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Brownian motion in quasibidimensional colloidal suspensions

M. D. Carbajal-Tinoco, G. Cruz de Leo´n, and J. L. Arauz-Lara
Instituto de Fı´sica ‘‘Manuel Sandoval Vallarta,’’ Universidad Auto´noma de San Luis Potosı´, Alvaro Obrego´n 64,

78000 San Luis Potosı´, SLP, Mexico
~Received 18 April 1997; revised manuscript received 10 July 1997!

Digital video microscopy is used to study the Brownian motion in quasibidimensional colloidal systems,
consisting of spherical polystyrene particles suspended in water and confined between two glass plates. This
technique allows the direct measurement of the lateral~two-dimensional! probability distribution function,
P(Dr ,t), of the random variableDr ~the particle displacement! at time t, and the mean squared displacement
W(t). We studied the effect of confinement in highly diluted samples, whereW(t) is found to be a linear
function of time. The hydrodynamic interactions between the colloidal particles and the glass walls are found
to be more important than predicted by approximate hydrodynamic theories. Keeping fixed the separation
between the plates, we studied the effect of direct and hydrodynamic interactions between the particles by
increasing the particle concentration. In this case, the short time dynamics is characterized by means of a
theoretical approach that describes self-diffusion in terms of the static structure of the suspension. In all the
samples studied, we found negligible deviations ofP(Dr ,t) from Gaussian behavior.
@S1063-651X~97!00512-6#

PACS number~s!: 82.70.Dd, 05.40.1j
s
io

o
ra
ic

re

ili
r
n

ion

n

is
t.
-

in

ied
s
s-

r-
n-

in
ct
nd-
n.
i-
s of
f

ass
ate
ion
the

be-

be-
for
tion
ant.
by

re-
s
en-
of

ee
ns in
e-
s

cles
I. INTRODUCTION

Single particle motion of submicron size particles su
pended in a fluid, commonly referred to as Brownian mot
or self-diffusion, is a fascinating phenomenon, paradigm
the stochastic processes, whose description for noninte
ing particles can be found in various statistical mechan
and colloidal physics text books@1,2#. Briefly, the simplest
quantity describing Brownian motion is the mean squa
displacement,W(t)[^@r (t)2r (0)#2&/2 dim, wherer (t) is
the position of the particle at timet, dim is the system’s
dimensionality, and the angular parentheses indicate equ
rium ensemble average. For isotropic systems we can w
W(t) in terms of the displacement along only one directio
sayx, i.e.,

W~ t !5^@x~ t !2x~0!#2&/2. ~1.1!

For noninteracting particles~i.e., in the limit of infinite dilu-
tion! in a homogeneous three-dimensional~3D! suspension,
W(t) is a linear function of time, i.e.,

W~ t !5D0t ~1.2!

in the diffusive time regime, defined byt@tB[M /z, where
M and z are the particle mass and the translational frict
coefficient, respectively. The slopeD0 of the mean squared
displacement is the free-particle self-diffusion coefficie
given by the Einstein relation,D05kBT/z, wherekBT is the
thermal energy. For a spherical particle of diameterd with
stick boundary conditions the friction coefficient
z53phd, with h being the shear viscosity of the solven
Deviations from Eq.~1.2! are due to the particles’ interac
tions, hydrodynamic and direct, with the surroundings~other
particles at finite concentration, external fields, constrain
boundaries, etc.!.
561063-651X/97/56~6!/6962~8!/$10.00
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For the last two decades, self-diffusion has been stud
~theoretically, experimentally, and by computer simulation!
mostly in the bulk, i.e., in homogeneous 3D colloidal sy
tems where the properties ofW(t) are determined only by
the ~direct and hydrodynamic! interactions between the pa
ticles @3,4#. However, in many cases of interest one is co
cerned with the motion of Brownian particles~proteins, poly-
mers, colloidal particles, etc.! in restricted geometries~near a
wall or between two of them, in a capillary, inside a cell,
a polymeric solution, etc.!, where the interactions, also dire
and hydrodynamic, between the particles and the surrou
ings are now quite important to determine their motio
Thus, in this work we study the Brownian motion of collo
dal particles in a quasi-two-dimensional system by mean
digital video microscopy~DVM !. Our system consists o
fluorescent polystyrene spheres of diameterd50.5 mm, sus-
pended in water and confined between two parallel gl
plates, forming a quasibidimensional system. We investig
on one hand the effect of confinement on the lateral mot
by varying the separation between the plates, keeping
particle concentration very low such that the interactions
tween particles are negligible. Thus,W(t) is only affected by
the hydrodynamic coupling and the direct interactions
tween the particles and the walls. On the other hand,
fixed plates separation, we varied the particle concentra
so that the interactions between particles are also import
Let us mention that some recent studies, by DVM and
evanescent wave dynamic light scattering~EWDLS!, of
Brownian motion on similar systems to ours have been
ported in the literature@5–8#. In Ref. @5# the authors addres
the problem of determining the particle concentration dep
dence of the self-diffusion coefficient of hard spheres,
diameter;0.5 mm at fixed plates separation of about thr
times the particles diameter, and various plates separatio
the case of highly dilute samples. Although the work r
ported in @5# seems similar to ours, two main difference
should be noted. First, the interactions between the parti
6962 © 1997 The American Physical Society
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56 6963BROWNIAN MOTION IN QUASIBIDIMENSIONAL . . .
in our systems are not~only! hard spheres~see our discussion
in Sec. III!. Second, we study the time dependence ofW(t)
with an experimental time resolution of 1/30 s. In@5# the
time resolution is 0.25 s~about one order of magnitud
larger!. Therefore, we study a qualitatively different set
systems at a shorter time scale, so that we look closer
the short-time regime. In Refs.@6,7#, the authors focus thei
attention on the motion of isolated large particles (d>1 mm)
and large separations between the plates. Although s
cases considered in@7# are similar to our systems in terms o
the plates separation to particle diameter ratio, they st
only isolated spheres and do not consider the particle c
centration dependence. In@8# the authors study the Brownia
motion in a suspension of hard spheres, of diameter 1mm
and plates separation of 3mm, using DVM and EWDLS.
Here, again, the interparticle potential is different from o
case. Since only one system is considered in@8#, the depen-
dence on plates separation and particle concentration is
determined.

In the following sections we discuss some details cor
sponding to the sample preparation and the detection of
ticle trajectories~Sec. II!, then we present and discuss o
results~Sec. III!, and in Sec. IV we summarize our finding
However, before going into the details, let us sketch so
general aspects of the Brownian motion in the bulk, so tha
might provide some general basis to understand Brown
motion in the case considered here. For 3D suspension
we mentioned before,W(t)5D0t in the limit of infinite di-
lution. At finite concentrations, the mean squared displa
ment is a linear function of time only in the short and in t
long time regimes, with different proportionality constan
@3#, i.e.,

W~ t !5H DSt, t&t0;d2/D0

DLt, t@t I; l 2/D0 ,
~1.3!

with DL<DS<D0 , and with l being the mean interparticl
distance. The deviation ofDS , the short-time self-diffusion
coefficient, from its low concentration valueD0 reflects the
effect of the hydrodynamic coupling between particles
their Brownian motion, and it depends only on the volum
fraction f occupied by the macroparticles. Theoretical c
culations and experimental results forDS as a function off
are reported in the literature@3,9#. On the other hand, the
value of DL , the long-time self-diffusion coefficient, con
tains the effect of both direct~electrostatic, excluded volume
etc.! and hydrodynamic interactions between particles. Th
the initial increase ofW(t) is linear, with slopeDS , and then
it deviates from this behavior due to the direct interactions
the tracer particle with its neighbors, and at long times i
again linear with slopeDL . Due to the large difference in th
characteristic time scales of the hydrodynamic and direct
teractions, their contributions on the Brownian motion
single particles can be decoupled@10,11#. This means that
the mean squared displacement can be expressed
W(t)5WI(t)DS /D0 , whereWI(t) is the mean squared dis
placement of particles with the same direct interactions,
hydrodynamically uncoupled. Calculations from theoreti
approaches that expressWI(t) in terms of microscopic quan
tities of the system, such as the pair potential between
loidal particlesu(r ), the particle concentration, etc., and t
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static properties such as the radial distribution function or
static structure factor, have been reported to describe a
rately the experimental and computer simulation data
WI(t), obtained from dilute suspensions of strongly intera
ing colloidal particles, such as polystyrene spheres in wa
@12–14#.

II. EXPERIMENTAL DETAILS

A. System preparation

A colloidal suspension of fluorescent polystyrene sphe
of diameter d50.560.015mm ~Duke Scientific! is dis-
persed and diluted in ultrapure water~Barnstead!. The sus-
pension is dialyzed to reduce the ionic concentration and
excess of dissolved surfactants from the original batch. T
systems studied are prepared as follows: in a clean at
sphere of nitrogen gas, a tiny volume of suspens
('0.5 m l) is confined between two carefully cleaned gla
plates~a slide and a cover slip!, which are uniformly pressed
until a single layer of beads is obtained. The separation
tween the glass plates is accurately controlled by previou
adding in the suspension a small amount of spheres w
larger diameters~from 1 to 2.9mm! that serve as spacers
Finally, the system is sealed with epoxy resin~Epo-Tek 302!
to avoid any further contamination, especially from airbor
CO2. By carefully controlling the volume of suspension us
in each sample, we avoid the contact with the epoxy re
and this prevents any contamination from the solvents. T
sample is allowed to equilibrate for 1 or 2 days at a const
temperature of 23 °C~in contact with a circulating bath!. The
systems prepared with this procedure remain stable for
eral weeks or even months.

B. Digital video microscopy

Digital video microscopy is now a standard technique.
our case, we observe the sample through a fluorescence
croscope~Zeiss Axioskop! with a 1003 oil immersion ob-
jective ~numerical aperture of 1.3!. The motion of the par-
ticles is recorded by a charge-coupled device~CCD! video
camera with a shutter exposure time of 1/250 s, attache
the microscope and connected to a video tape recorder~Hi8
Sony EV-100!. The images are then digitized using a fram
grabber with a resolution of 6403480 pixel2 ~Data Transla-
tion!. With this setup, we measure 1mm516.7 pixel.

C. Tracking particles

Although in our samples there is enough room for t
particles to move in the direction perpendicular to the plat
we observed in all cases very little vertical motion, i.e., t
particles’ vertical motion was never large enough to mo
them out of focus. Let us mention, however, that for high
concentrations than those studied here~see Table I!, the ver-
tical motion is larger and the particles can move out of foc
This effect is more pronounced for large plates separati
(*3 mm). The positions of the particles along the late
plane of motion are determined from the digitized images
using the method deviced by Crocker and Grier@15#, which
allows one to locate the spheres’ centroids with a precis
of 1/5 pixel (;0.02d). The trajectories of the particles ar
reconstructed from the particles’ positions at consecu
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6964 56CARBAJAL-TINOCO, CRUZ de LEO´ N, AND ARAUZ-LARA
frames, with a time resolution of 1/30 s, in the followin
way. We first notice that the largest displacement of the p
ticles between two consecutive frames was observed to
less than 1.5d @see Fig. 1~a!#. As the initial step, we identify
the positionsr i(0) of the particles, which in the first fram
(t50) are isolated, i.e., particles that do not have any ne
bor closer than 3d. Thus, in the second fram
(t5Dt51/30 s) there will be only one particle whose po
tion r (Dt) satisfies the conditionur (Dt)2r i(0)u<1.5d, we
then taker i(Dt)5r (Dt). We then search for the particlesi
in the first frame that do have just one neighbor at a dista
between 1.5d and 3d, and we look for the particles in th
second frame whose positions satisfyur (Dt)2r i(0)u<1.5d.
If only one particle is found, it is particlei ; if there are two,
we calculate the distance between the particles of the
possible configurations from frame 1 to frame 2. We cho
the configuration leading to the lower value of the total d

FIG. 1. Normalized probability distribution functionsP(Dx,t)
of the random variablesDx5x(t)2x(0) ~the displacement of
Brownian particles during a timet!. Distribution functions~solid
lines! corresponding to particles in samplesA andE are shown in
~a! and ~b!, respectively, for three different times. For compariso
the Gaussian functionsPG(Dx,t), constructed with the mean valu
and variance of the experimental distribution functions, are a
shown~dashed lines!.
r-
be

-

ce

o
e
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tance between particles. We consider more complex si
tions ~particles with two neighbors, etc.! until the positions
r i(Dt) are completely identified. In each step, the partic
already identified are removed so that they are not con
ered in the next step. This procedure is then applied
frames 2 and 3, and so on. The trajectories of the parti
that leave or enter the observation region during the ti
interval analyzed are not considered. For concentrated
tems, this method of tracking particles may interchange th
trajectories. For this reason, in this work we restrict o
selves to the analysis of the Brownian motion only in dilu
and semidilute systems. Table I summarizes the charact
tics of the 5 samples studied. For each system, several
of 750 consecutive frames were digitized and the partic
trajectories determined.

III. RESULTS AND DISCUSSION

The fundamental quantity describing Brownian motion
the normalized probability distribution functionP(Dr ,t) of
single particle displacementsDr5r (t)2r (0), during a time
t @16#. As we have already mentioned, the properties of
Brownian motion are usually discussed in terms of a m
simple quantity, namely, the mean squared displacem
W(t), which is nothing but the second moment ofP(Dr ,t),
i.e.,

W~ t !5
1

2dim E dr ~Dr !2P~Dr ,t !. ~3.1!

With the trajectories of the particles available, we c
calculateP(Dr ,t), as well as other relevant quantities. If th
orthogonal directionsx and y defining the plane of motion
are independent, thenP(Dr ,t)5P(Dx,t)P(Dy,t), with
P(Dx,t) andP(Dy,t) being the normalized probability dis
tribution functions of displacements along the directionsx
and y, respectively, at timet. To calculate these function
we choose discrete intervals of size 1 pixel (;0.1d) and
count the number of displacementsDr , Dx, andDy at timet
whose values fall within each interval. The normalized fun
tions are obtained by dividing the histograms by the to
number of events considered, which in all the samples s
ied here were of order 1052106, so that there are enoug
data to average out statistical fluctuations, thus obtain
smooth functions. Furthermore, in a homogeneous 2D s
tem in thermal equilibrium, it should happen th
P(Dx,t)5P(Dy,t). This is in fact what we found in our
systems and also thatP(Dr ,t)5P(Dx,t)P(Dy,t). Thus, it

,

o

TABLE I. Here we summarize the experimental conditions f
the 5 samples studied. The glass plate separation is given byh, the
reduced concentration byn* 5nd2 with n the average number o
particles per unit area observed in a frame,Ds is the measured
short-time self-diffusion coefficient ~see Sec. IV! and
D050.923mm2/s ~calculated from the Einstein relation!.

Sample A B C D E

h ~mm! 2.9 2.0 1.0 1.0 1.0
n* 0.007 0.006 0.006 0.046 0.080
Ds /D0 0.58 0.42 0.39 0.35 0.26



nc

d
e
ed
-
le
e

e
t

nd
o
ie
is
d

s
cl
us

o
b
w
o
ie

ke
e
t

d

a

n

tio

W
e

ow
t

r-

. In
r
the

tant

sian

er-
the
o-
is-

m-
is-

oi-

an
ar-
ore

56 6965BROWNIAN MOTION IN QUASIBIDIMENSIONAL . . .
is sufficient to discuss the results only for one of these fu
tions. In Fig. 1 we showP(Dx,t) ~solid lines! for samplesA
@Fig. 1~a!# andE @Fig. 1~b!# ~see Table I!. As one can see in
these figures,P(Dx,t) are symmetric functions centere
aroundDx50, and they spread out as time increases du
the diffusion of the particles. If the confinement is increas
by reducing the distanceh between the plates and/or by in
creasing the particle concentration, the particles become
mobile and the distribution functions are narrower. In oth
words, sinceP(Dx,t50)5d(Dx) for all the samples, thes
functions spread slower for more confined systems due to
increased interactions of the particles with their surrou
ings. This effect can be seen in Fig. 1, where we sh
P(Dx,t) for the least and most confined systems we stud

In an isotropic system of noninteracting particles the d
tribution functionsP(Dx,t) are Gaussian functions centere
around Dx50 ~i.e., with ^Dx&50! and with dispersions
s(t)[A^Dx2(t)&5A2D0t @1#. For 3D colloidal suspension
at finite concentrations, the interactions between the parti
introduce negligible non-Gaussian corrections so that Ga
ian functions with dispersionss(t)5A2W(t) are excellent
approximations for the distribution functions@17#. Here we
can ask the question: to what extent can the motion
Brownian particles under confinement still be described
Gaussian probability distribution functions? In our case,
can answer this question by quantifying the deviation
P(Dx,t) from Gaussian behavior. For all the samples stud
here, we obtained functionsP(Dx,t) that are similar to the
histograms plotted in Fig. 1, i.e., they look very much li
Gaussian functions and in fact one can make a nonlin
least squares fit to find the Gaussian function that best fits
experimental data forP(Dx,t). However, we should procee
in a different and more rigorous way. FromP(Dx,t) or,
more directly, from the trajectories of the particles, we c
calculate the momentsm l(t)[^@x(t)2x(0)# l& of the distri-
bution functions. With the first two moments we can co
struct normalized Gaussian functionsPG(Dx,t) having the
mean value and dispersion of the experimental distribu
function, i.e.,

PG~Dx,t !5
1

A4pW~ t !
expF2

Dx2

4W~ t !G , ~3.2!

whereW(t) is the measured mean squared displacement.
have setm1(t)50 in Eq. ~3.2!, since for all the samples w
found that u^x(t)2x(0)&u/d;102321025. In Fig. 1 we
plotted also the functionsPG(Dx,t) ~dashed lines!, and we
can see that they overlap the experimental functions. H
ever, to have a more quantitative account of the exten
non-Gaussian behavior ofP(Dx,t), we look at the moments
of higher order;m3 , m4 , etc. A customary way to characte
ize stochastic processes such asDx(t) is by looking at their
characteristic functionsFs(k,t), which are nothing but the
Fourier transform of the distribution functions@16#, i.e.,

Fs~k,t !5E dxP~Dx,t !e2 ikDx5^e2 ik[x~ t !2x~0!]&.

~3.3!

For the processes described by Eq.~3.2! we have
-
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G~k,t !5e2k2W~ t !. ~3.4!

In a more general way, Eq.~3.3! can be written as@3,17,18#

Fs~k,t !5e2k2W~ t !$11 1
2 @k2W~ t !#2a~ t !1•••%, ~3.5!

where

a~ t !5
^@x~ t !2x~0!#4&

3^@x~ t !2x~0!#2&2 21 ~3.6!

is the leading term containing the non-Gaussian effects
Fig. 2 we show a plot ofa(t) for the samples in Fig. 1. Fo
the other samples the values of this quantity lie below
curve for sample E~filled circles!. Thus, the results plotted in
Fig. 2 show that the non-Gaussian effects are more impor
for more confined systems, but within the ranges ofh andn*
studied here they are very small. Therefore, the Gaus
approximation is a good approximation.

Let us now discuss in more detail the effect of the int
actions between the particles. As mentioned before,
quantitative effect of the interactions on the Brownian m
tion is better visualized in terms of the mean squared d
placement. Thus, in Fig. 3 we plotW(t) for the 5 samples
studied. In Fig. 3~a! the mean squared displacement~sym-
bols! for three highly diluted samples@A, B, and C, with
reduced concentrationsn* '631023 ~see Table I!# at differ-
ent plates separations,h'6d, 4d, and 2d, are shown. Here
we can see the effect of reducing one dimension. For co
parison, in this figure we also plot the mean squared d
placement corresponding to the free diffusion of our coll
dal particles in a 3D suspension~dashed line! given by Eq.
~1.2!. As one can see, the reduction of one dimension has
appreciable effect on the lateral motion of the colloidal p
ticles, which become less mobile as the particles are m
confined. In this figure one can also appreciate thatW(t) for
these three samples seems to increase linearly with time@as
predicted by Eq.~1.2!#, but with slope smaller thanD0 , i.e.,

W~ t !5Dst, ~3.7!

FIG. 2. Non-Gaussian parametera(t) for samplesA andE.
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6966 56CARBAJAL-TINOCO, CRUZ de LEO´ N, AND ARAUZ-LARA
with Ds,D0 . Here we will refer to the slopeDs ~as in 3D!
as the short-time self-diffusion coefficient. Since the samp
are highly dilute, the interactions between the particles
negligible. As we mention in the Introduction, in 3D suspe
sions at finite concentrations, the initial slope of the me
squared displacement is reduced from its free diffusion va
D0 due to the hydrodynamic interactions between the p
ticles. Here we have also a reduction in the initial slope
W(t), which in the absence of interactions with other p
ticles, must be due to the effect of the hydrodynamic c
pling and direct interactions between the particles and
confining walls. We can calculate the value ofDs by making
a linear least squares fit to the experimental data forW(t). In
Fig. 3~a! the solid lines are straight lines obtained by fittin
only the first few~4–5! data points. As we can see, the
lines constructed with the initial points reproduce the exp
mental data in the whole time interval studied. The valu
obtained in this way are quoted in Table I. Theoretical c

FIG. 3. Measured mean squared displacement vs time~sym-
bols!. In ~a! we show the effect onW(t) of reducing the distance
between plates. In~b! we show the effect, at finite concentration
of the direct and hydrodynamic interactions with other particl
The initial slopes~solid lines! are calculated using only the initia
data points~a!, and the FDA approximation~see text! ~b!. For com-
parison, we also plotW(t) for a freely diffusing particle in 3D.
s
re
-
n
e
r-
f
-
-
e

i-
s
l-

culations of the friction coefficient of a spherical partic
near a plane wall show that it increases~in fact it diverges in
both directions, parallel and perpendicular to the plane! as
the distance between the wall and the particle decrea
@2,19#. Thus, a decrease in the particles mobility in a co
fined geometry is expected. However, a direct quantita
comparison is not possible since, to our knowledge, ther
not an equivalent result for the case where the spherical
ticle is not close to one wall, but confined between two
them. We can, however, compare our results with the th
retical calculations by assuming that the hydrodynamic eff
from the walls is additive. In this way we found that th
measured values forDs are about 30–40 % lower than thos
obtained by the superposition assumption. Therefore,
found that the lateral motion of ‘‘freely diffusing’’~i.e., in
the infinite dilution limit! colloidal particles in a quasi-
bidimensional geometry can still be characterized by a m
squared displacement given by a linear function of time w
slope Ds @Eq. ~3.7!#, which is smaller than the calculate
value from the superposition assumption of the hydro
namic coupling with both confining walls.

Now, at finite concentrations we can expect, as in the
case, a further reduction of the slope ofW(t) as a result of
the interactions, both hydrodynamic and direct, between
particles. Also, as in 3D, we can expect the value ofDs to
decrease as the particle concentration increases, as a res
the increase of the hydrodynamic interactions with the ot
particles. We can even expect a time scale separation f
‘‘short’’ times, whereW(t) follows Eq.~3.7!, to another lin-
ear regime at ‘‘larger’’ times, whereW(t)5DLt, with
DL,Ds . In Fig. 3~b! we plot W(t) for three samples with
increasing reduced concentrationn* 50.006, 0.046, and
0.080, but with the same separationh51 mm between the
glass plates~samplesC, D, and E, respectively!. As ex-
pected,W(t) increases more slowly as the particle conce
tration ~and the interactions between particles! increases, and
in fact we see a strong effect onW(t). As we said before,
this effect arises from hydrodynamic and direct interactio
so the question is: can we estimate the corresponding co
butions from each of those interactions? And still anoth
question is the following: is there a time scale separation
in 3D? Under the assumption~introduced for 3D suspension
by Medina-Noyola@10#! that the effects from the hydrody
namic interactions and direct interactions can be decoup
i.e., that the hydrodynamic effects enter through a renorm
ization of the value ofDs , we can answer both questions b
determiningDs from the data in Fig. 3~b!. For sampleC it
has been done by taking only a few initial points, as
already explained. For the other two samples~D andE! this
calculation is somewhat more involved. For these samp
we found that the slope ofW(t) changes with time, and
therefore it depends on which data points are used to ca
late the slope. Since the slope changes, it is not clear ho
calculateDs , and therefore, to quantify in a precise way t
dependence ofDs on the particle concentration. Howeve
we could still take the value of the slope determined from
initial data points just as an estimate ofDs , then the differ-
ence between the measuredW(t) andDst would be an esti-
mate of the effect of the direct interactions. We can, ho
ever, use a different approach to calculateDs as explained
below.

.
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In the case of 3D colloidal systems, theoretical a
proaches have been developed to describe colloidal dyna
properties, such asW(t), in terms of static properties of th
suspension. The accuracy of these theories has been e
lished by comparing their predictions with experimental a
computer simulation results for 3D@10,12–14# and the pre-
dictions of their 2D versions with computer simulations@21#.
One of these theories, referred to asFick plus decoupling
approximation~FDA!, has the appealing characteristic th
in order to calculate self-diffusion properties of interacti
colloidal particles, it requires as input only static propert
of the suspension and the short-time self-diffusion coeffici
Ds . In this approach the effect of the direct interactions e
ters through the static structure, while the hydrodynamic
fects are contained in the value ofDs .

Let us mention briefly the salient features of the FD
theory. It is based on the generalized Langevin equation

M
dv~ t !

dt
52zv~ t !1f~ t !2E

0

t

Dz~ t2t8!v~ t8!dt81Fint~ t !,

~3.8!

where v(t) is the particle velocity,f(t) is a white random
force,Fint(t) is the colored random force exerted by the oth
particles on the labeled particle as their distribution dep
instantaneously from its radial equilibrium average, and
kernelDz(t) is a time-dependent friction function. The time
dependent correlation function ofFint(t) is related to the
~time-dependent! friction coefficient by a fluctuation-
dissipation relation. The main result of the FDA is an expr
sion for the time-dependent friction functionDz(t) in terms
of static properties of the 2D suspension@21#,

Dz~ t !5
kBTn

4p E
0

`

dk
k3h2~k!

11nh~k!
e2k2Dst$111/@11nh~k!#%.

~3.9!

This equation writesDz(t) in terms of onlyh(k) and Ds .
The static propertyh(k) is the Fourier transform of the tota

FIG. 4. Radial distribution functions corresponding to samp
D (n* 50.046) andE (n* 50.080).
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correlation functionh(r )5g(r )21, whereg(r ) is the radial
distribution function of particles around a central one@1,20#.
The functiong(r ) can be determined directly from the pa
ticles’ positions@23#. In Fig. 4 we presentg(r ) for samples
D and E, from which the functionh(k) is obtained by a
Fourier-Bessel transformation. FromDz(t), one can calcu-
late self-diffusion properties such as the mean squared
placement, velocity autocorrelation function, and se
diffusion coefficient. Aranda-Espinozaet al. @21# discuss
some details concerning the numerical procedure.

The FDA results forW(t) are compared with the exper
mental data in Fig. 5. As we explained above,Ds is not
accurately determined from the initial slope ofW(t). So, we
use Ds as a fitting parameter in FDA, i.e., we choose t
value ofDs that made the FDA and the experimental resu
coincide. Thus, here we use the theory in a rather differ
way, i.e., instead of using as an inputh(k) and Ds to get
W(t), we useh(k) and W(t) to get Ds . The values ofDs
obtained from this procedure are slightly higher than the
tial slope ofW(t), and they are used to draw the solid lin
in Figs. 3~b! and 5, and are also quoted in Table I. Let
mention that the fitting of FDA to the experimentalW(t) is
sensitive toDs . For instance, a change of 2 or 3% in th
value of Ds will make the FDA curve fall at long times
(*1 s) out of the symbols representing the experimental d
in Fig. 5. The relative uncertainty in the measured value
W(t) is of orderN21/2 @22#, whereN is the number of events
averaged. In our case, as we mentioned above,N;1052106.
Thus, the relative uncertainty is;102221023. On the other
hand, the accuracy in the determination of the particles’
sition is;1022d ~see Sec. II C!. Therefore, error bars in ou
measurements ofW(t) are within the symbols in Figs. 3 an
5. Thus, differences inDs of a few percent are important. I
the FDA results are correct, two direct consequences sh
be noted. First, higher values ofDs than the initial slope of
W(t) mean that the interactions between the particles s
the short time regime to shorter times than the time reso

s FIG. 5. W(t) vs t for samplesD andE ~symbols!. Dashed and
solid lines are the results of FDA approximation forW(t) andDst,
respectively~see text!.
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tion of our technique~0.033 s!. Second, in Fig. 5 we see
significant decrease inW(t) when the concentration in
creases. This decrease ofW(t) must be due to the~com-
bined! effect of the increment of both the hydrodynamic a
direct interactions between the particles, as a result of
increase in the concentration. Since, according to the F
results, the direct interactions contribute only with a sm
part of the effect@compareW(t) with Dst], we may con-
clude that the hydrodynamic interactions should be resp
sible for most of the effect. The shift of the short time regim
may be understood in terms of the particles direct inter
tions. In Fig. 4 we see that according tog(r ) the particles
tend to be close to each other, and in fact there is str
evidence that, under confinement, the effective interpart
potential for polystyrene spheres in water has an attrac
component around the position of the maximum ofg(r )
@23–25#. Thus, at finite concentrations the first layer
neighbors is very close to the particle and the initial line
regime @Eq. ~3.7!# only occurs at very short times. On th
other hand, according also to Fig. 4, our systems are
highly structured~i.e., the direct interactions are not to
strong!. Thus, a small contribution from the direct intera
tions toW(t) is reasonable. Thus, based on the FDA resu
we can say that the hydrodynamic interactions between
particles are much stronger under confinement than in
bulk. For comparison, let us say that in the bu
Ds /D05121.83f1O(f2) in a suspension of spheres wi
volume fractionf @9#. For samplesD andE the correspond-
ing volume fractions (f5pn* d/6h, i.e., only taking into
account the spheres and the solvent! are 0.012 and 0.021
respectively. Thus in 3D systems with these values off, the
contribution toDs from hydrodynamic interactions betwee
the particles would be quite small.

Finally, and for completeness, let us note that in scatte
experiments~dynamic light scattering in 3D and evanesce
wave dynamic light scattering in quasi-2D! from colloidal
suspensions, one measures the dynamic structure fa
F(k,t). This quantity describes the time evolution of loc
particle concentration fluctuations in Fourier space. F
monodisperse systems withN particles,

F~k,t !5
1

N (
i , j 51

N

^exp$2 ik•@r j~ t !2r i~0!#%&. ~3.10!

For values of k where the static structure facto
S(k)[F(k,t50)51, the cross terms (iÞ j ) vanish and
F(k,t) reduces to its self-part (i 5 j ) or self-dynamic struc-
ture factor, which then describes single particle dynamics
Fourier space. From Eqs.~3.3! and ~3.10!, and takingk in
the direction ofx, we see that the self-dynamic structu
factor is nothing but the characteristic functionFs(k,t).
Thus, W(t) can be obtained from light scattering expe
ments by applying the back Fourier transformation to
measuredFs(k,t) and then using Eq.~3.1!. In practice, a
more economic way to obtain the mean squared displa
ment is by means of the Gaussian approximation@Eq. ~3.4!#.
For illustration, in Fig. 6 we show the self-dynamic structu
factor corresponding to sampleE, obtained fromP(Dx,t)
through Eq.~3.3!.
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IV. CONCLUSIONS

In this work we studied the motion of colloidal particle
in a quasibidimensional geometry. We presented experim
tal results for time-dependent quantities such as the m
squared displacement and the probability distribution fu
tion, along the effective plane of motion. The technique e
ployed in this study, DVM, allows us to visualize directly th
lateral motion of the particles. We considered highly dilu
suspensions where the only effect on the particle mot
arises from its interactions with the walls, which are found
be larger than predicted by approximate hydrodynamic th
ries. This point requires further theoretical investigation. F
more concentrated samples, we also found that the hydro
namic coupling between the particles induces a stronger
fect than in the bulk and the effect of direct interactions
the particle motion can be described using the 2D version
a theoretical approach derived in the framework of 3D h
mogeneous suspensions. This approach was used to ch

FIG. 6. Self-dynamic structure factor corresponding to sam
E, shown as function ofk ~a! and time~b!.
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terize the short-time regime, which is apparently shifted
shorter times than our time resolution due to the spec
~attractive! interactions between pairs of particles in o
studied systems. We also found that, for all samples stu
here, the probability distribution functions are very well a
proximated by Gaussian functions.
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