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Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
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For a number of well-known time-evolution equations for nonequilibrium systems we extract a common
structure from these equations, referred to as a general equation for the nonequilibrium reversible-irreversible
coupling ~GENERIC!. This fundamental structure is determined by four building blocks, two ‘‘potentials’’
~total energy and entropy! and two ‘‘matrices.’’ We illustrate for various examples how three of the four
building blocks can be determined in a rather straightforward manner so that, within our GENERIC approach
to nonequilibrium dynamics, understanding of a given nonequilibrium system is reduced to determining a
single ‘‘metric matrix,’’ or friction matrix, either empirically or by more microscopic considerations. In
formulating nonisothermal polymer kinetic theories, we show how the general structure provides a clear
distinction between spring potentials of energetic and entropic origins in the various time-evolution equations.
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I. INTRODUCTION

We here consider a number of examples of time-evolut
equations for nonequilibrium systems, some of them in gr
detail. Most of the equations are not new: Only the way
formulating these equations is different@1#. We show for the
various examples that the time-evolution equations can
written in the form

dx

dt
5L

dE

dx
1M

dS

dx
, ~1!

where x represents a set of independent variables requ
for a complete description of the nonequilibrium system,E
andS are the total energy and entropy expressed in term
the state variablesx, andL and M are certain linear opera
tors ~or matrices!. Since x typically contains position-
dependent fields, such as mass, momentum, and energy
sities, the state variables are usually labeled by continu
~position! labels in addition to discrete ones. A matrix mu
tiplication, or the application of a linear operator, hence i
plies not only summations over discrete labels but also in
grations over continuous labels andd/dx typically implies
functional rather than partial derivatives.

Equation~1! is supplemented by the complementary d
generacy requirements

L
dS

dx
50 ~2!

and

M
dE

dx
50. ~3!
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The requirement that the gradientdS/dx is in the null space
of L in Eq. ~2! expresses the reversible nature of theL con-
tribution to the dynamics: the functional form of the entro
is such that it cannot be affected by the operator genera
the reversible dynamics. The requirement that the grad
dE/dx is in the null space ofM in Eq. ~3! expresses the
conservation of the total energy by theM contribution to the
dynamics. The two contributions to the time evolution ofx
generated by the energyE and the entropyS in Eq. ~1! are
called the reversible and irreversible contributions, resp
tively. In this paper the crucial role played in our gene
formalism by the degeneracy requirements~2! and~3! is un-
derlined by carefully elaborating their implications.

Further general properties ofL andM are discussed mos
conveniently in terms of the two brackets

$A,B%5 K dA

dx
,L

dB

dx L , ~4!

@A,B#5 K dA

dx
,M

dB

dx L , ~5!

where ^ , & denotes the scalar product andA,B are suffi-
ciently regular real-valued functions on the state space
terms of these brackets, Eq.~1! and the chain rule lead to th
following time-evolution equation of an arbitrary functionA
in terms of the two separate generatorsE andS:

dA

dt
5$A,E%1@A,S#. ~6!

The further conditions forL can now be stated as the an
symmetry property

$A,B%52$B,A% ~7!
6633 © 1997 The American Physical Society
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and the Jacobi identity

ˆA,$B,C%‰1ˆB,$C,A%‰1ˆC,$A,B%‰50, ~8!

whereC is an arbitrary sufficiently regular real-valued fun
tion on the state space. These properties are well known f
the Poisson brackets of classical mechanics and they ca
the essence of reversible dynamics~the state space has th
structure of a Poisson manifold@2#!. In particular, the Jacob
identity expresses the time invariance of the Poisson brac
Important implications of the Jacobi identity for moment cl
sure approximations have been elaborated recently@3#. At
least when the state space is finite dimensional, the Ja
identity can be formulated directly in terms of the antisy
metric matrixL ~see p. 28 of@2#!,

(
l

S Lil
]L jk

]xl
1L jl

]Lki

]xl
1Lkl

]Li j

]xl D 50. ~9!

Further properties ofM can be formulated in terms of th
symmetry condition

@A,B#5@B,A# ~10!

and the non-negativeness condition

@A,A#>0. ~11!

This non-negativeness condition, together with the requ
ment that dS/dx lie in the null space ofL ~implying
$S,E%50), guarantees that the entropy is a nondecrea
function of time

dS

dt
>0. ~12!

The properties~10! and ~11! imply the symmetry and the
positive semidefiniteness ofM ; we hence refer toM as a
metric matrix~although it is of contravariant rather than c
variant nature; a covariant inverse, however, does not e
due to the degeneracy ofM ). From a physical point of view
M may be regarded as a friction matrix.

While the structure of the fundamental time-evoluti
equation~1! and the importance of all the conditions forL
andM have been explained and motivated in more depth
the preceding paper@1#, referred to as paper I in the follow
ing, the details of the notation and the implications of t
postulated structure will become more obvious when con
ering the examples below. Also some limitations of Eq.~1!
have been pointed out in paper I: All variables neglected
the chosen level of description need to evolve on a m
faster time scale than the variablesx and, for example, the
equations governing the time evolution of externally forc
systems that generate complex patterns need not posse
postulated structure. For example, the Burnett equations@4#
provide a counterexample violating the symmetry conditio
~cf. the discussion of the Onsager-Casimir relations in pa
I!. Paper I and the present paper are written such that
can be read in either order, depending on whether one pre
to start from a more abstract consideration of levels of
scription ~paper I! or from concrete and typical examples
nonequilibrium systems~this paper!.
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The skeptical reader might and actually should ask: W
is the benefit of reformulating various time-evolution equ
tions in the form of Eq. ~1!? Do we gain anyadditional
insight, or is this, at best, just an esthetically nice but usel
exercise? Of course, the proper answer to these questio
important not only for motivating the reader, but also f
revealing the full possible significance of this and the p
ceding paper. We hence wish to spend some time on ans
ing these questions by a simple analogy.

Consider the equilibrium thermodynamics of a gas, to
described by the independent variablesT ~absolute tempera
ture!, V ~volume!, and N ~number of particles!. Note that
identifying the proper variables required for a complete d
scription of the system under consideration is always the
fundamental problem of thermodynamics.~Unfortunately,
we are taught to see or used to seeing this as a trivial ch
between well-known lists of appropriate state variables
gases, mixtures, magnetic systems, etc.! If the caloric equa-
tion of state for the energyE5E(T,V,N) and the thermody-
namic equations of state for the entropyS5S(T,V,N), pres-
sure p5p(T,V,N), and chemical potentialm5m(T,V,N)
are known, one has a complete description of the system
there any additional insight to be gained from reformulati
these equations of state, by recognizing a deeper struc
underlying these equations? Any reader familiar with t
most basic ideas of thermodynamics@4,5# will immediately
give a strongly affirmative answer to this question: Ye
there is a lot to be gained; the essence of thermodynam
actually is the identification of the unifying structure behin
the various equations of state.

More precisely, by specifying the proper thermodynam
potential for the variablesT,V,N, which is the Helmholtz
free energyF(T,V,N), all the above-mentioned equations
state can be obtained by taking partial derivatives. All info
mation about the particular system is contained in a sin
thermodynamic potentialF. From this structure of thermo
dynamics, certain consistency conditions~Maxwell relations!
arise for the various equations of state~conditions such as
‘‘if E is independent ofV then p must be linear inT’’ are
certainly not immediately obvious and much more fund
mental than even the most successful empirical or mic
scopically derived equations of state!. By recognizing the
fundamental role of thermodynamic potentials we obtain
much more compact and transparent description of the
tem. We can reproduce all the equations of state and
automatically satisfy all the consistency equations for th
equations@6#.

The formulation of thermodynamics in terms of therm
dynamic potentials incorporates, and is actually guided
and based on, the celebrated fundamental laws of therm
namics. Theproper formulation of the equationsis synony-
mous with thedeepest insightinto thermodynamics. Listing
all the equations of state is good enough forunderstanding a
particular system; however,understanding thermodynamic
means identifying the structure of the equations. This s
cessful identification of the structure behind thermodynam
is also very important when calculating thermodynam
properties from a more microscopic approach: No sepa
~and possibly inconsistent! calculations for each equation o
state are required, but only a single calculation of a therm
dynamic potential is needed~via the partition functions of
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56 6635DYNAMICS AND THERMODYNAMIC S . . . . II. ILLUSTRATIONS
statistical mechanics!; a consistent set of equations of state
then derived from the thermodynamic potential.

As should be clear now by analogy, the proposed gen
time-evolution equation~1!, if successful, would provide a
deep understanding of nonequilibrium thermodynamics
the above spirit. We hence refer to Eq.~1! as the genera
equation for the nonequilibrium reversible-irreversible co
pling ~GENERIC!. Only two ‘‘potentials’’ or generators (E
and S) and two ‘‘matrices’’ or linear operators (L and M )
need to be determined in order to specify the full tim
evolution equations. We refer to the GENERIC~1! together
with the requirements~2!, ~3!, and~7!–~11! as the GENERIC
structure. The GENERIC time evolution is proposed for no
equilibrium systems that, if not driven by external force
approach thermodynamic equilibrium.

Writing well-known successful equations for nonequili
rium systems in the form~1! is the essential step for valida
ing the proposed structure of nonequilibrium thermodyna
ics. The separate but similar occurrence of the two genera
E and S in the reversible and irreversible terms of th
GENERIC ~1!, which, together with the mutual degenera
requirements, is the key innovation of the proposed form
ism, leads to a deeper and more complete understandin
the role of entropy than can be gained in equilibrium th
modynamics.

A number of consistency conditions are implied by t
proposed form of Eqs.~1!–~3! ~including the Maxwell rela-
tions of equilibrium thermodynamics and the Onsag
Casimir relations of nonequilibrium thermodynamics@4#!.
As in equilibrium thermodynamics, the predictive power
the nonequilibrium formalism is based on these general c
sistency conditions extracted from many observations. S
there exists vast experience with the form of the energyE
and the entropyS in equilibrium thermodynamics and sinc
we will illustrate how the matrixL ~or ‘‘Poisson operator’’!
can be constructed in a rather straightforward manner,
formulation of dynamic equations for nonequilibrium sy
tems can focus on the determination ofM ~the friction ma-
trix, which has the properties of a ‘‘metric matrix’’!. Calcu-
lations based on more microscopic models need to pro
only an expression forM and not for all the terms in the
time-evolution equations. In summary, a general formali
for nonequilibrium systems should provide the following:~i!
a unified framework for empirical~macroscopic and mesos
copic! modeling,~ii ! consistency conditions as the most fu
damental predictions, and~iii ! recipes for going from more
microscopic to more macroscopic levels of description.

It is very important that the reader think critically abo
the above motivation and that he or she keeps the fundam
tal importance of our goal in mind while we are reformula
ing various known time-evolution equations for nonequil
rium systems in the form of the GENERIC~1!. We first
present detailed discussions of the reformulations of class
hydrodynamics~Sec. II! and a nonisothermal kinetic theor
of polymeric fluids~Sec. III!. As an example of the predic
tive power implied by the GENERIC structure of the tim
evolution equations we then propose a more detailed p
mer kinetic theory for heat transport~Sec. IV!; we obtain
further insight regarding the role of spring potentials of e
ergetic and entropic origin. Finally, we comment on the
formulation of other well-known theories, such as extend
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irreversible thermodynamics, the bracket formalism of Be
and Edwards, and various additional effects considered
polymer kinetic theory, within our formalism~Sec. V!.

II. CLASSICAL HYDRODYNAMICS

A. Time-evolution equations

We choose the following fields as independent variab
for classical hydrodynamics: the mass densityr(r), the mo-
mentum densityu(r), and the internal energy densitye(r).
The momentum density field is closely related to the veloc
field v(r), namely, by

u~r!5r~r!v~r!. ~13!

The time evolution of the mass densityr5r(r,t) is given by
the equation of continuity

]r

]t
52

]

]r
•~vr!. ~14!

The time evolution of the momentum densityu5u(r,t) is
given by the Navier-Stokes equation

]u

]t
52

]

]r
•~vu!2

]

]r
p2

]

]r
•t, ~15!

wherep is the pressure, and we assume Newton’s expres
for the stress tensor in terms of velocity gradients, the v
cosity h, and the dilatational viscosity~or second viscosity!
k,

t52hF ]

]r
v1S ]

]r
vD TG

2S k2
2

3
h D ]

]r
•v1. ~16!

External forces have been neglected in the Navier-Sto
equation~15!.

The time evolution ofe5e(r,t) is given by the internal
energy equation

]e

]t
52

]

]r
•~ve!2p

]

]r
•v2

]

]r
• j q2t :

]

]r
v, ~17!

where we assume Fourier’s expression for the heat fluxj q in
terms of the temperature gradient and the thermal conduc
ity l,

j q52l
]

]r
T. ~18!

If the equilibrium equations of statep5p(r,e) and
T5T(r,e) are known and if we make the ‘‘local equilibrium
assumption’’ that the pressure and temperature fields ca
obtained from these equilibrium relations by inserting t
local mass and internal energy densities, then Eqs.~14!–~18!
constitute a closed set of time-evolution equations. These
the well-known equations of classical hydrodynamics~see,
e.g., Sec. 88 of@7# or Secs. 1.1 and 1.2 of@8#!. The irrevers-
ible contributions to the dynamics are those involving t
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stress tensort and the heat fluxj q in Eqs.~15! and~17!; all
the other terms in Eqs.~14!, ~15!, and~17! constitute revers-
ible contributions. In other words, the reversible contrib
tions in Eqs.~14!, ~15!, and ~17! are obtained by setting
h5k5l50. We discuss the reformulation of the reversib
and irreversible contributions to the time-evolution equatio
of hydrodynamics separately.

B. Reversible dynamics

In order to specify the reversible contribution to the ge
eral time-evolution equation~1! we need to define both th
energyE as a function ofx and the matrixL. For classical
hydrodynamics, the list of independent state variablesx is
chosen as„r(r),u(r),e(r)…. In other words,x is a vector with
five components (u is a vector field!, each of which is la-
beled by a further continuous variabler. We hence need to
define the energyE as a functional of the hydrodynami
fields „r(r),u(r),e(r)… and dE/dx is to be interpreted as
collection of five functional derivatives.

The total energy can naturally be obtained by adding
integrating kinetic and internal energy densities over the
tire volume of the flow system,

E5E F1

2

u~r!2

r~r!
1e~r!Gd3r . ~19!
-

s

-

d
n-

By taking functional derivatives with respect to the hydrod
namic fields we obtain, after using Eq.~13!,

dE

dx
5S d

dr~r!

d

du~r!

d

de~r!

D E~r,u,e!5S 2
1

2
v~r!2

v~r!

1

D . ~20!

External forces, such as gravity~characterized by a con
stant acceleration vectorg), can be incorporated by simpl
adding the corresponding potential energy, that
2*r(r)g•rd3r for gravity, to the total energy~19!.

The matrixL, or Poisson operator, of the general fram
work for classical hydrodynamics has two discrete indic
~running from 1 to 5! and two further labels~corresponding
to positions in space!. We more explicitly denote it by
L(S)(r,r8), where the superscript (S) on the 535 matrix L
indicates that entropy is taken as the underlying thermo
namic potential, that is, internal energy appears among
independent variables. A multiplication withL implies not
only a matrix multiplication with a 535 matrix but also a
three-dimensional integration overr8. The explicit form of
the matrixL for hydrodynamics is
e

perator

perators
L~S!~r,r8!5S 0 r~r8!
]d

]r8
0

r~r!
]d

]r8
u~r8!

]d

]r8
1

]d

]r8
u~r! e~r!

]d

]r8
1

]d

]r8
p~r8!

0 e~r8!
]d

]r8
1

]d

]r8
p~r! 0

D , ~21!

whered5d(r2r8) is Dirac’s delta function ofr2r8. By multiplying the right-hand side of Eq.~20!, usingr8 instead ofr in
that equation, with the right-hand side of Eq.~21!, and integrating overr8 one can verify explicitly that all the reversibl
contributions to the time-evolution equations of classical hydrodynamics are obtained, that is, Eqs.~14!–~18! with
h5k5l50.

The actual calculation can be simplified by observing that, as mentioned above, multiplication with the Poisson o
L(S)(r,r8) implies both a matrix multiplication and an integration overr8. After an integration by parts, the integration overr8
can be performed due to the occurrence ofd functions in all the matrix elements ofL(S)(r,r8). Instead of a matrix with
generalized functions as matrix elements we then obtain an equivalent matrix, the elements of which are differential o
~the derivatives act on all terms to the right of them!:

L~S!~r!52S 0
]

]r
r~r! 0

r~r!
]

]r F ]

]r
u~r!1u~r!

]

]rG
T

e~r!
]

]r
1

]

]r
p~r!

0
]

]r
e~r!1p~r!

]

]r
0

D . ~22!
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We will repeatedly use this kind of simplified notatio
throughout this paper.

While the verification of the proper form of the Poisso
operator~21! for classical hydrodynamics is straightforwar
its form may at first sight appear rather arbitrary. Beris a
Edwards present a derivation of the Poisson bracket~4!
equivalent to the Poisson operator~21! from a variational
principle of classical mechanics~see Secs. 5.1–5.3 of@9# and
@10#; the pioneering original publications are@11–14#!. A
straightforward construction of the expression~21! based on
the representation of the continuous group of space trans
mations on the space of hydrodynamic fields will be given
the end of this section, where also a number of other pro
dures for constructing Poisson operators are summarize

C. Irreversible dynamics

In order to specify the irreversible contribution to the ge
eral time-evolution equation~1! we must define both the en
tropy S as a function ofx, and the metric matrixM . For
classical hydrodynamics, a very natural expression for
entropy is obtained by the local equilibrium assumption

S5E s„r~r!,e~r!…d3r , ~23!
or

e

s

th

r
h

d

r-
t
e-

-

e

where the functions(r,e) expresses the relationship betwe
the densities of entropy, mass, and internal energy at e
librium. By taking functional derivatives with respect to th
hydrodynamic fields we obtain

dS

dx
5S 2

m~r!

T~r!

0

1

T~r!

D , ~24!

where the local temperatureT is defined by

T~r!5S ]s~r,e!

]e D 21

~25!

and the local chemical potentialm per unit mass by

m~r!

T~r!
52

]s~r,e!

]r
, ~26!

both being functions ofr because they are evaluated
r(r),e(r).

In order to reproduce the equations of hydrodynamics
introduce the metric matrixM ,
M~S!~r,r8!5S 0 0 0

0 S ]

]r8

]

]r
11

]

]r8
•

]

]rD hTd12
]

]r

]

]r8
k̂Td

]

]r
•hTġd1

]

]r
k̂Ttrġd

0
]

]r8
•hTġd1

]

]r8
k̂Ttrġd

1

2
hTġ :ġd1

]

]r
•

]

]r8
lT2d1

1

2
k̂T~ trġ!2d

D , ~27!
the

de-
n-

d

re
a-
of

nd
whered5d(r2r8), the transport coefficientk̂ is a combina-
tion of the viscosityh and the dilatational viscosityk,

k̂5
k

2
2

h

3
, ~28!

and the tensorġ is the symmetrized velocity gradient tens

ġ~r!5
]

]r
v~r!1F ]

]r
v~r!GT

. ~29!

While verifying thatM]S/]x reproduces all the irreversibl
terms in Eqs.~15! and ~17! is straightforward, the detailed
motivation for writing the metric matrix for hydrodynamic
in the form~27! may not be so obvious. In view of Eq.~24!,
only the last column ofM in Eq. ~27! actually contributes to
the irreversible dynamics. The last row is then fixed by
symmetry requirementM(S)(r,r8)5M(S)(r8,r)T. Crucial for
constructingM(S)(r,r8) is actually the element in the lowe
right corner, which describes the energy dissipation. T
e

e

other nonvanishing block in the last row is determined by
requirement thatdE/dx lies in the null space ofM ,

M
dE

dx
5E M~S!~r,r8!•S 2

1

2
v~r8!2

v~r8!

1

D d3r 850. ~30!

Then the other nonvanishing block in the last column is
termined by symmetry. Finally, the determination of the ce
tral block of M again requires the assumption~30!.

The matrixM in Eq. ~27! has all the properties formulate
in the Introduction. It is symmetric@see Eq.~10!# and can be
verified to be positive semidefinite@see Eq.~11!#, so that we
may callM a metric matrix anddE/dx lies in the null space
of M @see Eq.~3!#. We just realized that these properties a
very important for obtaining a unique expression for the m
trix M of classical hydrodynamics. The matrix elements
M for classical hydrodynamics are proportional toh, k̂, and
l, so that its relation to dissipative material properties a
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irreversible dynamics should be obvious. This observat
justifies the term ‘‘friction matrix’’ forM .

The positive-semidefinite nature of the matrixM(S)(r,r8)
can be shown by writing it in the form
m

i
r
o
s
ltin
s
m

r

m

n E B~S!~r,r9!•B~S!~r8,r9!Td3r 952kBM~S!~r,r8!, ~31!

wherekB is Boltzmann’s constant. This identity can be ve
fied explicitly for the lower triangular matrix
B~S!~r,r8!5S 0 0 0

2
]

]r j

Ak̂kBTd S d jk

]

]r l
1d j l

]

]r k
DAhkBTd 0

trġAk̂kBTd ġklAhkBTd
]

]r k
A2lkBT2d

D , ~32!
di-

-
the
op-
s

s
en
where, again,d5d(r2r8). In the middle row, the subscriptj
labels the rows corresponding to the components of the
mentum vector. The indicesk and l in the middle column
correspond to an index pair to be summed over
B(S)(r,r8) is multiplied with another matrix or column vecto
from the right. According to the fluctuation-dissipation the
rem of paper I, the matrix~32! characterizes the fluctuation
to be added to the equations of hydrodynamics; the resu
stochastic partial differential equations coincide with tho
occurring in the standard theory of fluctuating hydrodyna
ics where, however,T5T(r) here is the local-equilibrium
temperature defined in Eq.~25! ~see Chap. IX of@7# and
@15#!.

Another important cross relationship between the reve
ible and irreversible dynamics, stated in Eq.~2!, remains to
be checked for classical hydrodynamics:

L
dS

dx
5L~S!~r!•S 2

m~r!

T~r!

0

1

T~r!

D 50. ~33!

By using the explicit expression~22! for L(S)(r) we find the
alternative formulation

]

]r S e~r!2m~r!r~r!2T~r!s~r!1p~r!

T~r! D50. ~34!

In view of our definitions forp, T, s, andm, this latter form
of the condition follows immediately from the Gibbs-Duhe
equation for the local equilibrium system.
o-

f

-

g
e
-

s-

A more general explicit calculation shows that the gra
ent of a functional of the form* f „r(r),e(r)…d3r is in the
null space of the Poisson operatorL if and only if

f 2r
] f

]r
2~e1p!

] f

]e
5const. ~35!

The fact thatdS/dx is in the null space ofL follows from the
Gibbs-Duhem equation, which can be written in the form

s5r
]s

]r
1~e1p!

]s

]e
. ~36!

Further solutions of Eq.~35! are constants (f 5const) and the
mass density (f 5r). The gradient of the total mass

d

dx E r~r!d3r 5S 1

0

0
D ~37!

is actually in the null space of bothL andM . Of course, this
property simply expresses the conservation of mass.

The matrix elements ofM(S)(r,r8) are generalized func
tions, that is, the derivatives act only on the functions in
matrix elements. As previously observed for the Poisson
eratorL(S)(r,r8), we can simplify notation and calculation
by introducing a matrixM(S)(r), the elements of which are
differential operators~that is, the derivatives act on all term
to the right of them and all integrations have already be
performed!:
M~S!~r!5S 0 0 0

0 2S ]

]r
hT

]

]r
11

]

]r
•hT

]

]rD
T

22
]

]r
k̂T

]

]r

]

]r
•hTġ1

]

]r
k̂Ttrġ

0 2hTġ•

]

]r
2k̂Ttrġ

]

]r

1

2
hTġ:ġ2

]

]r
•lT2

]

]r
1

1

2
k̂T~ trġ!2

D . ~38!
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At this point, the reader should pause and think about
implications of the GENERIC structure for the familiar e
ample of hydrodynamics. Of course, we know too mu
about hydrodynamics, so that we cannot gain any new
sight. The concrete and important implications of the rat
formal complementary degeneracy requirements~2! and ~3!
should, however, be fully appreciated. Equation~2! implies
the Gibbs-Duhem equation for the local equilibrium syst
and Eq.~3! implies that the form of the energy dissipatio
determines the entire metric matrix and hence the struc
of the stress tensor.

D. Construction of the Poisson operator from group theory

In the GENERIC formulation~1! of time-evolution equa-
tions for nonequilibrium systems, four building blocks a
required. For classical hydrodynamics we have seen tha
expressions for the energyE and the entropyS are very
natural. Formulating the metric matrixM corresponds to
postulating the constitutive equations of Newton and Four
which can be justified empirically or by more microscop
calculations. What can be said about the construction of
Poisson operatorL? So far, we have identifiedL by rewriting
the well-known time-evolution equations of hydrodynam
within our formalism. It is the purpose of this section
show howL can be constructed in a rather straightforwa
and more general manner by arguments from group theo

The basic idea is thatL should express only kinemati
effects, while all the interactions and inertial effects come
through the total energy. The pure kinematics of the syste
studied in this paper are expected to be closely relate
space transformations and we hence consider actions o
group of space transformations on the state space for
system of interest. Such actions are the key to the const
tion of the kinematics accounted for by Poisson operator

There is one requirement forL that might be expected to
bring in some physics beyond pure kinematics: the deg
eracy requirement that the gradient of entropy should be
the null space ofL. For classical hydrodynamics, this the
modynamic requirement entersL only through the pressur
and we have already realized that it corresponds to
Gibbs-Duhem equation. The pressure occurs very natur
when considering the behavior of the internal energy den
under volume-changing space transformations.

In order to construct a natural action of the group of sp
transformations on the state space of hydrodynam
H (S)5$„r(r),u(r),e(r)…%, we first consider the transforma
tion behavior of a scalar density field such as the mass d
sity r(r). Let us describe an infinitesimal space transform
tion by

r→r1tv~r!, ~39!

wheret is a small parameter and the vector fieldv(r) gener-
ates the infinitesimal transformation. Ift is interpreted as
~infinitesimally short! time, v(r) formally corresponds to a
velocity field. For a scalar field, the natural action of
infinitesimal space transformation would be that the tra
formed field is obtained by evaluating the original field at t
positionr2tv(r). For a scalar density field, also the effect
e

-
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he
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e

y.

n
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the
he
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n-
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e
lly
ty

e
s

n-
-

-

volume changes as described by the Jacobian of the tran
mation ~39!, or its inverse, has to be taken into account,

r~r!→r„r2tv~r!…U12t
]

]r
v~r!U. ~40!

For small t, the Jacobian can be expressed in terms of
trace of]v/]r and we thus obtain to first order int

r~r!→r~r!2t
]

]r
•@v~r!r~r!#. ~41!

Equation~41! expresses the canonical action of the infinite
mal space transformation~39! on a scalar density field. As a
next step, we consider the transformation behavior of a v
tor density field such asu(r). More precisely,u(r) is a co-
variant vector density field. A vector field cannot simply b
evaluated at the positionr2tv(r), but needs to be properly
convected according to the gradient ofv(r), so that con-
vected derivatives occur~see, e.g., Appendix D.2 of@16# or
pp. 106–107 of@17#; in geometrical terms, these correspo
to Lie derivatives@18#!. We hence obtain the following ca
nonical action of the infinitesimal space transformation~39!
on a covariant vector density field:

u~r!→u~r!2tH ]

]r
•@v~r!u~r!#1F ]

]r
v~r!G•u~r!J . ~42!

Equations~41! and ~42! are expressions of pure kinematic
in the sense that the scalar or vector density field chara
completely determines the behavior under space transfor
tions. This simplicity is related to the conservation of ma
and momentum. If we turn to the internal energy dens
field e(r), this contribution to energy is not conserved. Th
observation is related to the fact that volume changes lea
a change of internal energy, where thermodynamic inform
tion enters through the pressure field. We hence formu
the following modification of Eq.~41! as the canonical ac
tion of the infinitesimal space transformation~39! on e(r):

e~r!→e~r!2tH ]

]r
•@v~r!e~r!#1p~r!

]

]r
•v~r!J . ~43!

With Eqs. ~41!–~43! we know how the infinitesimal spac
transformation ~39! acts on arbitrary functionals o
„r(r),u(r),e(r)…, that is, on arbitrary functions defined o
the state spaceH (S) of hydrodynamics.

We now assume that the operatorL generates the trans
formations~41!–~43! in the following sense:



o

m

ity

a
t
a

ire
a

at
o
th
r

e-

-
u

um-
g

n
hus
are
en-
hat
On
r
nd

ting
that

a
er-
pa-
der
en-
d

ate

ter-
ip

ture
l of a

ut

uced

ical.
son
he
ian
on

ator
in

is
be-

ne
cs is

tics
tion
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S 2
]

]r
•@v~r!r~r!#

2
]

]r
•@v~r!u~r!#2F ]

]r
v~r!G•u~r!

2
]

]r
•@v~r!e~r!#2p~r!

]

]r
•v~r!

D
5E L~S!~r,r8!•S dG

dr~r8!

dG

du~r8!

dG

de~r8!

D d3r 8, ~44!

where

G5E u~r!•v~r!d3r ~45!

is a bilinear functional of the covariant vector fieldu(r) and
the contravariant vector fieldv(r) that is closely related to
the kinetic energy and hence to kinematics. The linearity
G in v(r) is crucial in order to obtain an operatorL that is
independent of the infinitesimal space transformationv(r).
One should note the well-known crucial role of momentu
in the generating functional for space transformations~45!:
For a translation independent of position,G is the projection
of the total momentum on the shift vectorv; for position-
dependent space transformations, the momentum dens
weighted byv(r). Equations~44! and~45! constitute the pre-
cise formulation of the idea that the action of infinitesim
space transformations and pure kinematics should be rela

From Eq.~44! we conclude that the Poisson operator h
a matrix representation of the form

L~S!~r,r8!5S * r~r8!
]d~r2r8!

]r8
*

* u~r8!
]d~r2r8!

]r8
1

]d~r2r8!

]r8
u~r! *

* e~r8!
]d~r2r8!

]r8
1

]d~r2r8!

]r8
p~r! *

D .

~46!

Only the center column ofL(S)(r,r8) is fixed by Eq.~44!.
The center row is determined by the antisymmetry requ
ment on the Poisson operator. If the four corner elements
set equal to zero because they are irrelevant to the kinem
and because the gradient of the entropy then turns out t
in the null space of the Poisson operator, we arrive at
previously given expression~21! for the Poisson operator fo
hydrodynamics.

The formulation ofL for hydrodynamics becomes som
what simpler if the state spaceH (E)5$„r(r),u(r),s(r)…% is
used instead ofH (S). The simplification results from the as
sumption that the gradient of the entropy must lie in the n
f

is

l
ed.
s

-
re
ics
lie
e

ll

space of the Poisson operator, which corresponds to ass
ing that s(r) is a scalar density field. The correspondin
Poisson operator is then given by

L~E!~r,r8!5S 0 r~r8!
]d

]r8
0

r~r!
]d

]r8
u~r8!

]d

]r8
1

]d

]r8
u~r! s~r!

]d

]r8

0 s~r8!
]d

]r8
0

D ,

~47!

whered5d(r2r8). Usings(r) as an independent variable i
constructing the Poisson operator for hydrodynamics is t
very advantageous. However, when polymer solutions
considered in Sec. III, the total rather than the solvent
tropy is conserved by the reversible time evolution, so t
the use ofs(r) as a state variable is less advantageous.
the other hand, by usinge(r) as a state variable for polyme
solutions one can very intuitively couple the polymer a
solvent dynamics through the osmotic pressure.

One can summarize the above procedure for construc
L as follows. We are interested in the Poisson bracket
allows us to determine the reversible time evolution from
given energy function. Since we have a more direct und
standing of space transformations rather than of time pro
gations, we consider the behavior of the state variables un
space transformations together with the corresponding g
erator ~momentum!. By relating space transformations an
momentum, we obtain information about the appropri
Poisson bracket orL operator.

There are a number of alternative procedures for de
mining L. One possibility is based on a close relationsh
between the Lie group structure and the Poisson struc
~the state variables are regarded as elements of the dua
Lie algebra!. We refer interested readers to@2# and, in par-
ticular, to @19#, where important examples are worked o
explicitly ~in Sec. 4!.

In another alternative approach to constructingL, the state
variables are regarded as elements of a space that is red
in size ~by the Marsden-Weinstein reduction@2#! from a
larger space on which the Poisson kinematics is canon
For example, in the context of hydrodynamics, the Pois
kinematics in the Lagrangian description is canonical. T
Eulerian description can be obtained from the Lagrang
description as a Marsden-Weinstein reduction. Variations
this method have been developed in@9,10,14#. Alternatively,
the state variables can be obtained by a projection oper
from state variables in a more microscopic state space
which the Poisson kinematics is known. While this method
very useful, there is, however, no guarantee for success
cause problems with closing the equations may occur.

In some cases it may be useful to look for a one-to-o
relation with another state space whose Poisson kinemati
known. In such a case the transformation~31! of paper I
relates the two Poisson operatorsL. This is, for example, the
procedure that we can use to derive the Poisson kinema
of the Eulerian hydrodynamics in the entropy representa
~21! from the energy representation~47!. Finally, also meth-
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ods developed originally in quantum mechanics have b
employed to derive the Poisson kinematics in@13#.

The formulation of the Poisson operator is quite straig
forward when the state variablesx are densities of conserve
quantities. For example, the operatorL of hydrodynamics
merely expresses the conservation laws. State variable
lated to conserved or extensive quantities are particul
convenient also in constructing suitable energy and entr
expressions. In general, however, we leave the nature o
state variables unspecified.

III. NONISOTHERMAL KINETIC THEORY
OF POLYMERIC FLUIDS

As a next step we cast a nonisothermal kinetic the
model of polymeric fluids into our general framework. E
couraged by our experience with classical hydrodynam
we do not start from the known equations of motion f
obtaining the four building blocks in the fundamental equ
tion ~1!. We directly formulate expressions for the ener
and entropy, we construct the Poisson operator by mean
group theory, and we modify the metric matrix of classic
hydrodynamics in a rather suggestive manner, which
checked to be consistent with the general requirements.
time-evolution equations implied by the resulting four buil
ing blocks of our formalism will then be written down ex
plicitly and compared to the known equations of polym
kinetic theory. Again, we do not obtain new equations, b
the reader should learn to appreciate the implications of
GENERIC structure and the general procedure. Of cou
the dumbbell model considered here is only a very cru
approximation to polymeric fluids. A related but differe
approach to the same problem can be found in@20#.

A. Independent variables, energy, and entropy

We choose the following fields as independent variab
for a dumbbell kinetic theory of a dilute polymer solutio
the mass densityr(r) of solution, the momentum densit
u(r) of the solution, the internal energy density of solve
e(r), and the configurational distribution functionc(r,Q),
whereQ is interpreted as a dumbbell configuration vect
For a dilute polymer solution, the mass and momentum d
sities of the solvent and the solution coincide, whereas
large polymer molecules can contribute significantly to str
and internal energy.

The total energy is obtained by adding the kinetic ene
and the solvent and polymer potential energy contributio

E5E F1

2

u~r!2

r~r!
1e~r!1E V~Q!c~r,Q!d3QGd3r ,

~48!

whereV(Q) is the interaction potential between the beads
a dumbbell~potential of the ‘‘connector or spring force’’!. In
many cases, the spring force is assumed to be of entr
origin. Within our framework, it is natural to trace back car
fully the energetic and entropic origin of interactions. Wh
in equilibrium thermodynamics~and in the bracket formal
ism @9#! only a combination of energy and entropy effec
occurs in the fundamental free energy, energy and entr
play clearly distinct roles in our present nonequilibriu
n

-

re-
ly
y

he

y

s,

-

of
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is
he
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e,
e

s

t

.
n-
e
s
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f
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theory. In a nonisothermal situation, a spring potential
entropic origin V(S)(r,Q) would actually depend through
temperature on position. More precisely, we assume that
potentials of purely entropic origin the ratioS(V)(Q)
5V(S)(r,Q)/T(r) is independent ofr. While true interaction
potentials should be incorporated into Eq.~48!, the classical
entropic spring must be included in the entropy

S5E H s„r~r!,e~r!…2E c~r,Q!FV~S!~r,Q!

T~r!

1kBlnc~r,Q!Gd3QJ d3r . ~49!

While s(r,e) is to be interpreted as the solvent entropy, t
c lnc term is clearly associated with the dumbbell trans
tional and configurational entropy, and the entropic poten
V(S)(r,Q) accounts for entropic effects on the much fin
level of polymer segments that have been eliminated
coarse graining to the dumbbell level. For later use, we w
down the functional derivatives ofE and S with respect to
the independent variablesx5„r(r),u(r),e(r),c(r,Q)…:

dE

dx
5S 2

1

2
v~r!2

v~r!

1

V~Q!

D ~50!

and

dS

dx
5S 2

m~r!

T~r!

0

1

T~r!

2
V~S!~r,Q!

T~r!
2kBlnc~r,Q!2kB

D . ~51!

B. Construction of the Poisson operator

As the state space for our nonisothermal kinetic theory
a dilute polymer solution we use$„r(r),u(r),e(r),c(r,Q)…%.
The action of space transformations onr(r) andu(r) is still
given by Eqs.~41! and~42!, respectively. However, the pres
sure term in the transformation of the internal energy den
should be modified due to the presence of osmotic press

e~r!→e~r!2tH ]

]r
•@v~r!e~r!#1@p~r!1P~r!#

]

]r
•v~r!J ,

~52!

where

P~r!52kBT~r!E c~r,Q!d3Q ~53!

is the osmotic pressure due to the presence of the beads
solvent temperature is given by the expression in Eq.~25!.
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The quantity 2*c(r,Q)d3Q corresponds to the bead numb
density~this statement actually clarifies the normalization
c).

The occurrence of osmotic pressure in Eq.~52! is related
to entropy effects; it is essential for ensuring that the grad
of entropy lies in the null space of the Poisson operator,
is, for satisfying the degeneracy requirement~2!. However,
the conservation of the spring contribution to entropy un
the reversible dynamics has not yet been taken into acco
This can be done by further modifying Eqs.~52! and~53! in
the following manner:

e~r!→e~r!2tH ]

]r
•@v~r!e~r!#1@p~r!11P~r!#:

]

]r
v~r!J ,

~54!

where

P~r!5E c~r,Q!F2kBT~r!12Q
]V~S!~r,Q!

]Q Gd3Q ~55!

is the osmotic pressure tensor. The osmotic pressure tenso
in Eq. ~54! provides the thermodynamic coupling of solve
f

nt
at

r
nt.

and polymers in the reversible dynamics of a polymer so
tion. Its presence is dictated by the requirement that the
dient of the entropy must lie in the null space of the Poiss
operator.

Finally, the transformation behavior of the configuration
distribution functionc(r,Q) is determined by the require
ments thatc is a scalar density inr and thatQ is transported
as a contravariant vector. These requirements can be for
lated as

c~r,Q!→c~r,Q!2tH ]

]r
•@v~r!c~r,Q!#

1
]

]Q
•F S ]

]r
v~r! D T

•Qc~r,Q!G J . ~56!

With the transformation behavior of all the state variables
hand, the Poisson operator can now be identified in exa
the same way as for hydrodynamics. However,L(r,Q,r8,Q8)
is now a bigger matrix, where the new components ass
ated withc even have an additional labelQ ~matrix multi-
plication implies integration overQ8 also!:
hen the

re tensor
L~r,Q,r8,Q8!51
* r~r8!

]d

]r8
* *

* u~r8!
]d

]r8
1

]d

]r8
u~r! * *

* e~r8!
]d

]r8
1

]d

]r8
•@p~r!11P~r!# * *

* c~r8,Q!
]d

]r8
1

]

]QFc~r,Q!Q•

]d

]r8
G * *

2 . ~57!

The second row of the Poisson operator is obtained from the second column and the antisymmetry requirement. W
remaining components are chosen to be zero then it can be verified that the gradient of the total entropy~51! indeed is
contained in the null space of the Poisson operator. The polymer contributions to the entropy and the osmotic pressu
are tuned such that only the Gibbs-Duhem equation~36! for the solvent is needed for verifying the degeneracy requirement~2!.
Our final expression for the Poisson operator is, after once more carrying outr8 integrations,

L~r,Q,Q8!521
0

]

]r
r~r! 0 0

r~r!
]

]r F ]

]r
u~r!1u~r!

]

]rG
T

e~r!
]

]r
1

]

]r
p~r!1

]

]r
•P~r! c~r,Q8!

]

]r
2

]

]r
•c~r,Q8!Q8

]

]Q8

0
]

]r
e~r!1p~r!

]

]r
1P~r!•

]

]r
0 0

0
]

]r
c~r,Q!1

]

]Q
c~r,Q!Q•

]

]r
0 0

2 .

~58!
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The above procedure for incorporating entropic spring c
tributions seems to suggest that there exists an arbitrari
in the description of reversible polymer contributions to t
stress tensor: Incorporation via energy or entropy seem t
equivalent. However, there is an important difference c
cerning the role of temperature for these two possibiliti
V(S)(r,Q) is proportional to temperature, whereasV(Q) is
independent of temperature. Therefore, by regarding the t
perature dependence of the model parameters, there sh
be a natural way for incorporating an effect either throu
energy or through entropy contributions. Not surprising
for entropic springs the temperature dependence of
spring constant is such that the incorporation through
total entropy is the obvious choice.

Sarti and Marrucci calculated the nonequilibrium free e
ergy for the Rouse-Zimm model@21#. For an arbitrary tem-
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perature dependence of the Hookean spring constant
developed a procedure for separating energetic and entr
contributions to the spring potential. When assuming an
ditive superposition of energetic and entropic contributio
the parameterm of Sarti and Marrucci@21# has the tempera
ture dependencem5m0(11T0 /T) and their separation pro
cedure for Hookean springs is fully equivalent to the splitti
into energy and entropy in Eqs.~48! and ~49!. The impor-
tance of separating energetic and entropic effects is obv
in the GENERIC approach.

C. Metric matrix

Our suggestion for the metric matrix is an extension
Eq. ~38!:
M~r,Q,Q8!

5S 0 0 0 0

0 2S ]

]r
hsT

]

]rD
T

21
]

]r
•hsT

]

]r

]

]r
•hsTġ 0

0 2hsTġ•

]

]r

1

2
hsTġ :ġ2

]

]r
•lT2

]

]r
1

2T

z E S ]V

]QD 2

c~r,Q!d3Q 2
2T

z

]V

]Q8
•c~r,Q8!

]

]Q8

0 0
]

]Q
•

2T

z

]V

]Q
c~r,Q! 2

]

]Q
•

2T

z
c~r,Q!

]

]Q
d~Q2Q8!2

]

]r
•

T

2z
c~r,Q!

]

]r
d~Q2Q8!

D ,

~59!
e

wherehs is the solvent viscosity andk̂50 has been assume
to simplify the notation; this assumption indirectly corr
sponds to the solvent incompressibility usually assumed
polymer kinetic theory. A more formal treatment of the i
compressibility constraint would require the elimination
the density field and a modified definition of functional d
rivatives ~see Sec. 5.4 of@9#!. Starting from the solven
building block, the above form ofM was obtained by first
determining the lower right corner element~to obtain the
usual diffusion behavior in the dumbbell configuratio
space! and then adding further terms such that the gradien
energy~50! lies in the null space ofM andM is symmetric.
The degeneracy requirement~3! introducesV into M , in the
same way as the degeneracy requirement~2! introducesV(S)

~via P) into L. Again, M turns out to be positive semidefi
nite. As an additional observation, we note that the gradie
of the total mass of the solution and of the total polym
mass lie in the null spaces of bothL andM .

D. Time-evolution equations

The above procedure of developing a nonisothermal
netic theory model for dilute polymer solutions is typical
our approach to nonequilibrium systems. After determin
in

f

ts
r

i-

g

the building blocks in the GENERIC~1! we can now write
down explicitly all the time-evolution equations, so that w
can carefully interpret the results:

]r

]t
52

]

]r
•~vr!, ~60!

]u

]t
52

]

]r
•~vu!2

]

]rS p12kBTE cd3QD1
]

]r
•hsġ

1
]

]r
•E QS ]V

]Q
1

]V~S!

]Q Dcd3Q, ~61!

]e

]t
52

]

]r
•~ve!1

]

]r
•l

]T

]r
1

1

2
hsġ :ġ2

1

2
~p11P!:ġ

1
2

zE ]V

]Q
•S ]V

]Q
1

]V~S!

]Q Dcd3Q

2
2kBT

z E c
]

]Q
•

]V

]Q
d3Q, ~62!
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]c

]t
52

]

]r
•~vc!2

]

]Q
•H F S ]

]r
vD T

•Q2
2

z S ]V

]Q
1

]V~S!

]Q D GcJ

1
]

]r
•

kBT

2z

]c

]r
1

]

]Q
•

2kBT

z

]c

]Q
. ~63!

In spite of their very different roles in the GENERIC build
ing blocks, the potentialsV(Q) andV(S)(r,Q) enter the mo-
mentum balance equation~61! and the diffusion equation
~63! in exactly the same way. However, they enter the s
vent internal energy equation~62! differently.

The equation of continuity~60! coincides with Eq.~14!.
In Eq. ~61!, the pressure is modified by the osmotic pressu
this modification would be irrelevant for an incompressib
fluid. More important is the Kramers-type polymer contrib
tion to the stress tensor in the last term, where energetic
entropic forces occur in exactly the same way. In the solv
internal energy equation~62!, various polymer contributions
occur in addition to the effect of the osmotic pressure ten
Finally, Eq. ~63! is the usual diffusion equation of polyme
kinetic theory, where again energetic and entropic forces
cur in exactly the same way. Only the local solvent tempe
ture occurs in this equation for the configurational distrib
tion function; effects of temperature variations on t
polymer scale are not taken into account.

If, for example, in engineering problems, one prefers
work with the variables (r,v,T,c) instead of (r,u,e,c),
then the transformation betweenv andu is given in Eq.~13!.
The definition~25! givesT(r,e) and, by inversion,e(r,T).
This relationship allows us to eliminatee in favor of T in all
the equations~60!–~63!. Obviously, the caloric equation o
state or certain material properties~e.g., the heat capacity!
implied by the fundamental relations5s(r,e) enter the
time-evolution equation obtained in this manner forT.

The energy balance equation can be written in a m
transparent form when the total~solvent plus polymer! inter-
nal energy density

e tot~r!5e~r!1E V~Q!c~r,Q!d3Q ~64!

is introduced:

]e tot

]t
52

]

]r
•~ve tot!1

]

]r
•l

]T

]r
1

]

]r
•

kBT

2z

]

]rE Vcd3Q

1
1

2
hsġ :ġ2

1

2S p11P2E Q
]V

]Q
cd3QD :ġ. ~65!
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;
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All the terms describing the exchange of energy betwe
solvent and polymers are canceled in this balance equa
Particularly interesting in Eq.~65! is the third term on the
right-hand side, which implies that nonuniformities in th
spatial distribution of polymer internal energy~resulting
from a nonuniform polymer concentration! are smoothed by
a diffusion process, thereby increasing the total internal
ergy. There is no corresponding term for the entropic spr
potential; in fact, this term is the only one in all the tim
evolution equations that allows us to distinguish betwe
energetic and entropic springs.

Once more, the reader should pause and realize tha
form of these equations may not be surprising, but the
currence of the Kramers expression for the stress tenso
both energetic and entropic springs in the momentum
energy balance equations is actually quite remarkable. T
is not assumed in the formulation of the equations, bu
follows from the GENERIC structure.

IV. KINETIC THEORY FOR THE POLYMER
CONTRIBUTION TO HEAT TRANSPORT

In this section we illustrate how the GENERIC approa
can be used as a guideline for constructing an extended p
mer kinetic theory of dilute solutions. We here want to
beyond reformulating previously developed time-evoluti
equations and in fact we will obtain important physical i
sight into a problem recently investigated by other metho
Of course, we first need some feeling for the physics to
described and we can then fix the structure of the theory
using the GENERIC formalism.

The physical effect we want to incorporate here is t
influence of polymer conformation on heat transport~see
@22–24# for recent investigations on this problem; see a
Sec. 9.1 of@9#!. Our starting point is the dumbbell kineti
theory of Sec. III. Since internal polymer motions are e
pected to be relevant for the heat flux we use the follow

list of state variables:r(r), u(r), e(r), and c(r,Q, ṽ,Ṽ),

where the additional argumentsṽ and Ṽ of the distribution
function c can be thought of as relative velocity variabl
corresponding to changes inr andQ. Another approach to a
similar problem can be found in@25#.

A further motivation for the development of this section
the desire to better understand the difference between sp
potentials of energetic and entropic origin. We have carefu
distinguished between energetic and entropic effects in
GENERIC approach, but they turned out to be almost
exactly the same footing in the nonisothermal kinetic the
of Sec. III ~the only exception being the energy transp
associated with polymer diffusion!. This situation might
change if we consider a more detailed theory not only of
polymer contribution to the momentum flux but also of t
heat flux contribution. The general thermodynamic princip
incorporated into the GENERIC structure should be help
in clarifying the situation.
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When using the total mass of a dumbbell (2m) and the
reduced mass of the two-bead system (m/2) in formulating
kinetic-energy contributions associated with center-of-m
and relative motions, we arrive at the following express
for the total energy:

E5E H 1

2

u~r!2

r~r!
1e~r!1E F1

2
mS 2 ṽ21

1

2
Ṽ2D

1V~Q!Gc~r,Q, ṽ,Ṽ!d3Qd3ṽd3ṼJ d3r . ~66!

The importance of a mass parameterm is natural in heat
phenomena; it might simply be the bead mass as sugge
by the above arguments, but it could also be some effec
mass incorporating additional effects of solvent hydrod
namics.

For the entropy, we only extend the list of arguments
the distribution function in the previously given expressi
~49!,

S5E H s„r~r!,e~r!…2E c~r,Q, ṽ,Ṽ!FV~S!~r,Q!

T~r!

1kBlnc~r,Q, ṽ,Ṽ!Gd3Qd3ṽd3ṼJ d3r . ~67!

From these expressions forE andS we obtain the follow-
ing functional derivatives with respect to the state variab

dE

dx
5S 2

1

2
v~r!2

v~r!

1

1

2
mS 2 ṽ21

1

2
Ṽ2D1V~Q!

D ~68!

and

dS

dx
5S 2

m~r!

T~r!

0

1

T~r!

2
V~S!~r,Q!

T~r!
2kBlnc~r,Q, ṽ,Ṽ!2kB

D . ~69!

For the extended theory, a multiplication with the mat
L5L(r,Q, ṽ,Ṽ,Q8, ṽ8,Ṽ8) implies additional integrations
with respect toQ8, ṽ8, andṼ8 ~as before, we assume that a
r8 integration can be carried out due to the occurrence o
overall d function!. For the extended kinetic theory w
modify the Poisson operator of Eq.~58! as
s
n

ted
e
-

f

:

n

L
5

2

10
] ]r

r
~r

!
0

0

r
~r

!
] ]r

F] ]r
u ~

r !
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u ~
r !

] ]r
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r !

] ]r
1

] ]r
p
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] ]r
•
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c
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•
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]
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]Ṽ
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!
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]

]Q
8

•
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8
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]Ṽ
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1
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V
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! ~r
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8!
] ]r

•
c

8
] ]
ṽ 8

0
] ]r

c
1

] ]Q
c

Q
•

] ]r
2

S] ]Ṽ
Ṽ

1
] ]
ṽ

ṽ
DT

•
c

] ]r
2

1 4
Ṽ

Q
] ]
ṽ

:c
] ]r

] ]r
2

2 m

] ]Ṽ
•
c

] ]Q
V

~S
! ~r

,Q
!2

1 2
m

] ]
ṽ

•
c

] ]r
V

~S
! ~r

,Q
!

2 m
S] ]Q

•
c

] ]Ṽ
2

] ]Ṽ
•
c

] ]Q
Dd1

1 2
m
S] ]r

•
c

] ]
ṽ

2
] ]
ṽ

•
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] ]r
Dd

2, ~7
0!
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where c5c(r,Q, ṽ,Ṽ), c85c(r,Q8, ṽ8,Ṽ8), d5d(Q
2Q8)d( ṽ2 ṽ8)d(Ṽ2Ṽ8), and

P~r!52E c~r,Q, ṽ,Ṽ!Q
]V~S!~r,Q!

]Q
d3Qd3ṽd3Ṽ.

~71!

Notice that there is a new feature in Eq.~70! compared to
all the previously specified Poisson operators: It conta
nonzero entries outside the second row and column~associ-
ated with the momentum density or velocity field!. The entry
in the lower right corner is determined by the kinematic
fects associated with the velocity terms in the last row of E
~68! ~this term is closely related to theL operator for the
Boltzmann equation, which also expresses the kinematic
a distribution function in phase space!. The off-diagonal
terms involving the entropic potentialV(S) are naturally in-
troduced such that the gradient~69! lies in the null space of
the Poisson operator~that is,V(S) occurs in the Poisson op
-
re
th
th

e
di
s

-
.

of

erator for exactly the same reasons as the osmotic pres
tensor P). It is remarkable that in the more microscop
approach of this section both the energetic and the entr
spring potentials enter the diffusion equation through the
versible dynamics, whereas in the approach of Sec. III t
occurred in the irreversible dynamics. The osmotic press
tensor~71! does not contain the isotropic contribution of E
~55!; in the more microscopic approach one obtains a m
detailed expression for the kinetic contribution to the po
mer stress tensor. Actually, this kinetic contribution resu
from the new terms in the last entry of the second row, wh
have to be introduced in order to satisfy the Jacobi ident

Finally, we need to specify the metric matrix. We use t
same shorthand notation as for the Poisson operator
write the metric matrix in the form

M~r,Q, ṽ,Ṽ,Q8, ṽ8,Ṽ8!5M11M2 , ~72!

where
t

M15S 0 0 0 0

0 2S ]

]r
hsT

]

]r
11

]

]r
•hsT

]

]rD
T ]

]r
•hsTġ 0

0 2hsTġ•

]

]r

1

2
hsTġ:ġ2

]

]r
•lT2

]

]r
0

0 0 0 0

D ~73!

contains the typical solvent building block of Eq.~38!, simplified by assumingk̂50 ~indirectly corresponding to solven
incompressibility!. For the extended kinetic theory, we postulate~and justify later!

M25S 0 0 0 0

0 0 0 0

0 0
2z

mE T̃
1

2
mS 2 ṽ21

1

2
Ṽ2Dcd3Qd3ṽd3Ṽ1z

]T

]r
•E Qṽ•Ṽcd3Qd3ṽd3Ṽ 2

z

m
c8T̃8S ṽ8•

]

] ṽ8
1Ṽ8•

]

]Ṽ8
D 2

z

m
c8Q8•

]T

]r S 1

4
Ṽ8•

]

] ṽ8
1 ṽ8•

]

]Ṽ8
D

0 0
z

m
T̃S ]

] ṽ
• ṽc1

]

]Ṽ
•Ṽc D 1

z

m
Q•

]T

]r S 1

4

]

] ṽ
•Ṽc1

]

]Ṽ
• ṽc D 2

z

2m2
T̃S ]

] ṽ
•c

]

] ṽ
14

]

]Ṽ
•c

]

]Ṽ
D d2

z

2m2
Q•

]T

]r S ]

] ṽ
•c

]

]Ṽ
1

]

]Ṽ
•c

]

] ṽ
D d

D ,

~74!
em-

en-
t-
all

the

ari-
the
nd
where

T̃5 T̃~r,Q!5T~r!1
1

16T~r!S Q•

]T~r!

]r D 2

~75!

and T̃85 T̃(r,Q8).
The contributionM2 is completely determined by the en

try in the lower right corner~the other entries are once mo
determined by the symmetry of the metric matrix and
requirement that the gradient of the energy must lie in
null space of the metric matrix!. In writing down the entry in
the lower right corner of Eq.~74!, we first of all wanted to
reproduce the diffusion equation for isothermal flows. Th
we introduced a coupling of internal and center-of-mass
e
e

n
f-

fusive motions due to temperature gradients, where the t
perature variation over polymer dimensionsQ•]T/]r is the
natural parameter to occur. Second-order effects inQ•]T/]r
had to be included in order to ensure thatM2 is positive
semidefinite, and this is the reason forT̃ to occur in Eq.~74!.
In the more microscopic approach of this section, the pot
tial V does not occur in the metric matrix. After incorpora
ing only these simple physical ideas and accounting for
the properties of the GENERIC structure we arrive at
symmetric, positive-semidefinite metric matrix~74! and we
thus obtain all the time-evolution equations for the state v
ables. In order to see the most interesting implications of
GENERIC approach, we consider the predicted diffusion a
energy balance equations in more detail.

The explicit form of the diffusion equation is
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]t
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]
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•@~v1 ṽ!c#2

]

]Q
•H F S ]

]r
vD T

•Q1ṼGcJ 1
]

] ṽ
•H F S ]

]r
vD • ṽ1

1

4
Q•S ]

]r

]

]r
vD •ṼGcJ 1

]

]Ṽ
•F S ]

]r
vD •Ṽc G

1
z

m

]

] ṽ
•H F T̃

T
ṽ1

1

4T S Q•

]T

]r D ṼGcJ 1
z

m

]

] ṽ
•H F 1

2z

]V~S!

]r GcJ 1
z

m

]

]Ṽ
•H F T̃

T
Ṽ1

1

T S Q•

]T

]r D ṽ1
2

z

]~V~S!1V!

]Q GcJ
1

kBT̃z

2m2 S ]

] ṽ
•

]

] ṽ
14

]

]Ṽ
•

]

]Ṽ
D c1

kBz

m2 S Q•

]T

]r D ]

] ṽ
•

]

]Ṽ
c. ~76!
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This diffusion equation is closely related to the stochas
differential equations assumed as a starting point in@24#.
When we regard the second-order terms in temperature
dients as minor effects (T̃'T), the most interesting differ-
ences compared to@24# are the underlined frictional cou
plings between center-of-mass and relative velocities for
dumbbell model, the additional kinetic effects in the thi
and fourth terms of Eq.~76!, and an additional term due t
the temperature dependence of the entropic spring force
these new terms are required by the GENERIC structure

The energy balance becomes most transparent when
introduce the total internal energy density

e tot~r!5e~r!1E F1

2
mS 2 ṽ21

1

2
Ṽ2D1V~Q!Gcd3Qd3ṽd3Ṽ.

~77!

The time-evolution equation for the total internal ener
density can be written as

]e tot

]t
52

]

]r
•~ve tot!1

]

]r
•l

]T

]r
1

1

2
hsġ :ġ2

1

2
~p1

1P~k!!:ġ1
1

2E Q
]~V~S!1V!

]Q
cd3Qd3ṽd3Ṽ:ġ

2
]

]r
•E ṽ F1

2
mS 2 ṽ 21

1

2
Ṽ 2D1V~S!1VG

3cd3Qd3ṽd3Ṽ

2
1

2
mE Ṽ ṽ Qcd3Qd3ṽd3Ṽ :̇

]

]r

]

]r
v, ~78!

where

P~k!5mE S 2 ṽ ṽ1
1

2
Ṽ ṼDcd3Qd3ṽd3Ṽ. ~79!

This result is very similar to Eq.~65!. The penultimate term
in Eq. ~78! allows us to identify the polymer contribution t
the heat flux vector,

qp5E ṽ FmS ṽ 21
1

4
Ṽ 2D1V~S!1VGcd3Qd3ṽd3Ṽ.

~80!

In exactly the same manner as the time evolution of
diffusion equation in configuration space determines
c

ra-

r

ll

we

e
e

form of the polymer contribution to the stress tensor~Kram-
ers expression!, within the GENERIC structure, the diffusio
equation in velocity space determines the form of the h
flux vector. Expression~80! is a natural and minor modifica
tion of Eq. ~8.11! of @22# in the absence of intermolecula
interactions. Although we carefully kept track of energe
and entropic spring potentials, these potentials of very diff
ent physical origins occur on exactly the same footing in
equation for the total energy density. It is only in one of t
terms of the diffusion equation that an entropic and no en
getic spring potential occurs. However, this is very importa
because the difference between entropic and energ
springs hence occurs indirectly in the momentum and ene
balance equations~because the solution of the diffusio
equation occurs in these balance equations!. In the detailed
discussion of the polymer contribution to the heat flux, t
GENERIC approach allows us a very clear separation of
ergetic and entropic spring potentials in all the tim
evolution equations. The crucial difference results from
temperature dependence of the parameters occurring in
respective potentials.

While, in the momentum balance, the term containi
second-order derivatives with respect tor in the last entry of
the second row of Eq.~70! could formally be incorporated
into the stress tensor, this is not the case for the corresp
ing second-order derivative term in the balance equation
the total energy density@the last term in Eq.~78!#. In order to
develop a more explicit theory of the heat flux vector, o
would need to solve the diffusion equation~76! and to evalu-
ate the integral in Eq.~80! ~see, e.g., the procedure in@24#!.
Alternatively, one could try to pass from the equations of t
section to a more coarse-grained description. The GENE
approach has provided us not only a new starting point
such calculations but also important information concern
the role of potentials of energetic or entropic origins in he
transport. Again, the gradients of the total mass of the so
tion and of the total polymer mass lie in the null spaces
both L andM .

V. COMMENTS ON FURTHER EXAMPLES

A. Extended irreversible thermodynamics

In an attempt to reproduce the equations of extended i
versible thermodynamics~EIT! @26# within the GENERIC
approach, we consider the nonisothermal kinetic theory
polymeric fluids of Sec. III in a more macroscopic formul
tion in which we use a conformation tensor instead o
configurational distribution function. While EIT is a phe
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nomenological approach in which the stress tensor is am
the independent state variables, we anticipate that the
formation tensor for a Hookean dumbbell model is clos
related to the stress tensor. Once we have identified the s
ture of the conformation tensor kinetic theory, we can ea
find the GENERIC formulation of EIT by transforming from
the conformation tensor to the stress tensor.

We assume a constant polymer concentration through
the polymer solution, that is,

np5E c~r,Q!d3Q ~81!

is assumed to be independent ofr. Otherwise, we would
have to introduce the polymer number density as an a
tional field.

We define a conformation tensor field by

c~r!5
1

np
E QQc~r,Q!d3Q ~82!

and we then choose the following fields as independent s
variables for a dilute solution with constant polymer conce
tration: the mass densityr(r) of solution, the momentum
densityu(r) of the solution, the solvent internal energy de
sity e(r), and the conformation tensor fieldc(r). As a word
of warning, we would like to point out that only the secon
moment~82! of the distribution function is here kept as a
independent state variable. Such a description can only
valid if all the higher moments either are functions of t
second moment or possess a rapid time evolution. If
misses slow independent variables in the thermodyna
modeling of a system, such as a higher moment, then in
rect predictions must be expected from any kind of gene
thermodynamic formalism. This is the risk of assuming th
a rather limited set of state variables is sufficient. As poin
out before, the choice of suitable state variables is a cru
step and there is no universal choice of state variables
complex fluids.

In this section, we consider only entropic and no energ
effects for the polymers, so that Eq.~48! reduces to the en
ergy of hydrodynamics,

E5E F1

2

u~r!2

r~r!
1e~r!Gd3r . ~83!

When we assume a quadratic entropic potentialV(S)(r,Q)
and a corresponding configurational distribution function
the Gaussian type@the Gaussian form of the distributio
function actually follows from maximizing the entropy~49!
under the constraints~81! and~82!#, then theQ integration in
Eq. ~49! can be carried out and, after neglecting an addit
constant, we obtain

S5E s„r~r!,e~r!…d3r 1Sp , ~84!

where the polymer contribution to the entropy is@27#
ng
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Sp5
1

2
npkBE $tr@12cc~r!#1 ln@detcc~r!#%d3r . ~85!

The constantc is chosen such thatcc(r)51 at equilibrium
and we can then write

V~S!~r,Q!

T~r!
5

1

2
kBcQ2. ~86!

Note that

dS

dc~r!
5

dSp

dc~r!
5

1

2
npkB@c~r!212c1#. ~87!

The Poisson operator for the conformation tensor the
is very similar to the one in Eq.~58!. We only need to
modify the last entry in the second column~the last entry in
the second row is then fixed by the antisymmetry ofL). In
the more macroscopic theory based on a conformation te
rather than on the configurational distribution function, t
continuous labelQ is replaced by the discrete tensor indic
j ,k. If the three components of the vector in the last entry
the second column of Eq.~58! are labeled byl , then these
components should be replaced by

]cjk

]r l
2d j l S c•

]

]rD
k

2dklS c•

]

]rD
j

. ~88!

In the first term in expression~88!, the spatial derivative acts
only on the tensorc and, unlike in the other entries in th
second column of Eq.~58!, not on the components of th
vector that is multiplied byL. This difference results from
the fact thatc is anabsolutetensor field, whereas scalar an
vectordensityfields occur in the other components.

The osmotic pressure tensor occurring inL should be cho-
sen such that the gradient of the entropy lies in the null sp
of L. A possible choice is

P5TS 2c•

dSp

dc
1Sp1D , ~89!

where a divergence-free term may be added toP/T. Since
we determinedSp only up to an additive constant, we do n
keep track of all the isotropic contributions toP and we then
obtain from Eqs.~87! and ~89!

P5npkBT~12cc!. ~90!

Neglecting isotropic contributions once again, this res
agrees with what one obtains by carrying out the integra
Eq. ~55! with the Gaussian distribution maximizing the e
tropy.

For the metric matrixM we suggest the following modi
fication of Eq.~38!:
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M~r!5S 0 0 0 0

0 2S ]

]r
hsT

]

]r
11

]

]r
•hsT

]

]rD
T ]

]r
•hsTġ 0

0 2hsTġ•

]

]r

1

2
hsTġ :ġ2

]

]r
•lT2

]

]r
0

0 0 0
2

npkBclH
c•

D , ~91!
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wherelH is a time constant. For the lower right block, whic
transforms a tensor into another one, a simplified but obvi
notation has been used~assuming that the tensor to be mu
tiplied is symmetric and commutes withc). Now the confor-
mation tensor model is completely specified. It reprodu
the so-called Maxwell expression for the stress tensor
hence the momentum balance equation correspondin
EIT:

S 11lH

D
Dt D P

npkBT
52lHġ, ~92!

whereD/Dt is the convected time derivative~here of a con-
travariant tensor field; see, e.g., Appendix D.2 of@16# or pp.
106 and 107 of@17#!.

In order to reproduce also the EIT expression for the h
flux vector, a larger set of variables would have to be c
sidered.

Our expression~85! for the polymer contribution to the
entropy does not coincide with the quadratic form usua
assumed in EIT@see, e.g., Eq.~2.39! of @26##,

Sp52
1

4
npkBE @12cc~r!#:@12cc~r!#d3r , ~93!

which may be obtained by expansion of the expression~85!
around equilibrium. For the gradient of the total entropy~84!
with the polymer contribution given in Eq.~93! to lie in the
null space of the Poisson operator, the anisotropic osm
pressure tensor must, however, be changed to

P5npkBTcc•~12cc!, ~94!

where the unusual form of the stress tensor should be no
Only close to equilibrium this coincides with the familia
stress tensor expressionnpkBT(12cc). We hence believe
that the entropy expression~85!, or

Sp5
1

2
npkBE F tr

P

npkBT
1 ln detS 12

P

npkBTD Gd3r , ~95!

is preferable in EIT.

B. Bracket formalism of Beris and Edwards

The structure of a large number of time-evolution equ
tions for complex fluids has been analyzed by Beris a
Edwards@9#. They developed a bracket formalism as a ge
eral framework for formulating all these time-evolutio
s

s
d
to

at
-

y

tic

d.

-
d
-

equations in a unified manner. The key idea is the const
tion of a nonlinear dissipation bracket by generalizing t
original ideas of Kaufman@28#, Morrison @29#, and Grmela
@30#. Beris and Edwards have not only considered many
amples but also accounted for various basic principles, s
as the first and second laws of thermodynamics, the Onsa
Casimir relations, the Curie principle, and the principle
material objectivity~or frame indifference!. In view of the
remarkable body of evidence they have collected for es
lishing and verifying the bracket formalism we want to sho
how their bracket formalism can be reproduced from
GENERIC approach. In short, it turns out that the GENER
approach allows us a more general choice of variables wh
at the same time, it has more predictive power and a m
symmetric form than the bracket formalism of Beris and E
wards~see below!. By establishing the relationship betwee
the two formalisms we also gain additional insight into t
typical structure of metric matrices~in particular, we learn
how to incorporate material objectivity!. Furthermore, since
Beris and Edwards have shown that the celebrated the
known aslinear thermodynamics of irreversible process
@31,32# is fully contained in their bracket formalism, it i
here recognized also as a special case of the GENERIC
proach ~concerning the Onsager-Casimir reciprocity re
tions, the mutual degeneracy requirements of the GENER
structure imply additional restrictions that, in the previo
approaches, need to be introduced and justified separat!.
Since both the bracket formalism and the GENERIC a
proach employ the energy for generating the reversible
namics, the Poisson bracket~4! must coincide with the one
used by Beris and Edwards.

For formulating the irreversible dynamics in the brack
formalism, the total entropy density always needs to be in
list of state variablesx. If one wants to use temperature in
stead of entropy density, this can be achieved by a su
quent Legendre transformation~see Sec. 9.1 of@9#!. We as-
sume thatx is of the form (v i ,s), where s is the total
entropy density and all the other variables are labeled bi
~as in hydrodynamics, this labeli generally contains continu
ous position labels!. When the label 0 is used, it correspon
to the variables5s(r).

We first consider the dissipation bracket formulated
Eqs. ~7.1-19! and ~7.1-24! of @9#. Since we are using the
entropy S for generating the irreversible dynamics whi
Beris and Edwards are using the energyE, our dissipative
bracket~5! does not coincide with the dissipation bracket
Beris and Edwards. Their linearized dissipation bracket
four contributions corresponding to the matricesA, B, C,
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andD in Eq. ~7.1-24! in @9#. We first consider theA contri-
bution and we give the corresponding metric matrixMA

(E) in
the GENERIC~1!. As before, the superscript (E) on the
metric matrix indicates that the list of variablesx contains
the entropy density~so that the energy is the correspondi
thermodynamic potential!, as required when using th
bracket formalism. The metric matrix

MA
~E!5S 2TAi j Ai j

dE

dv j

dE

dv i
Ai j 2

1

T

dE

dv i
Ai j

dE

dv j

D ~96!

reproduces the dissipative time evolution corresponding
theA contribution to the dissipation bracket. In this equatio
the Einstein summation convention applies~the summation
over labelsi or j excludes 0!. The symmetry ofMA

(E) follows
from the symmetry ofA. Furthermore,MA

(E) is positive
semidefinite ifA is negative semidefinite. The matrix ele
mentsAi0 of Beris and Edwards need to be zero in order
satisfy the degeneracy condition
-

b
tr
to
,

MA
~E!S dE

dv j

T
D 50. ~97!

In that sense, in the GENERIC formalism there exist ad
tional restrictions on the metric matrix or the correspond
dissipation bracket. For the present choice of variab
x5(v i ,s), the dissipative contribution to the time evolutio
of x is simply given by the last column vector of the metr
matrix. It is then straightforward to verify the equivalence
the resulting equations with those of the bracket formalis

The B, C, andD contributions in Eq.~7.1-24! of @9# can
be reformulated in a similar way. We next discuss theD
contribution, which has the most complicated form and is
only one required in hydrodynamics. ForDi j

ab5D ji
ba, the

dissipation bracket is equivalently represented and a de
eracy condition analogous to Eq.~97! is satisfied by the sym-
metric matrix
ide the
or
-

ted in
t

MD
~E!5S ]

]r a
TDi j

ab
]

]r b
2

]

]r a
Di j

abF ]

]r b

dE

dv j
G1

]

]r a
T2Di0

ab
]

]r b

1

T

F ]

]r a

dE

dv i
GDi j

ab
]

]r b
1

1

T

]

]r a
T2D0 j

ab
]

]r b
2

1

TF ]

]r a

dE

dv i
GDi j

abF ]

]r b

dE

dv j
G1

1

T

]

]r a
T3D00

ab
]

]r b

1

T
2

1

T2F ]

]r a
T2D0 j

ab
]

]r b

dE

dv j
G D . ~98!

The spatial indicesa andb are summed from 1 to 3 and derivatives in square brackets do not act on any terms outs
brackets. The matrixMD

(E) can be shown to be positive semidefinite ifD is assumed to be negative semidefinite. F
hydrodynamics, we have verified explicitly that the matrix~98! implied by the matrixD of Beris and Edwards, after trans
formation to the proper independent variables, coincides with the one in Eq.~38!.

The B andC contributions in Eq.~7.1-24! of @9# need to be considered simultaneously because they can be formula
the GENERIC form only if the matricesB andC are related. ForBi j

a 5Cji
a , Bi0

a 5C0i
a , andCi0

a 5C00
a 50, the dissipation bracke

is equivalent to the symmetric matrix

MBC
~E!5S 2TBi j

a ]

]r a
1

]

]r a
TCi j

a Bi j
a F ]

]r a

dE

dv j
G2

]

]r a
Ci j

a dE

dv j
2T2Bi0

a ]

]r a

1

T

F ]

]r a

dE

dv i
GCi j

a 1
dE

dv i
Bi j

a ]

]r a
1

1

T

]

]r a
T2C0 j

a 2
2

T

dE

dv i
Bi j

a F ]

]r a

dE

dv j
G2

1

T2F ]

]r a
S T2C0 j

a dE

dv j
D G D . ~99!
si-
Again, a degeneracy condition analogous to Eq.~97! is sat-
isfied. The conditions on the matricesB and C imply On-
sager symmetry@9#, which is thus inherent to the GENERIC
structure ~in the bracket formalism, this symmetry is im
poseda posteriori!.

The various contributions to the dissipation bracket can
expressed in a more compact way by introducing the ma
ces

V5S d i j 2
1

T

dE

dv i

0 0
D ~100!

and
e
i-

Va5S d i j

]

]r a
2

1

TF ]

]r a

dE

dv i
G

0 T
]

]r a

1

T

D . ~101!

We then have the identity

^y,M ~E!z&52E TJ~Vy,Vay;Vz,Vaz!d3r , ~102!

whereJ is the dissipation function characterizing the dis
pation bracket as introduced in Eq.~7.1-19! of @9#. We have
explicitly verified this equivalence for bilinear functionsJ.
Since y and z are arbitrary, Eq.~102! defines the metric
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matrix. Its positive semidefiniteness generally follows fro
the negative-semidefinite character of the dissipation fu
tion J. The discussion on p. 175 of@9# shows that the sym
metry and degeneracy conditions for the metric matrix au
matically imply the Onsager-Casimir reciprocity relations

Beris and Edwards have introduced more general non
ear dissipation functionsJ. In order to illustrate how the
more general situation can be handled within the GENER
approach, we here consider the prototype of an example
which Beris and Edwards need a nonlinear dissipation fu
tion: a chemical reaction far from equilibrium~see Chap. 12
of @9# and @33,34#!. For the sake of clarity we consider a
explicit example of a chemical reaction

N213H2
2NH3. ~103!

Three species of particles are involved in this reaction~ni-
trogen, hydrogen, and ammonia! and the corresponding
stoichiometric coefficients aren1521, n2523, andn352.
The mass of a particle of speciesi is denoted bymi . For this
three-component system, we use the following list of st
variables: the mass densitiesr1(r), r2(r), and r3(r), the
total momentum densityu(r), and the total entropy densit
s(r).

The energy and entropy are given by

E5E F1

2

u~r!2

r1~r!1r2~r!1r3~r!

1e„r1~r!,r2~r!,r3~r!,s~r!…Gd3r ~104!

and

S5E s~r!d3r . ~105!

We furthermore introduce the auxiliary quantities

m̃ j~r!5
mj

kBT~r!

dE

dr j~r!
~ j 51,2,3!, ~106!

which are closely related to the chemical potentials of
different species@33#,

m̃ j5
mj

kBTS m j2
1

2
v2D . ~107!

By taking functional derivatives with respect to the sta
variables we then obtain
c-

-

-

C
or
c-

e

e

dE

dx
51

kBT

m1
m̃1~r!

kBT

m2
m̃2~r!

kBT

m3
m̃3~r!

v~r!

T~r!

2 . ~108!

The time-evolution equations for the densitiesr j due to the
chemical reaction~103! are of the form ~see, e.g., Sec
17.B.2 of @4# or Sec. 12.4 of@9#!

]r j

]t
5

n jmj p

kBT
r ~p,T!~e2n1m̃12n2m̃22en3m̃3!, ~109!

where the pressurep and the temperatureT in the above
equations are functions ofr1, r2, r3, ands,

p5S (
j 51

3

r j

]

]r j
1s

]

]s
21D e~r1 ,r2 ,r3 ,s!, ~110!

T5
]e~r1 ,r2 ,r3 ,s!

]s
, ~111!

and r (p,T) is a reciprocal time scale characterizing the
action rate. Equilibrium states are characterized by the c
dition

A5n1m̃11n2m̃21n3m̃350. ~112!

The quantityA is closely related to the weighted combin
tion of chemical potentials of the reaction partners, which
known as the affinity of the chemical reaction. By assum
an ideal concentration dependence of the chemical poten
one recovers the mass action law~see Sec. 3.E of@4#!.

As mentioned above, we here consider only the contri
tion to ]r j /]t resulting from chemical reactions. The oth
contributions are analogous to those previously discusse
the context of hydrodynamics. Chemical reactions are par
the irreversible dynamics. We suggest the following met
matrix for reproducing the time-evolution equations~109!
for our three-component system:
M5S m1
2n1

2 m1m2n1n2 m1m3n1n3 0 2kBm1n1A
m1m2n1n2 m2

2n2
2 m2m3n2n3 0 2kBm2n2A

m1m3n1n3 m2m3n2n3 m3
2n3

2 0 2kBm3n3A
0 0 0 0 0

2kBm1n1A 2kBm2n2A 2kBm3n3A 0 kB
2A2

D p

kB
2T

r ~p,T!
en3m̃32e2n1m̃12n2m̃2

n1m̃11n2m̃21n3m̃3

. ~113!
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This matrix M is symmetric and positive semidefinite an
satisfies the degeneracy requirement~3!. Not only the gradi-
ent of energy but also the gradient of the total ma
(1,1,1,0,0) lies in the null space ofM ~due to the conserva
tion of massm1n11m2n21m3n350). The time evolution
of the entropy density due to chemical reactions, as imp
by Eq. ~109! and the GENERIC structure, is

]s

]t
5
Ap

T
r ~p,T!~e2n1m̃12n2m̃22en3m̃3!, ~114!

which coincides with Eq.~12.4-14! of @9#. Even when Beris
and Edwards need a nonlinear dissipation functionJ, we
can reproduce their equations with the GENERIC~1!. The
more nonlinear appearance of the basic equations in
bracket formalism results from considering the explicit fun
tional dependence of the dissipation bracket ondE/dx and
its gradients, whereas in the GENERIC framework only
overall x dependence of the building blocks is consider
This observation also shows why more nonlocal theories
be treated by the GENERIC but not by the bracket form
ism.

In summary, we have shown how the general structure
the bracket formalism results from the GENERIC approa
The disadvantages of using the energy for generating
irreversible dynamics are that~i! the total entropy density
needs to be in the list of variables and~ii ! the dissipative
bracket has a rather complicated form that cannot easily
interpreted in geometric terms. The greater flexibility in t
choice of variables is a major advantage when one is in
ested in more microscopic levels of description. T
GENERIC approach not only allows us such more gene
choices of variables but, in view of the great simplicity a
geometric significance of the irreversible term, is bet
suited for deriving equations from more microscopic theor
by coarse graining. Microscopic expressions for t
GENERIC building blocksE, S, L, and M have been de-
rived by projection operator techniques@35#. An important
example for which neither the entropy density nor the te
perature is in the list of variables is the Boltzmann equat
~no local-equilibrium assumption can be made!. While the
formulation of the Boltzmann equation in the bracket form
ism is therefore unclear, its GENERIC reformulation is po
sible due to the use of energy and entropy as two sepa
generators@1,36#. Furthermore, the requirement~3! imposes
additional restrictions on the dissipation bracket, thus
creasing the predictive power of the GENERIC formalis
compared to the bracket formalism~the Onsager-Casimir re
ciprocal relations are automatically implemented!.

C. Rigid dumbbells

In order to illustrate how constraints can be incorpora
into our general framework we consider a dilute solution
rigid dumbbell molecules~see Chap. 14 of@16#!. Our discus-
sion is based on the nonisothermal kinetic theory of Hook
dumbbell molecules presented in Sec. III. For rigid dum
bells, the interaction potential in the total energy~48! and the
entropic potential in the entropy~49! can be omitted. The
further modifications can be described most efficiently
terms of the symmetric projection operator
s

d
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P~Q!512
QQ

Q2
. ~115!

The crucial change in the Poisson operator~58! is the re-
placement of the last block in the second column by

]

]r
c~r,Q!1

]

]Q
•c~r,Q!P~Q!Q•

]

]r
, ~116!

with a corresponding change in the second row dictated
the antisymmetry requirement. In the group theoretical c
struction of the Poisson operator, the transverse proje
P(Q) expresses the fact that the connector vector describ
the rigid dumbbell can only be rotated by the action of spa
transformations.

For the gradient of the entropy to remain in the null spa
of the modified Poisson operator~58! one also needs to
change the osmotic pressure tensor. The proper choice

P~r!5kBT~r!E c~r,Q!H 11
]

]Q
•@P~Q!Q#J d3Q

5kBT~r!E S 2123
QQ

Q2 D c~r,Q!d3Q. ~117!

Once more we see how powerful the requirement that
gradient of the entropy must lie in the null space of t
Poisson operator is: It fixes the well-known anisotropic co
tribution to the stress tensor of rigid rods.

Finally, we need to give the proper modifications of t
metric matrix~59!. As mentioned before, we assumeV50,
so that we actually start from a simplified version of E
~59!. We discuss the modifications of the entry in the low
right corner and of the central block with entries proportion
to hsT separately.

The entry in the lower right corner is replaced by

2
]

]Q
•

2T

z
c~r,Q!P~Q!•

]

]Q
d~Q2Q8!

2
]

]r
•

T

2z
c~r,Q!D~Q!•

]

]r
d~Q2Q8!. ~118!

The transverse projection operator between theQ derivatives
again expresses the fact that the connector vector ca
change its length. Between ther derivatives we allow for a
tensor D(Q) different from the unit tensor, that is, fo
configuration-dependent translational diffusivity. The tens
D(Q) must be positive semidefinite in order to ensure
same property for the metric matrixM .

While the diffusion equation obtained after the modific
tion ~118! has the well-known form for rigid rods~cf. Eq.
~14.2-8! of @16#!, a dissipative contribution to the stress te
sor is still missing. This can be incorporated in a comp
form after introducing the fourth-rank tensor

I5I ~r!5
zT

4 E QQQQ

Q2
c~r,Q!d3Q ~119!

as an auxiliary variable. If one adds
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S 22
]

]r
•I•

]

]r

]

]r
•I :ġ

2ġ :I•
]

]r

1

2
ġ :I :ġ

D ~120!

to the central block with entries proportional tohsT in the
metric matrix~59!, then the usual dissipative contribution
the stress tensor obtained in the kinetic theory of rigid rod
reproduced. Guided by the example of the Newtonian s
vent contribution, this additional symmetric and positiv
semidefinite block is constructed such that the gradient of
energy remains in the null space of the metric matrix. T
additional dissipative stress tensor shows up in the expe
manner in the energy balance equation.

D. Reptation models

Many models for concentrated polymer solutions a
melts are based on the idea of reptation or anisotropic f
tion ~see Chap. 19 of@16#; see also@37#!. Reptation models
can be described by a configurational distribution funct
c(r,Q,s), whereQ is a unit vector andsP@0,1# is a posi-
tion label varying from 0 to 1 in going from one end of
polymer chain to the other. With the usual independ
alignment approximation, the position label is not affect
by space transformations so that the Poisson operator c
cides with the one for rigid dumbbells@Eq. ~58! with the
modification ~116!#. More sophisticated ideas about th
chain retraction after deformation can be incorporated v
elegantly through the action of space transformations
c(r,Q,s); the degeneracy requirement~2! then determines
the corresponding modification of the stress tensor.

We again use the energyE of hydrodynamics@Eq. ~19!#,
and for the entropyS we essentially use Eq.~49!,

S5E Fs„r~r!,e~r!…2kBE
0

1E c~r,Q,s!

3 lnc~r,Q,s!d3QdsGd3r . ~121!

The osmotic pressure tensor turns out to be very simila
Eq. ~117! for rigid dumbbells:

P~r!5kBT~r!E
0

1E S 2123
QQ

Q2 D c~r,Q,s!d3Qds.

~122!

It should be noticed that the normalization ofc affects the
entropy and the osmotic pressure tensor. It is natural to
sume that***cd3rd3Qds is proportional to the total num
ber of polymer molecules times the number of segment
each molecule. Further numerical factors included in the n
malization ofc, and hence further factors in the stress te
sor, cannot be obtained from the GENERIC formalism.

The metric matrixM5M(r,Q,s) for reptation models has
the form
is
l-
-
e

e
ed

d
-

n

t
d
in-

ry
n

to

s-

in
r-
-

M5S 0 0 0 0

0 22
]

]r
•I•

]

]r

]

]r
•I :ġ 0

0 2ġ :I•
]

]r

1

2
ġ :I :ġ 0

0 0 0 2
]

]s

c

lkB

]

]s

D ,

~123!

wherel is the reptation time scale~no integrations overr, Q,
ands are required!. For the Doi-Edwards model, the osmot
pressure tensor~122! is the full stress tensor (I50). In the
Curtiss-Bird model, an additional dissipative contribution
the stress tensor occurs. This can be reproduced by choo

I5
3

2
«lkBT2E

0

1E s~12s!
QQQQ

Q4
c~r,Q,s!d3Qds

~124!

in Eq. ~123!, where« is the link tension coefficient.
While the above equations show how the diffusion eq

tion and the stress tensor of reptation models can be re
duced, they do not provide the boundary conditions for
configurational distribution functionc at s50 and s51.
These need to be specified separately. It might be possib
incorporate boundary conditions into the formalism by mi
icking their effect through strongly repulsive and strong
randomizing dynamical terms.

Des Cloizeaux suggested a modification of the D
Edwards model, which he named ‘‘basic diffusion mode
@38#. This modification can be incorporated into th
GENERIC formalism by the replacements

lnc~r,Q,s!→ ln@B~s!c~r,Q,s!# ~125!

in Eq. ~121! and

c5c~r,Q,s!→B~s!2c~r,Q,s! ~126!

in Eq. ~123!, whereB(s) is a given function. The replace
ment ~125! implies a modification of the equilibrium distri
bution function, which is no longer uniform ins, whereas
Eq. ~126! can be interpreted as a modification of the diff
sion along the chain contour. The important consequenc
the GENERIC structure is that no additional modification
the pressure tensor~122! is required.

Polymer diffusion is not accounted for in the above the
ries of concentrated solutions and melts~there is no stochas
tic influence on the dynamics ofr). For polymer melts, the
densityr(r) is proportional to**cd3Qds, so thatr could
be eliminated from the list of variables.

E. Hydrodynamic interaction

Incorporation of hydrodynamic interactions into th
dumbbell kinetic theory of Sec. III requires only a modific
tion of the metric matrix~59!. In all places wherez occurs in
terms involving derivatives with respect toQ, the following
replacement should be made:
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1

z
→

1

z
~12zV!, ~127!

where V is the hydrodynamic interaction tensor~e.g., the
Oseen-Burgers tensor!, and the tensor introduced by the r
placement~127! should be contracted with theQ derivatives.
In the lower right corner of the metric matrix~59!, wherez
occurs in combination with derivatives with respect tor, we
need the replacement

1

z
→

1

z
~11zV!. ~128!

With these minor modifications, hydrodynamic interaction
fully incorporated into the polymer kinetic theory of Sec. I
and the usual diffusion equation is reproduced~see, e.g., Sec
4.2.1 of @39# and, in particular, Exercise 4.18!. Notice that
while hydrodynamic interactions do affect the energy b
ance~62!, they do not affect the momentum balance~61!,
that is, the polymer contribution to the stress tensor fo
dilute solution remains unchanged.

While the incorporation of the hydrodynamic interactio
effect is mathematically unproblematic, it can be used
discuss a subtle point about physical limitations. Hydrod
namic interactions are related to the solvent dynamics, wh
is part of the full time evolution of the system under cons
eration. More precisely, the solvent dynamics on the polym
length scale has already been taken into account by intro
ing hydrodynamic interaction tensors. Therefore, the m
mentum balance equation~61! should certainly be used o
length scales much larger than the polymer size in orde
avoid considering the same effect twice~probably even in an
inconsistent manner!. The mere fact that hydrodynamic in
teraction has been incorporated sets a limit for the len
scale down to which the equations can be physically me
ingful, and that should be kept in mind when discretizing t
equations in numerical calculations. As long as no hydro
namic interactions had been incorporated, the full set
equations could have been used for the solvent dynam
between the beads, that is, on much shorter length scales@40#
~of course, boundary conditions for the solvent velocity
the beads would then be required!.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

We have shown in great detail how various tim
evolution equations for nonequilibrium systems can be f
mulated in the GENERIC form~1!. Important parts of the
proposed GENERIC structure are the complementary de
eracy requirements~2! and ~3! and the conditions~7!–~11!.
Equation~2! has, for example, important implications for th
pressure~Gibbs-Duhem equation and osmotic pressure!, for
the form of the stress tensor~Kramers expression, effects o
constraints and hydrodynamic interactions!, and for the heat-
flux vector. Equation~3!, together with the symmetry of th
metric matrix, implies that specifying a few elements of t
metric matrix is sufficient for determining the entire matr
uniquely.
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We have not only shown the way in which many differe
models can be expressed in the GENERIC form, but we h
also demonstrated that previously proposed formalisms~lin-
ear thermodynamics of irreversible processes, extended
versible thermodynamics, and the bracket formalism of Be
and Edwards! are contained in the GENERIC approach. T
relationship between the matrix formalism of Jongscha
~see@41# and references therein! and the GENERIC approac
has been elaborated recently@42#. In order to establish this
relationship it was necessary to study systems consistin
open subsystems and their environments in some detail;
result, one also finds the GENERIC approach to driven s
tems.

Concerning the four building blocks occurring in th
GENERIC~1!, the various equations presented in this pa
should have made clear that the expressions for the t
energyE and for the entropyS typically have forms ex-
pected from equilibrium thermodynamics. In all cases,
formulation of the Poisson operatorL was unproblematic
and it typically required only assumptions about the transf
mation behavior of the state variables under space trans
mations. The most difficult task is thus the determination
the metric matrix or friction matrixM . Its matrix elements
contain parameters such as viscosities, thermal conduc
ties, friction or diffusion coefficients, hydrodynamic intera
tion tensors, or chemical reaction rates, that is, detailed
terial information related to nonequilibrium processes.

If the metric matrix cannot be determined empiricall
one needs a framework for calculating it from more micr
scopic arguments. We need a recipe for determiningM , of
similar significance to the well-known rule that the therm
dynamic potentials of equilibrium thermodynamics can
obtained by calculating partition functions. Such microsco
expressions for all the GENERIC building blocks have
cently been obtained by the projection operator method@35#.
Once we have formal expressions for the building blocks,
need numerical methods for actually evaluating them, at le
approximately or with statistical error bars~like Monte Carlo
methods for evaluating partition functions!. In view of com-
puter simulations, it is very desirable to generalize t
GENERIC structure to time-discrete systems~see paper I!.
When fundamental thermodynamic principles are respec
in numerical calculations then they might be much mo
stable and more meaningful.

Since jumping from one level of description to anoth
one should be an integral part of the GENERIC approach
is natural to ask whether one could start from such a deta
level of description that quantum-mechanical effects sho
be taken into account. The GENERIC formulation for qua
tum systems still remains to be worked out.

Throughout these papers, we have ignored integral m
els or constitutive equations with memory effects in whi
stresses are obtained from suitable functionals of strain
tory @43#. We believe that such models are less fundame
and that memory effects enter the description because s
relevant slow variables have been ignored. Assuming the
istence of variables that would eliminate all memory effec
one could try to develop a general theory of thermodyna
cally admissible integral models from the GENERIC fram
work presented here.

The discussion of this section shows that a number
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questions concerning the GENERIC approach to nonequ
rium systems as developed in these papers remain o
While many of these questions are studied in various on
ing research projects, we hope that the GENERIC appro
as presented here already provides a useful framework
learning more about previously considered nonequilibri
systems and for formulating the proper time-evolution eq
tions for new problems.
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@24# H. C. Öttinger and F. Petrillo, J. Rheol.40, 857 ~1996!.
@25# M. Grmela, B. Z. Dlugogorski, and G. Lebon, Macromo

Theory Simul.5, 1121~1996!.
@26# D. Jou, J. Casas-Va´zquez, and G. Lebon,Extended Irreversible

Thermodynamics~Springer, Berlin, 1993!.
@27# H. C. Booij, J. Chem. Phys.80, 4571~1984!.
@28# A. N. Kaufman Phys. Lett.100A, 419 ~1984!.
@29# P. J. Morrison, Phys. Lett.100A, 423 ~1984!.
@30# M. Grmela, Phys. Lett.102A, 355 ~1984!.
@31# S. R. de Groot and P. Mazur,Non-Equilibrium Thermodynam

ics ~Dover, New York, 1984!.
@32# I. Prigogine,Introduction to Thermodynamics of Irreversibl

Processes, 3rd ed.~Wiley, New York, 1967!.
@33# S. Sieniutycz, Chem. Eng. Sci.42, 2697~1987!.
@34# M. Grmela, Phys. Rev. E48, 919 ~1993!.
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