k
We find that to lowest order, is linear ink, so that overall B
Vak. Since our first-order perturbative result will only be N ¢ T~ T~
good toO(k), we only need the exact part of the result to the o
unperturbed problenjrecall that the variational result is T~ T~
0(k®)], for which wy=0. In the reference frame in which B
us(y)= 7y, the integral over the convective terikyye in
Eq. (4.5 vanishes, so that we obtain a single term in the first- FIG. 2. Zigzag mode.
order correction ta» from thev, term:
- , — _ ) o= ¢a_ ¢av
o wgs o0 (Folk6n+O() o) .
(¢0: Po) (¢0: Po) and the equilibrium concentratiors, =1 and¢,=—1, we
K find that
= —+0(k? (4.7)
67 N
¢av =—-1+ E
since ¢g=secﬁy= ¢, for a single interface. If we restore
the units in this result we obtain Doing the integral over the stationary concentration and
ok keepindg (r)]nly the first-order corrections in exyX) for A>1,
= 2 we find that
w—477+0(k ), 4.9
1 -\
where o is the surface tension. This is a well-known result pn=E—re (5.2

for the damping of long-wavelength capillary waves on a

planar interface between two liquids, in the limit that the g4 thatu—0 as the system side—o. The dependence g
viscosity is sufficiently large that inertial effects can be ne-gp )\ will be important to our understanding of the physics in

glected[27]. Sec. VI A below.
Next we want to solve the full eigenvalue equati@nll)
V. CALCULATIONAL METHOD FOR A LAMELLAR for the lamellar domain. Any perturbation of the domain can
DOMAIN be written in terms of two linearly independent perturbation

modes: Either the two interfaces can fluctuate in phase with

We now turn to the stability of a lamellar domain of one s ?
phase immersed in the other phase, so that we have tV\%aCh other to form a “zigzag” mode or they can fluctuate

interfaces in the system as in Fig. 1. When the spaaing out of phase in a “varicose” or “peristaltic’ mode. These

between the two interfaces is at least a few correlatiorrnOdes are pictured n Figs. 2 and 3. Since we are interested
lengths (note that we continue to work with scaled vari- In calcu.latmg the eigenvalues near the marginally stable
ables, A\>1, the stationary concentration profile is mode withw=0 atk=0, we take the perturbed concentra-

tion field for the zigzag and varicose modes to be, respec-
tany+\/2), —»<y<0 tively,

S| —tanhy—A/2), O<y<-+c, G0 1 1

¢,==sech(y+\/2)— =secR(y—\/2), (5.3
where we have arbitrarily taken tlaephase with equilibrium 2 2
concentrationp,= + 1 to be in the middle, with layer thick-
ness\. In this expression we have set the exchange chemical b,= lsecﬁ(y+ N2)+ %secﬁ(y— \2). (5.9

potential « to zero. More accurately, we can calculateas v2

follows. The stationary solution that satisfies E2.5) is o ) _
The variational theoren{3.16) gives the eigenvalues for

Ps=tanhy+\/2) —tani(y—N\/2) + u, these two modes in the absence of any hydrodynamic effects.
However, we are interested in the effect of the shear flow and
where the regions indicated in E¢b.1) are implied. The of the fluid flow induced by gradients in the concentration.
chemical potential serves as a Lagrange multiplier to keefve cannot use the perturbation theory approach used in Sec.
the concentration conserved, so we can findy integrating |V because the varicose mode is not a solution to any “un-
the concentration field over the size of the system and settingerturbed” operator in Eq.3.11) [note that the zigzag mode
it equal to the average concentratign, :

1 (L p
ZJ‘7L¢S(y)dy_ d)av' 2 ¢ /_\/0,\_/
We want the volume fractiox; of the background phase B

with concentrationgz=—1 to bexz=(2L—\)/2L. Using
the lever rule FIG. 3. Varicose mode.
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is the translation mode,= ¢, and is an exact solution to multiply on the left by the corresponding, and integrate
Eg. (3.12 at k=0]. Instead, we adopt a “tight-binding” over ally. In vector notation, we have
approximation that will allow us to solve the full problem. _ _

To implement this approach, we consider the two pertur- 0= a[sechi(y +/2) - secti(y )‘/2)]/2) — a¢,
bation modes above to be two basis states and rewrite the b[seck(y+\/2)+secli(y—\/2)1/2] |bg,
eigenvalue equatiofB.11) as a X2 matrix equation in this (5.5

basis. We us@ as the right-hand basis state and the conju-g oy trial function, whera andb are the amplitudes of the

gate functiong as the left-hand state. We insert our two trial two modes. Substituting into Eq3.11) gives the matrix
functions(5.3) and(5.4) for ¢ into the eigenvalue equation, equation

($ud)o O )(a)_(<7¢z,v§¢g>+<7¢z,ik&y¢z>+<¢z,Fczsz) ($2.0580)+($2,ikyyd,)
0 (o)) \ P (Gy 0300+ (B, ikyyd,) (B vyde) + (o ikyyd,) + (&, Fby)

a
X bl (5.6

Here we have used the definitidp= ¢. The superscript on ~ N
vy indicates to which perturbation mode the velocity field (¢2.¢2)= _xdy{[—ln costty +A/2)+In cosiy—A/2)
corresponds, so tha@ is the velocity induced by the zigzag

mode andb} the velocity induced by the varicose mode. On +khy+O(k?) ][ seck(y+\/2)
':ahrﬁelzft-hand side of E(5.6) we use the orthogonality prop- +sech(y—\/2)]/2}
=2N—2—kA2+ O(K?). (6.1
(b,,0,)=(d, ¢, =0. Note that the second term on the right-hand side of the above

is negligible for sufficiently largé., but not whem is of the

order of a few correlation lengths. Since it is reasonable to
These also apply to the diffusive terms on the right-handconsider the case of being a few timeg (recall§=1), we
side; this procedure thus ensures that in the absence of aggnsider exp{\) to be a small parameter in the calculation,
flow effects we obtain the same eigenvaluess we would  but not 1A, so that we retain terms like the additive 2 in Eq.
from the variational theorert8.16. We can now solve Eq. (6.1). Next, substitutings, into Eq. (3.10 for the velocity
(5.6) for the stability eigenvalues. Note that all calculationsfield, we find by expanding for small as before that
presented below are carried out to the lowest possible order

nk 2(y)= = ki(4 2exze T 2| ok
v == - .
)= = gt 3

(6.2
VI. LAMELLAR DOMAIN RESULTS

A. Without shear flow Finally, since¢,= ¢¢ , there is only one term ik ¢,:

We consider first the solution of E¢6.6) in the absence

1
of the external shear flowy=0). The only possible off- F<;/>Z=Zk2[secl‘f(y+)\/2)—secﬁ(y—)\IZ)]. 6.3
diagonal terms are the ones involving. We begin by cal-

culating the necessary integrals that form the matrix ele- Now we turn to the varicose mode. The conjugate func-
ments. tion for this mode, expanded for sm&lj is
Using Eq.(3.19 and expanding for smak as in Sec. IV,
we find that the conjugate function for the zigzag mode is - 2
b, (y)= K In cosiiy +\/2) —In cosky—\/2)
®,(y)=—In cosiy+\/2)+In cosiy—\/2)
+kny+O0(K?). S &

A
2+ =+ |+ O(k2).

Tk 2712

The normalization integral is then This leads to a normalization integral of
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2 will dominate over ank? terms. We will see below that this

A2+ ?) +0(K?). condition is met for th& values of most interest. Finally, for
the varicose mode

~ 4
($y,y)=1 —2\—2+4 In 2+k

We note that the normalization goes to infinitykas 0. This

is the mathematical manifestation of the fact that the varicose Fo =3k2[secﬁ(y+)\/2)+secﬁ(y—)\/2)]
mode is not allowed ak=0 because it does not conserve ° 4

mass. For any nonzeto however there is no problem. The

velocity field for the varicose mode is given by —3 sechi(y+\/2)sechi(y—2/2), 6.9

so thatF ¢, includes an overlap term between the two inter-

4k K3\ f
V)= ——(2) —3)e~ Ay — 2,-2\ |4 aces.
oy 7(2}\ 3y 127y+0(k e kD). It is fairly simple to show by straightforward integration

(6.4  that the off-diagonal terms in E@5.6) vanish(for y=0):

In this expression we have not included term©gk?e~2*). (B, 026 =(F, vi))=0.
These terms will be negligible compared to termsOgk?) $2:0yPs)= (S0 0y s
for k>e 2" (at such smalk, of course, the linear term ik This reduces the matrix equation to

($nd)o O ) a| ( (P05b0) (62, F ) 0 )(a) 66
0 (B¢ b 0 (Bovyd)+(dy Fepy) |\ P '
|
so that we can solve for each eigenvalue separately: The terms involving the dimensionless viscosityare due to
~ , the flow field induced by the perturbations in the concentra-
. (pvyps)+(b,F) (6.7 tion ¢ and come from the, term in Eq.(3.11). Depending

on the value of; either the hydrodynamic terms or the

(6. ¢)
. . _ diffusive terms will dominate. We find that the stability ei-
for each mode. Using the expressions given above we pegenvalue for the varicose mode is

form the remaining integrals to obtaim for each mode.

For the zigzag mode we find ) 12kne 2\ [ 2
w,= —8ke - ———
% ) 7
1+

2\—2 +0(k%e 2 k4. (6.9

k k2

W=

—+
3y 6(A—-1)
3 2

_ k_g()\z_F 77__1+f()\) +0(k%, (6.9 The varicose mode is thugnstablefor sufficiently small
129 6 ' wavelengths. The eigenvalues for the two modes are plotted

_ _ as functions ok in Fig. 4. Here we taka. =6, so thate™2*

wheref(\) is the function is small(as we assumed abovandk>e~2* for most of the
range in the graph, as discussed above. We take the dimen-

55(M) =N 83(\) = &y J arep

f(N)=

A1
0.08 T T T
Here 6, is the definite integral
o 0.06 - i
50=j dy y?secBy In costy=1.706 81
- 0.04 |- ®, -
and the functions; and 6, are the overlap integrals ©
0.02 |- 4
- 100w, 7~
61()\)=f dy y secRy In cosy—X\), . Pl
* -0.02 ; ‘ L
52()\)=J dyy?secRy In cosity—\). 0 0.005 0.01 0.015 0.02

These are integrated numerically usimgTHEMATICA. We _ o
see from Eq(6.9) that the zigzag mode is stable for sniall FIG. 4. Dispersion relation foy=0, with A\=6 and »=0.1.
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/\_/—\—/ B. With shear flow

A ¢ W Next we consider what happens when we include the ex-
ternal shear flow. Physically, the shear flow tends to mix the

two modes since the top interface travels in an opposite di-

FIG. 5. Diffusional instability of the varicose mode. rection to the bottom interface. We might then expect that at

some shear rate, the two perturbation modes lose their dis-

sionless viscosity to bey_= 0.1, which is a typical value for tmgrwshllng lfetatltJr:es._ | | dt lculate th
near-critical binary fluids. However, the overall shape of the 0 calculate the eigenvaues we only need lo caiculate the

. . ; . L matrix elements involving the shear. It is straightforward to
dispersion relations remains similar for other value& @ind Lo : : .
— show that the operatdk yy is off diagonal in the basis of

' . . . .. our two perturbation modes, i.e.,
The instability of the varicose mode may seem unintui- P

tive. We f|rs_t note _t_hat it is unstable only for sufficiently (az,ik&y@):(gv,ik'yydh,):o-
smallk and is stabilized at larger wave numbers by kie _

curvature term, the same term that was obtained in(£@)  These two off-diagonal elements are found to be
for a system with a single interface. Second, the instability is

2 2
exponentially small in the separation between the interfaces, (4, ikyye,)=iky(N—\2+ 5;) +ik2yn )\_+ T
\. This is thus a very weak instability. It is due to a coars- 2 6
ening effect(essentially Ostwald ripeningn which thin re- +0(K3) (6.10
gions of the middle phase shrink in favor of fatter regions. ’
Recall that the chemical potentia~e™*. If N decreases in (B, ik yyd,) = —2i YN + ik y(A —2\IN2— 8, +\2)

a region,u increases, so the chemical potential is higher in
the neck regions than in the bulges. This drives a flux from
the necks towards the bulgésee Fig. 5. We can understand

the lowest-order diffusive effect as follows. First note that

the lowest-order diffusion term in E¢6.9), with units, is The stab_ility eigenvalues are now found by diagonalizing Eq.
(5.6), which means solving the secular equation

3 2

—ik%y >t 3 +0(k%.  (6.1D

o — 16D K e-2ME 0~ (Bo.ikryd)l (B2 00| _

¢ (Bo iKYy b (B ) Wy
(6.12

As before, we can express the velocity of the interfadeas
Solving for w gives

wAde~D|V $|~Dkdg 1
0 (K)= o k) +o,k)]
since the concentration gradient is along xhéirection. The

excess concentration addéslibtracted in the bulk regions 1 > o
of the neckgbulges is essentially oV lok) — 0,01~ ys(k), (613
wheres(k) is given b
sy Abe o Ade (k) isg y
g e e S(k):kzx(xz—x—61)+ kK[ 5 3
A—1 20— 17 -1
so that 3
a
><()\2—)\—51)—)\4—?)\2+O(k4). (6.14)

w~—DEe_2)‘/§. .
£ Some examples of the two curves[i®e (k)] are shown in

Fig. 6. The spacing between the two interfaces #s6 and

This implies that a large sheet of one phase immersed in th&¥€ have takeny=0.1. Fory=0 it is clear that Eq(6.13

other will break up into cylinders via this instability. Note "€duces to our previous results, with. =w; andw_=w, .
that this isnot the Rayleigh instability of a long fluid cylin- F19ure 6 shows,_ for three different shear rates turns out
der, in which the cylinder is unstable towards long wave-that the curves for . for these same shear rates are nearly

length, axisymmetric fluctuations. That is a hydrodynamicindiStinQUiShable' so they are plotted as one curve in_ng._G
instability that occurs for a three-dimensional cylindrical in- We see that at low shear rates the unstable mode still exists,

terface because the curvature at the necks is higher than %'t” the window of _wgve numbers over which I_Rg()<0

the bulges. In this two-dimensional perturbation mode, thd?€comes smaller ag increases. Above some critical shear
curvature at the necks and bulges is of the same magnitudate y., the previously unstable mode becomes stable for all
(the extra dimension out of the p|ane of say F|g 5 does nok(. The shear flow thus Completely stabilizes the varicose
exisy and so there is no curvature-driven instability. Themode, by mixing it with the stable zigzag mode.

curvature effect is stabilizing, and it is the thermodynamic We can easily solve for the critical shear ragg. First
force driving phase separation that causes the instability. note that the first term in Eq6.13 is positive because the
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0.1 .
0.08 |- ’ 4
0.06 |-

® 0.04

T

0.02

-0.02 1 I !
0 0.005 0.01 0.015 0.02

FIG. 6. Dispersion relationsw, for y=0.04 (solid line) and
100w_ for y=0.04 (dashed ling y= y,=0.07225(dotted ling,
and y=0.1 (dash-dotted ling

negative terms inv, are exponentially small in. As y is
increased, the square root term in E@.13 becomes
smaller. The effect is that the value lobelow whichw _ <0

0.8
0.7 “
0.6 - i

0.5 i

03 | i
0.2 L ' i

0.1 |- 4

0 0.05 0.1 0.15 0.2 0.25 0.3

FIG. 7. Critical shear rate,(7) for \=6.

known experimental observation that the shear flow tends to
halt the phase separation process.

VII. DISCUSSION

becomes smaller with increasing shear; the domain is only _ _
unstable to increasingly longer-wavelength perturbations as We have seen that in the case of an isolated lamellar

the shear rate is increased. For a given shear #ate; 0 for
all k>k. wherek, satisfiesw_(k.)=0:

(ko) + @, (ko) = V[ 05(ke) — @, (ko) 12— ¥2S(Ko).
(6.15

domain, shear flow has the effect of mixing the zigzag and
varicose modes so that they both become stable. Essentially,
the flow eliminates the special phase relationship between
the two interfaces necessary for the varicose mode to exist.
The physics of this mode is that thin regions evaporate in
favor of thick regions, but in the presence of shear thin and

The unstable mode becomes stable for all wave numibers thick regions do not exist long enough for this diffusion to
whenk.—0. To find the critical shear rate, we first solve Eq. take place since the fluctuations are being carried down-

(6.15 for y(k.):

—4w,(Ke)w,(Ke)
s(ke)

Taking the limitk,—0 in Eq. (6.16 gives the critical shear
rate for complete stabilization:

Y2(ke) = (6.16

_4(A—1)e M8y +4N(21—3)]
B3NN+ a(N)]

‘2
Ye

(6.17)

For the specific values\=6 and 7= 0.1, one finds
¥.=0.072 25, as indicated in Fig. 6.

The critical shear rate is graphed as a functior?oind)\
in Figs. 7 and 8. We note the lamella is stable foryai y .

We see that'yC is an algebraically decreasing function pf
and an exponentially decreasing functionaf Recall that

n<n, so that Eq.(6.17 tells us that as the viscosity in-
creases, the easier it is for the shear flow to mix the two 0.04
modes before the unstable perturbation has a chance to grov

We can also invert E(6.17) to obtain the critical width\ .
above which the lamella is stable for a given shear jatas
we see from Fig. 8, given a shear rateat values oh lying

below the curve the lamella is unstable to the varicose coars

ening mode whereas for values whf above the curve the

stream.

We would expect that a similar mechanism would apply
to a large stackalong they direction of lamellar domains.
Although the stability eigenvalues have not been calculated
for this case, the effects seen in the single lamellar domain
should apply. Coarsening in the direction in a stack of
lamellae is also dependent on thinner regions evaporating,
their atoms diffusing across the intervening phase to a
thicker region. Fronj22] we expect this coarsening instabil-
ity to also have a rate that is exponentially smalkinWWhen
one considers sinusoidal perturbations of the layers in a shear

0.12 |

008 L

Y,
stable

- unstable

: N ’ S ; 1
4 6 8 10 12 14

lamella is stable and will no longer coarsen. This simple _ L
system of a single lamellar domain thus exhibits the well- FIG. 8. Critical shear rate(\) for »=0.1.
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flow, once again the phase relations between interfaces wilkherea is the radius of the cylinder. Thus we might expect
be constantly changing. As increases, the atoms must dif- more dramatic effects in this case.

fuse farther across a layer for the pattern to coarsen, but they In summary, we have shown that a long extended domain
must be able to do so before they are swept downstream ki the two-phase state of a two-dimensional, phase-
the shear flow to a new position where the diffusion is no  separating binary fluid can be stabilized by an applied shear
longer favored. We might anticipate then that in a generafjow. There is a critical shear rate below which the extended
two-dimensional system with many lamellar domains, forgomain is unstable towards long-wavelength fluctuations and
any given shear ratg there is an upper limik; to the layer  above which we predict complete stabilization. This is in
spacing for which the coarsening instability is still present.qualitative agreement with experiments on dynamic steady
The shear flow destroys the correlations between interfacestates in phase-separating fluids under shear flow; however,
necessary for the coarsening instability to operate, leading the mechanisms operative here are different due to the re-
a dynamic steady state. The strength of the shear flow woulgyced dimensionality. We intend to report results of a similar
determine the typical lamellar width (y) present in the calculation for a long cylindrical domain under flow in the
system at steady state. future.

This behavior is qualitatively similar to that seen in the
fully three- dimensional “string” phase in shear flow. We do
not expect quantitative agreement, however, because the sta-
bility analysis of the lamellar domain considered here is
strongly dependent on the dimensionality. The instability of : .
a Iong )éylinpc)jer is much stronger than th)(/a weak expone)r/nial I would like to thank J. S. Langer for innumerable helpful

two-dimensional instability found here. For the case of adiscussions and support, and G. H. Fredrickson for helpful

viscous cylinder of fluid immersed in another viscous ”quid’dlscussmns.and a thorough r(_aadm_g of the_ ma.nuscnpt. l
the hydrodynamic instability corresponding to a varicoseould also like to thank the University of California, Santa

perturbation has a dispersion relation that behaved &ls Barbara for financial support. This work was supported by
the MRL Program of the National Science Foundation under

o Award No. DMR 96-32716 and by the U.S. DOE Grant No.
O~ ol (K& DE-FGO3-84ER45108.
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