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Dynamic properties of liquid alkaline-earth metals
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Molecular dynamics simulations and theoretical calculations are used to study the static structure and
dynamic properties of the liquid alkaline earths near their melting points. Where possible, comparison with
experiments lends support to the reliability of the potentials used. On the other hand, comparison between
theory and simulation enables a discussion of the limitations of the theory and its possible improvements.
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I. INTRODUCTION

During the last decade the study of the dynamic proper
of liquid metals has been the subject of numerous invest
tions, both experimental and theoretical~see, e.g., Ref.@1#
for an overview!. The liquid alkali metals have been in pa
ticular the most thoroughly studied ones. Inelastic neut
scattering has been used for the investigation of almos
the alkalis @2–5#. Molecular dynamics~MD! simulations,
when provided with suitable realistic interionic potentia
are also an extremely useful tool for the investigation
liquids at a microscopic level, since they provide detai
information of the atomic trajectories which complemen
the partial information that can be extracted from expe
ments, and also gives access to some dynamic prope
which are very difficult~in some cases impossible! to obtain
experimentally. The key ingredient of MD simulations, i.e
realistic interionic potentials, are readily available for t
alkali metals, such as those derived from the empty c
model pseudopotential@6#, or those derived from first prin
ciples, like the neutral pseudoatom~NPA! pseudopotentia
@7,8#. Based on this availability, dynamic~as well as static!
properties of the liquid alkali metals have also been stud
by MD simulations@9–14#.

Compared with the alkali metals, their neighbors in t
periodic table, i.e., the liquid alkaline earths, have receiv
much less attention. Experimental measurements of t
static structure@15# have been reported and also some th
modynamic and transport properties@16,17# have been mea
sured. On the other hand, at least to our knowledge, no
perimental investigation of their dynamic properties has b
performed. With respect to MD simulations, we are on
aware of a study of liquid alkaline earths using optimiz
plane wave pseudopotentials@18# that focused only on the
static structure. This scarceness of simulations is proba
due to the corresponding scarceness of reliable poten
Recently, Gonzalezet al. @19# proposed effective interionic
potentials obtained from the NPA method which, when us
together with an accurate liquid state theory, produce st
structure factors in good agreement with the experime
ones. A first aim in this work is to reassure the reliability
these potentials by obtaining ‘‘exact’’ MD structure facto
to compare them with experiment, and also to obtain a fi
561063-651X/97/56~6!/6818~11!/$10.00
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description of the dynamic behavior of the alkaline-earth l
uid metals near their melting points.

Besides experimental and MD studies of the dynamics
liquids, theoretical investigation has also made a consid
able progress in the last few years due to the developmen
nonphenomenological approaches based on the recogn
of the appearance of two different dynamic processes in
evolution of time-dependent properties@20#. The first one,
which gives rise to a rapid initial decay, is due to fast unc
related short-range interactions, which can be broadly id
tified with ‘‘binary’’ collisions. The second process, whic
usually leads to a long-time tail, is attributed to couplings
the dynamic variable of interest with other slowly decayi
collective variables~called ‘‘modes’’!, and therefore it is re-
ferred to as a mode-coupling process. Although the exp
sions involved in the evaluation of these two contributions
the dynamic properties are rather complicated, in some c
it is possible to make some simplifying approximations lea
ing to more tractable expressions, while retaining the ess
tial physical features of the processes. Within this line, Ba
cani and co-workers@10,21,22# made a thorough theoretica
study of the dynamic properties of liquid alkali metals usi
potentials derived from the empty core model. More
cently, a scheme has been developed@23# that enables a fully
consistent determination of all the single-particle dynam
properties~velocity autocorrelation function, mean squa
displacement, self-intermediate scattering function, and
fusion coefficient!. This scheme was applied to study th
dynamic properties of liquid Li close to its melting poin
leading to rather good results as compared to MD and
perimental data. A second aim in this work is to check t
reliability of this theory by comparing with MD simulations
and to assess the degree of applicability of the approxi
tions involved in the theory as well as the possible impro
ments that can be made.

In Sec. II we briefly comment on the interionic potentia
used in this work, and in Secs. III and IV we describe t
MD simulations and the theory applied. In Sec. V we discu
the results obtained, and, finally, in Sec. VI, a summary
conclusions is given.

II. EFFECTIVE INTERIONIC PAIR POTENTIALS

The interionic pair potentials used in this work for th
calculation of the dynamic properties of the liquid alkalin
6818 © 1997 The American Physical Society
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56 6819DYNAMIC PROPERTIES OF LIQUID ALKALINE-EARTH . . .
earth metals are the same as those of Ref.@19#. They are
obtained using the NPA method, which is very briefly d
scribed next; for more details, see Ref.@19# and references
cited therein.

The construction of effective interionic pair potentials f
simple metals is based on the use of pseudopotential
describe the ion-electron interaction, and the application
second-order perturbation theory of a uniform electron
— linear response theory~LRT! — in order to calculate the
energy of the system. The resulting expression gives the
fective pair potential as a sum of the direct Coulomb rep
sion between the ions and an electron-mediated part whic
obtained in terms of the pseudopotential and the respo
function of the uniform electron gas. The exchange and c
relation effects are introduced in the response function a
local field factor via the local density approximation.

The NPA pseudopotential is constructed as follows. Fi
the electron density displaced by an ion embedded in
electron gas is obtained from first principles using dens
functional theory. Second, the density is smoothed so a
eliminate the core-orthogonality oscillations that cannot
pear with a pseudopotential. Finally, a local pseudopoten
is constructed such that, when used within LRT, it rep
duces the same smoothed electron density. The pair po
tials thus obtained for the liquid alkaline-earth metals clo
to their melting points are shown in Fig. 1. The densities a
temperatures of the systems are given in Table I. It mus
stressed that the pair potentials are density dependent,
this fact implies that not all the thermodynamic propert
can be meaningfully obtained in computer simulations.

III. MOLECULAR DYNAMICS SIMULATIONS

Using the potentials described in Sec. II, we simula
liquid Mg, Ca, Sr, and Ba at the states shown in Table I.
all cases, the simulations were performed by considerin
system ofN5864 atoms in a cubic box with periodic boun

FIG. 1. Effective interionic pair potentials used in this work.

TABLE I. Thermodynamic states considered in this work a
cutoff radii used in the MD simulations.

r ~Å 23) T ~K! r c ~Å!

Mg 0.038 29 953 14.100
Ca 0.020 58 1123 17.225
Sr 0.016 36 1053 18.711
Ba 0.014 56 1003 18.768
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ary conditions. The potentials were truncated at radiir c ~see
Table I !, which in each case was taken to correspond w
the position of the maximum or minimum of the potenti
just before the largest distance allowed by the perio
boundary conditions, one-half the boxlength. At the cut
radii, the potentials for Mg, Ca, Sr, and Ba have respectiv
dropped to 0.15%, 0.06%, 0.10%, and 0.11% of the value
the first attractive minima.

The computational procedure was as follows. For ea
system, at the chosen density and temperature, a cano
MD simulation was first carried out using the Nose´ constant
temperature method@24#. The initial configuration was ob-
tained from melting a fcc structure. The equations of mot
were solved using a fourth-order Gear predictor-corrector
gorithm @25# with a time stepDt of 0.002 ps. The energy o
the system was then calculated by averaging over 23104

time steps.
Starting now from a configuration with an energy close

the average value obtained as indicated above, microcan
cal MD simulations were performed using the velocity Ve
let algorithm @25# with the same time step as abov
Dt50.002 ps~microcanonical simulations are better than c
nonical simulations for studying dynamic properties beca
of the difficulty in controlling the heat exchange rate variab
in the Nose´ method!. For Mg, this guarantees conservation
the total energy to within 0.004%; for the other metals, t
conservation of the energy is even better. The positionr i
and velocitiesvi of the particles were recorded every fiv
time steps. The properties of interest were obtained by a
aging over 23105 time steps after an initial equilibration
period of 253103 time steps. Although standard, we giv
below, for completeness, the expressions used to com
the thermodynamic, structural, and time-dependent pro
ties analyzed in this work~for more details about the theo
retical background, we refer the reader to Refs.@25–29#!;
technical details are also given when strictly necessary.

In our simulations we obtained the specific heat at a c
stant volume; the distribution functions that describe
static structure of the systems, namely, the pair distribut
function g(r ) and the structure factorS(q); some time cor-
relation functions, namely, the mean square displacem
^Dr 2(t)& and the normalized velocity autocorrelation fun
tion Z(t), which are related to the diffusion coefficientD;
and the stress autocorrelation functionh(t), which is related
to the shear viscosityhs .

The isometric specific heat~per atom! was obtained using
the expression

Cv5
k

NF12S 12
2

3N23D ^Ekin&^Ekin
21&G21

, ~1!

wherek is the Boltzmann constant,Ekin is the total kinetic
energy, and the angular brackets denote an average ov
entire run.

The pair distribution functiong(r ) was obtained by aver
aging the number of pairs of particles separated by a dista
betweenr andr 1dr @25#, whereas the static structure fact
was computed as

S~q!5
1

NK (
i 51

N

(
j 51

N

exp@2 iq•~r i2r j !#L , ~2!
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6820 56ALEMANY, CASAS, REY, GONZÁLEZ, AND GALLEGO
q being a wave vector compatible with the periodic bound
conditions, i.e.,q5(2p/L)(nx ,ny ,nz), whereL is the length
of the simulation box andna are integers. The angular brac
ets in Eq.~2! denote averaging both over the trajectories
the particles@104 recorded configurations, each one sep
rated by 10Dt, were considered for computingS(q)# and
over all theNq directions corresponding to the same modu
q.

Two different time-dependent correlation functions r
lated to the diffusion coefficient were computed. One is
mean square displacement

^Dr 2~ t !&5
1

NK (
i 51

N

@r i~ t !2r i~0!#2L , ~3!

from which D is obtained using the Einstein relation

D5 lim
t→`

^Dr 2~ t !&
6t

. ~4!

The other is the normalized velocity autocorrelation funct
Z(t), defined as

Z~ t !5

K (
i 51

N

vi~ t !–vi~0!L
K (

i 51

N

v i~0!2L , ~5!

which allows one to obtain the self-diffusion consta
through the Green-Kubo formula

D5
kT

m E
0

`

dt Z~ t !, ~6!

wherem is the atomic mass. Both methods for calculatingD
gave consistent results for all the metals studied in this pa
The dynamic correlation functions given by Eqs.~3! and~5!
were computed by averaging over 7680 time origins, e
one separated by 25Dt. These two functions are in fac
related to each other by the equation

^Dr 2~ t !&5
6kT

m E
0

t

dt~ t2t!Z~t!. ~7!

A central magnitude in our study is the memory functi
of the velocity autocorrelation function,K(t), which is de-
fined by the Volterra equation

Ż~ t !52E
0

t

dt K~ t2t!Z~t!, ~8!

whereŻ(t) means the time derivative ofZ(t). The procedure
for calculating the memory functionK(t) was as follows.
From the computed values ofZ(t) @Eq. ~5!#, we obtained the
time derivative, i.e., the left-hand side of Eq.~8!. Then, start-
ing from an initial approximation for 50 points of th
memory function K(t) uniformly distributed within the
range 02tmax, where tmax is the maximum time for which
we computedZ(t) ~typically, 1–2 ps!, we constructed an
initial memory function for all times in whichZ(t) is defined
y

f
-

s

-
e

t

r.

h

using a cubic spline. The convolution, i.e., the right-ha
side of Eq.~8!, was then used to calculate an approxima
time derivative, which was compared with the exact va
previously computed to obtain the mean square deviation
the initial approximation forK(t). The software package
MERLIN @30# was then used to optimize the 50 values of t
memory functionK(t) by minimizing such a mean squar
deviation.

The initial value of the memory functionK(t) gives the
square of the Einstein frequency,vE , which can also be
directly evaluated from the MD simulation data using t
expression

vE
25

(
i 51

N

^Fi
2&

2m^Ekin&
, ~9!

whereFi is the total force exerted on atomi . Both methods
for calculatingvE gave results in very good agreement f
all metals studied in this paper.

The time-dependent elements of the microscopic str
tensor are given by

Jab~ t !5m(
i 51

N

v i
a~ t !v i

b~ t !1 (
i 51

N21

(
j 5 i 11

N

r i j
a~ t !Fi j

b~ t !,

~10!

wherev i
a is thea component of the velocity of atomi , r i j

a is
the a component of the vectorr i j separating atomsi and j ,
andFi j

b is theb component of the force exerted by atomi on
atom j . By considering the off-diagonal elements of th
stress tensor, we computed the stress autocorrelation f
tion h(t) as

h~ t !5
1

3VkT(ab
^Jab~ t !Jab~0!&, ~11!

where the sum is to be made on the circular permutation
the indicesab (xy, xz, andyz). From the stress autocorre
lation function, the shear viscosity was obtained using
Green-Kubo-like formula

hs5E
0

`

dt h~ t !. ~12!

The shear viscosity was also computed using the Einst
like equation

hs5
1

2VkT
lim
t→`

Ls
2~ t !

t
, ~13!

Ls
2(t) being a ‘‘mean square displacement,’’ related to t

off-diagonal elements of the stress tensor by

Ls
2~ t !5K F E

0

t

dt Jab~t!G2L , ~14!

where the angular brackets denote average both over a n
ber of 7360 time origins and the nondiagonal indices of
stress tensor.
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IV. THEORY

In the theoretical calculation of dynamic properties o
liquid, the static structure is required as an input. This
been obtained within the variational modified hypernet
chain ~VMHNC! theory @31,32#.

For the computation of the dynamic properties and
transport coefficient, we follow the theory proposed in R
@23#, which enables, within certain approximations, the se
consistent determination of all the one-particle time corre
tion functions. This is briefly described below.

A. Self-diffusion

The key magnitude in the theoretical study of the on
particle dynamics of a liquid is the memory function of th
velocity autocorrelation function,K(t). This function can be
split into two contributions@20,33#,

K~ t !5KB~ t !1KMC~ t !, ~15!

which represent two distinct dynamical regimes. The fi
term, KB(t), comprises all the fast decay channels and
supposed to represent the effects of a ‘‘binary’’ collisi
between the tagged particle and another one from the
rounding environment. The second term, i.e., the mo
coupling contributionKMC(t), incorporates the effects o
multiple collisions through the coupling with slowly deca
ing collective properties.

1. Binary contribution

At very short times the memory function is dominated
KB(t), and in fact the initial valueK(0) and the curvature a
t50, K̈(0), aregiven by the corresponding values ofKB .
The short time expansion ofK(t),

K~ t !5K~0!F12S t

tD
D 2

1••• G , ~16!

defines the initial decay timetD ,

tD5F uK̈~0!u
2K~0!

G21/2

. ~17!

Moreover, these quantities depend only on the static st
ture of the liquid. As stated above, the initial value of t
memory function is given by the Einstein frequency squar
vE

2 , which can be obtained from the pair potential and
radial distribution function,

K~0!5KB~0!5vE
25

r

3mE dr g~r !¹2f~r !. ~18!

The initial curvature, and thereforetD , is also determined by
the static structure, but in this case there is a contribu
arising from the three-body distribution functiong(3)(r ,r 8),
s
d

e
.
-
-

-

t
s

r-
-

c-

,
e

n

K̈~0!5K̈B~0!

52
2r

m2E dr H ¹ rFzf8~r !

r G J 2

g~r !

2S r

mD 2E drE dr 8¹ rFzf8~r !

r G¹ r8Fz8f8~r 8!

r 8
G

3@g~3!~r ,r 8!2g~r !g~r 8!#. ~19!

The three-body contribution totD is computed by using the
simple superposition approximation for the three-body dis
bution function, i.e.,

g~3!~r ,r 8!5g~r !g~r 8!g~ ur2r 8u!. ~20!

Within this approximation, the second integral in Eq.~19! is
conveniently evaluated inq space, as noted in Ref.@23# ~see
also Ref.@34#!.

Finally, for KB(t) we use a simple semiphenomenologic
approximation that reproduces the correct short time exp
sion. There are of course many functions that fulfill this r
quirement. In the literature the most widely found are t
hyperbolic secant squared~ThS! and the Gaussian~ThG!
forms. Although both of them start in exactly the same w
their tails are different; in fact, the hyperbolic secant squa
is somewhat wider than the Gaussian. In this paper we
consider both of them, namely,

KB~ t !5vE
2sech2~ t/tD! ~21!

and

KB~ t !5vE
2 exp@2~ t/tD!2#. ~22!

Note that in this way the binary contribution toK(t) is
evaluated from the static structural functions only.

2. Mode-coupling component

In Eq. ~15!, KMC(t) takes into account the coupling be
tween the dynamics of the tagged particle and slowly dec
ing collective modes, which results in a long time tail in th
memory function. This long time tail inK(t) has been
known to be essential in the correct description of the o
particle dynamic properties since the pioneering analysis
Levesque and Verlet@35#. A rigorous treatment of this term
requires the use of kinetic and mode-coupling theories,
the actual details can be found, for instance, in Ref.@33#. In
principle, several couplings should be considered~density-
density, density-longitudinal currents, and density-transve
currents!, but for systems near the melting point the mo
important contribution comes from the density-density co
pling. This has been observed in calculations for liquid
@36#, liquid Na @11#, and liquid Pb@37# in thermodynamic
states close to melting.

We therefore restrict to density-density coupling, whi
leads to the following expression forKMC(t):

KMC~ t !5
rkT

6p2m
E

0

`

dq q4c2~q!@Fs~q,t !F~q,t !

2Fs
B~q,t !FB~q,t !#. ~23!
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Herec(q) denotes the direct correlation function, andF(q,t)
and Fs(q,t) are the intermediate scattering function and
self-part, whereas the superscriptsB denote the correspond
ing ‘‘binary’’ parts.

In order to evaluate the integral of Eq.~23!, we need to
use some approximations for the intermediate scatte
functions and their binary parts~see Ref.@23# for details!.
First, the binary part of the self-intermediate scattering fu
tion is taken as that of an ideal gas,

Fs
B~q,t !5F0~q,t ![expF2

kT

2m
q2t2G . ~24!

Second, we assume that the ratio betweenF(q,t) and its
binary part can be approximated by the ratio between t
corresponding self-parts,

FB~q,t !5
Fs

B~q,t !

Fs~q,t !
F~q,t !. ~25!

For F(q,t) we use the well known viscoelastic model with
relaxation time determined by Lovesey’s scheme@38#. Note
that within this approachF(q,t) is also determined only by
the static structure of the liquid. Finally, forFs(q,t) we use
the Gaussian approximation@26#

Fs~q,t !5exp@2 1
6 q2^Dr 2~ t !&#, ~26!

which gives correct results for small and largeq, and also
has the correct behavior at short times.

3. Self-consistent procedure

The binary part of the memory functionKB(t) and the
intermediate scattering functionF(q,t) are given in terms of
the static structural properties only. The binary part of
self-intermediate scattering function is given by the ideal
result, which depends only on the temperature of the sys
On the other hand,Fs(q,t), and through itFB(q,t), depend
on the mean square displacement@Eqs.~26! and ~25!#. This
means that the mode-coupling contribution to the mem
function, KMC(t) @Eq. ~23!#, depends on̂Dr 2(t)&. But the
mean square displacement can be obtained from the velo
autocorrelation functionZ(t) @Eq. ~7!#, which itself is deter-
mined by the memory function@Eq. ~8!#. Therefore, we ar-
rive at a self-consistency problem, displayed in Fig. 2. St
ing from some estimate ofKMC(t), and using the known
values ofKB(t), we obtainK(t) from Eq.~15!. From this we
computeZ(t) through Eq.~8!, and the mean square displac
ment@Eq. ~7!#. The Gaussian approximation then determin
Fs(q,t). This is then used to obtainFB(q,t) which, together
with the known values ofF(q,t) andFs

B(q,t), leads to a new
estimate ofKMC(t) through Eq.~23!. This loop is then iter-
ated until self-consistency between inputKMC and output
KMC is achieved.

B. Shear viscosity

The microscopic stress tensor@Eq. ~10!# has a kinetic term
and a potential term. Therefore, the stress autocorrela
function h(t) has three different components: a purely p
tential term, a purely kinetic term, and a cross term. Previ
g
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studies @23,39# have shown that in thermodynamic stat
near melting the last two contributions are rather small, a
therefore the stress autocorrelation function is well appro
mated by its potential part only. In a similar way as t
memory function of the velocity autocorrelation functio
this purely potential contribution toh(t) can be separated in
two parts: a ‘‘binary’’ part and the mode-coupling contrib
tion

h~ t !5hB~ t !1hMC~ t !. ~27!

As we did in the case of self-diffusion, we will use the tw
differentAnsätzefor the binary component, namely, the Th
Ansatz,

hB~ t !5Gpsech2~ t/th!, ~28!

and the ThG one,

hB~ t !5Gpexp@2~ t/th!2#, ~29!

whereGp , the rigidity modulus, is the initial value of both
h(t) andhB(t), andth is their common initial decay time
These two magnitudes can again be obtained from the s
structure of the system only@23#. The superposition approxi
mation forg(3) is also used in the evaluation ofth .

FIG. 2. Algorithm for the self-consistent determination ofK(t).
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56 6823DYNAMIC PROPERTIES OF LIQUID ALKALINE-EARTH . . .
The mode-coupling term, in the approximation of cons
ering only density-density couplings, is given by

hMC~ t !5
kT

60p2E0

`

dq q4FS8~q!

S2~q!
G 2

$F~q,t !22FB~q,t !2%.

~30!

Within the approximations stated above for the intermed
scattering functions and their binary parts, we can evalu
this integral once we know the mean square displacem
for which we use the one obtained through the self-consis
procedure.

V. RESULTS

A. Static structure and thermodynamics

In a previous paper@19# the VMHNC theoretical results
for the structure factor were compared with the experime
ones@15#, and the theoreticalg(r ) with that deduced from
Fourier inversion of the experimentalS(q), and also for
comparison with computer simulations carried out using
different interionic potential@18#. In this section we include
in the discussion the MD results obtained from the NP
potential as calculated in this work.

In Fig. 3 we show the pair distribution functionsg(r ) for
the alkaline earths near their melting point. The agreem
between the theoretical results and the simulation data is
cellent, and only minor discrepancies exist regarding
height of the peaks, especially in the cases of Sr and Ba.
these systems the values obtained from the inversion of
experimental structure factor are somewhat closer to
simulation than to the theoretical results, in particular in
region around the second peak ofg(r ).

The static structure factors are shown in Fig. 4, where
theoretical results are plotted together with Waseda’s exp
mental data and the simulatedS(q), obtained using Eq.~2!.
The experimental structure factors closely follow the resu
obtained from both the VMHNC theory and the MD simul
tion, which are themselves almost coincident for theq values
computed in the simulation. In particular, the height of t

FIG. 3. Pair distribution function of the liquid alkaline earth
Solid line: MD simulations; dotted line: VMHNC calculations~Ref.
@19#!; full circles: Fourier transform of the experimental structu
factor ~Ref. @15#!.
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main peak ofS(q), which was overestimated by the theo
for the heavy elements@19#, is reproduced by the simula
tions, showing that this fact is to be ascribed to the p
potentials used and not to some failure of the liquid st
theory. As explained in Ref.@19#, it is expected that a prope
inclusion of polarizability effects would lead to a lowering o
this peak.

As we mentioned above, the computation of thermod
namic quantities of metals by computer simulations is co
plicated due to the density dependence of the effective
potentials, and also to the presence of a structu
independent, but density-dependent, volume term, which
pears in the formulas for the thermodynamic quantities~in
particular, the energy and the pressure!. All the contributions
to the thermodynamic properties coming from these ter
and from the explicit density dependence of the pair poten
are ignored in computer simulations, and therefore dir
comparison with experiment is not always possible.

One magnitude not affected by these problems is the s
cific heat at a constant volume, which we computed from
~1!. Unfortunately, we are not aware of experimental me
surements of this particular property. Therefore we compa
the simulation results forCv with values calculated from the
VMHNC theory. This comparison is shown in Table I

FIG. 4. Static structure factor of the liquid alkaline earths. Op
circles: MD simulations; dotted line: VMHNC calculations~Ref.
@19#!; full circles: experiment~Ref. @15#!.

TABLE II. Structure dependent energy per particle~in units of
kT) and constant volume specific heat per particle~in units ofk) for
the liquid alkaline earths. The uncertainties of the MD results
given in parentheses.

Estr /NkT Cv /Nk
MD Theory MD Theory

Mg -2.202 -2.201 3.02 3.013
~0.001! ~0.09!

Ca -6.602 -6.619 3.30 3.342
~0.001! ~0.09!

Sr -7.355 -7.340 3.5 3.549
~0.002! ~0.1!

Ba -10.220 -10.093 3.7 3.612
~0.003! ~0.1!
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where we see a good agreement between both sets of re
Even though the total energy, as explained above, ca

be obtained by computer simulations, the structu
dependent term can be straightforwardly computed and c
pared with theoretical predictions. This comparison is a
shown in Table II, again observing a very good agreem
between VMHNC data and MD results.

B. Time-dependent and transport properties

We applied the theoretical iterative scheme descri
above to compute the memory function of the velocity au
correlation function, along with the velocity autocorrelatio
function, the mean square displacement, and the diffus
coefficients of the alkaline earths near their melting poin
Moreover, we computed the stress autocorrelation func
and the shear viscosity using the theoretical formalism c
sidered above. These are compared with the ‘‘exact’’ M
results for the same interionic potentials, and, where ap
priate, also with experimental data.

1. Self-diffusion

The values of the initial decay time of the memory fun
tion, tD , for the alkaline earths, together with their squar
Einstein frequencies, are shown in Table III, where we c
observe an excellent agreement between the theoreticavE

2

and the simulated ones. This is a consequence of the g
description ofg(r ) by the VMHNC theory. It is also ob-
served that, as we go from Mg to Ba, the initial decay tim
increases, and the Einstein frequency decreases, due m
to the increase in the mass of the atoms.

The total memory functions are plotted in Fig. 5, whe
we have included the MD memory function and the theor
ical K(t) according to the ThS and ThGAnsätze for its bi-
nary part. It is observed that the behavior of the mem
function for short times is clearly dominated by the bina
contribution. We observe that the correct decay ofK(t) is
better reproduced by the ThGAnsatzin the case of Mg, by
the ThSAnsatzin the case of Sr and Ba, and is in betwe
both theoretical results in the case of Ca.

The binary and mode-coupling contributions are shown
Fig. 6 in reduced units (t* 5t/tD andK* 5K/vE

2). We have
included in the figure the total MD memory function, whic
is equal to the exact ‘‘mode-coupling’’ term when the bina

TABLE III. Initial decay time for K(t), squared Einstein fre-
quencies and diffusion coefficients for the liquid alkaline eart
The MD vE

2 results shown are those computed using Eq.~9!. The
uncertainties of the MD results are given in parentheses.

tD ~ps! vE
2 ~ps22) D ~Å 2/ps!

Theory MD Theory MD ThS ThG

Mg 0.038 65 1006.17 998.74 0.665 0.582 0.64
~0.03! ~0.005!

Ca 0.063 29 411.93 411.76 0.606 0.631 0.70
~0.02! ~0.006!

Sr 0.1037 165.09 165.78 0.321 0.391 0.43
~0.03! ~0.004!

Ba 0.1380 97.47 97.65 0.233 0.305 0.33
~0.02! ~0.004!
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contribution has decayed to zero, i.e., fort* . 3.5 approxi-
mately. The theoretical mode-coupling contribution is o
served to change very little when we use either the ThS
the ThG Ansätze. It exhibits a typical behavior for all the
systems. It shows a first peak at short times aroundt*
51.5–2.3, where the binary constribution is still large, or
least significant, followed by a minimum and then a seco
peak aroundt* 54. For times larger than this the binary pa
has already decayed to zero andK(t)5KMC(t). Its behavior
in this region is oscillatory around a slowly decaying ta
The same is also true for the MD memory function.

As we go from Mg to Ba we see the following trends. Th
first peak inKMC* keeps almost the same height, but moves
smaller values oft* . On the other hand, the height of th
second peak and the amplitude of the subsequent oscilla
around the decaying tail increase as we move down
alkaline-earth series. When compared with the MD data,
can observe that the theoretical functions show, in gene
too large an amplitude of the oscillations; these are shif
toward slightly larger values oft* , and the amplitude of the

.

FIG. 5. Memory function of the velocity autocorrelation fun
tion. Solid line: MD simulations; dashed line: theoretical ThS c
culations; dot-dashed line: theoretical ThG calculations.

FIG. 6. Scaled mode-coupling component of the memory fu
tion. Solid line: total MD memory function; dashed line: theoretic
ThS calculations; dot-dashed line: theoretical ThG calculatio
dotted line: ThS binary contribution toK(t); long dashed line: ThG
binary contribution.
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decaying tail is too small, and slightly more so when us
ThG. The case of Mg is special since in this case the lo
time behavior is just correct, but the intermediate time reg
is badly described by the theoreticalKMC since it is definitely
too large when compared with the simulatedK(t). With re-
spect to the binary terms, it is observed that in general
Gaussian form is somewhat too narrow, except in the cas
Mg, where one can see that the hyperbolic secant squar
too wide, in fact wider than the total MD results.

In Fig. 7, we show the normalized velocity autocorre
tion function for all the systems. The MDZ(t) shows the
backscattering minimum typical of high density systems
times aroundt52.2tD followed by rather small oscillations
around zero. TheZ(t) obtained from the theoretical memor
functions show a similar behavior, with small deficienci
similar to those found forK(t). It is observed that both the
oretical approaches merge into one another for long tim
As a consequence of the behavior ofK(t), we see that in
general the oscillations at long times are somewhat over
mated. For shorter times, up to the second minimum ofZ(t),
we see that, as was the case forK(t), the ThS results are
better for Sr and Ba, whereas in the case of Mg the T
Ansatzgives better agreement with the simulations. For C
both results are rather similar and the simulation is in
tween.

The diffusion coefficients obtained from theseZ(t) are
shown in Table III. Unfortunately, no experimental measu
ments of this property have been made, at least to our kno
edge, and therefore we can only compare theoretical res
with simulation ones. The diffusion coefficient can be o
tained from the velocity autocorrelation function or from t
mean square displacement. As we said before, both met
gave consistent results in the simulations and also in
theory. There is still another way of computingD, since its
inverse is related to the time integral of the memory funct
K(t), namely,

D215
m

kTE0

`

dt K~ t !. ~31!

FIG. 7. Normalized velocity autocorrelation function. Solid lin
MD simulations; dashed line: theoretical ThS calculations; d
dashed line: theoretical ThG calculations.
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From this relation we can make an interpretation of the d
crepancies found between the simulation results forD and
the theoretical data.

Consider first the ThS results. Then it is observed tha
the case of Mg the intermediate time values of the theoret
K(t) are too large. This makes the integral too large, a
therefore the theoretical diffusion coefficient is smaller th
the simulated one. On the other hand, for Ca, Sr, and Ba
long time tail is too small when compared with simulatio
results, and therefore the integral is too small and the di
sion coefficients are larger than the simulated ones.

If we now focus on the ThG results we can see that,
commented upon before, the mode-coupling tail is somew
smaller than the ThS one. Moreover, the binary part is a
narrower. Both facts lead to decreasing the integral a
therefore increasing the values of the diffusion coefficien
In the case of Mg, this leads to a much better agreement w
simulation; however, for Ca, Sr, and Ba, where the ThS d
fusion coefficient was already too large, its increase lead
a worsening of the results.

Some discussion is now in order so as to consider w
are the possible reasons for these discrepancies betw
simulated and theoreticalK(t). There are several possibili
ties related to the different approximations made in
theory, namely~i! the neglect of the coupling integrals oth
than the density-density one;~ii ! the Gaussian approximatio
@Eq. ~26!# made for the self intermediate scattering functi
Fs(q,t); and~iii ! the viscoelastic approximation used for th
intermediate scattering functionF(q,t).

~i! In the original theory@20,33# there are three othe
mode-coupling integrals related to the derivative of the int
mediate scattering functions with respect to time and lon
tudinal and transverse currents. These three terms are
posed to be small for the density-temperature region we
exploring in this paper. However, the inclusion of the
terms may lead to some improvement over the results
tained when they are neglected. We performed the ac
calculations with these three extra terms included, and fo
no essential improvement. In fact, in all cases the decay
tail becomes slightly smaller, mainly due to the coupli
with the derivative ofF(q,t), thus worsening the compariso
with MD and slightly increasing the value of the diffusio
coefficients. Moreover, in the case of Mg the intermedi
time behavior is very similar when including the extra term
so no improvement with respect to this problem is obtain
either.

~ii ! The Gaussian approximation fulfills a number
asymptotic limits~smallq, largeq, and smallt), but it is still
an approximation, and its accuracy has to be checked. Th
not possible in this work since we have not calculated
‘‘exact’’ MD q-dependent dynamic properties@Fs(q,t) and
F(q,t)#. However, in Ref.@23# it was shown that in the cas
of liquid Li near melting the deficiencies introduced by th
Gaussian approximation in the self-dynamic structure fac
Ss(q,v) @which is the Fourier transform ofFs(q,t)# are
rather small, and restricted to the frequency region close
v50. This means that the Gaussian approximation is
rather good one, and therefore we expect that a more ri
ous treatment ofFs(q,t), although desirable, would not in
troduce large differences into the final results.

-
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~iii ! The viscoelastic approximation, with Lovesey’s pr
scription for the relaxation time, is a very well known theor
and has been used for a discussion of the dynamic prope
of a large number of systems, including recently binary
loys @40#. It is known to be a very good approximation in th
vicinity of the first peak of the static structure factor, and
gives a rather accurate description of the dispersion relat
i.e., the position of thev peak in the dynamic structure fac
tor S(q,v) as a function ofq. However, the exact shape o
S(q,v) is not very well described forq values smaller than
the first peak ofS(q), meaning also that the viscoelast
F(q,t) may have significant discrepancies with the MD o
in this q region. As we explained above, we cannot mak
direct comparison in this case, since the MDF(q,t) have not
been computed, but we suggest that the use of the visco
tic approximation is the main reason for the discrepanc
found between the theoretical and MD memory functions

MD calculations ofFs(q,t) and F(q,t) are now under
progress, and they will be reported upon completion. F
thermore, within the theoretical framework of mode co
plings, it is also possible to write down the intermediate sc
tering functions~strictly speaking, the second order memo
function! as a sum of a binary term and a mode-coupl
component. This approach is also under development,
will be reported in due course.

2. Shear viscosity

The initial values of the stress autocorrelation functi
and the initial decay times are displayed in Table IV. We s
that the same trends as in the case of self-diffusion are
served, namely,th increases andGp decreases from Mg to
Ba. Moverover, it is observed that the decay times forh(t)
are significantly larger than those associated with diffus
tD . The agreement between the rigidity moduli obtain
theoretically and by MD simulations is very good.

In Fig. 8 we show the normalizedh(t) obtained from
MD, and from the theory derived using the ThSAnsatz, to-
gether with the binary and mode-coupling terms of the lat
We will only comment on these theoretical results in order
keep the figures clear, but we will mention the ThG resu
later.

In contrast with self-diffusion, it is observed that even f
very small times the binary term is too wide, especially in

TABLE IV. Initial decay time forh(t), and rigidity moduli and
shear viscosities for the liquid alkaline earths. The uncertaintie
the MD results are given in parentheses.

th ~ps! Gp ~GPa! h ~GPa ps!
Theory MD Theory MD ThS ThG Expt.

Mg 0.05568 13.9 13.54 1.07 1.16 1.08 1.16a

~0.2! ~0.08!
Ca 0.1004 8.2 8.20 1.20 1.29 1.20 1.20a

~0.3! ~0.09!
Sr 0.1815 6.7 6.66 2.1 2.03 1.89

~0.3! ~0.1!
Ba 0.2546 5.9 5.67 2.4 2.40 2.23 1.74a

~0.2! ~0.2!

aFrom Ref.@17#.
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and Ba. This means that the theory overestimates the va
of th . The reason for this lies on the approximation used
the three-body distribution function. The contribution com
ing from this term is comparatively larger in the case ofth
~around 45%! than in the case oftD ~around 10%!, and
therefore the errors in the superposition approximation
more noticeable in the former.

The amplitude of the long time tail, on the other hand,
somewhat underestimated by the theory, especially for
and Ba. Despite these differences observed between the
h(t) and the theoretical one, it is observed in Table IV th
the values for the shear viscosity obtained either from MD
from theory are in good agreement. Comparison with exp
mental data is also good for Mg and Ca, and reasonable
Ba.

The ThG results for the mode-coupling component
indistinguishable from those obtained through the ThSAn-
satzin the scale of the graphs. On the other hand, the bin
component is of course narrower. This therefore leads
smaller values of the shear visosities, which are also sho
in Table IV.

VI. CONCLUSIONS

In this work we performed MD simulations of liquid
alkaline-earth metals near their melting points using effect
pair potentials which could be considered reliable in view
the agreement between previous theoretical calculations
experimental measurements of the static structure facto
these systems. We increased the confidence in the reliab
of these potentials showing that the ‘‘exact’’ MD results f
the structural properties do reproduce the behavior of
experimental structural data, and also of the only dynam
property we found in the literature, i.e., the shear viscos
Moreover, the comparison of the thermodynamic proper
and static structural data obtained by simulation with
theoretical predictions confirm the validity of the liquid sta
theory used.

Using these effective potentials, we also simulated a nu
ber of dynamic properties that, although not experimenta
accessible, give physical insight so as to describe the

of

FIG. 8. Normalized stress autocorrelation function. The theo
ical calculations correspond to the ThSAnsatz. Solid line: MD
simulations; dashed line: theoretical calculations; dotted line: bin
contribution; dash-dotted line: mode-coupling component.
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namic behavior of the liquid, such as the velocity autocor
lation function, mean square displacement and stress a
correlation function.

We have also used these simulations to check the vali
of a recent self-consistent mode-coupling theory@23#, mak-
ing an analysis of the approximations involved in it. Fro
this analysis we can obtain the following conclusions.~i! The
superposition approximation for the three-body distribut
function is accurate enough to describe the initial decay t
of the physical processes associated with diffusion, but
for those associated with shear viscosity. In this case a m
elaborate approximation, like the convolution approximat
@41# or other recent approaches like that of Ref.@42#, may be
useful for a better description of the short time behavior
the stress autocorrelation function.~ii ! We verified that both
the hyperbolic secant squared and the Gaussian are
functional forms for the binary part of the memory functio
of the velocity autocorrelation function and also of the str
autocorrelation function. The results of the application of
theory, within the other approximations made, slightly favo
the hyperbolic secant squared, since it gives better glo
.
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agreement with simulations than the Gaussian form, but
conclusion may change if better approximations are ma
~iii ! We verified that for the thermodynamic states cons
ered in this paper, i.e., close to melting, the effects of c
plings other than the density-density one are indeed sma
the case of self diffusion, giving rise to a very small chan
in the theoretical results. We believe the same is also true
the stress autocorrelation function.~iv! We conclude that the
theoretical efforts should therefore be directed to obtai
theory for the intermediate scattering functions more ac
rate than the simple viscoelastic model used here. Both
simulations and mode-coupling calculations ofF(q,t) are
currently being undertaken in order to validate this conc
sion.
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M. Silbert, Phys. Rev. E47, 4120~1993!.
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