
PHYSICAL REVIEW E DECEMBER 1997VOLUME 56, NUMBER 6
Intermittent chaos in dense gaseouslike media driven by coupling cross thermodiffusive effects
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Intermittent chaotic behavior induced by a thermodiffusive coupling is investigated by analysis of a five-
mode~Lorenz-like! truncated model describing a binary, diluted solution which behaves as a gaslike system.
The obtained nonlinear equations coherently agree with the marginal stability locus point when the absence of
a stationary state for the mass transfer is considered. For a wide range of reduced Rayleigh number valuesr ,
we show that the truncated model exhibits the Pomeau-Manneville intermittency route to chaos when the
control ~Soret-based! phenomenological coefficient̂d& approaches some critical values^d&c . Numerical
simulations evaluating the generalized Lyapunov exponent against the control parameter displacement close to
the intermittency threshold,L(1) vs (̂ d&c2^d&), are reported inside the chaotic region. The achieved results
agree reasonably with theoretical predictions.@S1063-651X~97!12112-2#

PACS number~s!: 47.27.Cn, 47.20.Ky, 47.52.1j, 51.10.1y
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INTRODUCTION

The importance of ‘‘transverse’’~Soret cross! effects, al-
though consisting of a weak coupling between thermal g
dient and mass flux, has been henceforth recognized in
eral physicochemical phenomena@1,2#. Soret gradients in
solids @3# ~especially alloys and metals; see also electri
cross-phenomena@4#! have been investigated by measur
ments of the heat of transport@as well as of~inter!diffusion
coefficients# of different atomic species in diffusion and sel
diffusion phenomena occurring in a crystal lattice@3,5#.
More recently, by a sort of ‘‘background’’ internal friction
which has been interpreted according to point-defect rel
ations driven by nonlinear thermal cross-effects@6#, there are
reasons to believe that Soret-like transverse contributi
could play a primary role in some fields of material scienc
In a liquid ~mixture! @7,8#, as the thermal diffusivityx is
much larger than the diffusion coefficientD, the temperature
fluctuations can be neglected, and Soret gradient-induced
fects are usually dealt with by taking advantage of the s
tionary state for the mass transfer, i.e.,J150 @9,10#. This
condition is a constraint to be considered in developing
classical linear analysis of the stability and in writing an
related truncated model@11#. In the present case, sinc
x/D@1 @9,12#, the aforesaid constraint for the mass flu
cannot be used, and a simple recast of the linear stab
analysis is required. Accordingly, in a nonstationary sta
thermal and diffusive Lorenz-like dynamics are expected
be coupled by a transverse~Soret! coefficient @11#. More-
over, in a gaseouslike system, this cross-contribution
greater than in liquids and/or solids and, in principle, app
ciably depends on temperature@9,12#.

In this paper, intermittency induced by transverse So
based gradients has been attempted for a dense gaslike
dium, whose dynamics is described by a nonlinear five-m
Lorenz-like model. As usual, deterministic equations are
tained by a severe truncation of a modal expansion of
governing finite amplitude convection@13# in a binary dilu-
561063-651X/97/56~6!/6801~10!/$10.00
-
v-

l
-

x-

s
.

ef-
-

a

ty
,

o

is
-

t-
me-
e
-
e

ited gaslike solution heated from below, and in the prese
of a concentration gradient@14#.

It is known that large systems of nonlinear coupled ma
~the so-called coupled map lattices! @15# are the simplest
models exhibiting alternation between turbulent and lami
regions in space, which is usually denoted asspatiotemporal
intermittency. This type of coupled map lattice is constructe
~as, for example, the ones introduced by Chate´ and Mannev-
ille @16,17#! by coupling together maps exhibiting both ch
otic and laminar states. The mechanism leading to interm
tency@18# is due to the~coupling induced! interplay between
laminar and turbulent regions. Roughly speaking, the tra
tory ‘‘absorbed’’ in some laminar states may be pulled ba
into chaotic regions thank to~coupling! interactions between
maps. Without coupling, the laminar states are ‘‘fully a
sorbing’’ ~i.e., the trajectory cannot return into a chao
state!.

Here our major goal will be to show that, for our nonlin
ear five-mode truncated model, a role of the coupling So
based gradient is to drive the system~just as in the coupled
map lattices! from stable laminar motion into intermitten
chaotic motion~or vice versa!.

Taking the cross-term as the control parameter, the mo
exhibits the well defined routes to chaos, originally propos
for the Lorenz 1963 model~hereafterL63) by Manneville
and Pomeau@19#, namely, the so calledtangent bifurcation
intermittency. In the intermittent region, the regular~laminar!
behavior is ‘‘randomly’’ disrupted by a ‘‘burst’’ of chaotic-
ity of finite duration, after which a new laminar phase tak
place, and so on. The instability leading to the burst is due
the fact that the modulus of at least one Floquet multip
@20# crosses the unit circle along the real axis at11.

Results will be reported relative to the transition occurri
at the critical control parameter value;0.0955, provided
with a reduced Rayleigh numberr;167. Indeed, as we sha
see, the system also exhibits tangent bifurcation interm
tency for smallerr values.

In order to capture the influence of fluctuations on t
6801 © 1997 The American Physical Society
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6802 56STEFANO A. MEZZASALMA AND ANDREA MAZZINO
system ‘‘predictability’’ close to the intermittency threshol
we shall employ results following from the general therm
dynamical theory of dynamical systems which lead to
definition of generalized Lyapunov exponentsL(q). Accord-
ingly, a reasonable definition of the predictability time of t
system, which takes into account fluctuations, can be giv
In the intermittent region, an inverse predicatability time w
be derived numerically, and compared with theoretical
sults based on renormalization argument@21#.

I. MARGINAL LOCUS OF STABILITY

Consider the Soret cross-effect occurring in a gaslike,
nary, and diluted solution@9–11#. The starting phenomeno
logical equations are of the forms@1,2#:

Jq852K¹T,

J152rc1~12c1!D8¹T2rD¹c1 , ~1!

whereT is the temperature,c1 is the mole fraction of one o
two components,r is the density,Jq8 is the thermal flux in-
cluding the enthalpy transport,J1 is the matter flux due toc1,
and K, D, and D8 are the Fourier, Fick, and Soret coef
cients, respectively. The applied equations consist of
usual balance and state equations@1#.

As the stationary equilibrium condition for the mass fl
does not apply, namely,J1Þ0, from application of the linear
analysis to the stability of infinitesimal disturbances@2,7,13#,
and some algeabric passages, the marginal stability lo
point becomes

~11^d&!R2R̄5 27
4 p4,

P̄2

~11 P̄!~P1 P̄!
F11

P

P̄

^d&
~11P!GR2

P2

~11P!~P1 P̄!
R̄

5 27
4 p4, ~2!

whereR and R̄ are the thermal and solutal Rayleigh num
bers,P and P̄ are the Prandtl and Schmidt numbers and
Soret-based contribution^d&5ST(gm /aP)^c1̃&(12^c1̃&)
contains the thermal and mass expansivitiesaP and gm to-
gether with the contribution of vertical concentration profi
which is approximated to its mean value, i.e.,c̃1.^ c̃1& @10#.

The Soret coefficientST5D8/D coherently introduces the
contribution of the temperature gradient into the mass fl
J1. In fact, whenST.0, from analytical expressions for th
marginal stability locus point~2!, it may be observed that in
the R.0 half-plane, corresponding to positive~destabiliz-
ing! temperature gradient, we have an increase in
unstable region; conversely, forR,0, the stable region
increases. Accordingly, the intersection point of the stati
ary and oscillatory marginal stability locus in the therm
haline convection, which isT5(R̄T ,RT) where R̄T

527
4 p4@(11P!/~P2P!#, andRT5 27

4 p4@(11 P̄)/( P̄2P)#, in
the case when the Soret effect moves to the po
S5(R̄S ,RS), being now
-
e

n.

-
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e
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,
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t

R̄S5
27

4
p4

11P1APP̄^d&

P̄2P2BPP̄^d&
,

RS5
27

4
p4

11 P̄

P̄2P2BPP̄^d&
, ~3!

where APP̄5@P(11 P̄)11P1 P̄] 1 P̄(11P̄2P)]/@PP̄1P

1P̄] and BPP̄5@P(PP̄1P2 P̄)/PP̄1P1 P̄#.
All mathematical details which, starting from the therm

haline problem, lead to Eq.~2! ~as well as the investigation
of stability and/or instability transitions predicted by the l
cus point! are not important here. In fact, they follow direct
from the linear analysis applied to the stability of infinites
mal disturbances near the mechanical~pure conductive!
equilibrium. Nevertheless, a summary of the most import
steps is reported in Appendixes A and B. The proof of v
lidity of marginal equations~2! will be given in Sec. II,
where we show the agreement with the linear theory res
following from the linearization of the involved determinist
model.

II. TRUNCATED MODEL

As in theL63 model~see Ref.@22# and Appendix C!, one
can approximate the nondimensional stream functionc̄ , and
temperature and mass concentrationū and j̄ , with

c̄.
~a21p2!

pa
A2X1sin~aX!sin~pZ!,

ū .e
R1~a!

p
@A2X2cos~aX!sin~pZ!2X3sin~2pZ!#,

~4!

j̄ . ē
R1~a!

p
@A2X4cos~aX!sin~pZ!2X5sin~2pZ!#,

whereXi ’s are related to the coefficients of the Fourier d
velopment,X andZ are nondimensional spatial coordinate
a is a non-dimensional wave number,R1 is the marginal
stability a locus in the Be´nard problem, ande5D T̃/
uD T̃u561 together with ē 5D c̃1 /uD c̃1u561 determine
the quadrant of the (R̄,R) plane. A comparison betwee
the original Fourier series~see Appendix C! and Eqs.
~4! allows a relationship between theXi coefficients and
the real and imaginary parts of the Fourier amplitud
to be written asX152A2p@a/R1(a)#1/3C̄1,1

(1) , X25e@2A2p/
R1(a)] Q̄1,1

(2) , X35e@2p/R1(a)#Q̄0,2
(2) , X45ē@R1(a)/

2A2p] Ḡ 1,1
(2) , andX55 ē @R1(a)/2p#Ḡ0,2

(2) .
After substituting Eq.~4! into the governing physical sys

tem @Eq. ~C1! in Appendix C# and introducing the adimen
sional ‘‘reduced’’ quantities r (a)5R/R1(a), r̄ (a)5

R̄/R1(a), andb(a)54p2/(p21a2), by applying the Galer-
kin procedure@23# one arrives at
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X1̇52PS X12eX21 ē
P

P̄
X4D ,

X2̇52X1X31erX12X2 ,

X3̇5X1X22bX3 , ~5!

X4̇52X1X51 ē r̄ X12e ē ^d&X22
P

P̄
X4 ,

X5̇5X1X42bS e ē ^d&X31
P

P̄
X5D .

Obviously, when the Soret cross-term is neglected
e52 ē 51 Eqs.~5! reduce to a five-mode truncated mod
for the thermohaline convection@10,14#, with temperature
and concentration gradients acting oppositely.

Stationary states and stability

The components of the stationary states@24# are provided
by

PX1S~X1S
41BdX1S

21Cd!50

Bd5b@12r ~12be^d&!#1a~11 r̄ !,

Cd5ab@ r̄ 112r ~11^d&!#, ~6!

wherea5b(P/ P̄)2 andbe5e(11P/ P̄)21, and by

X2S5ebr
X1S

b1X1S
2

,

X3S5er
X1S

2

b1X1S
2

,

X4S5 ē b
P

P̄

X1S

bS P

P̄
D 2

1X1S
2
H r̄ 1

r

b1X1S
2 ^d&

3FbeS P̄

P
X1SD 2

2bG J , ~7!

X5S5 ē
X1S

2

bS P

P̄
D 2

1X1S
2

F r̄ 2eb
r

b1X1S
2 ^d&S 11

P

P̄
D G ,

so thatXO[0 is obviously stationary.
To obtain the other stationary points, it is necessary

solve the above biquadratic equation~6!. To this end, in
addition toBd andCd , another important expression is give
by the discriminant of Eq.~6!, namely,Dd5Bd

224Cd.0. In
particular, the equationDd50 is that of a simple parabol
d
l

o

with the vertex on ther axis which defines a region of th
( r̄ ,r ) plane where the solutions of Eq.~6! must be looked
for. These are

~ I! X1S
~1!5

1

A2
A2Bd1ADd,

X1S
~2!52

1

A2
A2Bd1ADd, ~8!

~ II ! X1S
~3!5

1

A2
A2Bd2ADd,

X1S
~4!52

1

A2
A2Bd2ADd.

Thus, defining z5(1/A2)A2Bd1ADd[X1S
(1) and

y5(1/A2)A2Bd2ADd[X1S
(3) , the four stationary solutions

can be written as

XS
~1![1

z

ebr
z

z21b

er
z2

z21b

ē b r̄
P

P̄

z

z21a

ē r̄
z2

z21a

2 , XS
~2![1

2z

2ebr
z

z21b

er
z2

z21b

2 ē b r̄
P

P̄

z

z21a

ē r̄
z2

z21a

2 ,

~9!

XS
~3![1

y

ebr
y

y21b

er
y2

y21b

ē b r̄
P

P̄

y

y21a

ē r̄
y2

y21a

2 , XS
~4![1

2y

2ebr
y

y21b

er
y2

y21b

2 ē b r̄
P

P̄

y

y21a

ē r̄
y2

y21a

2 .

~10!

Accordingly, with regard to Eqs.~6!–~10! and omitting theS
indexes, one hasX3,5

(1)5X3,5
(2) and X3,5

(3)5X3,5
(4) , while

X1,2,4
(1) 52X1,2,4

(2) and X1,2,4
(3) 52X1,2,4

(4) . The domains of the

pairs XS
(1,2) and XS

(3,4) in the (r̄ ,r ) plane descend from the
analysis of the aforesaid biquadratic equation~6!, and are
given, respectively, by the following conditions@16#:
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D12
~d!5~B.øC,!ù~B,øD.!, ~11!

D34
~d!5B,øC.øD. , ~12!

where A.[$( r̄ ,r ):Ad.0% and A,[$( r̄ ,r ):Ad,0%,
A5B,C,D, while XO is defined everywhere, that is
DO[R2.

If D12 andD34 denote the domains of the above pairs
the absence of the Soret effect~thermohaline convection!, if
ST.0 one hasD12

(d)3D34
(d),D123D34 when r .0 (3 is the
-
o

ea
,

ro
Cartesian product!, andD12,D12
(d) whenr ,0, as can be rea

sonably expected from the results of the linear theory@see
Eqs. ~2!#. Contributions opposing to stability, coming from
the signs of the two gradients, are also pointed out in the n
expression forX5S , the distortion of the stationary concen
tration profile, which decreases in the presence of the p
tive temperature gradient.

Indicating with X̃i the coordinate components around
generic stationary solution, and settingX̃i5XiS1dxi , the
linearized system in the perturbationsdxi is
S ḋx1

ḋx2

ḋx3

ḋx4

ḋx5

D 51
2P eP 0 2 ē

P2

P̄
0

e~r 2X3S! 21 2X1S 0 0

X2S X1S 2b 0 0

ē ~ r̄ 2X5S! 2e ē ^d& 0 2
P

P̄
2X1S

X4S 0 2e ē b^d& X1S 2b
P

P̄

2 S dx1

dx2

dx3

dx4

dx5

D . ~13!
ical
itial
n-
-

The characteristic equation forXO considers the Soret con
tribution only in the known term of a three-degree polyn
mial:

~l1b!S l1b
P

P̄
D H l31S P1

P

P̄
11D l2 ~14!

1PS P

P̄
r̄ 2r 111

1

P̄
1

P

P̄
D l ~15!

2S P2

P̄
D @~11^d&!r 2 r̄ 21#J 50. ~16!

In this way, a perfect agreement with the results of the lin
theory previously obtained@see Eqs.~2!# is achieved. Indeed
XO is stable if and only if

~11^d&!r 2 r̄ ,1, ~17!

P̄2

~P1 P̄!~11 P̄!
F11

1

~11P!S P

P̄
D ^d&G r

2
P2

~P1 P̄!~11P!
r̄ ,1.

Note that positions of the stationary states~6! and ~7!, as
well as domains~11! and ~12!, depend onbe which is non-
continous when the sign of the temperature difference ac
upper and lower plates changes, namely,DT→0. Accord-
-

r

ss

ingly, b12b2152@11(P/ P̄)# „or, equivalently,

(]be /]DT)DT5052@11(P/ P̄)#d(DT)…. Such a property
could be an interesting issue left for future work.

III. INTERMITTENCY IN CHAOTIC
DYNAMICAL SYSTEMS

In this section we shall review some basic mathemat
definitions and concepts on sensitive dependence on in
conditions, which will be employed in Sec. IV. Let us co
sider a dynamical system inRN defined by the set of equa
tions

Ẋi5 f i~X1 , . . . ,XN!, i 51, . . . ,N. ~18!

An infinitesimal disturbancedX(t) evolves according to

dẊi~ t !5Ji j ~ t !dXj~ t ! with Ji j ~ t !5
] f i

]Xj
U

X5X~ t !

.

~19!

We can define the response functionR(t,0) as

R~ t,0!5
udX~ t !u
udX~0!u

. ~20!

The Oseledec theorem@25# tell us that, fort→` and for
almost all~in the sense of measure theory! initial conditions
dX(0), wehave

R~ t,0!→el1t, ~21!
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where l1 is called themaximum Lyapunov exponent@26#.
Naively, one may guess thatl1

21 is the only characteristic
time scale of the error growth.

Considering times sufficiently long to have an exponen
growth rate for the response functionR(t,0), we can write

R~ t,0!;egt, ~22!

whereg is the local error growth exponent, in the sense th
it depends on the particular initial condition under consid
ation. Due to fluctuations ong @27,28#, even assuming thatt
is large enough to observe an exponential growth rate
R(t,0), l1

21 is not the only relevant time scale: depending
initial conditions, dynamical systems can show, on an e
pirical basis, states or configurations which can be predic
for time longer or shorter thanl1

21.
Following Paladin and Vulpiani @29#, Benzi and

Carnevale@30# and Benziet al. @31#, in order to capture in-
formation on the large fluctuations inR(t,0), let us introduce
the moments

^R~ t,0!q&, ~23!

where^ & is the average over different initial conditions.
If many times scales characterize the error growth,

should have

^R~ t,0!q&;eL~q!t, ~24!

with L(q) a nonlinear function ofq. The L(q)’s are the so
called generalized Lyapunov exponents@32,33#. As an ex-
ample, let us consider the simple one-dimensional ‘‘t
map’’ @20#

Xn115H Xn

c
~0<X<c!

12Xn

12c
~c,X<1!,

~25!

wherecP@0,1# is the parameter which characterizes the t
different ~if cÞ1/2) slopes of the map.

It is easy to verify@31# that the expression forL(q) reads

L~q!5 ln@c12q1~12c!12q#. ~26!

For c close to zero, the error growth of the system can
either in the ‘‘fast’’ state~if XP@0,c#), or in the ‘‘slow’’
state~if XP@c,1#). ThusL(q) is no longer characterized b
a single time scale. Notice that the situation changes w
c5 1/2. In this case, the map has only one slope, and
~26! reduces to

L~q!5ql1 , ~27!

with l15 ln2. Relation~27! means thatl1 is the only rel-
evant time scale characterizing the error growth.

Coming back to the general case, we can rewriteR(t,0) as

R~ t,0!5)
i 51

M

R~ t i ,t i 21!, ~28!
l

t
-

of

-
d

e

t

e

n
q.

where 05t0,t1,•••,t i,t i 11,•••,tM5t. Here we
view the trajectory as a sequence ofM trajectories. By intro-
ducing the notation

R~ t i ,t i 21!;eg i ~ t i2t i 21!, ~29!

we have

egt5e(
i 51

M

g i ~ t i2t i 21!. ~30!

Therefore, takingt i2t i 215Dt for any i , we havet5MDt
and

g5
1

M(
i 51

M

g i . ~31!

Let PM(g) be the probability of havingg at the time
t5MDt. The quantity^R(t,0)q& can be computed by the
integral

^R~ t,0!q&5E PM~g!egqMDtdg. ~32!

It is now clear that, forM→`, PM(g)→d(g2l1). For fi-
nite M , the theory of large deviations~for a general exposi-
tion see Varadhan@34# and Ellis @35#! suggests that

PM~g!;e2S~g!MDt, ~33!

whereS(g)>0 andS(g)50 for g5l1. In the language of
large deviation theory,S(g) is called Cramer functionor
Cramer entropy. For a description of the link with the statis
tical mechanics formalism, see Refs.@29,31,33#.

Equation ~33! can be rigorously proved to be valid i
many cases. Inserting Eq.~33! into Eq.~32!, by saddle-point
integration we obtain

^R~ t,0!q&;E e[gq2S~g!] MDtdg;eL~q!MDt, ~34!

where

L~q!5supg@qg2S~g!#. ~35!

It follows from Eq. ~35! that, for anyq, a valuegq exists
such that

dS~g!

dg U
g5gq

5q. ~36!

Thus

L~q!5qgq2S~gq! ~37!

and

dL~q!

dq
5gq1q

dgq

dq
2

dS~gq!

dq
5gq . ~38!

From Eq.~37!, we deduce that, forq50, g05l1; there-
fore from Eq.~38! it follows that

l15
dL~q!

dq U
q50

. ~39!



in

bi

of
c-
l-

to

s
i-

ca
c

or

on

ed

an

b-
n

al

a-

l-
tic
nt

e
in-
g-

are

on
of

ode
al

ge-
-

er

-

d

b-

ases
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The quantitiesgq are the characteristic time scales describ
the predictability fluctuations of the dynamical system.

There is no general theory about the shape of theS(g)
function, as different systems may have different predicta
ity fluctuations.

Let us consider the response function

R~ t,t8!5
udX~ t8!u
udX~ t !u

, ~40!

and observe that it obeys the multiplicative rule

R~ t,t8!5R~ t,t9!R~ t9,t8! ~41!

for any t9. Thus, in order to look for a parametrization
Pt(g), one is led to consider all possible probability fun
tions Pt(g) which are left invariant with respect to the mu
tiplicative transformation~41!. In the following, we shall call
this class of probability functionscovariant. By making the
strong assumption of weak correlation betweenR(t,t9) and
R(t9,t8), an important category of distributions turn out
be covariant: it is the class of theinfinitively divisible distri-
butions~IDD’s! @36#.

A. Gaussian case

The Gaussian distribution is the most popular example
IDD’s. The idea of using IDD’s is closely connected to sim
lar studies performed in the framework of the statisti
theory of turbulence@37# and of the theory of atmospheri
predictability @31#.

A Gaussian law forPt(g) means a quadratic shape f
S(g) @29#

S~g!5~g2l1!2/2m, ~42!

and a log-normal distribution for the response functi
R(t,0),

Pt~R!5
1

RA2pmt
e2[ ~ lnR2l1t !2/2mt] . ~43!

In this case, the probability distribution is fully characteriz
by only two parameters:

l15^ lnR~ t,0!&/t, ~44!

m5@^„lnR~ t,0!…2&2^ lnR~ t,0!&2#/t,

wherel1 is the maximum Lyapunov exponent, andm is the
second cumulant, calledintermittency.

The moments of the distribution~43! give

L~q!5l1q1 1
2 mq2, ~45!

while the most probable value of the response function
the mean value are, respectively,

R̃5el1t~12m/l1!, ^R&5el1t[11m/~2l1!] . ~46!

Arguments reported by Crisantiet al. in Ref. @38# show that
the predictability problem is reduced to a ‘‘first exit pro
lem.’’ Relations between the probability distribution functio
g

l-

of

l

d

of the predictability time, and fluctuations of the loc
Lyapunov exponentg, are proposed there by the authors.

A further way to take into account the effects of fluctu
tion was recently proposed by Benziet al. in Ref. @31#, in the
framework of the theory of atmospheric predictability. Fo
lowing Ref.@31#, a reasonable definition of the characteris
predictability timet of the system, which takes into accou
the effects of fluctuations, can be given as

t;
1

L~1!
5

1

l11~1/2!m
, ~47!

which will turn out to be useful in the following when th
system behavior near a bifurcation intermittency will be
vestigated. A deep discussion on the reliability of the lo
normal approximation can be found elsewhere@29#, and thus
will not be reported here.

IV. INTERMITTENCY ROUTE TO CHAOS DRIVEN
BY THE TRANSVERSE EFFECT

For nonlinear dissipative dynamical systems, there
different well defined @39# patterns of behavior~‘‘sce-
narios’’!, as the system is driven from stable laminar moti
into chaotic motion. In this section we present the results
some numerical experiments performed on the five-m
Lorenz model~5!. In our experiments, where the extern
control parameter is just the cross-term^d&, the intermittency
routes to chaos originally proposed for theL63 model by
Manneville and Pomeau@19# will be evidenced. All numeri-
cal integrations were made by using a fourth-order Run
Kutta scheme withDt50.005. Figure 1 shows the time de
pendence ofX5 ~a similar behavior is observed for the oth

FIG. 1. Time record of theX5 coordinate in the five-mode Lo
renz model~5!. ~a! Stable periodic motion appears for^d& ~here
;0.096) just above threshold̂d&c;0.0955. ~b! Just below^d&c

(^d&;0.095) the regular oscillations are ‘‘randomly’’ interrupte
by chaotic ‘‘bursts’’ which become more frequent as^d& is de-
creased@case~c! with ^d&;0.093#. In the thermohaline convection
~d!, i.e., ^d&50, the system behaves chaotically during all the o
served time. TheX5 coordinate is ranging between272 and223
while the dimensionless time between 10885 and 11235 in all c
~linear scales!.
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XiÞ5) when four different values of the control parame
^d& are considered, and when ther parameter is 167. The
other model parameters~kept fixed in the present study! are
r̄ 550, e51 and ē 521, corresponding to a thermodiffu
sive convection with opposite temperature and concentra
gradients. Moreover, for the sake of simplicity, on inves
gating the thermal cross-contribution in the limit of a gasli
behavior, the Prandtl and Schmidt numbers were sette
P58 andP̄510.

Above the critical value, which turned out to b
^d&c;0.0955, numerical simulations show regular perio
oscillations@see Fig. 1~a!#; for ^d& slightly below ^d&c the
system appears to switch from periodic to chaotic beha
@see Fig. 1~b!#. As ^d& decreases@see Fig. 1~c!#, the time
spent in chaotic motion increases, while the duration of
periodic stages decreases, until the model behaves c
pletely chaotically. This corresponds tôd&50 @see Fig.
1~d!#, i.e., to the thermohaline regime@10#.

Since the bifurcation event can be tangent or saddle n
such a type of intermittency route to chaos is sometim
calledtangent bifurcation intermittency. It has been observe
during many experiments~see, for example, Jeffries an
Perez@40#!, particularly when the focused system also sho
the period-doubling route to chaos.

To analyze the behaviors reported in Fig. 1, followi
Manneville and Pomeau@19# consider the Poincare´ map de-
fined asX2(n11)5g@X2(n),^d&#, X2(n) being theX2 co-
ordinate at thenth crossing of the planeX150, and endowed
with the conditionẊ1.0. After performing numerical simu
lations on model~5!, the resulting map is shown in an ex

FIG. 2. An expanded view of the Poincare´ map along theX2

coordinate. Case~a! corresponds to the intermittency transitio
when ^d&5^d&c while ~b! is relative to^d& values slightly beyond
the intermittency threshold̂d&c . Note that at the transition the
‘‘curve’’ is tangent to the diagonal line, while a small gap~‘‘chan-
nel’’ ! appears for̂d& slightly below^d&c . Here, a trajectory spend
a significant amount of time. The motion along the channel rep
sents the phase of the laminar motion.
r

n
-

to

r

e
m-

e,
s

s

panded view in Fig. 2. It can be seen that, for^d&5^d&c the
‘‘curve’’ is just tangent to the diagonal line@see Fig. 2~a!#,
while for ^d&,^d&c @see Fig. 2~b!# the curve is lifted up and
a ‘‘channel’’ appears. The graphic iteration technique sho
that a trajectory spends a significant amount of time trave
along the channel. Such a time corresponds to the lam
phase of the motion illustrated both by Figs. 1~b! and 1~c!.

Based on the use of a renormalization~scaling! argument
@21# it is possible to determine the average periodic bu
duration according to small values of the differen
^d&c2^d&. As a result, the scaling argument gives a num
of iterations, and therefore a characteristic ‘‘predictabil
time’’ t of the order of

t;~^d&c2^d&!21/2, ~48!

which is necessary to cross the channel.
Near the critical pointŝd&c , the influence of fluctuations

is strong. This can be concluded from Fig. 3, where the ra
between the maximum Lyapunov exponentl1 and the inter-
mittency m @see Eqs.~44!# is evaluated when the contro
parameter̂d& approaches the critical point^d&c50.0955. As
one can see, when̂d&*0.065 a transition fromm/l1,1 to
m/l1.1, i.e., from weak to strong intermittency, occur
The word ‘‘transition’’ is used, in this context, in a broad
sense than elsewhere, when the tangent bifurcation has
discussed. Even variations in the chaoticity degree, wh
implies m/l1.1, are included in the class of intermitten
behaviors@29#.

Recalling definitions~46! for the most probable valueR̃
and the mean valuêR&, taking R̃ as representative of th
distribution turns out to be inadequate for^d&*0.065. In
fact, instead of the turbulent chaotic regime, characterized
a positive exponent (limt→`^R&5`), a laminar stable phas
(limt→`R̃50) is predicted. In the phase transition jargo
this means that the mean field picture fully breaks dow
Chaotic behavior near a bifurcation intermittency is thus

-

FIG. 3. Behavior of the ratiom/l1, vs the displacement from the
intermittency threshold̂ d&c50.0955. Notice the transition, fo
^d&*0.065, from weak (m/l1,1) to strong (m/l1.1) intermit-
tency.
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6808 56STEFANO A. MEZZASALMA AND ANDREA MAZZINO
longer characterized by the sole Lyapunov exponent.
effect of fluctuations is important, and must be taken in
account to characterize accurately the model predictabi
As a definition of the characteristic predictability timet
which reasonably takes into account the influence of fluct
tions, consider formula~47!. In the intermittent region, it
follows from Eq. ~48! that the generalized Lypaunov exp
nentL(1) should vary as

L~1!;~^d&c2^d&!1/2. ~49!

L(1) is plotted in Fig. 4 versus the displacement from t
intermittency threshold̂d&c50.0955. As one can verify, in a
range of ^d& values just beloŵ d&c , the scaling law for
L(1) given by Eq.~49! ~dashed line! is consistent with the
L(1) behavior obtained by performing numerical simulatio
of the deterministic model~5!. Evaluation ofL(1) is done by
determiningl1 and m through a linear least-square fit o
^ lnR(t,0)& and ^(lnR(t,0))2&2^ lnR(t,0)&2 versus t, respec-
tively.

Small deviations from theoretical predictions can be
tributed to the slow convergence of them indicator at the
intermittency threshold. The relative errors generated in
fits is of the order of 8%.

We conclude by observing that, when the transverse S
coefficient is used as a control parameter, routes to chao
tangent bifurcations intermittency seem to be a quite co
mon feature, in a wide range ofr -parameter values. Intermit
tency routes to chaos via tangent bifurcation intermitten
occur in fact not only for large values ofr ~as it is the case
with the L63 model; see Ref.@19#!. For instance, we have
identified other tangent bifurcations forr 538 ~the other pa-
rameters are kept unchanged with respect to the case alr
discussed! when the control parameter^d& is ;0.7222 and
;0.9799, respectively.

FIG. 4. Generalized Lyapunov exponent behavior,L(1), vs the
displacement from the intermittency threshold^d&c50.0955. No-
tice that the predicted scaling lawL(1);(^d&c2^d&)1/2 ~dashed
line! closely agrees with the numerical simulations~circles!, which
is affected by a relative uncertainty of about 8%.
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V. CONCLUSIONS

~1! Intermittent chaos in a five-mode truncated model h
been studied in a gaseous binary system endowed with tr
verse~Soret^d&) coefficient in a nonstationary state for th
mass transfer. Accordingly, we have the following.

~i! From performed numerical experiments, when the
ternal control parameter^d& approaches some critical value
^d&c , one can observe routes to chaos as proposed by M
neville and Pomeau@19# for the L63 model. The transition
occurring when̂ d&c;0.0955, and when the reduced Ra
leigh numberr;167, were reported. The system also exh
ited the tangent bifurcation intermittency whenr assumed
smaller values. As an example, forr;38, we identified two
critical points^d&c;0.7222 and 0.9799, respectively.

~ii ! Fluctuations in the chaotic behavior near the bifurc
tion at^d&c;0.0955 have been detected, and a neighborh
inside the chaotic zone where the mean field picture fu
breaks down has been recognized. Then, correspondin
the influence of fluctuations on the chaotic behavior m
necessarily be accounted for. It must be concluded tha
such a region, the Lyapunov exponent is not sufficient
characterizing chaos and predictability time exhaustive
Generalized Lyapunov exponentsL(q) have been employed
to define coherently the predictability time as depending
fluctuation effects.

~iii ! The inverse predictability time, i.e.,L(1), vs dis-
placement from the critical point^d&c;0.0955 has been de
rived numerically and compared with theoretical scalin
law-based results. Numerical simulations reasonably ag
with theoretical predictions.

~2! The analysis of linear stability and stationary stat
applied to the model, provided results in agreement w
those of classical hydrodynamic~marginal locus of stability!.
All stationary states and stability regions have been deri
parametrically~in r , r̄ ,P,P̄ and ^d&). A term which is not
continuous when the sign of the temperature gradien
changed has also appeared.
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APPENDIX A: REMARKS ON THE MARGINAL LOCUS
OF STABILITY IN THE THERMO-SOLUTAL

CONVECTION

We considered a linear theory developed in norm
modes, as obtained when ideal boundary conditions
adopted: free, conducting, permeable, and indefinitely
tended surfaces~if the layer thickness is not too thin, th
Marangoni effect can be ignored@41,42#!. Moreover,

G~r,t !5E Ḡk~z,t !eik•rdk, ~A1!

Ḡk~z,t !5Ĝk~z!eivkt, vkPC
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56 6809INTERMITTENT CHAOS IN DENSE GASEOUSLIKE . . .
were the general Fourier developments for the infinitesim
disturbances~velocity components, temperature, and conc
tration perturbations!, wherer[(x,y) andk[(kx ,ky) is the
relative bidimensional wave number.

The linear theory of stability applied to perturbations~A1!
yields the criteria to predict the stable-to-unstable transit
of the system being considered. In the Be´nard problem, it is
well known @43,44# that, for a given adimensional wav
numbera5(kx

21ky
2)1/2d, whered is the layer thickness, we

have stability if and only if R,R1(a)5(p21a2)3/a2,
where R1(a) is the ‘‘marginal stability’’ locus point, and
R5gaaPd4/nx is the Rayleigh number. It follows that th
critical Rayleigh numberRc , expected to produce instability

is given byRc5mina$R1(a)%5 27
4 p4, whena5ac5221/2p.

The quantityR contains the gravity constantg, the tempera-
ture gradienta5DT/d ~positive, in the adopted convention
if the fluid is heated from below!, the expansivity coefficien
aP , the kinematic viscosityn, the thermal diffusivityx, and
the layer thicknessd.

The study of the stability of a fluid layer solely subject
a concentration gradient@45# shows an identical criterion fo
a solutal numberR̄ ~here defined in the following! which
replaces the Rayleigh number. It is also known that in
thermohaline convection, i.e., in a binary fluid subject
independent temperature and concentration gradients an
‘‘ideal’’ ~conductive and permeable! boundary conditions,
one has stability if and only if@2,7,10#

R2R̄5
27

4
p4, ~A2!

P̄2

~ P̄1P!~11 P̄!
R2

P2

~ P̄1P!~11P!
R̄5

27

4
p4,

wherea5ac5221/2p again andR̄5gbgmd4/nD is the so-
lutal ~Rayleigh! number; it contains the concentration grad
ent b5Dc/d ~negative if the solute is denser at the upp
surface!, while gm5r0

21(]r/]c1)T,P is defined in the devel-
opment of the density functiondr5r0(12aPdT1gmdc1).
The quantitiesP5n/x and P̄5n/D are the Prandtl and
Schmidt numbers, respectively.

APPENDIX B: DISCUSSION OF THE STATIONARY
SOLUTION

The stationary solutions of thermohaline convectio
based equations depend on the involved physical param
and, with regard to Eqs.~A1!, for any fixed values ofk and
t, one has

Ḡk}Ĝk~P,P̄;e, ē ,R,R̄,!5Ĝk* ~x,n,D;T0 ,Td ,c0 ,cd ,d!.
~B1!

The functionḠk depends on the sign of the temperature g

dient DT and on the concentration gradientDc1. In Ĝk* are
explicitly included not onlyDT andDc1, as requested by th
dependence ofR on DT and of R̄ on Dc1, but also the
boundary valuesTo , Td , co , andcd (o indicates the lower
plane, whiled indicates the upper plane!.

With the Soret effect, two further parametersST and c̃1
must be introduced; accordingly,
l
-

n

e

to

r

-
ers

-

Ḡkz}Ĝkz~P,P̄,ST ;e, ē ,R,R̄, c̃1!

5Ĝkz* ~x,n,D,D8;T0 ,Td ,c0 ,cd ,d!, ~B2!

where the symbol z indicates a fixed z: c̃ (z)
5c02bz5c02@(c02cd)/d#z. Now, with the change of

units c̃1→C̃1, the dependence ofĜkz on all parameters

changes, i.e.,Ĝkz→Ĝkz
˜ , but Ĝkz* remains unchanged, namel

Ĝkz→ G̃̂kz~P,P̄,ST ;e, ē ,R,R̄, C̃1!

[Ĝkz* ~x,n,D,D8;T0 ,Td ,c0 ,cd ,d!. ~B3!

Accordingly, the application of the linear theory@13,24# to
derive the stability conditions must be subject, for any un
change, to constraint~8!.

APPENDIX C: REMARKS ON LORENZ-BASED
TRUNCATED MODELS

All Lorenz truncated models follow from Saltzman bid
mensional equations, in which the convective terms are c
sidered@22,46#. Choosing, for instance, thex andz coordi-
nates, and introducing the stream functionc in such a way as
to preserve the continuity equation in the (x,z) plane, they
are @11#

]¹2c

]t
52$c,¹2c%xz1gS aP

]u

]x
2gm

]j

]xD1n¹4c,

]u

]t
52$c,u%xz1a

]c

]x
1x¹2u, ~C1!

]j

]t
52$c,j%xz1b

]c

]x
1D¹2j1~ c̃11j!

3~12 c̃12j!D8¹2u,

wheret is the time,u is the temperature perturbation, andj

and c̃1 are the concentration gradient and the vertical lin
concentration profile at the stationary state, respectiv
also,¹4* 5¹2

•(¹2*), and having introduced the Jacobi de
terminant,$ f ,g%xz,(] f /]x)(]g/]z)2(] f /]z)(]g/]x).

If one supposes that the spatial parts ofc, u andj, which
have to be determined, are developable in Fourier dou
series with nondimensional and time-dependent complex
efficients, namely,

c̄ ~X,Z, t̄ !5 (
m,n52`

1`

C̄m,n~ t̄ !ei ~maX1npZ!,

ū ~X,Z, t̄ !5 (
m,n52`

1`

Q̄m,n~ t̄ !ei ~maX1npZ!, ~C2!

j̄ ~X,Z, t̄ !5 (
m,n52`

1`

Ḡm,n~ t̄ !ei ~maX1npZ!,
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the Galerkin procedure can be applied to Eqs.~C1! and~C2!.

In developments~C2!, c̄5c/x, ū 5Ru/uD T̃u, j̄ 5R̄j/uD c̃1u,
 X5x/d,Z5z/d, and t̄ 5(p21a2)xt/d2 are nondimen-

sional quantities, andD T̃[ad and D c̃1[bd are the dif-
-

f

-
m

m

ferences in temperature and concentration of the bounda

at mechanical equilibrium; further, we set@11,46# C̄m,n( t̄ )5

C̄m,n
(1) ( t̄ )2i C̄m,n

(2) ( t̄ ), Ḡm,n( t̄ )5 Ḡ m,n
(1) ( t̄ )2i Ḡ m,n

(2) ( t̄ ), and

Q̄m,n( t̄ )5Q̄m,n
(1) ( t̄ )2i Q̄m,n

(2) ( t̄ ).
-

n-
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