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We consider a model of patterning of one-dimensional foam—bubble chain confined in a bamboolike cap-
illary. The discrete model of such a foam describes a distribution of foam films—Ilamellae that, like “bridges,”
span a capillary. This model is a kind of Ulam map, which admits many metastable distributions of lamellae
in a bamboolike capillary as governing parametergernal pressure drop, lattice parameter, lamella tension,
and gas compressibilityovercome certain barriers. In particular, some random distributions of bubble sizes
over the chain are suited to solutions of the proposed discrete deterministic model. Randomization of lamella
positions speaks in favor of the possibility of the glasslike patterning of foam in a bamboolike capillary. For
such “chaotic” foam structures, the admissible pressure drop that the bubble chain can sustain, i.e., the
so-called start-up, yield pressure drop, rises. We show that the start-up pressure drop depends upon the length
of the chain nonlinearly. Only for short chains does it linearly depend upon the number of bubbles in the chain.
For infinitely long chains, a saturation effect is observed; i.e., the critical pressure drop becomes independent
of the chain length[S1063-651X%97)13011-2

PACS numbg(s): 82.70.Rr, 68.16-m, 68.90+g, 05.45+b

[. INTRODUCTION problem of prediction of the start-up yield pressure drop re-
duces to a description of how an external pressure is redis-
Recent studiefl—12 have shown that foam, because of tributed over the chain.
its unigue structure, reduces gas flow in porous media. This If we neglect for a time the compressibility of the gas,
blocking effect makes foam a promising blocking fluid for then to change the pressure by an amoumt pfin a sample
underground gas storage and for other engineering applicavith a macroscald., we need to overcome the Laplacian
tions [9—-11]. To understand the nature of blockage of gascapillary barrierAp~(o/r)x(number of lamellae), where
flow by foam, numerous investigators have conducted foanw is the tension of individual lamella. Because we have as-
displacement tests in packs of glass beads and etched gleasmed that lamellae reside at each throat, the number of
plates[2—4,7-9,12 It has been shown that, at any given lamellae is proportional to/r. Then the capillary barrier is
instant of time, foam flows in a small fraction of the pores.estimated as\p~oL/r2. It should be noted that, for an
The rest of the pores contain “trapped foam,” which effec- absolutely compressible gas, a similar estimate remains in
tively blocks the flow. As a result, the permeability to gas isthe force. Indeed, for both cases, the total capillary barrier is
reduced by several orders of magnitude over that whictla sum of the individual Laplacian barriers.
would be assumed with a gas-liquid system without a foam- Using this estimate, we conclude that the start-up pressure
ing agent. drop must be giant. The experimental values are significantly
In addition to reduction of permeability, foam radically lower than this estimate. There are some other additional
changes the rheological behavior of the gas phasd5. In  reasons, based on experimental data, which speak in favor of
particular, in the presence of a foam, gas flows as if it were dinite foam compressibility5,9-11,13. So this fact should
homogeneous fluid with a start-up yield pressure drop. Suche taken into account.
a start-up pressure drop must be applied before foam will In this paper, we shall show that the finite compressibility
move through porous media. of gas plays an important role in foam patterning and we
This paper concerns the physical nature of the start-ughall develop a respective theory of foam elasticity that leads
yield pressure drop. The explanation of the yield pressur¢o a significantly lower barrier. However, prior to a math-
drop is usually based upon one fundamental assumptiorematical analysis, it is useful to point out a range of input
namely, that foam is incompressib[d,5,10—-13. Let us  physical parameters for which the assumption of foam “in-
show that such an assumption leads to a huge capillary bacompressibility” (or “absolute compressibility) may be
rier. freely used 14]. Let us consider two characteristic values of
In explanation of the peculiarities of foam patterning pressure perturbations associated with foam in porous media
within a porous medium, it is sufficient to consider a one-on the microlevel of pores. The first characteristic pressure
dimensional foam, i.e., a bubble chain, immersed in a bamdrop is the Laplacian capillary barriéP.~4a/r. It is im-
boolike capillary. For clarity, we assume that, before defor-posed by the inherent structure of the pore matrix. This is the
mation, foam films, lamellae, reside in thermodynamicallypressure drop required to push a single lamella through a
preferential parts of the channel, namely, in each throapore constriction. To estimate the second pressure variation
where the surface energy of lamellae has a minimum. Focaused by the change of bubble volume, we consider the
such a chain, the distance between adjacent lamellae is dallowing imaginary experiment. We displace a single
the order of the radius of a porer. In this model, the lamella. But other lamellae in the train will remain at their
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initial positions at the throats. Then, by treating the gas asoidal, has to be zefd 3]. At the same time, in most experi-
ideal, the pressure perturbation within the deformed bubblenents on homogeneous bead pafk®,17, in which, at a
can be estimated a8P,~P,6V/V~P,/K, whereV is the  glance, active channels should be smooth, the critical pres-
initial cell volume, Py is the initial gas pressure, amdis an ~ sure drop was also observed.

integer number of pores between adjacent lamellae. This [N this paper, we develop a nonlinear theory of foam elas-
pressure variation does not depend on external pressure drdfsity that casts doubt on the applicability of the mechanism
and it is an inherent characteristic of the foam. It might beVe have just discussdd,10-15,23 As it follows from our
expected that whenevesP,> P, (40K/Pyr<1), foam mathematical analysis, the final results are insensitive to the

will move as a whole, because in such a case the externﬁhape ofa pore channel. A more important fac'For _is the ratio
pressure drop will be redistributed over the entire system of "/ 9Pc, which serves as a measure of the binding energy

foam cells. In the opposite case, lamellae are capable @ 1amellae with respect to pinning energy. In Sec. I, we

withstanding the variations of pressure of an ordesBy,. formulate the model of foam patterning under a load. Foam

This means that the fate of each individual lamella that is> c0n5|der§d as a one—dlmensmr@D) cha!n of lamellae
able to sustain the local pressure variation of an ordeiRyf Immersed into a bamboolike capillary. It is assumed that,

comes to the forefront and drives the foam patterning. Thu§fn't'_3”y’ tﬂt]r? Chr‘?'n folr rtTr‘]S atlDTﬁrystal dS(I) that tgle Iatr;]el'ljle
the above-mentioned inequality assigns a specific meanin Side at the channel throats. The model resembles the Ulam

for terms of “compressible” or “incompressible” foams odel [24,25. For a small pressure perturbation, it is re-

and also selects some range of the input parameters with uceq to the 'FrenkeI-Ko'ntorova mog{é!ﬁ,l&l. In the two
ollowing sections, we discuss two limiting cases of foam:

which a theory of foam elasticity can be constructed. Th bubbl S " d : hain of bubbl
theory of foam elasticity underlies the approach to foamg’v0 K/ Ies's eCiV ' and a contmuour? ¢ 2'” of bublles,
“plasticity,” i.e., the description of a creep of foam lamellae. ec. IV. In Sec. 1V, we demonstrate that the competition

It should be remembered that, within the framework of thebetv_veen elastic forces caused by the gas compressipility af‘d
ordinary theory of plasticity, the start-up critical prtezssure(:""p'IIary forces Ie.aq.s to foam coarsening; more precisely, it
drop can be estimated as a criterion for depinning a disloc eads to the possibility of the appearance of superstructures.

tion [16]. In this paper, we shall show how such a criterion he_ discreteness effects result in more complex foam pat-
can be obtained for foams. The mathematical problem jferning, as follows from Sec. V. In particular, the glasslike

similar to the problem of determining the critical field for ordering is also notable. But the _selec_:t|o_n of.the_ g:ham
vortex formation in Josephson junctions and the lk6— ground state from the thermodynamic principles is difficult,
2] because the resulting equilibrium state of the chain is dic-

There is another approach to determining the critical prestated' in reality, by the history of foam generation and mo-

sure drop. It has been proposed by numerous auffigte— tion through a porous medium. Anyway, numerical analysis

15]. They treated the critical pressure drop as that required t hows that the bubble chain in a glasslike state W|thst_ands
keep the lamellae moving and, therefore, to overcome th e enhanced pressure drop as compared to that prescribed to

capillary and viscous forces that resist their advance. A dec_:rystall|ne!|ke ordering. In Sec. VI, we discuss 'the effect ‘.Jf.
bble train length and show that the usual estimate of criti-

tailed investigation into these approaches has been done @ﬂ d y h < the i
Rossen13,15. Using this approach, the crucial role in the ¢&' PreSSure roF p~nyo/r [11,23, wheren, is the linear
ensity of bubbles, is suitable solely for short caravans. For

appearance of the critical pressure gradient has been attr‘if he critical drop d d d
uted to the sharp edges, or cusps, within a pore chann Eng caravans, the critical pressure drop does not depend on

which is modeled as a tube with a periodically varying ra-t edr_lum(;)e_r oééamellai mbthe_ car?vim. Il‘h|skef|feKct was first
dius. For a piecewise linear distribution of the pore radiusP"® icte .'n[ ], on the basis of the Frenkel-Kontorova
the channel is formed as a system of frustums of cones. | odel. It is worth noting that in application to superconduct-

gas in the cells were incompressible, then some of th@'S @ described by the mathematically similar model, the

lamella positions would be prohibited due to solely geomet-'mport"’mce of the size effect has been pointed out by Lowell

fic restrictions. In this case, the motion of lamellae is conl22}- All the conclusions are summarized in Sec. VII.
sidered as a sequence of alternating equilibrium positions of

a lamella. For certain shapes of the channel, the bubble has Il. STATEMENT OF THE PROBLEM IN TERMS

to jump a certain distance in order to conserve volume dur- OF AN AREA PRESERVING MAP

ing the motion. Jumps in lamella position occur when the
bubble volume becomes a nonmonotonic function of the
lamella position. A channel with edges, or cusps, is such a We shall discuss the nature of foam patterning under the
case. Usually[7,10-19, in order to estimate the critical following assumptions.

pressure gradient, the volume-average value of Laplacian (1) We shall model the porous medium as a rigid capillary
pressure drop per bubble is analyzfutovided that the With a radius

bubble volumes are random and uncorrelat&the volume-

average Laplacian pressure drop per lamella represents the r=ro+o cos{
net work required to push lamella through the pore. The

driving pressure gradient was attributed to the time-averaged

value of the pressure drop per bubblEor steady motion, Herergy, \, andé are some characteristic scales of the porous
the relation between time and volume occupied by themedium, and the axis coincides with the axis of the sym-
bubble is linea. In such a formulation, the critical pressure metry of a capillary.

gradient in smooth inhomogeneous capillaries, e.g., sinu- (2) The pore aspect ratio is a lodkr <.

A. Assumptions

A

2mX
) 1)
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kinds of forces: elastic forces and capillary forces. The cap-
illary forces tend to fix the lamellae at the pore throats, while
elastic forces, caused by gas compressibility, compel the
lamellae to shift into new equilibrium positions. Competition
between these forces leads to equilibrium states of the bubble
chain.

B. Elastic forces

We first focus on the elastic response of the bubble chain
caused by the gas compressibility. Under a load, itthe
bubble is deformed. And its length, with an accuracy of
O(8/ry), becomesa;—a;_4, (see Appendix The resulting
elastic force acting upon theh lamella can be written with
the same accuracy as

Plateau border fo= Wrg( Pii1—P)). 2

HereP; is the gas pressure within tiéh bubble. Making use
of the equation of state of the ideal gas, and accounting for

J/ assumption(2), we have

| n Piri(@1—a)=Pi(ai—aj_1)=-=PgKN. (3

‘ b) Here we denote a8, the initial gas pressure in an individual

L bubble, andK\ is the “wagon length,” i.e., the distance
A a ST I between adjacent lamellae in an initial unperturbed state.
2 MR ' " is an integer number. It is more convenient to rewrite @Y.

by introducing a new unknown functiop;—displacement
FIG. 1. (8 Scheme of lamella distribution in a wavy channel. of theith lamella from its initial position at the throat. Then
Dashed lines are attributed to the initial positions of lamellae, andy; = \/2+ \Ki+ p; and Eq.(3) takes the forn{30]
boldfaced lines represent the lamellae under a I¢ladSpecifica-
tion of the input parameters needed for calculation of the bubble PgK)\
volume variation and capillary force. Pi :m (4)

(3) In an initial undeformed state, foam is perfectly " Thus Eqgs.(2) and (4) express the elastic force in terms of
dered. Qngjer aload, all the bub.bles.keep the same mass; - displacements of lamellae.
we prohibit the occurrence of diffusion.
(4) The gas in the bubbles is ideal.
(5) One can ignore the Plateau borders and assume that
the lamellae intersect the pore walls at 90° an§i&27). To specify the capillary force, consider the membrane
Assumptions(1) and (2) can be particularly justified by analogy. The shapes of curved lamella and the pressure dif-
the following arguments. As has been shown experimentallyerences across the lamella are dictated by the Laplace for-
on a homogeneous porous mediym?28], where the ar- mula
rangement of the neighboring pore throats is rather regular,
the foam transport is realized through some effective sliding AP=P. . . —P. _4_0
channels. These active channels are controlled by the mecha- ol TRy
nisms for the creation and disappearance of foam lamellae.
Frequently, these channels have a slightly varying crosswhereo is the surface tension, R/ is the sum of the princi-
sectional are@29]. Assumption(2), however, can be altered pal curvatures of théth lamella, andR; is the radius of the
without any change in most of the physical conclusions. Asspherical membrane. The factor of two accounts for both
sumption(3) is stronger, but it allows us to demonstrate thefilm interfaces. Rule(5) reflects the thermodynamic drive
physics of foam patterning in porous media. We particularlyneeded to minimize the surface area of the film. Under a
relax this assumption in Sec. V. Assumptigdsand(5) also  load, some lamellae take positions at which they bulge back-
simplify the model, but they do not play a significant role. A ward and actually pull the chain forward. Others bulge for-
change in the equation of the gas state will merely alter thevard and resist forward displacement. Taking into account
effective elasticity constants of a foam. But the character ohssumption(5), we find[see Fig. 1b)]
foam behavior will be similar. Assumptia®) has been veri- g
fied experimentallyf8,27]. . r
We turn now to the construction of a model of a bubble Ri=r/sina(r)|x=a, tan= . ©6)
chain(Fig. 1). We assume that the train consistd\bofamel-
lae whose centers of chords are prescribed as points Thus, the right-hand side of E() is expressed via coordi-
=a;,a,,...,ay. Each lamella undergoes the action of two nates of the lamellae in caravam;=\/2+iK\+p;, or

C. Capillary forces

®
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through their displacements; . Assumption(2) allows us to Then the total thermodynamic potential of the system per
write Eq. (6) in the simpler form(Appendix lamella is expressed as
N wrSPgK)\ " P, 4mwrgod " 27,
Ri= o5 sin2mp IN) @ F=—N .21 nE,T TN 20 €oSTX
Then the capillary force can be written with an accuracy of wr%Pg
O(&/ro) as + N (Pprl_ Pextpo)- (12)
’ 4o
fo=mr§ " 8 D. Reverse problem
' It is convenient to rewrite all the equations in their dimen-
whereR; is expressed by Eq7). sionless form. We use the following normalization:
The balance of forces, Eq&) and(8), gives us the de- o P. oF
sired equation = L =
2 X —Pi, Pgﬂpl, Pg)\l’(z)HF'
8wdo | [ 2mp;
Piy1—Pi=-— Y sin T 9 Then Egs.(4), (9), (10) take a form of the map
0
: . . Pi+1— Pi=—2mu sinp;, (13
To specify completely the state of this chain, the system Rals '
of Egs.(4) and (9) should be subjected to boundary condi- 27K
tions for the zeroth and the labst— 1 lamellae as Pis1™PI= 1—27TK, (14
1+
Po=PoPen Pu=PgP, 10 Po=Pex. Pn=P, (15

where Pe,; and P are the external dimensionless pressuresn which the parameter
applied to the chain.
406

C. Thermodynamic potential M= Pgroh

Thus, all the states of the chain undergoing a load argep e as a measure of the intensity of capillary forces with
described by Eqg4), (9), and(10). Atthe same time, as will o5nect tg the elastic forces. We also rewrite the energy by
be shown below, the above formulated problem allows feWexpressing)N,l in Eq. (12) throughp; andP and by solving

solutions at some range of the input physical parameters. Theq (14) recursively. Then the thermodynamic potential takes
required essential property of the model is that its energy i,,o following dimensionless form:

a ground state has to be at a minimum. The extremity of the

energy could yield a metastable lamella distribution that is omKk (N1 P\ u'St
also interesting for applications. The energy of the chain of F= N 2 Inp;+ —| — K Z Cop;
N bubbles consists of two parts: namely, the elastic energy =1 Pi 1=0
E. and the surface enerdy, of lamellae (P—Pew)po
+—. (16)
F=Eq+E.. (12) N

The mathematical modé13)—(16) is suitable for analysis in

a wide spectrum of physical problems related to 1D foam
patterning and, in particular, to predictions of foam texture.
We, however, recall that the goal of our study consists in the

The surface energE.; accumulated by theth lamella
is equal to the work of capillary forceSrArrcz,/Ri during the
lamella displacement

pp— 2701 prediction of the critical pressure drop required to shift the
AEg= f 0 dpi=4omryd Cos_p'_ bubble train as a whole. In the formulation of the niaf)—
Ri A (15 and in minimization of Eq(16), the critical pressure

. _ . _drop has not been specified. Therefore, we are going to de-
The elastic energi E,; of theith bubble, associated with  (ermine some additional criteria that select the desired solu-

bubble stretching, is defined as tion to map(13)—(16).
P We turn now to the physical picture of the displacement
AE = _J Pi(Vi)dVi=7Tf(2)PgK7\ In _i_ of the bubble tra_in. It sh_ould be remembereq that vyhe_never
Py the last lamella is free, i.eR=1, there is a single pinning

force—a capillary force—which tends to keep the laist (
Here we have used E@d) in order to calculate the integral. —1)st lamella at an equilibrium position. Moreover, this
The work of the bubble chain against external pressures ifprce resists forward displacement only within the period
equal to pn—1€[0N/2], where the lamella bulges forward. Within
) this period, the profile of this force has a single extreme
5P g(Ppn—1—Pexio)- point—the maximum[see Eqs.(7) and (8)]. Therefore, it
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might be expected that the bubble train begins motion imme-
diately after the last lamella has reached the extreme point 2, =1
The pressure drop required to overcome this barrier will be

called the critical pressure drops=P..—1. Precisely Configuration I
speaking, if the dependen€&(py_4) is nonmonotonic, the

maximum of possiblés(py_1) within the period G<py_1 P

<\/2 should be called the critical pressure drop. For this

reason, the solution of the boundary value problem is re- Configuration IT
placed by the solution of the Cauchy problem: the knowl-

edge ofP=1 andpy_; determines recursively; andp; for A=A
all i. Then Egs.(13) and (14) define such a map that a P ’4”
point U;,1=(pj+1,pi+1) is transformed into pointU; ext

=T(Ui;1)=(pi,pi)- One can check by direct calculations

that the Jacobian matrix af has a unit determinant. Hence

the map is area preserving. Th|§ map, u,sua”y, called the FIG. 2. Configurations | and Il are the two possible equilibrium
Ulam map, has been previously discussed in a different COMktates of two bubbles. Configuration Il is unstable.

text and statemenf24,25. Within the framework of the
problem of foam patterning, we seek the relation R, 1
=Pqdpn-1), Where the parametgry_, is used to distin- Neor~ —o——5—,
guish different solutions to Eq$13) and (14). Then we de- In(2+47°Ku)

termine the maximum pressure drop among those calculate(il : e
: e : hus, in the former case, the load is distributed over a large
The goal of this study consists in solving the reverse prob, umber of lamellae. In the last case, the small number of fi?st

lem, i.e., the prediction of critical pressure drop as a functio amellae bear the main load. Therefore. one expects that a

of the input parameters. It is difficult to find the explicit ontinuous apbroximation of .modé13)—(1,6) a rop ratel

solution to the general case. We therefore consider som : pp . pprop y.
escribes the characteristic feature of the foam patterning,

asymptotes. The linear version of the model in E4S)— . :
: _ ... WheneverK <1, and contrarily, the discrete effects should
(15), i.e., asymptotep;— 0, P.— 1, allows us to select dis be taken into account for cases whétg = 1/472.

tinguishing limiting cases of foam patterning.

Configuration ITI

1
Ku> m (19

E. Correlation length lll. TWO BUBBLES

Even for two bubbles, the above formulated problem is
nontrivial. So we start from the analysis of this simple ex-
ample: a short chain consisting of two bubbles.

Pis1—Pi=—27up;, We begin with a description of possible equilibrium un-
loaded states of such a chain. One can easily find two trivial
pis1—pi=—2wKpii1, solutions of Eqs(13) and(14) that satisfy the boundary con-
dition P.,=P=1. The first represents the state in which all
Po=Poy—1, pn=0 the lamellae reside in the throats of the channel. In the sec-
ond case, the lamellae are attached at the widest part of the
can be written in the forni31] pore (configurations | and Il in Fig. 2, respectivelyCon-
figuration | is stable with respect to small perturbations in the
pi=ae lamella positions, because the lamella bulges forward, and its
further displacement is hindered. In configuration Il, small

wherea is a constant defined by the boundary conditions and€rturbations in the lamella positions, caused by the gas

Consider the semi-infinite chaM— 0. Then the solution
to the corresponding linearized problem

 satisfies the following transcendental equation pressure perturbations within bubbles, result in the appear-
ance of a capillary force codirected with pushing force. Also,
coshw=1+4mK . 1 in configuration Il, the surface energy of lamellae rises,

while the elastic energy remains the same as that in configu-

ParameteN,.,,~ 1/o can be called the correlation length. But ration I. Consequently, this configuration is unstable.

it is better to call this parameter the screening length because If we contract both bubbles and then make them free, then

it defines the characteristic distance over which the pressufkiS possible, in principle, that capillary forces acting upon

in the bubbles decreases fraPy,, to 1. the extemal lamellae will be large enough_ to keep mcrea;ed
In regimes where colligative properties of foam play thePressure in the bubbles. The corresponding steady configu-

crucial role, the parametétu is less than onésee Introduc-  fation 1, which satisfies Eqs(13) and (14) and boundary

tion), and the screening length of a caravan is estimated agonditionsPe=P=1, is shown in Fig. 2. Now the state of
the middle lamella is quite stable, because small perturba-

1 tions of pressure within the bubbles cause a restoring effect.
o~ ——, Ku<1. (18 Making use of Eqs(13) and(14), we obtain the pair 4, p)
2mVKu by solving the following equations:

In the opposite case, p=1+2mu Sinp, (20
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2K/{2K-1) 1.3
»
2 [T TTORCA
1
2
1
FIG. 3. Scheme for graphic solving Eq20) (curve 1 and(21) G‘g.oo 1.57 .p, 3.14
(curve 2. The solution first appears as the curves touch one an
other.
4.32
27K 21 .
p_p—7T+27TK' (1) F/K" -K=1
=2
wherep denotes the pressure within the bubbles, aiglthe
displacement of the end lamellae= 27— p,=p53. The solv-
ability condition of Eqs(20) and(21) (see Fig. 3 demands
that
dp Eq. (20) dp Eq. (21)
do| _. dpl _.
Here the upper index means that the derivatives have to k \“1‘.::\_\
calculated by making use of the respective formula. Using - Y b
simple algebra, we find the solvability condition in the form )
sgp bl v s
1.00 1.14 1.28
Pewt

1
FIG. 4. (a) Admissible external pressure aflg) respective en-

In other words, configuration Ill cannot be realized if the €r9y Per bubble for two bubbles,=0.008; the dashed line corre-
capillary forces are small or the bubble length is small. ~ SPonds to parameteys=0.016,K=1.

Proceeding to the analysis of the possible range of
Pexd(p3), we find that two distinguishing regimes of chain undeformed states by slowly and continually increasing the
behavior take placEFig. 4@]. They are distinguished by the external pressure. We shall call such a process the “adia-
parameter Ku. The first regime corresponds t&u  batic” variation of Pg,. In the vicinity of the maximum of
<1/47?, when all the lamellae reside in the vicinity of the the admissible external pressure, the energy behaves non-
throats. As parametdf rises, novel configurations such as monotonically. The corresponding states with a minimum
configuration Il appear. In other words, lamellae are capablenergy cannot be reached adiabatically. In order to obtain
of occupying the “dangerous” positions at the widest part ofsuch states, we have to consider some dynamic process of
the pore, whenevef u> 1/4+2. loading. The upper branch &f(P,,,) after the loop corre-

Figure 4a) shows the pressur@,,, as a function of the sponds to the descending branchRyf,(p3). These states
displacementp; for bubble trains withN=3 and uK are mechanically stable and can be considered as a realiza-
~0.008<1/472. For eachP,, there are two equilibrium tion of some dynamic process.
states of the train. Two point§P.=1, p3=0) and (Pgy Comparison of curves 1 and 2 in Figaftshows that, for
=1, pz= ), represent configurations | and I, respectively. K=2, the admissible maximum pressiRg,; decreases rela-
The characteristic plot of enerdy versusP,, is depicted in  tive to the case in whicKk =1. For largeru, the bubble train
Fig. 4(b). This plot can be subdivided into three pieces: twowithstands the larger pressuRg, [Fig. 4a@)]. This means
branches before the intersection point and the loop in théhat the maximum pressure increases with the effective pin-
vicinity of the maximum ofP.,;. The lower branch of curve ning force, which is ruled by both the capillary force and
F (P before the loop corresponds to an increasing brancleffective bubble compressibility.
of Pe(p3). These states can be obtained from the initial Further increasing the length of the bublie, we arrive
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at the rangeuK >1/472. Figure 4a) demonstrates the be-
havior of the functionPg,(p3) for the case in whichK
=10, 4=0.008. This is typical behavior. For the large lattice

parameterK =10, there are four solutions for eaéh,>1 I
in the rangep;<1. The number of peaks depends upon the
relation between the effective compressibility of a bubble ol

and the magnitude of capillary force through paramitgr S

On the other hand, fop;~1, curveP.(p) intersects line
P=1. This fact indicates the presence of configuration IlI.
k./ i}

Thus, the simple model demonstrates the highly nonlinea 1
IV. CONTINUOUS MODEL I

character of foam patterning even for two bubbles. It might
be expected that colligative properties will come to the fore-
front with the growth of bubble population.

In this section, we shall discuss the characteristic feature
of another limiting case—a continuum chain. Going over
from a discrete variable to a continuous variable,

s=2xKi, we rewrite Eqs(13) and(14) as 0.00 314 6.28
P
_dp_m g 23)
ds K P, FIG. 5. Phase portrait of the systd2B8) and (24). The separa-
trix is denoted asS. Arrows show the direction of the increasing
dp 1 arclengths.
s 1, (24
M
One expects that the continuous model, E@8) and Inp—p+1=- (cop—1), (26)

(24), approximates the discrete one, wheneperand p;
slowly vary withi. Quantitative estimates of the limits of the which follows from Eq.(25). We denote parameté&r at the
validity of the continuous model have been done in Sec. Il Eseparatrix as

The systen(23) and(24) has the first integral

E=E*, E™*=—1-> 27)

|np—p=E+%COSp, (25 K

) _ The phase planeR,p) is subdivided by the separatrix into
whereE is a constant that depends on boundary conditionsgyree parts. Upper part | and lower part Il represent “infinite
The analysis of the system of equatidit83) and (24)] al-  motion” (E<E**) of the test point, while the internal part
lows us to clarify the main peculiarities of the inherent struc- envelopes all the curves of “finite motion” E>E**).
ture of the bubble chain in relation to the magnitude of pa-a|| integral curves within domain 11l pass through points at
rameterE. By virtue of the translational symmetry—p  which py=1. So they describe the bubble trains with free,
+2mn, n=0,= (overbar denotes an inclusive rangthe je. unloaded, boundary lamellae. The integral curves of do-
system of equation$(23) and (24)] may be considered main | illustrate a different physical situation—a contracted
within the whole range op e (—,). It follows from the  pubble train with blocking lamellay_;=0, py>1. Simi-
phase portraitFig. 5 that the system has two kinds of sin- |arly, extended bubble trains with fixed boundary lamella
gular points: hyperbolic and elliptic singular points. Points,, =0, py<1 are represented by domain Il. Each of the
p=1, p=2mn, n=0,=x serve as hyperbolic singular singular pointsp=1, p=2=n creates four branches of
points. These singular points represent the solutions descrilgeparatrix—the entering branches and the exiting ones. The
ing configuration | in Fig. 2. Lamellae are attached to therespective solutions correspond to distinguishing configura-
thinnest parts of the channel so that the surface energy afons of the chain. Therefore, if some “realization of the
lamellae has a minimum. Points=1, p=a(2n+1), n  separatrix” will incorporate a single or a few singular points,
=0,*x are elliptic. They describe configuration Il in Fig. 2. then the respective texture of the train will be complex. If we
Lamellae tend to leave these wide parts of the channel bedesignate the current number of lamellae as time, then the
cause the surface energy takes the highest possible valdigite motion in domain Ill can be treated as a motion with a
here. The hyperbolic points are connected by a separatrifinite time periodT. This means that the number of bubbles
which has two branches within each cell of a symmetry ofaccumulated by a single cycle of revolution of an integral
the phase portrait. One of them exits from the left point, thercurve is a finite value. When the solution approaches the
passes above linp=1, and enters to the right hyperbolic separatrix, periodl' tends to infinity; i.e., the solution de-
point. The other branch goes in the opposite direction undescribes an unconfined bubble train. The solution also demon-
line p=1. The separatrix is described by the transcendentadtrates the effect of the “irreversibility” of the bubble train
equation displacement. Namely, after the action of critical pressure
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drop has ended, part of the lamellae never occupy former
positions. The solution looks like the solitary “domain wall”
[16,18,26:

P

P ers

(28 B'

p=4tan ! exg — (x—xq)]+O

That is, under the given pressure drop, all the lamellae be-
hind of the “wall” at left infinity s— — o shift to the period
p=2m and reside there after unloading. Lamellae at right
infinity s—o, ahead of the wall, keep the undeformed state
p=0. The domain wall matches the second zéthe undis- a)
turbed zong where the lamellae are pinned at the equilib-
rium state with the first zone, where lamellae are displaced P
over the period of channel. The wall size can be estimated in
an order of magnitude a®(\ VK/\/u) [26].

The domainlike structure resembles configuration Il in
Fig. 2. But the similarity is not complete because the effect
of the ensemble of the lamellae plays a crucial role in foam
patterning within the framework of the continuous model.
The collective interactions of lamellae guarantee the stability
of domainlike structures in the whole range Kj., where
the continuous model is valid. This behavior absolutely dif-
fers from that of two bubblefrecall that inequality(22) se- B
lects the range oK x at which configuration 1l exists

The passage to the continuum limit enables us to be per-
suaded that the pressure variation is finite for all solutions we
are interested ifdomain Ill). The upper boundary for the

admissible pressure drop is expressed by the maximum of b)
the separatrix. By analyzing E(R6), we find that the maxi-
mum pressure at the separatrix is prescribegd-asr. Insert- s
ing this value into Eq(26), we arrive at the following equa-
tion: FIG. 6. Multivariancy in choosing the appropriate solution of
Egs.(23) and(24). (a) The scheme of the path in phase portréoj,
2u the typical shape of corresponding solution. Paran®tercounted
In(1+G)-G+ « =0 (29 from arbitrary starting points to demonstrate the characteristic fea-

ture of the dependences prescribed to the distinguishing branches.
Curve Il makes a single full revolution, starting from the bold dot

Equation(2 h itude of the critical pres-
quation(29) expresses the magnitude of the critical pres and entering poing,

sure dropG as a maximum point of the separatrix.
The general conclusion of this study is that the bubble
train is unable to sustain the pressure drop overcoming theollective effects prevail over the individual feature of each
thresholdG, provided that one of the train ends is free. ~ bubble (see Introduction and Sec. lI)EThe intermediate
Analysis of the cyclic solutions from domain Il shows regime is important for applications and, what is more inter-
that any integral curve gives rise to an infinite number ofesting, one expects that the analysis of the discrete model
solutions of the system of Eq&23) and (24) (provided that  (13)—(15) will be able to select quantitatively the different
the number of lamelladN in the train is successively in- regimes of the foam behavior and predict novel solutions. As
creased, but the external pressure drop remains unchangedaentioned above, the well-known Ulam mod2#,25 con-
Poc=1+G level). This means that, for any giveN, there tains some characteristic features of the model under consid-
are several solutions to Eq23) and(24) with the sameP eration. The main result lies in the fact that the Ulam map
(Fig. 6). Each of the solutions is characterized by the distin-has stochastic solutions that lie within stochastic domains,
guishing input parameteys,_; andE. Since we are inter- Separated by domains of regular soluti¢@s]. All the tra-
ested in the start-up pressure drop, only the adiabatic solyectories, starting from the vicinity of hyperbolic poipt
tion [curve | in Fig. &b)] seems to be suitable. =0, p=1, belong to stochastic layer IV in Fig. 7. The sto-
chastic layer is separated by regular trajectories from the
upper and lower regions of regularity. Near the elliptic sin-
gular pointp=, p=1, there is a “stability island” sepa-
The continuous model, Eq&3) and(24), is valid when-  rated from the stochastic layer by a cyclic regular trajectory.
ever lamellae displacements and pressure vary slightly overhe island is termed stable due to its mechanical sense, i.e.,
the train. This assumption is valid for trains with smaland  an island in which the test point moves regularly.
moderate lattice parametells or, more precisely, until the In our case, this island in the phase portrait carries another

V. DISCRETE MODEL
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o

0.9

FIG. 7. The sketch of stochastic layer IV of mgi8) and(14) at |
the separatrix S.” a)

. . _ o 08 : ’ : : : —
meaning. Any solutions from the vicinity of elliptic singular 0 2 d

points describe such a distribution of lamellae whose bubbles Pr-1

are slightly stretched or contracted. But all the lamellae re- 19 -

main at the widest part of the pore. Surface energy of lamel- ' 3

lae for these solutions is enhanced with respect to the ground 3 48 [, ‘

state. Therefore, the lamellae most likely jump through these ‘ ,

“dangerous” points. One expects that the equilibrium state 11 - Tl

of the train, which is established with time in a dynamic way, I '

cannot include such “dangerous” pieces. In other words, P,,,

any trajectory that starts within the stochastic layer does not

penetrate the island. Such an island exists until the capillary I

pressure and bubble compressibility exceed a certain critical ] . ||“[ i 1 ,
|

1.0

value expressed by inequalif24,25
1 09 | ! ‘
,LLK>?. (30 I ‘ 4

Inequality (30) resembles inequality22) and ensures the T TR—
possibility of the appearance of configurations like configu- ’ ’ PN—{ :
ration 11l in Fig. 2. As soon as the input parameters get into
a range satisfying the inequali{d0), the elliptic singular 1.2
point becomes unstable and the island disappears. Some
bubble trains with a single free end may contain the domains
where lamellae reside close to the widest part of the pore.
The pressure within such bubbles remains on the order of the
initial undisturbed level. Despite the evident instability of
local parts of the train, the caravan as a whole might be quite Pogt
stable. This happens due to the high bubble compressibility _—
or strong capillary pinning: the individual fate of the bubbles
comes to the forefront while the collective events lose actu-
ality in the sense mentioned in Sec. Il E, Ef9).

Figure 8 shows the typical curvBq(pn_1) for long
trains. HereN=101. The plot reveals the quasiperiodic de- \
pendency, Fig. &), which has already been discussed for the
continuous mode{Sec. IV). In the description of the steady
equilibrium state of the bubble train, we start with the pair T T T e taoz2
(pn—1,1), pn—1—0 and use maf@. The expected result, Pn-1
based on the analysis of the continuous ma&ec. 1V), is
that the trajectory is unable to overcome the barsepara- FIG. 8. The external pressui@,, in different resolutions of
trix). But the discrete picture is more complex. Namely,pn-1, ©«=0.008,K=1, N=101.
when displacemengy_; becomes nearer to zero beyond a
certain critical value, chaotic behavior replaces the regulaterning of foam. However, with further decreasing the dis-
one, Fig. 8b). This means that the corresponding trajectorieplacement of last lamellay_1, a regular part oPg,(pn_1)
of solutions to Eqs(13) and(14) pass through the stochastic was found once more, Fig(@. This is associated with the
layer IV on the phase plan@ig. 7). The randomization of regime of the regularity of the map.
the lamella distribution speaks in favor of the glasslike pat- The energyF, as a function opy_4, is presented in Fig.
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9. From this figure, we see that the solutions for trains with Figure 13 demonstrates the first maximum pressure
N=101 and minim& correspond to small displacements of Pe{(pn-1), Which we observed in the rangg,_,—0 for
the last lamellapy_;. On the other hand, the randomization variousu andK. One can see that, for a smallandK, the
of the bubble train is observedFig. Ab)] within the same maximum admissible pressure is well predicted by the con-
range of the displacements of the last lamella as that in Figinuous model, Eq(29). Wheny or K increase, the predic-
8(b). When the last lamella closely tends to the throat tion of the continuous model underestimates the admissible
pn—1—0, a regular part of the enerdi(py_,) is displayed, Pressure. This can be expla[ned by the fact that a solution of
Fig. 9(c). The characteristic feature of foam behavior with aEds:(13) and(14) follows an integral curve of Eq$23) and
different ordering is demonstrated by Figs. 10 and 11. (24) only approximately. Indeed, from the EQL3), py-1 is

A detailed analysis of pressure and energy dependenci&(presseol as
shows that there are several intervals of the displacements of ,
the last lamella within which the energies of the chain vary Pn-1=1+2mp Sinpy-s. (31)
slightly between the different states. It is very difficult to . . .
distinguish such increments numerically. Figure 11 shows By comparing Eq.(31) with Eq. (26), we obtain that

the phase portrait, pressure, and displacement distributioﬁ'%henz\ierr:g:cgggdjzt)h;ssseag‘:’zﬁq' ?i%;(pgalt’h(g”}]gée
for the three states marked in Fig.(&D PointsA, B, andC ~ PN-1 : v P X, BQO), P

: ) plane. The difference between the integral curves for a dis-
haye the S.am@e’“' The tWO. solutionsA andB, prescrlbgd .crete model and a continuous one increases with the growth
as increasing and decreasing branches of the curve in Fi

: . o p andK. The critical values o, defined by Eq(22), are
10(a), trace almost the same trajectories and accumulate thaenown by arrows in Fig. 13 for each curve. It can be seen

similar domains of the compressed and extended bubbleg,, £q (22) may be considered as a limit for the validity of
Fig. 11(a). The trajectoryC describes another solution and e predictions of the continuous model.
contains a train structure different from thatdfandB, Fig. When uK approaches &2, the discreteness of the sys-
11(b). tem of Eqs.(13) and(14) becomes substantial. Its solutions,
The complexity of the foam texture can be revealed bywith a smallpy_;, become sensitive to the variation of the
analyzing the number of domains in the train. We use herénitial data. And various chaotic phenomena can be ob-
the term “domain” in order to distinguish the region within served. The trajectories of the stochastic solutions belong to
which the displacements of the lamellae are almost constan, stochastic layer and go in the vicinity of the separatrix of
Fig. 11(c). In our numerical experiments, we found that thethe continuous system of Eg&3) and (24). The chaotic
states with more complex structure, containing several dofeatures of these solutions may be attributed to two main
mains of extended or compressed bubbles, may have effects. First, the variations of initial daja,_, are able to
smaller energy than those that have fewer domains. This iabruptly alter the branch of the separatrix along which tra-
contrary to the tendency that has been observed in the regigactories are passing. Second, the distribution of points along
of the regular solutions of Eqg13) and (14), where the the trajectory is also sensitive to the initial data: while the
greater the number of domain walls, the larger the enrly  domains might occupy various regions, the associated energy
Figs. 8a) and 9a)]. remains at almost the same level. Figure 14 demonstrates the
The variation of the number of domaihg, in the bubble inherent structure of the phase portrait, associated with the
chains is represented in Fig. 12. The numbgy gradually  glasslike patterning of foam. The main conclusion is that the
increases wittpy_,, but relationNp(py-1) is not regular.  admissible external pressure rises as the bubble train acquires
The obtained results show that the solution to the problenthe glasslike structure.
of the selection of the ground state in the case of long bubble
train N— oo i.s very complex. We obserye the high sensibility VI. EFFECT OF THE TRAIN LENGTH
of the solutions of Eqs(13) and (14) with respect topy_1
whenever the physical parameters vary within the domain of The analysis of the steady states of bubble chains has
stochasticity. Within the family of input parameters undershown that the applied pressure drop penetrates the bubble
consideration, states with the same boundary presByge train for a finite distance, but not over the whole train. More-
differ in energies only slightly and may be considered asover, this distance, which is measured here My, de-
equivalent. creases with increasing andK. Perhaps the nonunigueness
One can take another criterion of the choice of the grounaf the solution to problem$13)—(15) may be attributed to
state of a bubble chain under given presdgg. This is the the finiteness of the correlation length of the system. Indeed,
“adiabatic” criterion. We already discussed that criterion in if we have no correlations between bubbles, then the various
Sec. lll. It can be obtained by variation of the initial lamella states under the same pressure drop, but with different do-
positions under slow continuous variation of the pressurenain structure, may be considered as equivalent composi-
Pex. This configuration has the smallgs{_;, among other tions of the independent bubble blocks. This agrees with the
states with the sami.;, and the simplest domain structure, behavior of bubble chains at a largd, when chaotic struc-
Np=1. tures of bubble chains indicate the weak correlation between
Within the framework of the “adiabatic” criterion, the neighboring bubbles. There is another reason for the appear-
maximum pressure drop is estimated by using the relation ance of randomization in the train. ¥ exceeds the correla-
betweenP,,; and py_,, near the first maximum. This is the tion lengthN.,,, then various parts of the train become “in-
smallest estimate, because we expect the onset of motion dependent.” The local structure of the train can vary
soon as the applied pressure drop overcomes this criterionirregularly with py_1, i.e., the free tail of the train does not
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Pr-1 Pn-1
6.1780 FIG. 10. (a) The external pressure afid) the associated energy
for the states from stochastic layer=0.008,K=1, N=101.
F I /
L “feel” the events at the loaded end. The mathematical origin
81755 - of this fact consists in the presence of a thin stochastic layer
at the vicinity of the separatrix, even for a smidlle [24]. If
the trajectory starts from the vicinity of hyperbolic point
61730 pn—1—0, then such a trajectory will pass through the sto-
' chastic layer by clinging to the separatrix.
] It would be useful to estimate the number of the bubbles
over which the load is distributed entirely. We apply the
61705 continuous model for such an estimate, because in most ap-
' plications parameteg is very small. By integrating Eq$23)
i and (24), we arrive at the solutiofl8]
C) Pext . * P -2
6.1680 ' . . . = = - —1—In ——
0 S0 022 L=27KN L dp| Py,—InP;,—1—In P Pntp
Pr-1

X

(32

p -12
In P Pmn— p) ,

FIG. 9. The energyF associated with the states in Fig. 8. . . ] . .
Dashed lines represent the respective dependence based on the cefiiereP = P1 (u,K) is the maximum pressure prescribed to
tinuous model. the separatrixP,, is the maximum pressure for a given tra-
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FIG. 12. The number of domain®lp, as a function of the
displacement of the last lamella for the states prescribeBgp
=1.1 andpx=0.008,K=1, N=101.

jectory that is attributed to pointp= 7), and Pg,, is the
applied pressure associated with the desired length of the
bubble train(Fig. 15. Analysis of the integral shows that the
number of lamellae in the train rises Bg,, tends toP,, and

the respective trajectory goes in the vicinity of the separatrix.
Contrarily, if L—0, the applied pressure is expected to be
smaller thanP,,. In most applications, parametet/K is
small. HenceP} ~1, and we can use the asymptotic expan-
sion with respect tdP.,,— 1. In the new variablex=p—1,

2.0

FIG. 13. The maximum pressuRe, as it might be expected for
“adiabatic” loading, N=101. Dashed lines represent theoretical
dependencé29). The arrows point out the critical parameters de-
fined by Eq.(22).
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. KV1—K? sn(Lxz/2k)
™ J1-K2sn(Lx%/2k)

(39

Xext™ X

The extremalization of Eq34) gives us parametde=Kk,,.
Then we can find the desired dependemgg(L,x}). It is
very difficult to study this dependence analytically, but quali-
tative estimates can be reached.

First of all, asLx}/2 tends to infinity, parametexey
reaches,, i.e.,k= e so that the right-hand side of E(R4)
tends to a constant that does not depend upgfy2. This
saturation effect demonstrates the formation of a domain
wall within an infinitely long chain, like that expressed by
Eq. (28) [26]. A simple estimate for the critical pressure drop
can be found by taking the limjz/K—0 in Eq.(29). In the
dimensional form, this start-up yield pressure d@s writ-
ten as

G=4\Pyodlro\K. (35)

Contrarily, if Lx5/2 is small, then the elliptic function
may be represented analyticalB2], and the extremalization

FIG. 14. The typical phase portrait for discrete md@) and ot o (33) results in rook=1/2. Therefore, in this limit
(14), ©=0.016,K=10,N=2000 and six starting points. A dashed

line represents the separatrix of the continuous model(ZGj. Lx*
m

Xext=Xm ~7 - (36)

Xext= Pext— 1, Xm=Pn—1, andx},=Py—1, we rewrite Eq.

(32) with quadratic accuracy as Taking into account that for smajll the asymptotic expres-

sionx} ~ u/K holds[26], from Eqg.(36) we obtain

(33

Lxp, ff de
2 Jo J=)(1-K+ ) Xex~ N /2K, (37)

wherek=x./x* and e=xgq./x% . Integral (33) can be ex- and in the dimensional form E§37) is written as
pressed through the Jacobi elliptic functions so that we find

the external pressure drop as a function of arclength, namely, G= 2mad

G= Kro\

(39

The linearity of functionG(N) displays the independence
of contributions of each lamella into the total pressure drop.
This behavior might be expected for two limiting cases of
the gas state in foam. If the gas in the bubbles were abso-
lutely compressible, then the start-up yield pressure drop is
ol completely determined by the overall Laplacian barrier. In

the opposite limit, i.e., for an absolutely incompressible gas,
one expects the similar linear behavior of the critical pres-
sure drop.
Thus, the two limiting regimes expressed by E@&) and
(38) facilitate the treating of experimental data and demon-
strate the importance of the scales under consideration. So, if
we use the short models, the critical pressure drop will de-
pend upon the length of the sample, regardless of the foam
texture. At the same time, one expects that field pilot experi-
ments will demonstrate the universal character of the critical
pressure drop versus input physical parameters. In Fig. 16,
\ the experimental data reported by Falls, Musters, and Ratu-
Jel lowski [7] (their Table 2 are fitted into formula(38) (G
~rg3, r, is the effective radius of a bubblewhere the

FIG. 15. P%=P* (1,K) is the maximum pressure prescribed to Number of lamellae per unit length is inversely proportional
the separatrixP,, is the maximum pressure for a given trajectory, t0 the volume of gas per bubbf8]. In the same picture, the
and P, is the applied pressure associated with given length of theééxpected result for a long train is presented as line 1(&5).
bubble train. (G~r, ). Since the number of lamellae in the caravan was
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nificant, even for smaller applied pressures, if the system
resides in a metastable state.

The history of loading is very important for foam pattern-
ing. In particular, as it follows from the numerical experi-
ments, the adiabatic transition from crystallinelike order to
glasslike ordering cannot happen monotonically. At the same
time, since the glasslike ordering improves the effect of foam
screening, it would be highly desirable to clarify the regimes
of loading that result in the coarse-grained foam superstruc-

e
'S
'

(6.894 kPa)
[

017 ture. This superstructure might be imagined as a random sys-
Iy 0.08 - tem of blocks with internal crystallinelike order, separated by
] domain walls. In other words, the domain walls serve as
0.06 4

apparent lamellae, and the blocks play the role of gas
bubbles. To reinitiate flow, the “yield” pressure drop has to
0.04 - o overcome the initial start-up critical pressure drop. It was
typically 10%—-20% larger than that required to keep the
lamellae movind 33]. This fact qualitatively agrees with the
theoretical predictions discussed above.
rs {cm) In recent years, much attention has been paid to the dy-
namic behavior of systems possessing many metastable
FIG. 16. Log-log plot of the critical pressure drop as a function States [34,35. As a rule, various modifications of the
of the effective bubble radius,. Experimental point§7] (O) are  cellular-automaton model have been used for numerically
fitted into Eq.(35), line 1, and Eq(38), line 2, by making use of the simulating such systemi34,36. One expects that the dy-
three last points,— 0.4. namics of the bubble trains moving through the network of
active channels will demonstrate the characteristic features

approximately eight, formuld38) is suitable and describes _of self-organized criticality. The expectations are supported,

the experiment well. The correlation length covers thel particular, by recent analysis of mathematically similar
bubble train as a whole here. problems37,3§.

a.1 0.2 03 0.4
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as defined by Eq(30), various characteristics of the chain

are well predicted by the continuous model. The pressure

Peyx, Which a bubble chain withstands in a steady state, can- APPENDIX: CALCULATION OF BUBBLE VOLUME

not exceedP sy, the maximum pressure attributed to a given  consider the variation of bubble volumeV; caused by

wandK. For anyPe,=Pmay, a unique distribution op; and  gjigplacement of théth lamella. This variation may be sub-

pi forms in the chain with a giveN. divided into two part§we follow notations in Fig. ()]. The
WhenuK varies near its critical value, EG0), the sys- it is the volumeAV/ bounded by capillary walls between

tem (13) and(14) has several solutions with a givé,cand 14 cross sections at point=\/2 and at poinix=a; . The

with a small energy difference. A specific class of solutions '

second volume\V; is bounded by a chord at point=a;

can be found by applying the so-called principle of adiabaticand the spherical midsurface of the lamella. These two vol-

transition. Namely, by imposing a crystalline structure to theurnes can be expressed as

initial unperturbed state of a chain, the simplest domain
structure can be obtained by slowly increasing the applied fai

The obtained results show that the character of the distri

pressureP.,,. However, for a largeuK [see Eq.(30)], the AV/=m=
principle of adiabatic transition from the initial uncharged
state to that under pressuRy,; breaks, because there are
such steady states that cannot be obtained by simply increagnere the functiorh(x) can be written as
ing I:)ex'[-

Anyway, for each giveru, K, andN, the bubble train is h=R sing, R—Rcosp=X,—X%, Os¢<a. (A2)
able to withstand only a load bounded from above. Such
maximum pressuré®,,; is specified for each given set of HereR is the radius of lamella, ans,, is the intersection
input parameters. At larger pressures, one expects that thmint of the membrane and axis
system begins motion, and a dynamic model is needed to Simple algebra gives us the resulting variation of bubble
describe such behavior. The dynamic effects might be sigvolume in the following form:

27X 2 Xm
ro+ 6 cos—| dx, AV{’=7-rf h?(x)dx,
g

N2 A
(A1)
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, , M, 52 where the anglex can be obtained by using the assumption
AVi:AVi+AVi:7T ai_E)(ro‘F 7) (5)
dr 276 2ma;
. 2ma, S 278, tan=— =—— sin—r (A5)
+)\5r0 SInT 1+4_I'0COST dx ‘—a, A A
7(Xm—a;)° Thus, the volumeé\V; can be expressed in terms af.
3 (BR=XmT ). (A3) Making use of assumptio(®) (/A <<1), we obtain
Substitutinge= « into Eq. (A2), we find , 2wd | 2wy,
a~Ssina~tana~ — - sin T, cosx~1. (A6)

R ro+ 6 cos2mra; /N

e . Xm=a;+R(1—coxx), (A4)

Substituting Eqs(A4)—(A6) into (A3), we find

. 27Tai
smT. (A7)

Aorg| 1+ - cos 2
Fo| 1+ 277 €05

wzrgﬁ 36 2ma;
AVi =1ar

+_ —_—
) ro C5Tx

AN, 8
ai—z I’O+?+

It is convenient to rewrite EQA7) in the form of an expansion with respect to the small paramelfrg<l andrg/\
<1. Substituting argumerg; — \/2 into sinus in the right-hand side of EGA7), instead ofa;, we find

AV = A, 1 26 si2m(a;—N2)/I\]
=M AT S0l T Y 2w (a = M2)IN]
. N L[ 8 sif2m(a—N2)/IN] [ & 27a;  wryd . 36 2wy A8
T &7 2) 0| 212" T[2m(a—a2)in] | 2r2 ST N2 T T | (A8)
For our goals, we need only the principal term of this expansion. It has the form
) A
AVi=7TI’O ai_i . (Ag)
Then the volume of the bubble as a whole becomes
Vi=mri(a—a_y). (A10)
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