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Fluctuation and dissipation in classical many-particle systems
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Coarse-grained Langevin-type effective field equations are derived for classical systems of particles. These
equations include the effects of thermal fluctuation and dissipation that may arise from coupling to an external
bath, as in the Brownian motion of a single particle, or from statistical fluctuations in small parts of an isolated
many-particle system, as in sound waves. These equations may provide some guidance for the analysis of
mesoscopic or microscopic molecular systems or for systems of hundreds to thousands of subatomic particles
produced in high-energy nuclear collisions.
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I. INTRODUCTION ing vacuum[12]. A good description is lacking.
Our goal here is to develop some understanding of the
The theoretical description of Brownian motion of a clas-DCC problem by considering a collection of classical par-
sical particle is well known and widely discussed; it is text- ticles undergoing Brownian motion and generalizations of
book material[1]. It is used in numerous practical applica- such. This might appear to be a simple problem, but there are
tions, such as evaluating reaction rates at finite temperatuibtle issues relating to the nature of what one considers the
in systems where thermal fluctuations are of vital importancéneat bath. For a single particle it is relatively straightforward,;
[2-5]. Thermal fluctuations and the actual evaluation of fluc-for a collection of particles it is not. In one limit, the particles
tuating forces and dissipative coefficients for dense, interaciof interest may each be coupled to an external heat bath, but
ing, classical many-particle systems is somewhat lesthey may also interact with each other via forces that are
known; early studies were done by Irving and Kirkwd®@,  more slowly varying than the ones operative between the
Green[7], and Mori[8]. Studies of nonlinear systems were particles and the heat bath. In this case Langevin equations
initiated by Zwanzig9]. , of motion can be obtained for time scales that are short com-
We were originally motivated to do this study by the n,req 1 the interparticle interaction times but long compared

physics of nucltt)aatr CQ"'S'Ont.S Iat high enedrgy. (;n thes;le colli-ty the interaction times with the heat bath. In another limit,
sions many subatomic particies are produced, mostly plong, o .o 5 o external heat bath; one averages over a macro-

that are the main carner qf the ngclear force. The COIIISIonscopically small but microscopically large number of neigh-
may be viewed as a miniature big bang where soon after

impact a large amount of the initial translational energy iSborlng particles and seeks a Langevin equation to describe

put into particle creation and entropy production. This sys—the motion of these subset; of part|cles over times long com-
ared to the force fluctuation times between subsets. In the

tem can be roughly characterized by a temperature. As timB . ; .
goes on, the system expands and cools. Eventually collisiof§2! world there may be a continuum of interesting problems
become so infrequent that thermal equilibrium is lost and thdYing between these two extremes.

particles stream freely to infinity and are detected. The prop- N the following sections we will analyze and contrast the

erties of a System of pionS, numbering in the hundreds OMO I|m|t|ng cases outlined above. In both cases we will do

thousands, at high temperature may have very interestingoarse graining to obtain an effective field equation of mo-

properties. For example, pion fields transform under an intion in one and three dimensions. Phenomenological field
ternal symmetry group rather analogously to spins in a magequations have been found to be very useful in the study of
net. During the early stage of the expansion, when the temdynamic critical phenomena in atomic and molecular sys-
perature is high, the field may collectively point in a tems[10].

direction different from that in the surrounding vacuum. This

is referred to as a disoriented chiral condens®€C) [11].

One would like to have coarse-grained field equations to Il. EXTERNAL HEAT BATH

describe the fluctuation and dissipation of DCC domains and . . . .
their inevitable coalescence and evolution into the surround- A. Recollection of simple Brownian motion

This case is discussed in many textbooks, sudi hsind
often repeated in the literature, such[48]. For a particle of

*Electronic address: csernai@fi.uib.no massm connected to a heat bath and moving under the in-
"Electronic address: jeon@nucthl.spa.umn.edu fluence of external potential fields, for example, a small ob-
*Electronic address: kapusta@physics.spa.umn.edu ject suspended in a fluid or gas in a gravitational field, and
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will study the change of position and velocity of the Brown-
Heat Bath H ian particles assuming that changes are small in a time inter-
val 7> 7.

‘ ‘ ‘ l ‘ Suppose that at timeall B

. are in thermal equilibrium

with H. Consider a set of macroscopically similar systems
By J\/\f Byt J\/\f By J\A’— By J\/\f Byyaf forming an ensemble. Then the ensenpwble )z;verage of){he fluc-
tuating forces vanishes at this moment
FIG. 1. Series of Brownian particlds, 1, B,,, B, 1, ... in-
teracting with a thermal heat batth with random thermal forces <FM(t)>O=0' (4)

F.(t) (thin lines and with their nearest neighbors via conservative

! The subscript indicates that the average is taken in thermal
forces(heavy lines.

equilibrium. Due to a change in the position or velocity of
r§omeBM, the forceF , may change and our system, b&f
andH, may deviate from thermal equilibrium. We have to
evaluate this deviation.
du(t) t Apart from the fluctuating random force ,(t) there is
G(t)—f dt'K(t—t")o(t")+F'(t). (1)  another slowly varying, not fluctuating, ford® ,(t). The
o forces connecting the Brownian particles are of this type. We
will be interested in finding the corresponding slowly vary-
ing part of the velocity of eacB,, . Integrating the equation
of motion mz}MzGM(t) +F (1) for a short but macroscopic
period of timer, we get, in a particular microscopic configu-
ration,

moving in one dimension, the generalized Langevin equatio
is

dt

Hereuv(t) is the velocity of the particle at time The force
due to external fields is labeled I&y. The force due to the

heat bath has been separated into two p&FtSZF_‘FF’,
whereF’ represents the rapidly varying, random, part of the

force whose average value is zero aRdrepresents the

slowly varying part whose average value is not necessarily t+r

zero. The separation of these two components depends on m[vu(HT)_Uu(t)]:GﬂJrJt F.(thdt’. (5

the coarse graining time chosen. To be a useful coarse grain-

ing, this time must be large compared to the characteristigiere we have taken into consideration ti®t can be con-
correlation timer, of the force but small enough on an sidered constant during the short period of timeThe mi-
observational time scale to record the desired coarse-grainefloscopic configurations are not under our control; we know
trajectory of the particle. For example, if the particle undergnly the ensemble average of similarly prepared systems.

consideration is immersed in a gas of much lighter particlesTaking the ensemble average of both sides of the above
Tcor IS the average time between collisions with the gas parequation of motion we obtain

ticles that define the heat bath. The friction kernel is
t+7

K(s)=B(F'(0)F'(s)), 2) m<vu<t+7>—v#(t)>=6ﬂ+ft (Fu(t)dt’. (6

wherep is the inverse temperature of the heat bt use |n general(F ,(t')) is not independent of the motion Bf, ;

units withkg =1 throughoutand the averaging is carried out otherwise it would be always the same as the mean value
with respect to the heat bath. This is referred to as a 9eNerF ,(t))o=0 in thermal equilibrium. We will evaluate the
alized Langevin equation; the normal Langevin equation ishanges inF ,(t")) following the lines of([1] Sec. 15.7.

obtained in the approximation thK{(s) =2« &(s). This may Let us consider the change during the time interval ftom
be considered as the limit of the somewhat more general cagg t+r'. The velocity of B, changes fromu (1) to
where v,(t+ 7). The motion of this particle affects its environ-
ment. If 7’ is small enough the mean for¢& ,) changes,
@ but still depends on its earlier value tatlf 7' exceedsr,
K(s)=—exp—|s|/ . 3 cors
(=) Teor P [sl/ 7eon) @ the heat bath will reestablish its thermal equilibrium and will

be found with equal probability in any of it accessible
S_imple Brownian motion in more than one dimension is ob-states. Since the energy of tBg changes the energy of the
VIous. heat bath changes as well. The total energy of the heat bath
changes by

B. Coupled Brownian particles
, ) , AE(7")=---+AE, 1(7)+AE,(7)+AE, (7)) + -,

Consider a set of Brownian particles referred toBgs (7)
which can move in one dimension and are in thermal inter-
action with a heat bath referred to & see Fig. 1. The whereAE,(7') is the energygivento the heat reservoir
thermal interaction is mediated by a fluctuating foreg(t), by the particleB,, . Since we consider small time increments
which has a mean period ef,,. This time ., characterizes only the local environment &, is relevant. The number of
the relaxation time needed fdt to reestablish its equilib- other Brownian particles influencing the heat bath is not in-
rium configuration if it is perturbed by some sudden smallfinite, but extends to some distance comparable to the mean
change. We assume that the conservative force connectiritgee path or the spatial correlation length. The number of

Brownian particles is slowly varying compared tg,,; we  states available to H changes from Q(Ey) to
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Q(Ee+---+AE, +AE,+AE, 1+ --). This change In this estimate the change of the energy of the heat bath is
of energy of the heat bath will influence the Brownian par-still undefined. This energy is, however, simply the negative
ticles connected to it and modify the populations of mi-of the work done by the fluctuating force on the Brownian
crostates in the ensemble corresponding By, . We will particleB,,:
use this information to estimate the change of the fluctuating
thermal force acting o8, . 7’ " I

The equilibrium probability of the occurrence of a given AE,= _ft Fo(t")v,(t")dt". (12
microstater for B, is proportional to the corresponding
number of states available to the heat bath. Here we assunigseiing this expression into that for the fluctuating force we
that the total number of microstates of all Brownian particles;p;ain
B,-1,B,,B,s1, ... together is negligibly small compared
to the number of microstates of the heat reservoir. Now we o
can compare the probability distribution over the microstates (F ,(t+7'))= —,Bf dt"(F ,(t+ 7" )F,(t"))ov,(1").
W, , of B, at timet and 7’ later: t 13

W, (t+77) _WW(H- 7

We use the summation convention where a repeated index is
Wi (1) WE(,)) summed over. In this case, the summoruns over the neigh-
bors of B, ; it is cut off by the range of the forces and by the
:Q(E°+ o HAE, G HAEHAE, gt ) finite time interval. Ther):a is no ngeed to do an ensemt%e av-
Q(Eop) eraging over the velocities because they are much more
_ slowly varying than the fluctuating forces. Thus we have
=exXg (- HAE,  FABFARL )] gimated the expectation value of the fofeg for an en-
(80 semble, weakly deviating from a thermal equilibrium, via
expectation values obtained in thermal equilibrium. This is,
HereBE dInQ)/JE is the inverse temperature of the heat bath,of course, just |inear-resp0nse theory_
assumed to be constant. This means that if more energy is Now the equation of motion for the Brownian partide
made available to the heat bath the probability to populate @an be cast in the form
particular microstate of B, increases. This is true even if
that particularB,, takes energy from the heat bath as long as t+r ¢t
its neighbors add more. m(v ,(t+ T)—U,L(t)>=G,LT—ﬁf dt'J’ ds(F,(t")
Now we can estimate how population probabilities ! 0

change with time; XF, (t'"=s))u,(t'—5). (149

W, (t+7")

The ensemble averaging in the expression for the interpar-
) ticle force may be dropped because the coordinates change
=W exdB(--- +AE, 1 +AE,+AE .1+ 1)] much more slowly than the velocities, which are again much
WO o o more slowly varying than the fluctuating forces.

Wi 1480+ AR, 1+ AE, FAB, 1+ - )] It is straightforward to perform the above derivation in
(9)  three dimensions. The forcds, and velocitiesv,, become

- - 1%
three-dimensional vectofs!, andv'

with spatial indices la-

1 3
We can also evaluate how the ensemble average of the flugeled by roman letters and where the bold greek indices now
tuation force changes during this time interval: label the position. The work done by partidg will contain
the scalar produat), F), of its velocity and the random force
(F,(t+ )=, W, ,(t+7)F,, acting on it. Equatior{14) takes the form
r
Pt L (1))=G' fwdt’ftlftd Flt!
”Z WO1+B(- - +AE, MUt D) =0u(0)=Cur= 8 | o IFLt)
XFL(t' =s))oul(t' —s). 15
+AE,+AE, 1+ )]F., WU =9))ovy(t =) (15
=([1+p(---+AE,_1+AE,+AE, The friction kernel is proportional to the correlation function
of the random fluctuating force:
] Fuo- (10
i] = i i(t—
Since the ensemble average of the fluctuating force vanishes KM”(S)_B<Fﬂ(t)F”(t S)o- (16

for the thermal equilibrium distributiokV%), the above ex-

pression for the fluctuation force reduces to Here it is assumed that this function is time translation in-

variant, as is normally the case in thermal equilibrium. This
(F (t+7))y=B((--- +AE, 1 +AE,+AE, a}ssumptlon can be rglaxgd. We will d]scuss thg properies of
time translationally invariant correlation functions a little
+--)F 0. (11 later.
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Now it is useful to separate the fluctuating force into two per unit volume and are denoted by a lowercase letter. The
components. The first component is just the average value dfangevin equation then becomes
the fluctuating force in the slightly out of equilibrium en-

semble: p ;]i(x,t)zgi(x,t)—f dsyf:ds Ki(y,s)7l(x—y,t—s)

. t+rdt’ (1= . )
F',,(t)=—ft fot 'ds Ki(s) vl(t'~s). (17) E(xt), (21)

-
It leads to a damping of the velocity. Note that the right-hand €€

side of this expression involves averages defined with re- Ki(v.s)=B(f(x ) fi(x—vt—s 29
spect to the unperturbed thermal ensemble. We note that the (:9)= B DXy, t=8)o 22

integrand is appreciable only whers 7 because the coarse- s the correlation function for the force densities of the heat
graining timer was chosen to be much bigger than the cor-path.

relation time of the random forces. The velocity is slowly  |f the medium is isotropic then the friction kernel must
varying and so it may be evaluated witheplacingt’. [This  have the tensorial structure
is just the first term in a Taylor series expansion:

v(t'—s)=v(t—s)+(t'—t)o(t—s)+---.] The upper limit Ki(y,s) =k (y,9)Y'V +ke(y,s) (8T —y'y), (23
of the s integral may then be sent to infinity yielding the o
approximation wherey=|y| andk, andk; are longitudinal and transverse

correlation functions. When we are interested in lengths
— o i J. greater than those characterizing the friction kernel we can
Fu=- o ds K (s)v,(t=s). (18 evaluate the velocity at positior and take it past the
integration.(More generally, would be expanded in a Tay-
The nonlocality reflects the time delay between the motion ofor series abouty=0.) Carrying out the averaging over
the particles and the responding force. angles gives
The second component is the most rapidly fluctuating part

and is defined by its zero average with respect to the actual - B © L
out of equilibrium ensemble: p(x,)=g(x,t) = 0 ds 7(x,t—s)
Frit)=F (t)—F'(t). 19 1 2
w (O=RAO=FL 19 de3y(§kL(y,s)+ 3kT(y,9) |+ (x.D).
The equation of motion including both the drift and the fluc-
tuating parts of the velocity is (24

do' (1) _ % . , _ Usually it happens that correlations fall off exponentially.
mﬁzG'ﬂ—f ds KJ,(s)vi(t—s)+F,'(1). Then the friction kernel may be parametrized by correlation
0 times, correlation lengths, and strengths:

(20
— a(f2 o
In this analysis the stochastic forces of the external heat ki(y,s)=pB(fO)exp(—s/m . —y/Np),
bath act on every Brownian particle the same way. The cor- e
relation between two forcek'), (s) under normal circum- kr(y,s)=pB(fr)exp(—s/rr—y/\7). (29

stancessls expected t(.) Id(;:reas% Vé'th mgrea_s;]nghdlstgnce tWhen our interest is in times greater than those characteriz-
tween Brownian particled3, and B, and with the time .4 e friction kernel and when the actual displacement ve-

differences. The summation over the neighborsof B, ety is slowly varying on those scales we can take the ve-
extends to infinity in all directions; however, the contribution locity outside thes integration to obtain

of more and more distant neighbors is expected to be rapidly

decreasing. p AxD=gx D) —pypx )+ (x),  (26)

C. Continuum limit where the damping constant js= %y, + 2 y7 with
Rather than attempting to solve the equations of motion )

for a macroscopic number of particles it is often useful to _(h)j“d f e VRN

approximate them by a continuous medium. This is effec- IO R exp(—s/m =Y/

tively coarse graining and is accurate so long as the length

scales of interest are large enough and the time scales of <ff>TL7\f

interest long enough. With this in mind, let us replace the =477F(3)p—_|_ (27)

discrete particle labelgs and » with continuous position

variablesx andy. Displacement of the particles in the gas and a similar expression foyr. This is a manifestation of
will be denoted by#'(x,t). The sum over particle index is the fluctuation-dissipation theorem.

replaced by an integral over position. Divide both sides of The interesting feature of this Langevin field equation is
Eqg. (20) by the average volume, per particle. The mass that the damping term is linear in the displacement velocity.
density isp=m/uv,. Forces per particle then become forcesThis is the form that is normally used in phenomenological
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( o w The correlation functions are

— T2k (2
b AH_QJ\/\/' Aﬂ_l J\/\[ Aﬂ J\/\r A”_H J\/\/’ Au+2_ <pﬂ,ﬂ+2(t)pv,v+2(t_S)>O_TT K( )(3)5;4,1/- (32)
This may be continued for next-to-next-to-nearest neighbors
FIG. 2. Series of small subsystes_;,A,, A, 1, ... inter-  ad infinitum The averaged equation of motion, taking all of

acting with each other via random thermal for¢tdsn lines. The  them into account, is

random forces are classified into the nearest neigﬁlffd(t), next-

nearest neighboF?(t), ..., and so on. Iraddition, each sub- _ thr [t
system interacts with its nearest neighbors via conservative forcesrn(vl*(tjL 7) vﬂ(t)>_GMT+ ; dt 0 ds
(heavy line$ too.

settings. However, this is certainly not the most general X Z [Vpt+o(t'=5)=2v (1" —5)
Langevin field equation for the displacement, as may be ob- o=t
served from the truncation of the Taylor expansioryiand +u, —5)]K)(s). (33

as we shall see in the next section.
The functionK(?)(s) undoubtedly decreases rapidly with in-
IIl. INTERNAL HEAT BATH creasingo.

In thi . h | heat bath and In taking the continuum limit we replace the subsystem
n this section we remove the external heat bath and grou bels u and o with position coordinatex andy, respec-

all the particles of the system into small subsystems labele Vely. We divide the equation by the average lentghof

A, . Focusing our attention on one subs_ystgm we can thInIéach subsystem. The sum ovegets replaced by an integral
of the all the remaining ones as constituting a heat bath

There will be forces acting among these subsystems a%very.
sketched in Fig. 2 These forces can be separated into a pajt, (x t+ 7)—v(x,t))
that is rapidly varying on the time scale of interest and a par
that is slowly varying. t+r v —t o
First consider a one-dimensional system. During a par- =g(x,t)r+f dt’f dsf dy ky,s)
ticular time interval of duratior there will be a net momen- t 0 0
tum transfep, ,, fromA,_; to A, and a net momentum X[v(X+Y,t'—s)—2v(X,t'—s)+v(x—y,t’' —s)].
transferp,, , 1 fromA, to A, due to the random forces.
The net force experienced iy, due to these is (34)

Herek(y,s) is the continuation oK (")(s)/I3. Generally, the
(28)  velocity will be more slowly varying with position than the
correlation function characterizing the random forces. If that

The averaged equation of motion is just like i) except IS SO, then the differenca)(?(+y,t’—5)2—220(x,t’ —Ss)
that now the forceF originates in the intersubsystem inter- +v(X—Y,t"—s) is well approximated byy<div(x,t'—s).
actions, not with an external heat bath. We make the assumghen
tion that there are no correlations between random momen- o
. . . . T t'—t
;c:m transfers involving different pairs of subsystems. That p<v(x,t+7)—v(x,t)>=g(x,t)~r+J dt’J ds a)z(v
, t 0

Pu-1,"Pup+1
W)= = le” Pup+tl
Fl (t)= .

<p,u,,,u,+1(t)pv,v+1(t_ S))OZTTZK(l)(S) 5,11,,11! (29)

where as befor&k(1)(s) is expected to fall exponentially
with s. Substitution into the equation of motion gives (35

X (x,t' —s) J’:dy y2k(y,s).

m(v ,(t+7)—v (1)) To obtain a Langevin equation we proceed as before. Divide
through by, replacet’ with t in the argument of the veloc-
thr [t -t , ity on the right-hand side, let the upper limit on thente-
=Gurt ft dt fo dsv,+1(t'=9) gration go to infinity, and denote the displacement by the
variable n(x,t):
—2v,(t'=s)+v,_1(t' =) ]KP(s). (30

Here each subsystem has been assumed to have the sameﬂﬂ(x,t)zg(X,tHJ ds ¢9>2<7I(X,t—5)f dy y?k(y,s)
massm for simplicity. 0 0

Next we should allow for the possibility of random forces +f'(x,1). (36)
acting between next-to-nearest neighbors. The arguments ex-
actly parallel those for nearest neighbors. The force is The rapidly fluctuating force per unit lengfii is the devia-
tion from the average value in the perturbed system. It is
constructed by taking the continuum limit of the sum of ran-

p,LL*Z,,LL_p/.L,,LL‘FZ
' dom forces acting on the subsystem minus the average of

FP)= (31
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those forces, similar to Eq.19). The average is just the p(vi(X,H-T)—Ui(X,t))
second term on the right-hand side of E86):

[

1 —_ . t+7 t/—t % .
= 2 F2M—fxH—f(x). (37) Zg'(X,t)TJrf dt'f de dy;dy,dysk’(y,s)
loo=1 * t 0 0
In general, it is difficult to find a simple closed expression X[V (x*+y.t' =) =20 (x,t'=s)+v) (x=y.t' =5)].
for f’. One way is to generate it from knowledge of the (43)

correlation functions such as Eq29) and(32).

When our interest is on times and lengths greater than ]
those characterizing the friction kernel and when the actuaBecause of rotational symmetry, the kerkehas the same
displacement velocity is slowly varying on those scales westructure as in E¢(23). Expand the velocity to second order

can take the velocity outside the integration to obtain in'y and integrate over all directions gf
p(X,1)=g(x,1)+ y* Zn(x,t) + ' (x.), (38 p(v' (X,t+7)—v'(x,1))

where

(= g+ — Hfdt’ft,_thZ‘xt’—)
v= | as[ay ey, (39 SO0l I, AU, SRS

0 0

The essential difference between this equation and the one Xf d3y y7[ki(y,s)+4k(y,s)]

for an external heat bath is the second space derivative acting

on the velocity, which is absent in the latter case. The origin 1

t+7 t'—t
is translational invariance. The external heat bath imposes a + 60), dt’ fo dsgV-v(xt'—s)

particular frame of reference, whereas the absence of an ex-

ternal heat bath means that the system must be invariant 3 2
under boosts of constant velocity. X | d%y yTki(y,s) —k(y,s)]. (44)

The generalization to more than one spatial dimension is
straightforward. We assume that random momentum trans-
fers between different pairs of subsystems are uncorrelatedere y=|y|. Converting this to a Langevin equation in the
and that the system is rotationally invariant, for simplicity: Now familiar way, we get

(Pt 1D i (U =9))0=T728,,,8, Ki7(3). ) 1 e .
(40 pn(x,t)zg(x,t)+a)f0 dsV[V- g(x,t—s)]
This can be used to calculate the force-force correlation
function X f dy Y[k (y,5)—kr(y,9)]
BF L)Lt =9)o L
| | +ﬁjo dsV2np(x,t—s)
=B (FW(tHFPI(t —s))
" x [y yakuy.9)+ akrty. 91+ 000,
=2 (204 Our 0w S0 K((9). (4D 45

g;e S?nmo?c\i/:ri:ur)l:rtﬁ ggﬂ;,?é c%zu 'rzst;elggfiﬁgpngIg}L?r[?'/henThe rapidly fluctuating forc& may be constructed along the
P pairs. same lines as in one dimension.
(AN ) (17 In the very-low-frequency limit the velocities can be
— B(F (t)Fi(t' — Wt — . .
B(F (1) F(t"=s))ov (1 —5) evaluated at timé and taken past theintegral. The Lange-

vin equation then reduces to the Navier-Stokes equation
:2{2 [Vhs o(t' =8) =20l (t" =)

V(V-v) (46)

L
{ 37

j dv
+v’,rg(t'_s)]Ki<ja)(s)_ (42 pa:_VP“L?]VZVJr

This leads to an equation of motion similar to E§3) with

spatial indices andj in the appropriate places and with the with the addition of the rapidly fluctuating force. By com-

scalarsu and o replaced with location vectorg and o parison we can determine the shegj @nd bulk ) viscosi-
We take the continuum limit in the usual way: ties
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1 (- 1 o
1= 155 05 & v ). v =ag). 45| Y Y139+ 2krty. 9. (59

1 (= This is obtained under the assumption that the variatiaf in
(== de dy y2(k,— 2ky). (47)  is minor during the correlation times &f andkr.
0 It is important to appreciate the difference between the

The requirement that the viscosities must be non-ne atiVexternal and internal heat baths. With an external heat bath
q 9 ere is a preferred frame of reference. The random forces

places a restriction on the relative magnitudes of the moE:ouple individual Brownian particles to the heat bath; it is

g:)ir;ts of the longitudinal and transverse correlation func'assumed that there are no random forces between Brownian

particles. With an internal heat bath there is no preferred
frame of reference. The random forces couple different sub-
IV. COMPARISON OF FIELD EQUATIONS systems. This difference is the origin of the Laplacian in Eq.
AND CONCLUSION (52), which is what really distinquishes the two field equa-
tions. In fact, if we desired a more fine-grained description
we should expand the velocities in Eq4.5) and (43) to
igher order in spatial and temporal variations. The resulting
é'(ald equation will involve dissipation of the form

An isotropic gas or liquid can be fully described by a
scalar densityp=—V- » characterizing the local relative
compression of the matter. The Langevin equation for th
cases of external and of internal heat baths can be express
in terms of ¢ alone without any reference to a vector dis- o
placement. But first we should inquire about the effective E Fij(VZ)i‘l
Lagrangian describing this field in the absence of dissipation ij=1
and fluctuation.

A rea' Sca|ar f|e|d has the Lagrangian density 'I.'I’f’:lnslational inVarianC.e demands ﬂfﬁl}zo A” the Coef' .
ficients can be determined in terms of moments of the fric-

1. c2 tion kernel. Generally, we would expect that only the first
£0=§¢2— E(V¢)2—V(¢), (48 few terms in the sum are required for a good description of a
coarse-grained system.

Of course, in realistic situations it is always a matter of
judgement whether there is a clear case of external or inter-

al heat bath. It is possible to have different components in

the system, where part of this system can be considered as
internal while the rest is external. Usually the external heat
bath is chosen to be dominant, but this is not necessarily the
case and mixed cases may come up in realistic studies.

Although it is not our intention to apply these results to
) ) . ) . any particular problems in this paper, it is instructive to con-
Here we may identify—V-g/p with the right-hand side of gjjer one example. Le¥(4)=0 and look for plane-wave
Eq. (49. The influence of fluctuations can be included by gq)tions in the absence of significant fluctuations. Denoting
adding to the Lagrangian density the frequency of the wave hy and the wave vector by we
obtain the dispersion relation

— [~2n2 2 H
The fluctuating fielc’ is simply identified with—V-f'/p in o=NeqT YAyl 9
both the external and internal heat bath systems. The natufgr the external heat bath and
of this stochastic field is determined by the microscopic dy-
namics of the system expressed in terms of its original de- w=c?q>— y* q*14—iy*q°I2 (56)
grees of freedom. The frictional term cannot, of course, be
written as an additional term in the Lagrangian. It must befor the internal heat bath. For a real wave vector the fre-

j
d(X,t). (54

a
ot

whereV(¢) is a potential, usually a polynomial. This La-
grangian density does not contain the fluctuations or an
dissipative term. For example, W=0 then this describes
undamped sound waves with speedThe equation of mo-
tion is

d=c?V2p— V(). (49)

Liyc=—b"(x,t) p. (50)

added by hand to the equation of motion. guency in each case has an imaginary part resulting in damp-
Including the dissipative and the fluctuating terms, theing of the wave. Note that for the external heat bath the wave
Langevin field equation for an external heat bath is becomes overdamped for wave vectors less t@a. This
is certainly not representative of sound waves in the atmo-
B(x,1)=C2V2(x,1) — V() dp— yh(x,1) +b' (x,1), sphere. For the internal heat bath the damping goes to zero as

(51 g?, resulting in the absence of dissipation in this limit so that
w—cq. This dispersion relation is the same as that obtained
wherey was discussed in Sec. Il C. For the internal heat batdor damped sound waves in a gas or liquid by solution of
viscous hydrodynamicil4].
B(x,1)=C2V2h(x,t) = V() dp+ y* V2h(x,1) + b’ (x,1), In summary, we have derivein some sensecoarse-
(52 grained Langevin-type effective field equations based on
the classical dynamics of systems of many particles. We
where considered two extreme limits: one where the stochastic
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