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Dynamics of nematic loop disclinations
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The shrinking of defect loops under the influence of boundary conditions in a confined geometry is studied.
Using a suitable model for a nematic disclination, we calculate a director field that minimizes the Frank-Oseen
free energy[F. C. Frank, Discuss. Faraday S@&, 19 (1958; C. W. Onseen, Trans. Faraday S@6, 883
(1933)]. With this static model we find by means of a dissipation principle a linear dependence of the loop
radius on time, explaining recent measurements performed on polymeric liquid crystals.
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[. INTRODUCTION geneous, precisely as the region outside it. This is compatible
with a closed twist disclination loop.

The continuum theory of liquid crystals usually employs a We show that this behavior can be explained by taking
director fieldn indicating the local mean orientation of the into account not only the elastic energy associated with the
molecules. Equilibrium configurations are obtained by mini-actual thread and proportional to its radiBs but also a
mizing the well-known Frank-Oseen elastic free energycontribution due to the twist of the director field in the loop’s
[1,2]. In an actual physical situation the director field is notinterior that is proportional tdR?. Such a contribution is
smooth everywhere, but it exhibits various kinds of disconimportant for large loops in thin cells, where this part of the
tinuities, calleddisclinations Nematic liquid crystals even €nergy cannot be neglected with respect to the energy of the
owe their name to the typical threadlike defects, time  disclination line.
disclinations often found in this state of matf&4]. In this paper we proceed as follows. In Sec. Il we intro-

Similar structures can also be observed in various biologiduce a coordinate system fit to describe disclination lines. In
cal patterns/5] and ferromagnet§6] and they have been this framework we produce a director field that minimizes
adopted by cosmologists in models explaining the distributhe elastic free energy of a circular loop disclination in the
tion of matter in the ear|y universy]_ Consequenﬂy’ the limit of Iong threads and within a Special class of admissible
dynamics of disclinations has attracted wide interest and #elds that we show to be meaningful. Starting from the static
mathematical theory concerned with tHew by curvature ~model thus obtained, in Sec. Ill we apply a dissipation prin-
[8] and, in the higher-dimensional case, with thetion by  ciple, whence we arrive at an ordinary differential equation
mean curvaturg¢9] has been developed. for the loop radius. In Sec. IV we compare our results to the

A major advantage that nematic liquid crystals yield for experimental evidence and discuss the connection with pre-
the study of disclinations stems from the experimental poinvious predictions. We do not restrict attention to circular
of view. The preparation of liquid-crystal cells with various l00ps, though our analysis mainly focuses on them. For loops
boundary alignments is technically well understood and typi-Of arbitrary shape, our model predicts an evolution law dif-
cal relaxation times range from seconds for small-moleculderent from the flow by curvature of a plane curve, whose
liquid crystals to several hours for polymeric liquid crystals. properties still remain to be fully understood.

Furthermore, due to the birefringence depending on the

alignment, the dynamical process can easily be observed op- Il. STATIC MODEL
tically. .
Experiments on the shrinking of defect loofk0] have A. System of coordinates for the loop

been known for a long time and some years ago even quan- There are essentially two types of line disclinations in
titative measurements were performed using the smallnematic liquid crystalgsee[15], Sec. 7.1 namely, theaxial
molecule nematic liquid crystal 4-cyand-#-pentylbi-  and thetwist disclinations. The disclinations of the first type
phenyl. The major result, in agreement with theoretical conare characterized by a director field perpendicular to the di-
siderations, is that the radius of the defect loop scales withection of the line. If the disclination is supposed to lie along
time asr e« (to—1t)“, wherea=0.5[11,12. the z axis, the orientation can be given in the form
More recent experiments with pdly4-phenylene-2,6- n=cospe, + singe, and ¢ is found to be
benzobisthiazolehave yielded a different result: The defect
loops vanish following a linear decay law, for whieh=1 e=My+ g, 1)
[13,14). The alignment at the boundary of the cell was along
a prescribed direction and the area enclosed by the loopyherey is the polar angle in cylindrical coordinates, is a
when viewed under crossed polarizers, appeared to be homoenstant, and the winding numben takes the values
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56 DYNAMICS OF NEMATIC LOOP DISCLINATIONS 6835

+1,+1,+3,+2,... [1]. The occurrence of half-integer
winding numbers is a consequence of the nematic symmetry,
i.e., the physical identity of the alignmentsand —n.

In this paper we are concerned with the second type of
defect lines. Here the director field has components only
along the line itself and one fixed direction perpendicular to
the disclination. Minimizing the Frank-Oseen elastic free en-
ergy gives again the solutiori$), with ¢ the angle designat-
ing the director in the appropriate plane.

More Speciﬁca”y' we consider a ||qu|d Crysta| between FIG. 1. Coordinate system for a disclination |00p. Each point in
two parallel orienting layers. Cartesian coordinates are chdhe vicinity of the thread is uniquely determined by specify&g
sen so that the plane of the cell coincides with kg plane Whlch_ parametrizes the curvg(s), and its position in the local
and the origin is selected so that the upper and lower bound0rdinate frame,e;}.
ing plates have coordinates-H and+H, respectively. The
disclination loop is supposed to lie entirely in the midplane v(s)= —sin(6)g+cog H)e, (6)
between the two plates and it is described by a smooth, un- , , , .
knotted curve. A curve parallel to it, in the interior of the Wh'?h pomts, outward. ~ Since 7/(s)=— 6'sin(h)e,
plane region it encloses, will play a central role in our model; ¢ c0s€)&,= 6" (s), we have that the curvature of the
We call it the thread and represent it agi(s)=x(s)e,  Curve is given by
+y(s)g,, wheres is taken to be the arc length of the curve. o(s)=0'(s) )

Since we consider pure twist disclinations, we further as- '

sume that the orientation is parallel to the bounding pIate;EaCh pointp in 7 has a unique description in the form
everywhere, thus allowing for a description of the alignment

in terms of a single angle with n=cospe,+singe,. The p(s,&2)=q(s)+ évtze,, £=0, 8)
anchoring conditions on the plates are then prescribed in the
form providedoé<<1. The equation of the thread is cleads=0,
z=0. (See Fig. 1.
@(x,y,=H)=0. (2 We record here for later use the expressions for both the

) o Jacobi determinant of the change of variables
The Frank-Oseen elastic free-energy density is calculated itk y,7)— (s, £,z) and the gradient of a smooth scalar-valued

the one-constant approximation as function f of (s,&,2). They are
K K é)(x y Z)
f==(Vn)?==(Ve)2 3 AL AL

An analytic expression for the equilibrium structure satisfy-and
ing the Euler-Lagrange equation
Vi= 1 of +(9f +o7f 10
Ae=0 (4) T1-géas ag” o (10

is known for circular loop$10]. It is given as the sum of a
Fourier series whose coefficients are evaluated in terms of
the hyperbolic Bessel functions of index 0 and 1: It is repre-  To construct the director field in the vicinity of the defect
sented in closed form only at distances from thexis large  line, we consider a cross sectigh through 7. Since the
compared with the cell thickness. UnliK&O0], our paper thread is supposed to lie in the midplane between the two
aims at a description of the shrinking dynamics of loops ofplates, the problem is symmetricarand it suffices to look at
arbitrary shape; thus we need a simpler model, which will behe upper half of the cell where the director makes half of the
based on an approximate equilibrium solution fit to mimictotal twist.
that in[10], but such to be represented explicitly. We first attack a two-dimensional problem in the plane

First, we assume that the distortion of the director field(¢,z), which corresponds to a straight disclination line. The
caused by the disclination takes place only in the vicinity ofregion where the director is simply twisted by the angle
the thread in a more or less tubular regidnOutside7 the  and has no defect lies in the half plane witt 0; the defect
alignment is supposed to be homogeneous: In the outer rgs found atz=0 andé=d and the highest point of is at
gion we have simplyp=0, while inside the threag twists ~ z=h. This means that the following conditions are pre-
by the anglerr between the two plates. scribed on the angle:

We introduce the angl#(s) to describe both the unit

B. Simple model for a straight disclination line

tangent to the curveg(s) 0, £=0, z=h
1) =x'(s)e+y'(s)g,=cog )e +sin(0)e,  (5) p=1 2, 2=0, 0=¢<d (11)
and the unit normal 0, z=0, é&>d,
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Introducing the local pair of orthogonal unit vectdes ,e,}
as

& =cog y)e;+sin(y)e, 17
and
e,= —sin(y)e;+cog y)e,, (18
the gradient off takes the form

FIG. 2. Coordinate system in terms of the lines of equal align- .
ment. Only the upper half is depicted. The lines of equal alignmenSince, by the very definition o, ¢ depends o only, we

meet at the defect witl,, corresponding tap=0, indicating the

outer boundary of the tubular regidh

whered andh are parameters to be determined.

We find it convenient to introduce the new system of

coordinates {,\) in the quadrantt>0, z>0 as follows:
y=arctang/¢) e[0,7/2] is the angle between thg axis and
the straight line connecting the origin to the pointX). The

other coordinate. parametrizes the lines of equal alignment

for the director in such a way that as ranges in[00°],
¢=@(\) ranges i 0,7/2] and

Br=0=0, lim¢(\)= 7. (12
N—oo

get

: (20)

"\, [dpnldy\?
2__

(Ve) _(ﬁpx/a)\) t Pr
where ¢':=d¢/d\. Insering this into Eq(3) and integrat-

ing in bothy and\ vyields the elastic free energy storedZn
per unit length of the disclination:

K [ml2 [ dpy 10
thz_f f _¢>'2 Px [1 prloYy
2 0 0 ap)\/ﬁ)\t

2
) }dy dX.
(21

Px

The minimization of this energy in the general case seems to
be intractable. Thus we choose a special form fqr,
namely,

The new coordinate lines are then the straight lines emanat-

ing from the origin, along whichy is constant, and the lines

of equal alignment for the director, along which battand

(an/ 72 y(m—y)

pr(y)=¢e" po( ), (22)

¢ are constant. In this system of coordinates a curve alonghich relates all lines of equal alignment to that witk 0.

which ¢ is constant is labeled by a value &f In polar
coordinates §,p), it can be represented ps-p,(7y) and so

£=pr(y)cogy) (13
and
z=p\(y)sin(y), 14
with
p(0)=d,  po g):h, |imp>\(g)20 (15)
Aco

(see Fig. 2 Our endeavor with the new coordinates has the

effect of replacinge as a function of §,p) with the pair of

functions¢(\) andp, (), which suffice to describe a large
class of twisted director alignments in a cross section of the dy

tubular regionZ.

For A>0 the curvep, appears as an exponential retraction
of pg, done in such a way that, crosses at right angles the
line y=/2 for all A\>0, whenevelp, does so. Such a re-
quirement will ensure that all lines of equal alignmentZin
can be smoothly joined to those in the region that is sur-
rounded by7 when we shall no longer consider a straight
disclination. We have clearly restricted the class of admis-
sible director fields around the disclination, but not too se-
verely: Still the curvep, that determines the shape ®fis

left free; moreover, once this is known, all other curves of
equal alignment are known as well, but the values the func-
tion ¢ takes upon them are still to be determined. Thus we
believe that our ansatz, though special, is fit to be applied to
a wide variety of alignment fields.

It follows from Eg. (22) that

N2

ap
PN :e7(4>\/w2)7(77*7)p6+ |\ 1) P (23

To compute the elastic free energy, we need to know boti@nd

the Jacobi
scalar-valued functiori. The former is

N
iy ) Pron

(16)

determinant of the change of variables
(é€,2—(7y,\) and the gradient in the new coordinates of a

ﬁp)\ 4

N 2T e (24)

wherepg:=dpy/dy. Hereafter, in addition to Eq15), we
also require
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(29)

’7T
POE:O’

which ensures that the lines of equal alignmentinan be

matched in a differentiable way to those in the region of

simple twist ¢<0). These equations reduég to a func-
tional of both¢ and pg:

e B

= y(m—7)
4 po ]dy dx. 26)
Po
Letting
2
n=—vy (27)
and
ar
Yo(7):=INpo| 5 7 (28)
leads to

+[2)\(7] 1)+yg] }dn dX.
(29

SRR

Further defining

o =f @' ?%d\, |1::f N¢'2dN,
0 0

lyi= f:x%'zd)\, (30

we easily perform the integration with respect\parriving
at

F_ZKJ':L !
s Jon(2—-9)
2
™ 2 2
X| 7 lot4(n=1) o+ 1oy +4(n—1)l1yg|d7.

(31)

Since the integrand does not depend ygnexplicitly, the
Euler-Lagrange equation fd¥, in this form can readily be
integrated oncésee[16], Chap. IV} and then it reads

2loygt4li(n—1)=cn(2— 1), (32)
¢ being an arbitrary constant. In terms yf, the boundary
conditions forpy become

Yo(0)=Ind,

Yo(1)=Inh, (33

and
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yo(1)=0. (34)

Using the latter in Eq(32), we see that=0 and thus

.2l
YO=__(77 1). (35
Integrating this and taking care of E@®J) yields
9 _eiate (36)
and
, d
Yo(7)=Inh+(7—1)"n;. (37)
This leads to
d (2ylm—1)2
po(y)= h(g) (38)

Evaluating Eq.(31) on the minimizer, we obtain the fol-
lowing expression for the energy per unit length of a straight

disclination:
77 16 1,2 16 1,2
Ft:ZK Fd |0+? |2—E —2? |2—K ,
(39
where
Eimin™ zfl A7 (40)
=In—= _
R )

is obtained by excluding from the integration of otherwise
divergent integrals a core region with radius
re=dy.=(m/2)dn.. As customary, the energy of the core
can be taken into account by adjustingappropriately(see
[3], p. 172.

Still the task of determiningb(\) remains to be achieved.
In principle, this can be done by minimizing the expression
for the free energy in Eq(39), wherely, 14, and 1, are
functionals of¢. We postpone this problem to the following
subsection, where we take a further step towards the con-
struction of our static model by considering a circular discli-
nation loop. Requiring that the functiap in 7 matches that
defined in the disk-shaped region surroundedlwill allow
us to find the director field that minimizes the free energy
within our class.

C. Model for a circular loop

The alignment in the interior of the thread is such that the
director somehow twists from the angté2 with e, to 0 asz
goes from O tch. In order to give the alignment in terms of
@(\), note that, by Eq922) and(24), for y= /2 to each\
in [0,] there corresponds a value pigiven by

z(\)= Px( 2) he™* (41
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Since the director twist is the same functionzathroughout h
the region enclosed by the thread, a contribution proportional d=—, 47
to the aread of this region is to be added to the elastic free Je

energy stored ir?: By Eq. (41), it becomes

-

The Euler-Lagrange equation of this functional is easy to
solve: It yields

which is the distance between the thread and the disclination
loop. Inserting this into Eq38) and using Eq(22), for this

dz= A f o' 2eMd\. (42 model we easily express the curves of equal alignment as
functions of %:

py(7)=del 7’ =2n)(A=12) — ho( P>~ 27 (A~ 1/2) - 112 (48)

To compute the total free energy, we still have to evaluate
- .
d(\)= E(l—e*), (43) the integral

which describes a linear twigsee again Eq(41)]. Using Fv::f fC(V‘P)Zg d¢ dz (49)
this, we find that for a givem the minimum ofF 4 is

5 By use of Egs.(43) and (48) and the change of variables

7 K (¢£,2)—(7m.\), F, can also be written as
F A_TAF' (44)

This conclusion applies whatever the shape of the region e” ! /ZCOSE ”J 1
enclosed byZ may be. Let us further consider the case of a
circular thread of radiuR. More precisely, this curve is to be 4\/_ (2=7) l 2+29—7"
thought of as the locus wheg=0, z=0 in the coordinate 2(7—1)\2
system §,¢£,2). Since the loop shrinks without leaving a de- ( )
fect point after it, we take)¢/9s=0. Also with aid of Eq.
(9), the total free energy then becomes

8 4
(2+2n—7%)% (2+2np—79?)?

ks

1
+—
24 27— 7?

] dxz, (50)

12 )\d)\

where the integration ik has already been performed. This
Kt ) integral, which is too complicated for an analytical approach,
+§fo f L(V@) (1-of)d¢ dz ds cannot even be computed numerically because of the diver-
gence atyp=0. We treat it in the following way: We write
© o ) the integrand as a linear combination of nondivergent terms
fo ¢'‘e dx*”KJ L(V@) (R+¢§)d¢ dz, and 1k(2—7), making use of the identities cos1
—2sirfa ande*=(e*— 1)+ 1 and decomposition into partial
(45  fractions. The divergent part is thus isolated, and by exclu-
) ] sion of the core region from the integration, we obtain a
whereL =2mR is the length of the thread ane=—1/Ris  ¢ongribution proportional toFy=In(adir,). The remaining

its curvature, as in our parametrizatieris the outward nor- - conyergent parts are then evaluated numerically. We finally
mal. ForR>H, the largest contribution is from the area in- gt

side the thread. Thus we takk as in Eq.(43), so that this
part of the energy is minimized. Sin€e, is proportional to -3

h~! and h<H, for large loops the minimum oF 4 is at- FU=h(—Fd—2.13). (51
tained wherh=H. Note that having foung as a function of 16Ve

\ does not amount to knowing the free-energy density store
in 7, which also depends on the lines of equal alignnisae

_TrKRZ

g:ollecting all above contributions, within our model we give
the total free energy of a ring disclination the form

Eqg. (20)].
The energy contribution arising from the tubular regibn 3K R2
bears an integrand proportional ot £. In minimizing this F= an +27RF+ 7KF,
part, we neglect with respect tdR, which amounts to omit-
ting the influence of the thread curvature on the disclina- 2 2 2
. o . T 7R T+ 4
tion’s structure. This is certainly reasonable for large values :—K[— (—Fd_z) R
of R and leads to the solution found in Sec. Il B. Withas 4 h
in Eq. (43), we have )
T _271lh (52)
7T2 2 = g™ 4 ’
lo=% 11=l=7%, (46) 4\
8 16

whereh is still a free parameter. Minimizing this energy with
which by Eq.(36) yields respect toR/h, we would arrive at
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30°

60°

FIG. 3. Curves of equal alignment for the complete
model. The circular thread is located in the plaed. The
twist region has a radiuR and the defect is found at a
distanceR+D from the loop’s center.

+90°

e R N

R \/ h _772K A+1<772+4F an
=055+ o.11+o.67|m. (53) F= K| T3 —5—Fa-
LT ol 5
The logarithm being typically of order 10, this givBs=3h. 4.\/e d = ' S

For long threads this requirement cannot be met bechuse

cannot exceed the cell's thickness. Thus we taked, as  \henceh=H, as in the above approximatighturns out to
for the minimum offF ,, which makes the distortion fill the pe 5 decreasing function of

entire cell. The director field we have constructed is depicted

in Fig. 3, whereD:=H/\/e is the equilibrium distance be-

tween the thread and the loop. lll. DYNAMICS

A. Dissipation principle

To describe the dynamics of our model, we start from a

_ ) ] _ ~ dissipation principlg17], which, when flow effects are ne-
Our model is also fit to describe a noncircular disclinationg|ected, takes the form

loop. To see this, first recall that E¢12) expresses the free
energyF 4 stored in the region inside the thread, regardless F+W=0 (58)
of the shape of this curve. As to the energy stored;ithe
same argument leading to the first line in E4p) shows that
it can be given the form

D. Model for a noncircular loop

and states that the rate of change in the elastic free egergy
in a fixed region in space is compensated for by the energy
K (L W dissipated in the same region by the viscous torque acting

Fri= Ef f f(qu)Z(l—og)dg dz ds (54 on the director. In the absence of flow and with the usual
0 ¢ approach of neglecting the inertia of the molecular reorien-

tation, the dissipation per unit volume has the simple form

where the lengtlv of the thread is now a functional ofs). FISE:
Since this is a closed curve, in our parametrization it satisfies w= 71(5) , (59)
L where y; is the rotational viscosity.
fo o(s)ds=—2m. (55) Making the further assumption that during the time evo-

lution the system traverses only equilibrium configurations
as described by Eq$43) and (48), the dissipation principle
(58) leads to an evolution equation for the disclination loop,
which we first derive for a circle and then extend to a general
shape.

Thus here we replace E¢5) by

KA (= 12N K 2
F= T, ¢'“e d)\+§ C(V(p) (L+2m7¢)d¢é dz B. Dissipation for a circular loop

(56) The first problem to be faced in calculating the dissipation
is to obtain an expression fare/dt. As time elapses, the
alignment changes only inside the tubular regirwhich

If then the approximationd/H>L>H is valid, repeating follows the motion of the circular thread. The shape of its
verbatimthe line of thought followed in Sec. Il C, for all cross sectiod remains unaltered as it slides radially towards
h=<H we arrive at the loop center: Botth andd retain the same equilibrium
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values obtained above, which do not depend on the thread The total dissipationV is then obtained by integration

radiusR. Consider the value of the alignmegptat the point
in 7 represented by

p(s,€,2)=q(s) + &v(s) +ze,. (60)

It is conveyed unchanged &5 shrinks, so that along the

trajectory followed byp

_de (990

(61)

Now, for a givens, p is the same for alE andz, as every
cross section of moves with velocityv ,=

p=Ru(s). (62)

Computing the gradient op as indicated in Eq(10), we
thus have

de . do
Gt R (63
When expressed as a function of,{), ¢ does not depend
on »; to compute the partial derivative @f with respect to
&, we solve the linear system of equations

J¢

dp IE dp Iz
¢ <P§+<P
IN

VTN T

dp dE e 02
_o=le 0 e (64
ag an 0z &7;

de
an

where it is again understood thap/ds=0 because the loop
shrinks to a homogeneous alignment. The solution of Eq.

(64) is

2¢' T +¢9p)\ .
B apy Pr 505 anSIngr] '
WPAK

de
3

SN 7]——COS— i

de _ 2¢'

9z apy
TP\ N

77_77 py )

Making use in Eq.(65) of p, and ¢(\) as derived in our
static model, we arrive at

(&(p)z_ ¢'2R2
at]  apy
PN (n*—2m)

e o2 o) (m-vysin o]
X|co 577+ ;( AN=1)(n— )Slngﬂ

4 o T
+;(2)\—1)(77—1)S|n§7;cos— 7)}- (66)

2

over7:

Jo 2
ez |5

w2 (%[ de
“‘“Wlfo fo(ﬁ
—2\

:27727’1[?2]1]30 4
0oJom(2—17)

2 o )2
;(Zk—l)(n—l)smgn

(R+ &)d¢ dz

PN Ty {9)\ (R"'P)\COS}’)d’Y dn

X

r
=+
co§2n

2 on— 1) (= 1)sin mcos
~ (21— 1)(n—D)sing ncosy 7

(67)

ar
x| R+d e<’72‘2”)“‘1/2)cos§ 77)0'77 d\.

Again the integration in\ is easily done, while that im
requires the same skill applied to E§0): The singular part
needs to be isolated and the convergent remainder is inte-
grated numerically. The result is

4

T 5 H

7

with Fp :=In(#D/r)=In(mH/r\/e) analogous td=4 in Eq.
(40).

W= (68)

C. Shrinking circles

Inserting the energy52) and the dissipatiok68) into the
dissipation principlg58), we obtain the following differen-
tial equation forr: =R/H:

r+a;=—r(a,r +as), (69)
where the coefficients are defined by
B w44 E 1 20
= 87 D (70
a,=Fp—1.13, (71)
1

Je

andr is a relaxation time depending on both the material and
the cell size:

ﬂ'yle
4K

(73

T=

This equation is easily integrated by separation of variables
to yield
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200 : : : : : : : only substitute, 2 for R? to get the appropriate expression for
150 1 i (9l at)2. Using this in the integral
160 - i

L dp\?
| e[l
120 - 0 ¢

100 |- B
80 - -

(1-0é)dé dz, (79

=R/H

we readily arrive at

T

60 - : - 77 Y1

w0l i W= f(az ago'H)U ds, (76)

20 - B

0 ' ' ' ' : ' : ' wherea, anda; are as in Eqs(71) and (72) andL is the

71800 -1600 -1400 -1200 -1000 800 -600 -400 -200 0 actual length of the thread. Clearly, E6) is valid, pro-
o vided thata,—azoH>0 along the curve, as is required by

the inequality - 0£>0, which follows from Eq.(9): A

FIG. 4. Time evolution of the thread raditsscaled toH. Here  convex curve, for whichr<0, would satisfy both of these

to=0. equations.
The total free energy is given by Eq.(57) with h=H
t _t r _ . . . .
0 —a,r — (a,a,—ag)in| 1+ - (74) andd=D. To compute its time derivative we observe that
1
Clearly for large values of this implies a linear dependence A= fo v,ds (77)

of the thread radius on time, which amounts to the same
conclusion for the loop radius, as in our model the two differand
by a constant. FoF,=10 we give a plot of the solution in

4 . . . . L
Fig. 4 and we represent in Fig. 5 the scaling exponent [ = _J ov ,ds, (79)

0

_dint r dt
“Tdinr tr)dr to conclude that
2
as a function ofr. It must be noted that the assumptions - K
made in deriving Eq(69) render the solution valid only for 7= 4H (1 aoH)v,ds, (79
values ofr=3.
wherea, is as in Eq.(70). The dissipation principle then
D. General evolution equation reads as
When the disclination loop fails to be circular, we may L (73y, m2K

apply essentially the same arguments as in Sec. lll Bto com- | V) 75 (@2~ agoH)v,+ - (1—-a,0H) 1ds=0

pute the total dissipation. Now, however, at any given time, (80)
the cross sections @fdo not slide all with the same velocity:

That through the poing(s) on the thread moves alongs)  and it is satisfied along any portion of the curve, provided
with the normal velocity of the thread at that point: =q-»,  this evolves in time according to the equation

which in general changes with Thus, in Eq.(66) we need

H

v,,Z;g((rH), (81

0.95 ‘ ‘ ; :
\ /’/’ﬂ with

0.9 - -

H a.]_O'H_l 82
0.85 |- - e

OoH)= 3 (82

where is the relaxation time defined by E(/3).
0.75 - . Sinceg fails to be linear, the evolution described by this
equation is different from the flow by curvature of a plane

scaling exponent o
f==]
oo
1
1

07~/ - curve, which applies when,«o. We conjecture, however,
‘ ‘ ‘ ‘ ‘ ‘ ‘ that the same qualitative properties of this motion apply to
0'650 20 40 60 80 100 120 140 160 180 200 that described by Eq81), as long as the functiog is in-
r=R/H creasing. As made precise (8], where previous results

valid only for convex curve§l8-2Q were first extended to
FIG. 5. Scaling exponent of the solution depending on the raall plane curves, the flow by curvature shrinks a curve to a
dius. The scalaw=d Int(r)/dInr is the slope oft versusr in a  point, making it round in the limit. In other words, a noncon-
bilogarithmic plot. vex curve becomes convex as it shrinks. We expect the same
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conclusion to apply to the flow predicted by our model, pro-ergy is attained if the loop lies in the midplane, since the
vided the normal velocity , is higher at points with higher minimum is not very pronounced, threads may be found
curvature. It is easily seen that the functigris increasing away from the centef10]. As, according to our model, the
whenevera;a,—a3;>0: A direct computation resorting to ratio of the loop diameter to the cell's thickness determines
Egs. (70)—(72) shows that this inequality is satisfied for all the shrinking law, a direct quantitative comparison to experi-
values ofH/r ., the only parameter on which the coefficients ments requires a well-defined distance between the loop and
a; depend. the boundary.

Finally, there is a distinctive feature of the flow described The case of small loops without confining boundaries can-
by Eq. (81) that the flow by curvature does not possess:not be treated directly within our model because of the as-
Sinceg(0)<0, also a point where the curvature is infinitesi- sumptions made in deriving the minimizing configuration.
mal would have a finite velocity. This requires care in deal-Nevertheless, it is easy to obtain the correct shrinking law
ing with the singularities, such as corners and points of selfvia the dissipation principle. The free energy connected with
contact, that a curve may develop in its evolution. It isthe disclination is then proportional to the length of the
known from [8] that no singularity arises in the flow by thread
curvature: We do not know whether the same theorem ap-
plies also to the flow we have derived. F=R (83)

since the contribution stemming from the enclosed area is
proportional toR?/H, which becomes negligible both for

We have constructed a model director field that describel&’g€ cells H—o) and small loops R—0). A similar ar-
a twist disclination line confined to a thin cell with planar gument holds for the dissipation, which is proportional to the
boundary anchoring. First the case of a closed circular dislength of the disclination and the square of its shrinking ve-
clination loop has been treated via a dissipation principlelocity R,
Our main result was to show that for large threads the loop ,
radius shrinks linearly with time. Then, within a suitable WeR?R. (84)
approximation, we also treated noncircular loops: For them
the dissipation principle led to a flow that formally differs Conseauently, by E¢58),
from the flow by curvature of a plane curve, though we ex-
pect the qualitative properties of both flows to be the same.

The linear shrinking law is in qu_alit_ati\_/e agreement with which yieldsRe (t,—t)°5 in agreement with the experimen-
recent measurements on polymeric liquid crystals. The €Xea| evidence.
perimental setup, however, differed in one respect from our
model. While we assumed the loop to lie in the midplane of
a thin cell, in the experiment the disclinations were found in
the proximity of the plates such that “the distance of the We are grateful to Guy C. Berry for having raised the
loops from a surfacpwas] smaller than their size(see[13],  problem discussed here and for having quickly sent us his
p. 206. paper14] while its publication was still pending. This work

This observation is consistent with what is known aboutwas made possible by a contract granted to A.M.S. through
twist disclination loops, namely, that though the minimal en-the EC Network orSurface Properties of Liquid Crystals

IV. CONCLUSIONS

RR=const, (85)
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