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Fluctuation and dissipation in classical many-particle systems

L. P. Csernai*

Section for Theoretical Physics, Department of Physics, University of Bergen, Allegaten 55, 5007 Bergen, Norway

S. Jeon† and J. I. Kapusta‡

School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, Minnesota 55455
~Received 30 June 1997!

Coarse-grained Langevin-type effective field equations are derived for classical systems of particles. These
equations include the effects of thermal fluctuation and dissipation that may arise from coupling to an external
bath, as in the Brownian motion of a single particle, or from statistical fluctuations in small parts of an isolated
many-particle system, as in sound waves. These equations may provide some guidance for the analysis of
mesoscopic or microscopic molecular systems or for systems of hundreds to thousands of subatomic particles
produced in high-energy nuclear collisions.
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I. INTRODUCTION

The theoretical description of Brownian motion of a cla
sical particle is well known and widely discussed; it is te
book material@1#. It is used in numerous practical applic
tions, such as evaluating reaction rates at finite tempera
in systems where thermal fluctuations are of vital importa
@2–5#. Thermal fluctuations and the actual evaluation of flu
tuating forces and dissipative coefficients for dense, inter
ing, classical many-particle systems is somewhat l
known; early studies were done by Irving and Kirkwood@6#,
Green@7#, and Mori @8#. Studies of nonlinear systems we
initiated by Zwanzig@9#.

We were originally motivated to do this study by th
physics of nuclear collisions at high energy. In these co
sions many subatomic particles are produced, mostly p
that are the main carrier of the nuclear force. The collis
may be viewed as a miniature big bang where soon a
impact a large amount of the initial translational energy
put into particle creation and entropy production. This s
tem can be roughly characterized by a temperature. As t
goes on, the system expands and cools. Eventually collis
become so infrequent that thermal equilibrium is lost and
particles stream freely to infinity and are detected. The pr
erties of a system of pions, numbering in the hundreds
thousands, at high temperature may have very interes
properties. For example, pion fields transform under an
ternal symmetry group rather analogously to spins in a m
net. During the early stage of the expansion, when the t
perature is high, the field may collectively point in
direction different from that in the surrounding vacuum. Th
is referred to as a disoriented chiral condensate~DCC! @11#.
One would like to have coarse-grained field equations
describe the fluctuation and dissipation of DCC domains
their inevitable coalescence and evolution into the surrou
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ing vacuum@12#. A good description is lacking.
Our goal here is to develop some understanding of

DCC problem by considering a collection of classical p
ticles undergoing Brownian motion and generalizations
such. This might appear to be a simple problem, but there
subtle issues relating to the nature of what one considers
heat bath. For a single particle it is relatively straightforwa
for a collection of particles it is not. In one limit, the particle
of interest may each be coupled to an external heat bath
they may also interact with each other via forces that
more slowly varying than the ones operative between
particles and the heat bath. In this case Langevin equat
of motion can be obtained for time scales that are short c
pared to the interparticle interaction times but long compa
to the interaction times with the heat bath. In another lim
there is no external heat bath; one averages over a ma
scopically small but microscopically large number of neig
boring particles and seeks a Langevin equation to desc
the motion of these subsets of particles over times long c
pared to the force fluctuation times between subsets. In
real world there may be a continuum of interesting proble
lying between these two extremes.

In the following sections we will analyze and contrast t
two limiting cases outlined above. In both cases we will
coarse graining to obtain an effective field equation of m
tion in one and three dimensions. Phenomenological fi
equations have been found to be very useful in the stud
dynamic critical phenomena in atomic and molecular s
tems@10#.

II. EXTERNAL HEAT BATH

A. Recollection of simple Brownian motion

This case is discussed in many textbooks, such as@1#, and
often repeated in the literature, such as@13#. For a particle of
massm connected to a heat bath and moving under the
fluence of external potential fields, for example, a small o
ject suspended in a fluid or gas in a gravitational field, a
6668 © 1997 The American Physical Society
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56 6669FLUCTUATION AND DISSIPATION IN CLASSICAL . . .
moving in one dimension, the generalized Langevin equa
is

m
dv~ t !

dt
5G~ t !2E

2`

t

dt8K~ t2t8!v~ t8!1F8~ t !. ~1!

Herev(t) is the velocity of the particle at timet. The force
due to external fields is labeled byG. The force due to the
heat bath has been separated into two parts:F5 F̄1F8,
whereF8 represents the rapidly varying, random, part of t
force whose average value is zero andF̄ represents the
slowly varying part whose average value is not necessa
zero. The separation of these two components depend
the coarse graining time chosen. To be a useful coarse g
ing, this time must be large compared to the characteri
correlation timetcor of the force but small enough on a
observational time scale to record the desired coarse-gra
trajectory of the particle. For example, if the particle und
consideration is immersed in a gas of much lighter partic
tcor is the average time between collisions with the gas p
ticles that define the heat bath. The friction kernel is

K~s!5b^F8~0!F8~s!&, ~2!

whereb is the inverse temperature of the heat bath~we use
units withkB51 throughout! and the averaging is carried ou
with respect to the heat bath. This is referred to as a ge
alized Langevin equation; the normal Langevin equation
obtained in the approximation thatK(s)52ad(s). This may
be considered as the limit of the somewhat more general
where

K~s!5
a

tcor
exp~2usu/tcor!. ~3!

Simple Brownian motion in more than one dimension is o
vious.

B. Coupled Brownian particles

Consider a set of Brownian particles referred to asBm,
which can move in one dimension and are in thermal in
action with a heat bath referred to asH; see Fig. 1. The
thermal interaction is mediated by a fluctuating forceFm(t),
which has a mean period oftcor. This timetcor characterizes
the relaxation time needed forH to reestablish its equilib-
rium configuration if it is perturbed by some sudden sm
change. We assume that the conservative force conne
Brownian particles is slowly varying compared totcor; we

FIG. 1. Series of Brownian particlesBm21, Bm , Bm11 , . . . in-
teracting with a thermal heat bathH with random thermal forces
Fm(t) ~thin lines! and with their nearest neighbors via conservat
forces~heavy lines!.
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will study the change of position and velocity of the Brow
ian particles assuming that changes are small in a time in
val t.tcor.

Suppose that at timet all Bm are in thermal equilibrium
with H. Consider a set of macroscopically similar syste
forming an ensemble. Then the ensemble average of the
tuating forces vanishes at this moment

^Fm~ t !&050. ~4!

The subscript indicates that the average is taken in ther
equilibrium. Due to a change in the position or velocity
someBm , the forceFm may change and our system, bothBm
and H, may deviate from thermal equilibrium. We have
evaluate this deviation.

Apart from the fluctuating random forceFm(t) there is
another slowly varying, not fluctuating, forceGm(t). The
forces connecting the Brownian particles are of this type.
will be interested in finding the corresponding slowly var
ing part of the velocity of eachBm . Integrating the equation
of motion mv̇m5Gm(t)1Fm(t) for a short but macroscopic
period of timet, we get, in a particular microscopic configu
ration,

m@vm~ t1t!2vm~ t !#5Gmt1E
t

t1t

Fm~ t8!dt8. ~5!

Here we have taken into consideration thatGm can be con-
sidered constant during the short period of timet. The mi-
croscopic configurations are not under our control; we kn
only the ensemble average of similarly prepared syste
Taking the ensemble average of both sides of the ab
equation of motion we obtain

m^vm~ t1t!2vm~ t !&5Gmt1E
t

t1t

^Fm~ t8!&dt8. ~6!

In general,̂ Fm(t8)& is not independent of the motion ofBm ;
otherwise it would be always the same as the mean va
^Fm(t)&050 in thermal equilibrium. We will evaluate the
changes in̂ Fm(t8)& following the lines of~@1# Sec. 15.7!.

Let us consider the change during the time interval fromt
to t1t8. The velocity of Bm changes fromvm(t) to
vm(t1t8). The motion of this particle affects its environ
ment. If t8 is small enough the mean force^Fm& changes,
but still depends on its earlier value att. If t8 exceedstcor,
the heat bath will reestablish its thermal equilibrium and w
be found with equal probability in any of itsV accessible
states. Since the energy of theBm changes the energy of th
heat bath changes as well. The total energy of the heat
changes by

DE~t8!5•••1DEm21~t8!1DEm~t8!1DEm11~t8!1•••,
~7!

whereDEm(t8) is the energygiven to the heat reservoirH
by the particleBm . Since we consider small time incremen
only the local environment ofBm is relevant. The number o
other Brownian particles influencing the heat bath is not
finite, but extends to some distance comparable to the m
free path or the spatial correlation length. The number
states available to H changes from V(E0) to
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6670 56L. P. CSERNAI, S. JEON, AND J. I. KAPUSTA
V(E01•••1DEm211DEm1DEm111•••). This change
of energy of the heat bath will influence the Brownian p
ticles connected to it and modify the populations of m
crostatesr in the ensemble corresponding toBm . We will
use this information to estimate the change of the fluctua
thermal force acting onBm .

The equilibrium probability of the occurrence of a give
microstater for Bm is proportional to the correspondin
number of states available to the heat bath. Here we ass
that the total number of microstates of all Brownian partic
Bm21, Bm , Bm11 , . . . together is negligibly small compare
to the number of microstates of the heat reservoir. Now
can compare the probability distribution over the microsta
Wrm of Bm at time t andt8 later:

Wrm~ t1t8!

Wrm~ t !
5

Wrm~ t1t8!

Wrm
~0!

5
V~E01•••1DEm211DEm1DEm111••• !

V~E0!

5exp@b~•••1DEm211DEm1DEm111••• !#.

~8!

Hereb[] lnV/]E is the inverse temperature of the heat ba
assumed to be constant. This means that if more energ
made available to the heat bath the probability to popula
particular microstater of Bm increases. This is true even
that particularBm takes energy from the heat bath as long
its neighbors add more.

Now we can estimate how population probabiliti
change with time;

Wrm~ t1t8!

5Wrm
~0!exp@b~•••1DEm211DEm1DEm111••• !#

'Wrm
~0!@11b~•••1DEm211DEm1DEm111••• !# .

~9!

We can also evaluate how the ensemble average of the
tuation force changes during this time interval:

^Fm~ t1t8!&[(
r

Wrm~ t1t8!Frm

'(
r

Wrm
~0!@11b~•••1DEm21

1DEm1DEm111••• !#Frm

5^@11b~•••1DEm211DEm1DEm11

1••• !# Fm&0 . ~10!

Since the ensemble average of the fluctuating force vani
for the thermal equilibrium distributionWrm

(0) , the above ex-
pression for the fluctuation force reduces to

^Fm~ t1t8!&5b^~•••1DEm211DEm1DEm11

1••• !Fm&0 . ~11!
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In this estimate the change of the energy of the heat bat
still undefined. This energy is, however, simply the negat
of the work done by the fluctuating force on the Browni
particleBn :

DEn52E
t

t1t8
Fn~ t9!vn~ t9!dt9. ~12!

Inserting this expression into that for the fluctuating force
obtain

^Fm~ t1t8!&52bE
t

t1t8
dt9^Fm~ t1t8!Fn~ t9!&0vn~ t9! .

~13!

We use the summation convention where a repeated inde
summed over. In this case, the sum onn runs over the neigh-
bors ofBm ; it is cut off by the range of the forces and by th
finite time interval. There is no need to do an ensemble
eraging over the velocities because they are much m
slowly varying than the fluctuating forces. Thus we ha
estimated the expectation value of the forceFm for an en-
semble, weakly deviating from a thermal equilibrium, v
expectation values obtained in thermal equilibrium. This
of course, just linear-response theory.

Now the equation of motion for the Brownian particleBm
can be cast in the form

m^vm~ t1t!2vm~ t !&5Gmt2bE
t

t1t

dt8E
0

t82t
dŝ Fm~ t8!

3Fn~ t82s!&0vn~ t82s! . ~14!

The ensemble averaging in the expression for the inter
ticle force may be dropped because the coordinates cha
much more slowly than the velocities, which are again mu
more slowly varying than the fluctuating forces.

It is straightforward to perform the above derivation
three dimensions. The forcesFm and velocitiesvm become
three-dimensional vectorsFm

i andvm
i with spatial indices la-

beled by roman letters and where the bold greek indices n
label the position. The work done by particleBn will contain
the scalar productvn

j Fn
j of its velocity and the random force

acting on it. Equation~14! takes the form

m^vm
i ~ t1t!2vm

i ~ t !&5Gm
i t2bE

t

t1t

dt8E
0

t82t
dŝ Fm

i ~ t8!

3Fn
j ~ t82s!&0vn

j ~ t82s!. ~15!

The friction kernel is proportional to the correlation functio
of the random fluctuating force:

Kmn
i j ~s![b^Fm

i ~ t !Fn
j ~ t2s!&0 . ~16!

Here it is assumed that this function is time translation
variant, as is normally the case in thermal equilibrium. T
assumption can be relaxed. We will discuss the properie
time translationally invariant correlation functions a litt
later.
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56 6671FLUCTUATION AND DISSIPATION IN CLASSICAL . . .
Now it is useful to separate the fluctuating force into tw
components. The first component is just the average valu
the fluctuating force in the slightly out of equilibrium en
semble:

F̄ m
i ~ t !52E

t

t1tdt8

t E
0

t82t
ds Kmn

i j ~s! vn
j ~ t82s!. ~17!

It leads to a damping of the velocity. Note that the right-ha
side of this expression involves averages defined with
spect to the unperturbed thermal ensemble. We note tha
integrand is appreciable only whens!t because the coarse
graining timet was chosen to be much bigger than the c
relation time of the random forces. The velocity is slow
varying and so it may be evaluated witht replacingt8. @This
is just the first term in a Taylor series expansio

v(t82s)5v(t2s)1(t82t) v̇(t2s)1••• .# The upper limit
of the s integral may then be sent to infinity yielding th
approximation

F̄ m
i ~ t !52E

0

`

ds Kmn
i j ~s!vn

j ~ t2s!. ~18!

The nonlocality reflects the time delay between the motion
the particles and the responding force.

The second component is the most rapidly fluctuating p
and is defined by its zero average with respect to the ac
out of equilibrium ensemble:

Fm8
i~ t ![Fm

i ~ t !2 F̄ m
i ~ t !. ~19!

The equation of motion including both the drift and the flu
tuating parts of the velocity is

m
dvm

i ~ t !

dt
5Gm

i 2E
0

`

ds Kmn
i j ~s!vn

j ~ t2s!1Fm8
i~ t !.

~20!

In this analysis the stochastic forces of the external h
bath act on every Brownian particle the same way. The c
relation between two forcesKmn

i j (s) under normal circum-
stances is expected to decrease with increasing distanc
tween Brownian particlesBm and Bn and with the time
difference s. The summation over the neighborsn of Bm

extends to infinity in all directions; however, the contributio
of more and more distant neighbors is expected to be rap
decreasing.

C. Continuum limit

Rather than attempting to solve the equations of mot
for a macroscopic number of particles it is often useful
approximate them by a continuous medium. This is eff
tively coarse graining and is accurate so long as the len
scales of interest are large enough and the time scale
interest long enough. With this in mind, let us replace
discrete particle labelsm and n with continuous position
variablesx and y. Displacement of the particles in the ga
will be denoted byh i(x,t). The sum over particle index i
replaced by an integral over position. Divide both sides
Eq. ~20! by the average volumev0 per particle. The mass
density isr[m/v0. Forces per particle then become forc
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per unit volume and are denoted by a lowercase letter.
Langevin equation then becomes

r ḧ i~x,t !5gi~x,t !2E d3yE
0

`

ds ki j ~y,s!ḣ j~x2y,t2s!

1 f 8 i~x,t !. ~21!

Here

ki j ~y,s!5b^ f i~x,t ! f j~x2y,t2s!&0 ~22!

is the correlation function for the force densities of the h
bath.

If the medium is isotropic then the friction kernel mu
have the tensorial structure

ki j ~y,s!5kL~y,s!ŷi ŷ j1kT~y,s!~d i j 2 ŷi ŷ j !, ~23!

wherey5uyu andkL andkT are longitudinal and transvers
correlation functions. When we are interested in leng
greater than those characterizing the friction kernel we
evaluate the velocity at positionx and take it past they
integration.~More generally,ḣ would be expanded in a Tay
lor series abouty50.! Carrying out the averaging ove
angles gives

rḧ~x,t !5g~x,t !2E
0

`

ds ḣ~x,t2s!

3E d3yS 1

3
kL~y,s!1

2

3
kT~y,s! D1f8 ~x,t !.

~24!

Usually it happens that correlations fall off exponential
Then the friction kernel may be parametrized by correlat
times, correlation lengths, and strengths:

kL~y,s!5b^ f L
2&exp~2s/tL2y/lL!,

kT~y,s!5b^ f T
2&exp~2s/tT2y/lT!. ~25!

When our interest is in times greater than those characte
ing the friction kernel and when the actual displacement
locity is slowly varying on those scales we can take the
locity outside thes integration to obtain

r ḧ~x,t !5g~x,t !2rgḣ~x,t !1f8~x,t !, ~26!

where the damping constant isg5 1
3 gL1 2

3 gT with

gL5
^ f L

2&
rT E

0

`

dsE d3y exp~2s/tL2y/lL!

54pG~3!
^ f L

2&tLlL
3

rT
~27!

and a similar expression forgT . This is a manifestation of
the fluctuation-dissipation theorem.

The interesting feature of this Langevin field equation
that the damping term is linear in the displacement veloc
This is the form that is normally used in phenomenologi
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settings. However, this is certainly not the most gene
Langevin field equation for the displacement, as may be
served from the truncation of the Taylor expansion iny and
as we shall see in the next section.

III. INTERNAL HEAT BATH

In this section we remove the external heat bath and gr
all the particles of the system into small subsystems labe
Am . Focusing our attention on one subsystem we can th
of the all the remaining ones as constituting a heat b
There will be forces acting among these subsystems
sketched in Fig. 2 These forces can be separated into a
that is rapidly varying on the time scale of interest and a p
that is slowly varying.

First consider a one-dimensional system. During a p
ticular time interval of durationt there will be a net momen
tum transferpm21,m from Am21 to Am and a net momentum
transferpm,m11 from Am to Am11 due to the random forces
The net force experienced byAm due to these is

Fm
~1!~ t !5

pm21,m2pm,m11

t
. ~28!

The averaged equation of motion is just like Eq.~14! except
that now the forceF originates in the intersubsystem inte
actions, not with an external heat bath. We make the assu
tion that there are no correlations between random mom
tum transfers involving different pairs of subsystems. T
is,

^pm,m11~ t !pn,n11~ t2s!&05Tt2K ~1!~s!dm,n , ~29!

where as beforeK (1)(s) is expected to fall exponentially
with s. Substitution into the equation of motion gives

m^vm~ t1t!2vm~ t !&

5Gmt1E
t

t1t

dt8E
0

t82t
ds@vm11~ t82s!

22vm~ t82s!1vm21~ t82s!#K ~1!~s!. ~30!

Here each subsystem has been assumed to have the
massm for simplicity.

Next we should allow for the possibility of random force
acting between next-to-nearest neighbors. The argument
actly parallel those for nearest neighbors. The force is

Fm
~2!~ t !5

pm22,m2pm,m12

t
. ~31!

FIG. 2. Series of small subsystemsAm21, Am , Am11 , . . . inter-
acting with each other via random thermal forces~thin lines!. The
random forces are classified into the nearest neighborFm

(1)(t), next-
nearest neighborFm

(2)(t), . . . , and so on. Inaddition, each sub-
system interacts with its nearest neighbors via conservative fo
~heavy lines! too.
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The correlation functions are

^pm,m12~ t !pn,n12~ t2s!&05Tt2K ~2!~s!dm,n . ~32!

This may be continued for next-to-next-to-nearest neighb
ad infinitum. The averaged equation of motion, taking all
them into account, is

m^vm~ t1t!2vm~ t !&5Gmt1E
t

t1t

dt8E
0

t82t
ds

3 (
s51

`

@vm1s~ t82s!22vm~ t82s!

1vm2s~ t82s!#K ~s!~s!. ~33!

The functionK (s)(s) undoubtedly decreases rapidly with in
creasings.

In taking the continuum limit we replace the subsyste
labelsm and s with position coordinatesx and y, respec-
tively. We divide the equation by the average lengthl 0 of
each subsystem. The sum overs gets replaced by an integra
over y:

r^v~x,t1t!2v~x,t !&

5g~x,t !t1E
t

t1t

dt8E
0

t82t
dsE

0

`

dy k~y,s!

3@v~x1y,t82s!22v~x,t82s!1v~x2y,t82s!#.

~34!

Herek(y,s) is the continuation ofK (s)(s)/ l 0
2. Generally, the

velocity will be more slowly varying with position than th
correlation function characterizing the random forces. If th
is so, then the differencev(x1y,t82s)22v(x,t82s)
1v(x2y,t82s) is well approximated byy2]x

2v(x,t82s).
Then

r^v~x,t1t!2v~x,t !&5g~x,t !t1E
t

t1t

dt8E
0

t82t
ds ]x

2v

3~x,t82s!E
0

`

dy y2k~y,s!.

~35!

To obtain a Langevin equation we proceed as before. Div
through byt, replacet8 with t in the argument of the veloc
ity on the right-hand side, let the upper limit on thes inte-
gration go to infinity, and denote the displacement by
variableh(x,t):

rḧ~x,t !5g~x,t !1E
0

`

ds ]x
2ḣ~x,t2s!E

0

`

dy y2k~y,s!

1 f 8~x,t !. ~36!

The rapidly fluctuating force per unit lengthf 8 is the devia-
tion from the average value in the perturbed system. I
constructed by taking the continuum limit of the sum of ra
dom forces acting on the subsystem minus the averag

es
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56 6673FLUCTUATION AND DISSIPATION IN CLASSICAL . . .
those forces, similar to Eq.~19!. The average is just the
second term on the right-hand side of Eq.~36!:

1

l 0
(
s51

`

Fm
~s!~ t !2 f̄ ~x,t !→ f 8~x,t !. ~37!

In general, it is difficult to find a simple closed expressi
for f 8. One way is to generate it from knowledge of th
correlation functions such as Eqs.~29! and ~32!.

When our interest is on times and lengths greater t
those characterizing the friction kernel and when the ac
displacement velocity is slowly varying on those scales
can take the velocity outside the integration to obtain

rḧ~x,t !5g~x,t !1g* ]x
2ḣ~x,t !1 f 8~x,t !, ~38!

where

g* 5E
0

`

dsE
0

`

dy y2k~y,s!. ~39!

The essential difference between this equation and the
for an external heat bath is the second space derivative a
on the velocity, which is absent in the latter case. The ori
is translational invariance. The external heat bath impos
particular frame of reference, whereas the absence of an
ternal heat bath means that the system must be inva
under boosts of constant velocity.

The generalization to more than one spatial dimensio
straightforward. We assume that random momentum tra
fers between different pairs of subsystems are uncorrel
and that the system is rotationally invariant, for simplicity

^pm,m1s
i ~ t8!pn,n1r

j ~ t82s!&05Tt2dm,nds,rKi j
~s!~s!.

~40!

This can be used to calculate the force-force correla
function

b^Fm
i ~ t8!Fn

j ~ t82s!&0

5b(
s,r

^Fm
~s!i~ t8!Fn

~r! j~ t82s!&0

5(
s

~2dm,n2dm1s,n2dm2s,n!Ki j
~s!~s!. ~41!

The sum overs runs froms1 ,s2 ,s351 to `, and similarly
for r, in order not to double count the number of pairs. Th

2b^Fm
i ~ t8!Fn

j ~ t82s!&0vn
j ~ t82s!

5(
s

@vm1s
j ~ t82s!22vm

j ~ t82s!

1vm2s
j ~ t82s!#Ki j

~s!~s!. ~42!

This leads to an equation of motion similar to Eq.~33! with
spatial indicesi and j in the appropriate places and with th
scalarsm ands replaced with location vectorsm ands.

We take the continuum limit in the usual way:
n
al
e

ne
ng
n
a
x-
nt

is
s-
ed

n

n

r^v i~x,t1t!2v i~x,t !&

5gi~x,t !t1E
t

t1t

dt8E
0

t82t
dsE

0

`

dy1dy2dy3ki j ~y,s!

3@v j~x1y,t82s!22v j~x,t82s!1v j~x2y,t82s!#.

~43!

Because of rotational symmetry, the kernelk has the same
structure as in Eq.~23!. Expand the velocity to second orde
in y and integrate over all directions ofy:

r^v i~x,t1t!2v i~x,t !&

5gi~x,t !t1
1

120Et

t1t

dt8E
0

t82t
ds¹2v i~x,t82s!

3E d3y y2@kL~y,s!14kT~y,s!#

1
1

60Et

t1t

dt8E
0

t82t
ds] i¹•v~x,t82s!

3E d3y y2@kL~y,s!2kT~y,s!#. ~44!

Here y[uyu. Converting this to a Langevin equation in th
now familiar way, we get

rḧ~x,t !5g~x,t !1
1

60E0

`

ds¹@¹•ḣ~x,t2s!#

3E d3y y2@kL~y,s!2kT~y,s!#

1
1

120E0

`

ds¹2ḣ~x,t2s!

3E d3y y2@kL~y,s!14kT~y,s!#1f8~x,t !.

~45!

The rapidly fluctuating forcef8 may be constructed along th
same lines as in one dimension.

In the very-low-frequency limit the velocities can b
evaluated at timet and taken past thes integral. The Lange-
vin equation then reduces to the Navier-Stokes equation

r
dv

dt
52¹P1h¹2v1S z1

1

3
h D¹~¹•v! ~46!

with the addition of the rapidly fluctuating force. By com
parison we can determine the shear (h) and bulk (z) viscosi-
ties
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h5
1

120E0

`

dsE d3y y2~4kT1kL!,

z5
1

72E0

`

dsE d3y y2~kL22kT!. ~47!

The requirement that the viscosities must be non-nega
places a restriction on the relative magnitudes of the m
ments of the longitudinal and transverse correlation fu
tions.

IV. COMPARISON OF FIELD EQUATIONS
AND CONCLUSION

An isotropic gas or liquid can be fully described by
scalar densityf[2¹•h characterizing the local relativ
compression of the matter. The Langevin equation for
cases of external and of internal heat baths can be expre
in terms off alone without any reference to a vector d
placement. But first we should inquire about the effect
Lagrangian describing this field in the absence of dissipa
and fluctuation.

A real scalar field has the Lagrangian density

L05
1

2
ḟ22

c2

2
~¹f!22V~f!, ~48!

whereV(f) is a potential, usually a polynomial. This La
grangian density does not contain the fluctuations or
dissipative term. For example, ifV50 then this describes
undamped sound waves with speedc. The equation of mo-
tion is

f̈5c2¹2f2]V~f!/]f. ~49!

Here we may identify2¹•g/r with the right-hand side of
Eq. ~49!. The influence of fluctuations can be included
adding to the Lagrangian density

Lfluc52b8~x,t !f. ~50!

The fluctuating fieldb8 is simply identified with2¹•f8/r in
both the external and internal heat bath systems. The na
of this stochastic field is determined by the microscopic
namics of the system expressed in terms of its original
grees of freedom. The frictional term cannot, of course,
written as an additional term in the Lagrangian. It must
added by hand to the equation of motion.

Including the dissipative and the fluctuating terms, t
Langevin field equation for an external heat bath is

f̈~x,t !5c2¹2f~x,t !2]V~f!/]f2gḟ~x,t !1b8~x,t !,
~51!

whereg was discussed in Sec. II C. For the internal heat b

f̈~x,t !5c2¹2f~x,t !2]V~f!/]f1g* ¹2ḟ~x,t !1b8~x,t !,
~52!

where
e
-
-

e
sed

e
n

y

re
-
-

e
e

e

h

g* 5
1

120rE0

`

dsE d3y y2@3kL~y,s!12kT~y,s!#. ~53!

This is obtained under the assumption that the variation inf
is minor during the correlation times ofkL andkT .

It is important to appreciate the difference between
external and internal heat baths. With an external heat b
there is a preferred frame of reference. The random for
couple individual Brownian particles to the heat bath; it
assumed that there are no random forces between Brow
particles. With an internal heat bath there is no prefer
frame of reference. The random forces couple different s
systems. This difference is the origin of the Laplacian in E
~52!, which is what really distinquishes the two field equ
tions. In fact, if we desired a more fine-grained descript
we should expand the velocities in Eqs.~15! and ~43! to
higher order in spatial and temporal variations. The result
field equation will involve dissipation of the form

(
i , j 51

`

G i j ~¹2! i 21S ]

]t D
j

f~x,t !. ~54!

Translational invariance demands thatG1 j50. All the coef-
ficients can be determined in terms of moments of the f
tion kernel. Generally, we would expect that only the fi
few terms in the sum are required for a good description o
coarse-grained system.

Of course, in realistic situations it is always a matter
judgement whether there is a clear case of external or in
nal heat bath. It is possible to have different components
the system, where part of this system can be considere
internal while the rest is external. Usually the external h
bath is chosen to be dominant, but this is not necessarily
case and mixed cases may come up in realistic studies.

Although it is not our intention to apply these results
any particular problems in this paper, it is instructive to co
sider one example. LetV(f)50 and look for plane-wave
solutions in the absence of significant fluctuations. Denot
the frequency of the wave byv and the wave vector byq we
obtain the dispersion relation

v5Ac2q22g2/42 ig/2 ~55!

for the external heat bath and

v5Ac2q22g* 2q4/42 ig* q2/2 ~56!

for the internal heat bath. For a real wave vector the f
quency in each case has an imaginary part resulting in da
ing of the wave. Note that for the external heat bath the w
becomes overdamped for wave vectors less thang/2c. This
is certainly not representative of sound waves in the atm
sphere. For the internal heat bath the damping goes to ze
q2, resulting in the absence of dissipation in this limit so th
v→cq. This dispersion relation is the same as that obtain
for damped sound waves in a gas or liquid by solution
viscous hydrodynamics@14#.

In summary, we have derived~in some sense! coarse-
grained Langevin-type effective field equations based
the classical dynamics of systems of many particles.
considered two extreme limits: one where the stocha
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forces arose from coupling to an external heat bath and
other where the stochastic forces arose from statistical fl
tuations in small parts of the full system. The obvious n
steps are to consider quantum-mechanical effects and to
ply these results to real atomic, molecular, or nuclear s
tems.
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