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Dynamics and thermodynamics of complex fluids. II. lllustrations of a general formalism
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For a number of well-known time-evolution equations for nonequilibrium systems we extract a common
structure from these equations, referred to as a general equation for the nonequilibrium reversible-irreversible
coupling (GENERIQ. This fundamental structure is determined by four building blocks, two “potentials”
(total energy and entropyand two “matrices.” We illustrate for various examples how three of the four
building blocks can be determined in a rather straightforward manner so that, within our GENERIC approach
to nonequilibrium dynamics, understanding of a given nonequilibrium system is reduced to determining a
single “metric matrix,” or friction matrix, either empirically or by more microscopic considerations. In
formulating nonisothermal polymer kinetic theories, we show how the general structure provides a clear
distinction between spring potentials of energetic and entropic origins in the various time-evolution equations.
[S1063-651X97)06112-9

PACS numbegps): 05.70.Ln, 05.60tw, 51.10+y

[. INTRODUCTION The requirement that the gradied®/ 5x is in the null space
of L in Eq. (2) expresses the reversible nature of theon-
We here consider a number of examples of time-evolutiortribution to the dynamics: the functional form of the entropy
equations for nonequilibrium systems, some of them in greais such that it cannot be affected by the operator generating
detail. Most of the equations are not new: Only the way ofthe reversible dynamics. The requirement that the gradient
formulating these equations is differdd. We show for the SE/Sx is in the null space oM in Eq. (3) expresses the
various examples that the time-evolution equations can beonservation of the total energy by the contribution to the
written in the form dynamics. The two contributions to the time evolutionxof
generated by the enerdy and the entropys in Eq. (1) are
X SE 5S called the reversible and irreversible contributions, respec-
gt tax M (1) tively. In this paper the crucial role played in our general
formalism by the degeneracy requiremetsand(3) is un-
] ] _ derlined by carefully elaborating their implications.

wherex represents a sgt of mdependent- yarlables required Eyrther general properties bfandM are discussed most

for a complete description of the nonequilibrium systdn, conveniently in terms of the two brackets

andS are the total energy and entropy expressed in terms of

the state variables, andL andM are certain linear opera- SA OB

tors (or matrice$. Since x typically contains position- {A,B}= <§L§> (4
dependent fields, such as mass, momentum, and energy den-

sities, the state variables are usually labeled by continuous

(position labels in addition to discrete ones. A matrix mul- [AB]= <% M §> )
tiplication, or the application of a linear operator, hence im- ' ox’ '

plies not only summations over discrete labels but also inte-
grations over continuous labels a@dsx typically implies  where( , ) denotes the scalar product andB are suffi-

functional rather than partial derivatives. ciently regular real-valued functions on the state space. In
Equation(1) is supplemented by the complementary de-terms of these brackets, Ed) and the chain rule lead to the
generacy requirements following time-evolution equation of an arbitrary functién
in terms of the two separate generatBrandS:
L2520 @ dA
OX Jp ~{AE}+[AS]. (6)
and " .
The further conditions fot. can now be stated as the anti-
symmetry property
M %E_ 0 3
E @ {AB)=—(B.A} ™
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and the Jacobi identity The skeptical reader might and actually should ask: What
is the benefit of reformulating various time-evolution equa-
{A{B,C}}+{B.{C,A}}+{C.{AB}}=0, (8  tionsin the form of Eq.(1)? Do we gain anyadditional

insight, or is this, at best, just an esthetically nice but useless

whereC is an arbitrary sufficiently regular real-valued func- wercise? Of course. the proper answer o these questions is
tion on the state space. These properties are well known from : ' prope q
important not only for motivating the reader, but also for

the Poisson brackets of classical mechanics and they captur@ : ) S .
the essence of reversible dynamitise state space has the reve_allng the full possible _5|gn|flcance of thls_ and the pre-
structure of a Poisson manifo]&]). In particular, the Jacobi _cedmg paper. We hence W!Sh to spend some time on answer-
identity expresses the time invariance of the Poisson brackef!9 thes_e questions .b.y a simple analogy. :

Important implications of the Jacobi identity for moment clo- Co_nS|der the e_qumbnum therm_odynamlcs of a gas, to be
sure approximations have been elaborated recé8ilyAt described by the independent variablegabsolute tempera-

least when the state space is finite dimensional, the JacoB{®: V (volume, andN (number of particles Note that
identity can be formulated directly in terms of the antisym-!dentifying the proper variables required for a complete de-
metric matrixL (see p. 28 of2]) scription of the system under consideration is always the first

fundamental problem of thermodynamic&Jnfortunately,

LIk LK gL we are taught to see or used to seeing this as a trivial choice
> L — U —+L¥— | =0. (9)  between well-known lists of appropriate state variables for
! X X IX gases, mixtures, magnetic systems,)dfcthe caloric equa-

tion of state for the energig=E(T,V,N) and the thermody-

Further properties ol can be formulated in terms of the namic equations of state for the entroBy: S(T,V,N), pres-

symmetry condition sure p=p(T,V,N), and chemical potentiale=w(T,V,N)
_ are known, one has a complete description of the system. Is
[ABI=[B.A] (10 there any additional insight to be gained from reformulating
and the non-negativeness condition these equations of state, by recognizing a deeper structure
underlying these equations? Any reader familiar with the
[A,A]=0. (12 most basic ideas of thermodynamies5] will immediately

give a strongly affirmative answer to this question: Yes,
This non-negativeness condition, together with the requirethere is a lot to be gained; the essence of thermodynamics
ment that §S/6x lie in the null space ofL (implying actually is the identification of the unifying structure behind
{S,E}=0), guarantees that the entropy is a nondecreasinthe various equations of state.

function of time More precisely, by specifying the proper thermodynamic
potential for the variabled,V,N, which is the Helmholtz

dS>O 2 free energyF(T,V,N), all the above-mentioned equations of

dt~ (12 state can be obtained by taking partial derivatives. All infor-

mation about the particular system is contained in a single

The properties10) and (11) imply the symmetry and the thermodynamic potentidF. From this structure of thermo-
positive semidefiniteness dfl; we hence refer ta as a  dynamics, certain consistency conditigiviaxwell relations
metric matrix(although it is of contravariant rather than co- arise for the various equations of stqtmnditions such as
variant nature; a covariant inverse, however, does not exisiif E is independent o¥ thenp must be linear inT” are
due to the degeneracy df). From a physical point of view, certainly not immediately obvious and much more funda-
M may be regarded as a friction matrix. mental than even the most successful empirical or micro-

While the structure of the fundamental time-evolution scopically derived equations of statdBy recognizing the
equation(1) and the importance of all the conditions for  fundamental role of thermodynamic potentials we obtain a
andM have been explained and motivated in more depth irmuch more compact and transparent description of the sys-
the preceding papéd], referred to as paper | in the follow- tem. We can reproduce all the equations of state and we
ing, the details of the notation and the implications of theautomatically satisfy all the consistency equations for these
postulated structure will become more obvious when considequationg6].
ering the examples below. Also some limitations of EL. The formulation of thermodynamics in terms of thermo-
have been pointed out in paper I; All variables neglected orlynamic potentials incorporates, and is actually guided by
the chosen level of description need to evolve on a mucland based on, the celebrated fundamental laws of thermody-
faster time scale than the variablesand, for example, the namics. Theproper formulation of the equatioris synony-
equations governing the time evolution of externally forcedmous with thedeepest insighinto thermodynamics. Listing
systems that generate complex patterns need not possess #tithe equations of state is good enoughdaderstanding a
postulated structure. For example, the Burnett equafiéhs particular systemhowever,understanding thermodynamics
provide a counterexample violating the symmetry conditiongneans identifying the structure of the equations. This suc-
(cf. the discussion of the Onsager-Casimir relations in papetessful identification of the structure behind thermodynamics
I). Paper | and the present paper are written such that thag also very important when calculating thermodynamic
can be read in either order, depending on whether one prefepoperties from a more microscopic approach: No separate
to start from a more abstract consideration of levels of de{and possibly inconsistentalculations for each equation of
scription (paper ) or from concrete and typical examples of state are required, but only a single calculation of a thermo-
nonequilibrium systemghis papey. dynamic potential is neede@ia the partition functions of
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statistical mechanig¢sa consistent set of equations of state isirreversible thermodynamics, the bracket formalism of Beris
then derived from the thermodynamic potential. and Edwards, and various additional effects considered in

As should be clear now by analogy, the proposed generdiolymer kinetic theory, within our formalisrtSec. V).
time-evolution equatior{l), if successful, would provide a
deep understanding of nonequilibrium thermodynamics in Il. CLASSICAL HYDRODYNAMICS
the above spirit. We hence refer to Ed) as the general
equation for the nonequilibrium reversible-irreversible cou-
pling (GENERIO. Only two “potentials” or generators& We choose the following fields as independent variables
and S) and two “matrices” or linear operators_(andM)  for classical hydrodynamics: the mass densgify), the mo-
need to be determined in order to specify the full time-mentum density(r), and the internal energy densigfr).
evolution equations. We refer to the GENER(D together ~ The momentum density field is closely related to the velocity
with the requirement€), (3), and(7)—(11) as the GENERIC field v(r), namely, by
structure. The GENERIC time evolution is proposed for non-
equilibrium systems that, if not driven by external forces, u(r)=p(rv(r).
approach thermodynamic equilibrium.

Writing well-known successful equations for nonequilib-
rium systems in the fornil) is the essential step for validat-
ing the proposed structure of nonequilibrium thermodynam- ap J
ics. The separate but similar occurrence of the two generators o (vp). (14
E and S in the reversible and irreversible terms of the
GENERIC (1), which, together with the mutual degeneracy The time evolution of the momentum density=u(r,t) is
requirements, is the key innovation of the proposed for_mal—given by the Navier-Stokes equation
ism, leads to a deeper and more complete understanding of
the role of entropy than can be gained in equilibrium ther- du 9 J i
modynamics. G WP, (15

A number of consistency conditions are implied by the
proposed form of Eqd1)—(3) (including the Maxwell rela-  wherep is the pressure, and we assume Newton’s expression
tions of equilibrium thermodynamics and the Onsager{or the stress tensor in terms of velocity gradients, the vis-

Casimir relations of nonequilibrium thermodynamip$]).  cosity 5, and the dilatational viscositor second viscosity
As in equilibrium thermodynamics, the predictive power of .

the nonequilibrium formalism is based on these general con-

A. Time-evolution equations

(13

The time evolution of the mass density: p(r,t) is given by
the equation of continuity

sistency conditions extracted from many observations. Since d a\T

there exists vast experience with the form of the endfgy =7 §V+ (ﬁv

and the entropys in equilibrium thermodynamics and since

we will illustrate how the matrix. (or “Poisson operator) 2 \d

can be constructed in a rather straightforward manner, the _(K_ §’7>5'V1' (16)

formulation of dynamic equations for nonequilibrium sys-

tems can focus on the determinationMf (the friction ma-  External forces have been neglected in the Navier-Stokes

trix, which has the properties of a “metric matrix’Calcu-  equation(15).

lations based on more microscopic models need to provide The time evolution ofe= €(r,t) is given by the internal

only an expression foM and not for all the terms in the energy equation

time-evolution equations. In summary, a general formalism

for nonequilibrium systems should provide the followirti: de  J J 9 4 .9

a unified framework for empiricalmacroscopic and mesos- Gt WPy v ot (17

copic) modeling,(ii) consistency conditions as the most fun-

damental predictions, angii) recipes for going from more where we assume Fourier's expression for the heatjflir

microscopic to more macroscopic levels of description. terms of the temperature gradient and the thermal conductiv-
It is very important that the reader think critically about ity A,

the above motivation and that he or she keeps the fundamen-

tal importance of our goal in mind while we are reformulat-

ing various known time-evolution equations for nonequilib-

rium systems in the form of the GENERIQ). We first

present detailed discussions of the reformulations of classicdl the equilibrium equations of statgp=p(p,e) and

hydrodynamicgSec. I) and a nonisothermal kinetic theory T=T(p,€) are known and if we make the “local equilibrium

of polymeric fluids(Sec. lll). As an example of the predic- assumption” that the pressure and temperature fields can be

tive power implied by the GENERIC structure of the time- obtained from these equilibrium relations by inserting the

evolution equations we then propose a more detailed polytocal mass and internal energy densities, then ElgB—(18)

mer kinetic theory for heat transpo{8ec. 1\); we obtain  constitute a closed set of time-evolution equations. These are

further insight regarding the role of spring potentials of en-the well-known equations of classical hydrodynamisse,

ergetic and entropic origin. Finally, we comment on the re-e.g., Sec. 88 of7] or Secs. 1.1 and 1.2 ¢8]). The irrevers-

formulation of other well-known theories, such as extendedble contributions to the dynamics are those involving the

0
T. (18

jd= —\ —
J )\ar
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stress tensot and the heat flux® in Eqgs.(15) and(17); all
the other terms in Eq$14), (15), and(17) constitute revers-
ible contributions. In other words, the reversible contribu-
tions in Egs.(14), (15), and (17) are obtained by setting
n=k=N=0. We discuss the reformulation of the reversible

and irreversible contributions to the time-evolution equations

of hydrodynamics separately.

B. Reversible dynamics

In order to specify the reversible contribution to the gen-
eral time-evolution equatiofil) we need to define both the
energyE as a function o and the matrixt. For classical
hydrodynamics, the list of independent state variablds
chosen agp(r),u(r),e(r)). In other wordsx is a vector with
five components | is a vector field, each of which is la-
beled by a further continuous variableWe hence need to
define the energy as a functional of the hydrodynamic
fields (p(r),u(r),e(r)) and SE/8x is to be interpreted as a
collection of five functional derivatives.

AND MIROSLAV GRMELA

By taking functional derivatives with respect to the hydrody-
namic fields we obtain, after using E@.3),

5
500 R
SE 8 ZV(r)
x| suin | EPUO=1 (20
5 1
5e()

External forces, such as gravifgharacterized by a con-
stant acceleration vect@), can be incorporated by simply
adding the corresponding potential energy, that is,
— [p(r)g-rd®r for gravity, to the total energy19).

The matrixL, or Poisson operator, of the general frame-
work for classical hydrodynamics has two discrete indices
(running from 1 to % and two further labelgcorresponding
to positions in spage We more explicitly denote it by
LO(r,r"), where the superscripS| on the 5<5 matrix L

The total energy can naturally be obtained by adding andndicates that entropy is taken as the underlying thermody-
integrating kinetic and internal energy densities over the ennamic potential, that is, internal energy appears among the

tire volume of the flow system,

independent variables. A multiplication with implies not
only a matrix multiplication with a %5 matrix but also a

:f E u(n? +e(r)|dor (19 three-dimensional integration ovet. The explicit form of
2 p(r) ' the matrixL for hydrodynamics is
14
0 p(r')— 0
ar’
a6 Jd
LS, =[ p(n— ur)—+—ur en—+—pr) |, (21)
ar r ar
a6 dé
0 e(r')—+ —p(r) 0
ar’ o’

where = §(r—r'") is Dirac’s delta function of —r’. By multiplying the right-hand side of Eq20), usingr’ instead ofr in
that equation, with the right-hand side of E@1), and integrating over’ one can verify explicitly that all the reversible
contributions to the time-evolution equations of classical hydrodynamics are obtained, that is(18g%18) with

n=k=N=0.

The actual calculation can be simplified by observing that, as mentioned above, multiplication with the Poisson operator

LO(r,r") implies both a matrix multiplication and an integration overAfter an integration by parts, the integration ovér

can be performed due to the occurrencesofunctions in all
generalized functions as matrix elements we then obtain an
(the derivatives act on all terms to the right of them

the matrix elements af®(r,r’). Instead of a matrix with

equivalent matrix, the elements of which are differential operators

J
d [a T J d
LS ()=~ P(T)E Eu(f)ﬂLU(f); E(f)EJr Ep(f) (22
J J
0 Ee(r)ntp(r)ﬁ 0
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We will repeatedly use this kind of simplified notation where the functiors(p, ) expresses the relationship between
throughout this paper. the densities of entropy, mass, and internal energy at equi-
While the verification of the proper form of the Poisson librium. By taking functional derivatives with respect to the

operator(21) for classical hydrodynamics is straightforward, hydrodynamic fields we obtain
its form may at first sight appear rather arbitrary. Beris and

Edwards present a derivation of the Poisson brackgt _ &
equivalent to the Poisson operat@®1) from a variational T(r)
principle of classical mechani¢see Secs. 5.1-5.3 f#] and 5_32 0 (24)
[10]; the pioneering original publications afé1-14). A OX '
straightforward construction of the expressi@1) based on 1
the representation of the continuous group of space transfor- T(r)
mations on the space of hydrodynamic fields will be given at
the end of this section, where also a number of other procewhere the local temperatuieis defined by
dures for constructing Poisson operators are summarized.
as(p,e)| 7t
T(r) —( o ) (25
C. Irreversible dynamics and the local chemical potential per unit mass by
In order to specify the irreversible contribution to the gen-
eral time-evolution equatiofil) we must define both the en- p(r) __ Is(p,€) (26)
tropy S as a function ofx, and the metric matrixM. For T(r) ap '

classical hydrodynamics, a very natural expression for the _ _
entropy is obtained by the local equilibrium assumption ~ both being functions ofr because they are evaluated at

p(r),e(r).

In order to reproduce the equations of hydrodynamics we
_ 3
S_j S(p(r),e(n)d, @3 introduce the metric matris,
0 0 0
o |2 (9+1'? J T5+2& 0“T5 i T'5+§ATt'5
M (r.r) = grrar e ar | O Sar e or YT G Y @
J . J . . 1 .. J d 2 1. "
0 — T Yo+ —kTtrys > nTyiyd+— - —AT°6+ EKT(II’}/) 1)
ar ar ar or

wheres= 8(r—r'), the transport coefficient is a combina-  Other nonvanishing block in the last row is determined by the

tion of the viscositys and the dilatational viscosity, requirement thasE/ ox lies in the null space oM,
1
-~ K ’
=33 @9 oF BERE
I (S AW 37—
M&x f M (r,r") v(r') d°’r’'=0. (30
and the tensoty is the symmetrized velocity gradient tensor 1

T

29) Then the other nonvanishing block in the last column is de-

termined by symmetry. Finally, the determination of the cen-
tral block of M again requires the assumpti@s0).

While verifying thatM 9S/x reproduces all the irreversible ~ The matrixM in Eq. (27) has all the properties formulated
terms in Eqs(15) and (17) is straightforward, the detailed in the Introduction. It is symmetricsee Eq(10)] and can be
motivation for writing the metric matrix for hydrodynamics Verified to be positive semidefinifsee Eq(11)], so that we

in the form(27) may not be so obvious. In view of E¢R4), may callM a metric matrix andE/ 6x lies in the null space
only the last column oM in Eq. (27) actually contributes to  0f M [see Eq(3)]. We just realized that these properties are
the irreversible dynamics. The last row is then fixed by thevery important for obtaining a unique expression for the ma-
symmetry requiremenS(r,r')=ME(r’,r)T. Crucial for  trix M of classical hydrodynamics. The matrix elements of
constructingM®(r,r') is actually the element in the lower M for classical hydrodynamics are proportionalipx, and
right corner, which describes the energy dissipation. The\, so that its relation to dissipative material properties and

(r)

. J
y(r)=5v(r)+ EV
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irreversible dynamics should be obvious. This observation (S m(S) et T3 S0
justifies the term “friction matrix” forM. j B™=(r,r")-B(r',r") 'd°r"=2kgM™(r,r"), (31)
. _ . . . . S) 7 . . . . .
The positive seml_d'efln.lte' nature of the mathik®(r,r") wherekg is Boltzmann’s constant. This identity can be veri-
can be shown by writing it in the form fied explicitly for the lower triangular matrix
0 0 0
20 fekaTs 5‘9+5‘9\/kT5 0
BOS(r,r1)=| ar, Ve Gr, N r, ) e : (32)
.= . J
try\ kkgT o YN 7KeT 8 I\/zkaTz(s
k
|
where, againg=4(r—r"). In the middle row, the subscript A more general explicit calculation shows that the gradi-

labels the rows corresponding to the components of the meent of a functional of the forny f(p(r),e(r))d%r is in the

mentum vector. The indicels and| in the middle column null space of the Poisson operatoiif and only if

correspond to an index pair to be summed over if

B (r,r') is multiplied with another matrix or column vector of of

from the right. According to the fluctuation-dissipation theo- f—p 75 ~(e+p)—=const. (39
? . . p de

rem of paper I, the matrix32) characterizes the fluctuations

to be added to the equations of hydrodynamics; the resultin .

stochastic partial differential equations coincide with those%he fact thatss/ ox IS I the n_uII space of f(_)llow_s from the

occurring in the standard theory of fluctuating hydrodynam-C/bPs-Duhem equation, which can be written in the form

ics where, howeverT=T(r) here is the local-equilibrium

temperature defined in Eq25) (see Chap. IX of(7] and

[15]).

Another important cross relationship between the revers-
ible and irreversible dynamics, stated in EB), remains to  Eyrther solutions of Eq:35) are constantsf( const) and the

Js

Js
s=p%+(e+p)£. (36)

be checked for classical hydrodynamics: mass density f(=p). The gradient of the total mass

r

) X

T(r) S , 0

L—=L®(n- 0 =0. (33) 5J p(r)d°r= (37)
X 0
1

T(n

is actually in the null space of bothandM. Of course, this

By using the explicit expressiof22) for L((r) we find the property simply expresses the conservation of mass.

alternative formulation The matrix elements oS (r,r’) are generalized func-
tions, that is, the derivatives act only on the functions in the
d [ e(r)—pu(r)p(r)=T(r)s(r)+p(r) matrix elements. As previously observed for the Poisson op-

ar T(r) =0. (34) eratorL((r,r’), we can simplify notation and calculations

by introducing a matrixM®(r), the elements of which are
In view of our definitions fomp, T, s, and w, this latter form  differential operatorgthat is, the derivatives act on all terms
of the condition follows immediately from the Gibbs-Duhem to the right of them and all integrations have already been

equation for the local equilibrium system. performed:
0 0 0
0 d Ta 1a TaT ZaATa d T aATt.
M) (r) = ar o T r o' ar or YT g Y (39

. d ~_ .0 1 .. 4 , 0 1. "
0 —7]T‘}/~E—KTtr’y‘{9—r E’I]T’)/. Y_E.)\T g'f’EKT(tr’y)
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At this point, the reader should pause and think about th@olume changes as described by the Jacobian of the transfor-
implications of the GENERIC structure for the familiar ex- mation (39), or its inverse, has to be taken into account,
ample of hydrodynamics. Of course, we know too much
about hydrodynamics, so that we cannot gain any new in-
sight. The concrete and important implications of the rather
formal complementary degeneracy requiremégjsand (3)
should, however, be fully appreciated. Equati@p implies

the Gibbs-Duhem equation for the local equilibrium system
and Eq.(3) implies that the form of the energy dissipation
determines the entire metric matrix and hence the structurEor smallt, the Jacobian can be expressed in terms of the
of the stress tensor. trace ofdv/dr and we thus obtain to first order tn

. (40

p(r)—>p(r—tV(r))‘1—t§V(r)

D. Construction of the Poisson operator from group theory

J

In the GENERIC formulatior{1) of time-evolution equa- p(r)—p(r)=t—--[v(r)p(r)]. (41)
tions for nonequilibrium systems, four building blocks are
required. For classical hydrodynamics we have seen that the
expressions for the enerdgy and the entropyS are very
natural. Formulating the metric matridd corresponds to
postulating the constitutive equations of Newton and Fourier
which can be justified empirically or by more microscopic
calculations. What can be said about the construction of th
Poisson operatdr? So far, we have identifield by rewriting
the well-known time-evolution equations of hydrodynamics

e i i Parbose of U seeion i vected derivaives occee, e, Appendi D2 g1 o
and more general manner by arguments from rgu theor bp. -106_1-07 -0[17]; in geometrical terms, these cor'respond
g y arg group Yto Lie derivatives[18]). We hence obtain the following ca-

ﬁThe baff"llc |d”ez?] IS thatt should express |°”f'fy klnematlc. nonical action of the infinitesimal space transformat(88)
effects, while all the interactions and inertial effects come iNon a covariant vector density field:

through the total energy. The pure kinematics of the systems
studied in this paper are expected to be closely related to
space transformations and we hence consider actions of the
group of space transformations on the state space for the 9
system of interest. Such actions are the key to the construc- U(f)ﬂu(f)—t(ﬁ'[V(T)U(f)]+
tion of the kinematics accounted for by Poisson operators.
There is one requirement far that might be expected to

b:mcg 'rn SOiT?-np2¥st;$st t;)ﬁyor:d d?u;f kfmirt?at'cs:ﬁhelgebgeinéquations(m) and (42) are expressions of pure kinematics
eracy requireme at the gradient ot entropy should D€ Iy, 4o sense that the scalar or vector density field character

thednuII space Of." For flasf'izl h?'d:ﬁdynam'ﬁs’ this ther- completely determines the behavior under space transforma-
modynamic requirement entersonly through tn€ préssureé ;o - rpg simplicity is related to the conservation of mass

and we have already realized that it corresponds to thgnd momentum. If we turn to the internal energy density

Gibbs-Duhem equation. The pressure occurs very naturqIIMeld e(r), this contribution to energy is not conserved. This

Ybservation is related to the fact that volume changes lead to

a change of internal energy, where thermodynamic informa-

transformations on the state space of hydrodynamic%on enter_s throug.h_ thg pressure field. We hence_ formulate
the following modification of Eq(41) as the canonical ac-

HO={(p(r),u(r),e(r))}, we first consider the transforma- S - .
tion behavior of a scalar density field such as the mass der'gl-on of the infinitesimal space transformatig®) on «(r):

sity p(r). Let us describe an infinitesimal space transforma-
tion by

Equation(41) expresses the canonical action of the infinitesi-
mal space transformatiof39) on a scalar density field. As a
next step, we consider the transformation behavior of a vec-
tor density field such as(r). More preciselyu(r) is a co-
Gariant vector density field. A vector field cannot simply be
evaluated at the position—tv(r), but needs to be properly
convected according to the gradient wfr), so that con-

J
Ev(r) -u(r)]. (42

d d
r—r+tv(r), (39) e(n)—e(r) =ty —- [N e(n]+p(r) —--v(n) . (43

wheret is a small parameter and the vector fig{d) gener-

ates the infinitesimal transformation. tfis interpreted as With Egs. (41)—(43) we know how the infinitesimal space
(infinitesimally short time, v(r) formally corresponds to a transformation (39) acts on arbitrary functionals of
velocity field. For a scalar field, the natural action of an(p(r),u(r),e(r)), that is, on arbitrary functions defined on
infinitesimal space transformation would be that the transthe state space(® of hydrodynamics.

formed field is obtained by evaluating the original field at the We now assume that the operatorgenerates the trans-
positionr—tv(r). For a scalar density field, also the effect of formations(41)—(43) in the following sense:
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9 space of the Poisson operator, which corresponds to assum-
— = vnp(n] ing that s(r) is a scalar density field. The corresponding
Poisson operator is then given by

J
()

J
—5-[V(r)U(r)]— -u(r)

96
0 p(r')y— 0
T ) e(r)]=p(r) = -u(r) "
— —[WIN)e(r)|— ry—-v(r
ar T 36 98 96 96
LB =| p(n— u(r’)—+—u(r) s(n— |,
ar’ ar’  or’ ar’

0G
op(r’) a6
P 0 s(r’)&— 0
5G r'
=1 L. d3r a4
f (r.r) su(r’) 44 (47)
whered= &(r—r'). Usings(r) as an independent variable in
6G . : Lo
constructing the Poisson operator for hydrodynamics is thus
oe(r') very advantageous. However, when polymer solutions are

considered in Sec. I, the total rather than the solvent en-
tropy is conserved by the reversible time evolution, so that
the use ofs(r) as a state variable is less advantageous. On
G= f u(r)-v(r)d®r (45)  the other hand, by using(r) as a state variable for polymer
solutions one can very intuitively couple the polymer and
solvent dynamics through the osmotic pressure.
One can summarize the above procedure for constructing
#_ as follows. We are interested in the Poisson bracket that
allows us to determine the reversible time evolution from a
given energy function. Since we have a more direct under-
standing of space transformations rather than of time propa-
gations, we consider the behavior of the state variables under
space transformations together with the corresponding gen-
erator (momentum. By relating space transformations and
momentum, we obtain information about the appropriate
Bbisson bracket dr operator.

There are a number of alternative procedures for deter-
ining L. One possibility is based on a close relationship
etween the Lie group structure and the Poisson structure
the state variables are regarded as elements of the dual of a
Lie algebra. We refer interested readers [8] and, in par-

ticular, to[19], where important examples are worked out
,\98(r—r’) licitly (in Sec. 4.
* p(r) * explicitly _ _
ar’ In another alternative approach to constructinghe state
, , variables are regarded as elements of a space that is reduced
,\do(r—r )+ do(r—r )u(r) in size (by the Marsden-Weinstein reductidi2]) from a
/ ar’ ar’ ' larger space on which the Poisson kinematics is canonical.
) , For example, in the context of hydrodynamics, the Poisson
r,)aé(r—r )+ go(r—r )p(r) kinematics in the Lagrangian description is canonical. The
ar' ar' Eulerian description can be obtained from the Lagrangian
(46) description as a Marsden-Weinstein reduction. Variations on
this method have been developed :10,14. Alternatively,
Only the center column ofS(r,r') is fixed by Eq.(44).  the state variables can be obtained by a projection operator
The center row is determined by the antisymmetry requirefrom state variables in a more microscopic state space in
ment on the Poisson operator. If the four corner elements ar@hich the Poisson kinematics is known. While this method is
set equal to zero because they are irrelevant to the kinematiegry useful, there is, however, no guarantee for success be-
and because the gradient of the entropy then turns out to lieause problems with closing the equations may occur.
in the null space of the Poisson operator, we arrive at the In some cases it may be useful to look for a one-to-one
previously given expressiof21) for the Poisson operator for relation with another state space whose Poisson kinematics is
hydrodynamics. known. In such a case the transformati@i) of paper |

The formulation ofL for hydrodynamics becomes some- relates the two Poisson operatdrsThis is, for example, the
what simpler if the state spadé®={(p(r),u(r),s(r))} is  procedure that we can use to derive the Poisson kinematics
used instead ofi(®. The simplification results from the as- of the Eulerian hydrodynamics in the entropy representation
sumption that the gradient of the entropy must lie in the null(21) from the energy representatié4?). Finally, also meth-

where

is a bilinear functional of the covariant vector fialdr) and
the contravariant vector field(r) that is closely related to
the kinetic energy and hence to kinematics. The linearity o
G in v(r) is crucial in order to obtain an operatbrthat is
independent of the infinitesimal space transformatifr).
One should note the well-known crucial role of momentum
in the generating functional for space transformatitfs):
For a translation independent of positi@h,is the projection
of the total momentum on the shift vecter for position-
dependent space transformations, the momentum density
weighted byv(r). Equationg44) and(45) constitute the pre-
cise formulation of the idea that the action of infinitesimal
space transformations and pure kinematics should be relate
From Eqg.(44) we conclude that the Poisson operator has(
a matrix representation of the form

*

LOrry=[ * u(r

*
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ods developed originally in guantum mechanics have beetheory. In a nonisothermal situation, a spring potential of
employed to derive the Poisson kinematicg 13]. entropic origin V(r,Q) would actually depend through
The formulation of the Poisson operator is quite straighttemperature on position. More precisely, we assume that for
forward when the state variablgsare densities of conserved potentials of purely entropic origin the rati&")(Q)
quantities. For example, the operatorof hydrodynamics =V (r,Q)/T(r) is independent of. While true interaction
merely expresses the conservation laws. State variables rpetentials should be incorporated into E48), the classical
lated to conserved or extensive quantities are particularlgntropic spring must be included in the entropy
convenient also in constructing suitable energy and entropy

expressions. In general, however, we leave the nature of the ve(r,Q)
state variables unspecified. s(p(r),e(r)— | ¢(r.Q)|—=~— 6
IIl. NONISOTHERMAL KINETIC THEORY 3 3
+Kglny(r,Q) |d°Qd°r. 49
OF POLYMERIC FLUIDS slny(r.Q) Q} (49

As a next step we cast a nonisothermal kinetic theorywhile s(p, €) is to be interpreted as the solvent entropy, the
model of polymeric fluids into our general framework. En- 4Iny term is clearly associated with the dumbbell transla-
couraged by our experience with classical hydrodynamicsijonal and configurational entropy, and the entropic potential
we do not start from the known equations of motion forV(S)(r,Q) accounts for entropic effects on the much finer
obtaining the four building blocks in the fundamental equa-jevel of polymer segments that have been eliminated in
tion (1). We directly formulate expressions for the energycoarse graining to the dumbbell level. For later use, we write
and entropy, we construct the Poisson operator by means gbwn the functional derivatives d& and S with respect to

group theory, and we modify the metric matrix of classicalthe independent variables= (p(r),u(r), e(r), ¥(r,Q)):
hydrodynamics in a rather suggestive manner, which is

checked to be consistent with the general requirements. The

time-evolution equations implied by the resulting four build- - EV(’)Z
ing blocks of our formalism will then be written down ex- SE
plicitly and compared to the known equations of polymer e v(n) (50)
kinetic theory. Again, we do not obtain new equations, but 1
the reader should learn to appreciate the implications of the V(Q)
GENERIC structure and the general procedure. Of course,
the dumbbell model considered here is only a very crudgpq
approximation to polymeric fluids. A related but different
approach to the same problem can be founfRii. u(r
T(r)
A. Independent variables, energy, and entropy 0

We choose the following fields as independent variables oS 1 51
for a dumbbell kinetic theory of a dilute polymer solution: ox —_— ' (5D
the mass density(r) of solution, the momentum density T(r)
u(r) of the solution, the internal energy density of solvent VO(r,Q)
€(r), and the configurational distribution functiaf(r,Q), - T—ksml//(r,Q)—kB
where Q is interpreted as a dumbbell configuration vector.
For a dilute polymer solution, the mass and momentum den- _ _
sities of the solvent and the solution coincide, whereas the B. Construction of the Poisson operator
large polymer molecules can contribute significantly to stress  As the state space for our nonisothermal kinetic theory of
and internal energy. a dilute polymer solution we ugép(r),u(r),e(r),¥(r,Q))}.

The total energy is obtained by adding the kinetic energyrhe action of space transformations efr) andu(r) is still
and the solvent and polymer potential energy contributionsgiven by Eqs(41) and(42), respectively. However, the pres-
1 u(r)? sure term in theT Fransformation of the internal energy density
E:f 5 WJFGUHI V(Q)z//(r,Q)d3Q}d3r, should be modified due to the presence of osmotic pressure,
J J
E(r)HE(r)—t{ﬁ-[V(r)E(r)]+[p(r)+H(r)]E-V(r)],
whereV(Q) is the interaction potential between the beads of (52)
a dumbbell(potential of the “connector or spring force.’In
many cases, the spring force is assumed to be of entropighere
origin. Within our framework, it is natural to trace back care-
fully the energetic and entropic origin of interactions. While . 3
in equilibrium thermodynamicgand in the bracket formal- H(r)—ZkBT(r)f Y(r.Qd*Q (53
ism [9]) only a combination of energy and entropy effects

occurs in the fundamental free energy, energy and entropig the osmotic pressure due to the presence of the beads. The
play clearly distinct roles in our present nonequilibrium solvent temperature is given by the expression in @§).

(48)



6642 HANS CHRISTIAN OTTINGER AND MIROSLAV GRMELA 56

The quantity 7 ¢(r,Q)dQ corresponds to the bead number and polymers in the reversible dynamics of a polymer solu-

density(this statement actually clarifies the normalization oftion. Its presence is dictated by the requirement that the gra-

). dient of the entropy must lie in the null space of the Poisson
The occurrence of osmotic pressure in ) is related  operator.

to entropy effects; it is essential for ensuring that the gradient Finally, the transformation behavior of the configurational

of entropy lies in the null space of the Poisson operator, thadlistribution function(r,Q) is determined by the require-

is, for satisfying the degeneracy requireméat However, —ments that) is a scalar density in and thatQ is transported

the conservation of the spring contribution to entropy unde®s a contravariant vector. These requirements can be formu-

the reversible dynamics has not yet been taken into accourlgted as

This can be done by further modifying Eq52) and(53) in

the following manner:

d
w(r,Q)Hw(r,Q)—t[g-[V(r)w(r,Q)]
d d
6(f)—>6(f)—t(5'[V(f)f(f)]+[p(f)1+ﬂ(f)]i5V(f)],

J T
(ﬁv(f)) -Qt//(r,Q)“- (56)

+ —.
(54) 9Q
where
With the transformation behavior of all the state variables at
VI(r,Q)] hand, the Poisson operator can now be identified in exactly
H(r):f #(r,Q) 2kBT(r)1_QT d°Q (59  the same way as for hydrodynamics. Howevdr, Q,r’,Q’)

is now a bigger matrix, where the new components associ-
is the osmotic pressure tensofhe osmotic pressure tensor ated with¢ even have an additional lab€l (matrix multi-
in Eq. (54) provides the thermodynamic coupling of solvent plication implies integration ove®’ also:

* rr)ﬁ_b‘ * K
p( por
96 96
* u(r')—+ —u(r) X
ar’  or’
L(r,Qr",Q")= R : (57)
* N 1+11 * %
€(r )ar’+ar’ [p(r)1+1I(r)]
— )35+ J ) s,
r —+ — W(r C—
(r',Q PRRNFTS W(r,Q)Q o

The second row of the Poisson operator is obtained from the second column and the antisymmetry requirement. When the
remaining components are chosen to be zero then it can be verified that the gradient of the total (Bdjrapgeed is
contained in the null space of the Poisson operator. The polymer contributions to the entropy and the osmotic pressure tensor
are tuned such that only the Gibbs-Duhem equat®® for the solvent is needed for verifying the degeneracy requiref@gnt

Our final expression for the Poisson operator is, after once more carrying ouegrations,

0 J 0 0
ﬁp(r)
J J T g a J L 0
P(f)g Eu(r)+u(r)ﬁ E(F)E+ 5p(r)+;-l‘[(r) y(r,Q )E—E'lﬁ(f,Q )Q (9_Q’
L(r,QQ")=- J 5 J
0 ﬁe(r)+p(r)g+ﬂ(r)«ﬁ 0 0
J J J
0 Elﬂ(r,Q)ﬂL&—Ql/l(r,Q)Q'E 0 0

(58)
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The above procedure for incorporating entropic spring conperature dependence of the Hookean spring constant they
tributions seems to suggest that there exists an arbitrarinesieveloped a procedure for separating energetic and entropic
in the description of reversible polymer contributions to thecontributions to the spring potential. When assuming an ad-
stress tensor: Incorporation via energy or entropy seem to bgitive superposition of energetic and entropic contributions,
equivalent. However, there is an important difference conthe parameter of Sarti and Marruccj21] has the tempera-
cerning the role of temperature for these two possibilitiesiure dependencg = uo(1+ To/T) and their separation pro-
V(r,Q) is proportional to temperature, whered¢Q) is  cedure for Hookean springs is fully equivalent to the splitting
independent of temperature. Therefore, by regarding the temnto energy and entropy in Eq$48) and (49). The impor-
perature dependence of the model parameters, there shoulthce of separating energetic and entropic effects is obvious
be a natural way for incorporating an effect either throughin the GENERIC approach.
energy or through entropy contributions. Not surprisingly,
for entropic springs the temperature dependence of the
spring constant is such that the incorporation through the C. Metric matrix
total entropy is the obvious choice.

Sarti and Marrucci calculated the nonequilibrium free en-  Our suggestion for the metric matrix is an extension of
ergy for the Rouse-Zimm mod¢R1]. For an arbitrary tem- Eq. (38):

M(r,Q,Q")
0 0 0 0
FJ a\T o d 9 .
0 _(E‘VISTE) I o1y 0
=l o i 2 1 .. 9 9 2T av)z s 2T oV L d
“usty o Z STy y— AT EJr? (73 #(r,Qd*Q *?0—Q,-1//(TVQ )0—Q,
0 0 9 2T oV a 2T 9 9 T 9 :
&_Q'?J_Qw(r'Q) ) Tl//(f,Q)a—Q a(Q-Q")— E'z—gl//(f,Q)E 8(Q—-Q")

(59

wherez; is the solvent viscosity and=0 has been assumed the building blocks in the GENERICL) we can now write
to simplify the notation; this assumption indirectly corre- down epricitIy all the time-evolution equations, so that we
sponds to the solvent incompressibility usually assumed i¢@n carefully interpret the resulits:

polymer kinetic theory. A more formal treatment of the in-

compressibility constraint would require the elimination of Jp P

the density field and a modified definition of functional de- —=——-(vp), (60)
rivatives (see Sec. 5.4 0of9]). Starting from the solvent at ar

building block, the above form ofl was obtained by first

determining the lower right corner elemetib obtain the J J J 5

usual diffusion behavior in the dumbbell configuration u_ 3 :

spacé and then adding further terms such that the g?adient of dt  ar (V= E( P+ ZkBTf vd Q) * or s
energy(50) lies in the null space o andM is symmetric. p

The degeneracy requireme® introducesV into M, in the +—. J Q
same way as the degeneracy requirent@nintroducesv(® or

(via IT) into L. Again, M turns out to be positive semidefi-

nite. As an additional observation, we note that the gradients o1 1
of the total mass of the solution and of the total polymer de _ d Jd d - -
mass lie in the null spaces of bothand M. g VOt g gt nsyiym 5 (Pl Iy

N v
—+
dQ  dQ

)t/fde, (61)

N Zf Vv ((N . av<3>) O
D. Time-evolution equations ¢) aQ 19Q  dQ

The above procedure of developing a nonisothermal ki-
netic theory model for dilute polymer solutions is typical of _ 2kgT i ﬂ
our approach to nonequilibrium systems. After determining { dQ 9Q

d*Q, (62
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solvent and polymers are canceled in this balance equation.
Particularly interesting in Eq(65) is the third term on the
right-hand side, which implies that nonuniformities in the
spatial distribution of polymer internal energyesulting
from a nonuniform polymer concentratipare smoothed by
ﬁ. kB_T’9_¢ i. 2kgT ‘9_‘# (63) a diffusion process, thereby increasing the total internal en-
a2y o 9Q ¢ 4Q ergy. There is no corresponding term for the entropic spring
potential; in fact, this term is the only one in all the time-
evolution equations that allows us to distinguish between
energetic and entropic springs.
In spite of their very different roles in the GENERIC build-  Once more, the reader should pause and realize that the
ing blocks, the potentialg(Q) andVd(r,Q) enter the mo- form of these equations may not be surprising, but the oc-
mentum balance equatiof®1) and the diffusion equation currence of the Kramers expression for the stress tensor for
(63) in exactly the same way. However, they enter the solhoth energetic and entropic springs in the momentum and
vent internal energy equatiaie2) differently. energy balance equations is actually quite remarkable. This

The equation of continuity60) coincides with Eq(14).  is not assumed in the formulation of the equations, but it
In Eqg. (61), the pressure is modified by the osmotic pressurejgiiows from the GENERIC structure.

this modification would be irrelevant for an incompressible
fluid. More important is the Kramers-type polymer contribu-
tion to the stress tensor in the last term, where energetic and
entropic forces occur in exactly the same way. In the solvent
internal energy equatio(62), various polymer contributions
occur in addition to the effect of the osmotic pressure tensor.
Finally, Eq. (63 is the usual diffusion equation of polymer
kinetic theory, where again energetic and entropic forces oc-
cur in exactly the same way. Only the local solvent tempera- |, thjs section we illustrate how the GENERIC approach
ture occurs in this equation for the configurational distribu-5n pe used as a guideline for constructing an extended poly-
tion function; effects of temperature variations on themgr kinetic theory of dilute solutions. We here want to go

polymer scale are not taken into account. beyond reformulating previously developed time-evolution

If, for example, in engineering problems, one prefers to ; ; . L o
work with the variables 4,v.T.y) instead of p.u,e,y). equations and in fact we will obtain important physical in

then the transformation betweerandu is given in Eq.(13). sight into a problem recently investigated by other methods.

L . ; ; Of course, we first need some feeling for the physics to be
Th? defln_ltlon(_25) givesT(p, €) r_:m(_d, by_ |nverS|on¢(,_3,T). described and we can then fix the structure of the theory by
This relationship allows us to eliminatein favor of T in all ing the GENERIC f i
the equationg60)—(63). Obviously, the caloric equation of using the ormalfism.

state or certain material propertiés.g., the heat capacjty . ﬂThe phy?call effect wef want_to mcoLporate here is the
implied by the fundamental relatios=s(p,e) enter the influence of polymer conformation on heat transptsee

time-evolution equation obtained in this manner Tor [22-24 for recent investigations on this problem; see also
The energy balance equation can be written in a moree€c. 9.1 of[9]). Our starting point is the dumb_bell kinetic
transparent form when the tot@olvent plus polymerinter-  theory of Sec. lll. Since internal polymer motions are ex-
nal energy density pected to be relevant for the heat flux we use the following
list of state variablesp(r), u(r), e(r), and ¢(r,Q,v,V),
where the additional argumentsandV of the distribution
function ¢ can be thought of as relative velocity variables
toty o\ 3 corresponding to changes irand Q. Another approach to a
€ (r)—e(r)+f V(Q#(r.Q)d"Q 64) similar problem can be found if25].
A further motivation for the development of this section is
the desire to better understand the difference between spring
is introduced: potentials of energetic and entropic origin. We have carefully
distinguished between energetic and entropic effects in the
GENERIC approach, but they turned out to be almost on
exactly the same footing in the nonisothermal kinetic theory
of Sec. Ill (the only exception being the energy transport
et 9 o 0 0T 9 KT 9 5 associated with polymer diffusion This situation might
o (ve™)+ o 7\;+ o 2_g ar Vyd=Q change if we consider a more detailed theory not only of the
polymer contribution to the momentum flux but also of the
heat flux contribution. The general thermodynamic principles
incorporated into the GENERIC structure should be helpful
in clarifying the situation.

ap 9 d (a)T z(av av<3>)
Far ol | L P B oo

] All the terms describing the exchange of energy between
b

IV. KINETIC THEORY FOR THE POLYMER
CONTRIBUTION TO HEAT TRANSPORT

1 .1
ToNYYT S

Vv .
p1+H—fQ&Tg¢d3Q):y. (65)
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When using the total mass of a dumbbelin{R and the
reduced mass of the two-bead system'Z) in formulating
kinetic-energy contributions associated with center-of-mass

(70)

and relative motions, we arrive at the following expression 1\c>y‘
for the total energy: ~ IR w
= > |5
~Tx %\ll% g%
SRk = n>
1 U( )2 ~, 1 — I . ~IR
E= +e(n+ | |z m|2v2+= V? SIS
HZp() E()JZ 2 -5 sz
~lEoE .
V(Q) (1, QV.V)d*Qd* d*V| dr.  (66) s TE
o > |1:>Q + +
The importance of a mass parameteris natural in heat L %\llg ~|Q
phenomena; it might simply be the bead mass as suggested ‘i_ Q{ §>
by the above arguments, but it could also be some effective “”F ‘“l‘% ® !1%
mass incorporating additional effects of solvent hydrody- Q|b 9 <2
namics. 5 & %
For the entropy, we only extend the list of arguments of > N>|E = |Q
the distribution function in the previously given expression = |5 ~TE
(49), s
>
v(r,Q)
8= | |8t e(n)= | w(r.QV.Y)| — 77— 5
Z
IVAVAPE e cAP EVAE < =15
+kglny(r,Q,v,V) |d°Qd°vd V]d r. (67) = s
- >
<% 'R
. . - | E
From these expressions ferandS we obtain the follow- = !N
ing functional derivatives with respect to the state variables: ° %TVL_ ° S
m’|\(‘g V>|o,
1 1 =lR
— Ev(r)2 ?>
oE v(r) - ~ :E
~ 1o, = |5
=m| 2v +§V +V(Q) <%
=
< 12
and >
<
RS |
- =8
= >
r =l = -
a0 O
(r) = 7 " s»
TS = 3 +
85 0 NN
—= 1 . T
S — €9 S5 o)s
(N .
V(r,Q) ~c ~2
— ————— —kgIny(r,Q,v,V)—k ®
T(r) B '7Z/( Q ) B ;
REES
For the extended theory, a multiplication with the matrix
L=L(r,Q,v,V,Q",v',V') implies additional integrations .
with respect tdQ’, V', andV’ (as before, we assume that an e 3( e e
r’ integration can be carried out due to the occurrence of an —
overall § function. For the extended kinetic theory we u

modify the Poisson operator of E(p8) as
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where ¢=y(r,QV,.V), o' =y(r,Q V' V'), §=5Q
-Q")s(v=v")s(V-V"), and
(S)
II(r)=— f «/x(r,Q,V,V)Q%&QdSEdSv.
(7D

Notice that there is a new feature in E@0) compared to
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erator for exactly the same reasons as the osmotic pressure
tensorIl). It is remarkable that in the more microscopic
approach of this section both the energetic and the entropic
spring potentials enter the diffusion equation through the re-
versible dynamics, whereas in the approach of Sec. Il they
occurred in the irreversible dynamics. The osmotic pressure
tensor(71) does not contain the isotropic contribution of Eq.
(55); in the more microscopic approach one obtains a more

all the previously specified Poisson operators: It containsletailed expression for the kinetic contribution to the poly-

nonzero entries outside the second row and col@associ-
ated with the momentum density or velocity fieldhe entry

mer stress tensor. Actually, this kinetic contribution results
from the new terms in the last entry of the second row, which

in the lower right corner is determined by the kinematic ef-have to be introduced in order to satisfy the Jacobi identity.

fects associated with the velocity terms in the last row of Eq.

(68) (this term is closely related to the operator for the

Finally, we need to specify the metric matrix. We use the
same shorthand notation as for the Poisson operator and

Boltzmann equation, which also expresses the kinematics ofrite the metric matrix in the form
a distribution function in phase spaceThe off-diagonal

terms involving the entropic potenti&l® are naturally in- M(r,Q,v,V,Q' V' .V )=M;+M,, (72
troduced such that the gradigi®) lies in the null space of
the Poisson operatdthat is, V(® occurs in the Poisson op- where
|
0 0 0 0
0 — inTi_Fli.nTiT i-nT.)/ 0
ar S ar Tar S or ar s
M= 0 9 1 .. a9 73
sty o0 STy Y= AT o 0
0 0 0 0

contains the typical solvent building block of E€8), simplified by assumingc=0 (indirectly corresponding to solvent
incompressibility. For the extended kinetic theory, we postuléad justify latey

0 o 0 0
0 o 0 0
20 (1 (- 1 - T - I S P N S | T
M= 0 0O o Tim\2v2+§V2)¢d3Qd3ud3V+§E~J'Qv~Vz//d3Qd3ud3V YTV ﬁ“"ﬁ E'/’Q'E(Z = v-ﬁ)
o o gT(a~+ﬁv+gQ0Tlav+ﬁ~) gf(a a+4a 0)5 gQaT(a 2,9 ’7)5
—Il—=-Vv =N Q7= =V ———l|=¢¥= — Yy —=|o— —Q —| = —_— T = =
m-\ov v N YT 4 ov v N v 2m? \ gv wav N wav 2m?” dr\gv NV oV T av
(74)
|
where fusive motions due to temperature gradients, where the tem-
perature variation over polymer dimensioQsdT/dr is the
o aT(r)\? natural parameter to occur. Second-order effect3-iaT/dr
T=T(r,Q=T(r)+ 16T(1 Q- o (75  had to be included in order to ensure ti\ds is positive

semidefinite, and this is the reason Toto occur in Eq(74).
~ = In the more microscopic approach of this section, the poten-
andT'=T(r,Q"). tial V does not occur in the metric matrix. After incorporat-
The contributionM; is completely determined by the en- ing only these simple physical ideas and accounting for all
try in the lower right cornetthe other entries are once more the properties of the GENERIC structure we arrive at the
determined by the symmetry of the metric matrix and thesymmetric, positive-semidefinite metric matii%4) and we
requirement that the gradient of the energy must lie in theahus obtain all the time-evolution equations for the state vari-
null space of the metric matrixIn writing down the entry in  ables. In order to see the most interesting implications of the
the lower right corner of Eq(74), we first of all wanted to GENERIC approach, we consider the predicted diffusion and
reproduce the diffusion equation for isothermal flows. Thenenergy balance equations in more detail.
we introduced a coupling of internal and center-of-mass dif- The explicit form of the diffusion equation is
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a9 v d g\ Ry +a d ~+1 d 9 5 +a d g
= g LvEviyl 70 ||\ar" Q+Viy =Y vraQla ) ¥ e ¥
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This diffusion equation is closely related to the stochastidorm of the polymer contribution to the stress tenééram-
differential equations assumed as a starting poinf2i. ers expressionwithin the GENERIC structure, the diffusion
When we regard the second-order terms in temperature graquation in velocity space determines the form of the heat
dients as minor effectsT(=T), the most interesting differ- flux vector. Expressiof80) is a natural and minor modifica-
ences compared tf24] are the underlined frictional cou- tion of Eq.(8.11) of [22] in the absence of intermolecular
plings between center-of-mass and relative velocities for outnteractions. Although we carefully kept track of energetic
dumbbell model, the additional kinetic effects in the third @nd entropic spring potentials, these potentials of very differ-
and fourth terms of Eq(76), and an additional term due to ent physical origins occur on exactly the same footing in the
the temperature dependence of the entropic spring force. Agduation for the total energy density. It is only in one of the
these new terms are required by the GENERIC structure. terms of the diffusion equation that an entropic and no ener-

The energy balance becomes most transparent when v@tic spring potential occurs. However, this is very important
introduce the total internal energy density because the difference between entropic and energetic

springs hence occurs indirectly in the momentum and energy
~ o balance equationgbecause the solution of the diffusion
+V(Q)}¢d3ngvd3V- equation occurs in these balance equatiohsthe detailed
discussion of the polymer contribution to the heat flux, the
GENERIC approach allows us a very clear separation of en-
The time-evolution equation for the total internal energyergetic and entropic spring potentials in all the time-

- 1_
2., T2
2V +2V

1
Em

er)=e(r)+ J

density can be written as evolution equations. The crucial difference results from the
temperature dependence of the parameters occurring in the
ge J on, ¢ T 1 .1 respective potentials.
a o (ve HE')‘E”LE”SV"’_E(M While, in the momentum balance, the term containing

L JVS V) sr:acond—orger deri\f/atia/(es)with Ircc—;‘sfpectrtl'rlm tge last entry ofd
KN 3 43 43T the second row of Eq(70) could formally be incorporate
)y Ef Qg YdQdvdViy into the stress tensor, this is not the case for the correspond-
ing second-order derivative term in the balance equation for
the total energy densifythe last term in Eq(78)]. In order to
develop a more explicit theory of the heat flux vector, one
o would need to solve the diffusion equati¢f6) and to evalu-
X yd*Qd*u d*V ate the integral in Eq80) (see, e.g., the procedure[i24]).
1 _ 99 Alter_natively, one could try to pass from_th_e equations of this
- _mf VVQudRQdr d3V i— —v, (78)  section to a more coarse-grained description. The GENERIC
2 ar or approach has provided us not only a new starting point for
such calculations but also important information concerning
where the role of potentials of energetic or entropic origins in heat
1 transport. Again, the gradients of the total mass of the solu-
II“‘):mf (2’\7’\7+ _vv) $d3Qd3y d3V. (790  tion and of the total polymer mass lie in the null spaces of
2 bothL andM.

1
Em

d ~

-— |V +VO+v
or

- 1-
2,372
2V +2V

This result is very similar to Eq65). The penultimate term
in Eq. (78) allows us to identify the polymer contribution to V. COMMENTS ON FURTHER EXAMPLES

the heat flux vector,
Op= f \
(80) approach, we consider the nonisothermal kinetic theory of
polymeric fluids of Sec. Ill in a more macroscopic formula-
In exactly the same manner as the time evolution of thdion in which we use a conformation tensor instead of a
diffusion equation in configuration space determines theconfigurational distribution function. While EIT is a phe-

A. Extended irreversible thermodynamics

In an attempt to reproduce the equations of extended irre-

+VO+V|yd*Qdvd®V. versible thermodynamicéEIT) [26] within the GENERIC

m

- 1
24 72
\Y; 4V
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nomenological approach in which the stress tensor is among 1
the independent state variables, we anticipate that the con- szinpka {tr[1—cc(r)]+In[detc(r)}d%. (85
formation tensor for a Hookean dumbbell model is closely
related to the stress tensor. Once we have identified the struc- . T
ture of the conformation tensor kinetic theory, we can easily%he constant is chqsen such thatc(r) =1 at equilibrium
find the GENERIC formulation of EIT by transforming from and we can then write
the conformation tensor to the stress tensor.

We assume a constant polymer concentration throughout VO(r.Q) 1
the polymer solution, that is, —’=§chQ2. (86)

T(r)
Mp= f Y(r.Qd°Q 81  Note that
is assumed to be independent rof Otherwise, we would 55 55, l
have to introduce the polymer number density as an addi- F(r)zéc(r) =§npkg[c(r)* el 7

tional field.

w fi f i fiel . .
e define a conformation tensor field by The Poisson operator for the conformation tensor theory

is very similar to the one in Eq(58). We only need to
1 modify the last entry in the second colurtthe last entry in
C(r):n_f QQy(r,Q)d*Q (82 the second row is then fixed by the antisymmetryLyf In
P the more macroscopic theory based on a conformation tensor

and we then choose the following fields as independent staf@ther than on the configurational distribution function, the
variables for a dilute solution with constant polymer concen-continuous labeQ is replaced by the discrete tensor indices

tration: the mass density(r) of solution, the momentum j. k. If the three components of the vector in the last entry in
densityu(r) of the solution, the solvent internal energy den-th€ second column of Eq58) are labeled by, then these
sity €(r), and the conformation tensor fietdr). As a word ~ c°mponents should be replaced by

of warning, we would like to point out that only the second

moment(82) of the distribution function is here kept as an

independent state variable. Such a description can only be ﬂ_ , (c- i) -5 (C. i) (89)
valid if all the higher moments either are functions of the ar, ™ ar K NV or ]-'

second moment or possess a rapid time evolution. If one

misses slow independent variables in the thermodynamig the first term in expressiof88), the spatial derivative acts
modeling of a system, such as a higher moment, then incognly on the tensoc and, unlike in the other entries in the
rect predictions must be expected from any kind of generasecond column of Eq(58), not on the components of the
thermodynamic formalism. This is the risk of assuming thakector that is multiplied byL. This difference results from

a rather limited set of state variables is sufficient. As pointedne fact that is anabsolutetensor field, whereas scalar and
out before, the choice of suitable state variables is a cruciglector densityfields occur in the other components.

step and there is no universal choice of state variables for The gsmotic pressure tensor occurring.ishould be cho-

complex fluids. _ _ _sen such that the gradient of the entropy lies in the null space
In this section, we consider only entropic and no energetigs | A possible choice is

effects for the polymers, so that E@8) reduces to the en-
ergy of hydrodynamics,

2
EIJ [Eﬂ-i-e(r)

2 plD where a divergence-free term may be addedI{@. Since
When we assume a quadratic entropic poterd&(r,Q)  We determineds, only up to an additive constant, we do not
and a corresponding configurational distribution function of<eep track of all the isotropic contributionskband we then
the Gaussian typgthe Gaussian form of the distribution ©btain from Eqs(87) and(89)
function actually follows from maximizing the entrop9)
under the constrain{81) and(82)], then theQ integration in
Eq. (49) can be carried out and, after neglecting an additive
constant, we obtain

, (89

d3r. (83

IT=nykgT(1—-cc). (90

Neglecting isotropic contributions once again, this result
agrees with what one obtains by carrying out the integral in
Eqg. (55 with the Gaussian distribution maximizing the en-
tropy.

For the metric matrixM we suggest the following modi-
where the polymer contribution to the entropy &] fication of Eq.(38):

S= J s(p(r),€(r)d3 +S,, (84)
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0 0 0 0
0 J T& 1(9 Tﬁ ' J T 0
o s EJF o sy o msTY
M(r)= ) 1 .. 9 p) , (91)
0 - L= - e — T2 — 0
7sTY ar 27’ST7'7 ar AT ar

2

0 0 0 c
NpKgCAy

wherel  is a time constant. For the lower right block, which equations in a unified manner. The key idea is the construc-
transforms a tensor into another one, a simplified but obviouion of a nonlinear dissipation bracket by generalizing the
notation has been usédssuming that the tensor to be mul- original ideas of Kaufmah28], Morrison[29], and Grmela
tiplied is symmetric and commutes with. Now the confor-  [30]. Beris and Edwards have not only considered many ex-
mation tensor model is completely specified. It reproducesimples but also accounted for various basic principles, such
the so-called Maxwell expression for the stress tensor angs the first and second laws of thermodynamics, the Onsager-
hence the momentum balance equation corresponding {@asimir relations, the Curie principle, and the principle of

EIT: material objectivity(or frame indifference In view of the
n . remarkable body of evidence they have collected for estab-
1+ )\Hﬁ)m =—\y?7 (920 lishing and verifying the bracket formalism we want to show
prB how their bracket formalism can be reproduced from the

whereD/Dt is the convected time derivativere of a con- CENERIC approach. In short, it turns out that the GENERIC
travariant tensor field: see, e.g., Appendix D.Z 18] or pp. approach allows us a more general choice of variables while,
106 and 107 of17)). at the same time, it has more predictive power and a more
In order to reproduce also the EIT expression for the hea$ymmetric form than the bracket formalism of Beris and Ed-
flux vector, a larger set of variables would have to be conWwards(see below By establishing the relationship between
sidered. the two formalisms we also gain additional insight into the
Our expressior(85) for the polymer contribution to the typical structure of metric matriceén particular, we learn
entropy does not coincide with the quadratic form usuallyhow to incorporate material objectivityFurthermore, since
assumed in ElTsee, e.g., Eq2.39 of [26]], Beris and Edwards have shown that the celebrated theory
known aslinear thermodynamics of irreversible processes
[31,37 is fully contained in their bracket formalism, it is
here recognized also as a special case of the GENERIC ap-
proach (concerning the Onsager-Casimir reciprocity rela-
which may be obtained by expansion of the expresg®8#  tions, the mutual degeneracy requirements of the GENERIC
around equilibrium. For the gradient of the total entr¢@¥) structure imply additional restrictions that, in the previous
with the polymer contribution given in E¢93) to lie in the  approaches, need to be introduced and justified separately
null space of the Poisson operator, the anisotropic osmoti€ince both the bracket formalism and the GENERIC ap-

Sp=— %npkBJ [1—cc(r)]:[1—cc(r)]d®, (93

pressure tensor must, however, be changed to proach employ the energy for generating the reversible dy-
namics, the Poisson brack@) must coincide with the one
II=npkgTce- (1-co), (94 used by Beris and Edwards.

For formulating the irreversible dynamics in the bracket

where the unusual form of the stress tensor should be noteg, 1 ajism, the total entropy density always needs to be in the
Only close to equilibrium this coincides with the familiar list of state variablex. If one wants to use temperature in-

srt]resi tensor expressi%kBT(l— cc). We hence believe goqq of entropy density, this can be achieved by a subse-
that the entropy expressiaBs), or quent Legendre transformatigsee Sec. 9.1 d]). We as-
1 sume thatx is of the form (,;,s), wheres is the total
Sp:inpka ”d3r, (95) entropy density and all the other variables are labeled by
is preferable in EIT.

tri +In de( 1-

NpkgT NpkeT (as in hydrodynamics, this labefenerally contains continu-
ous position labe)s When the label 0 is used, it corresponds
to the variables=s(r).

We first consider the dissipation bracket formulated in
Egs. (7.1-19 and (7.1-29 of [9]. Since we are using the
entropy S for generating the irreversible dynamics while

The structure of a large number of time-evolution equa-Beris and Edwards are using the eneigyour dissipative
tions for complex fluids has been analyzed by Beris andracket(5) does not coincide with the dissipation bracket of
Edwards[9]. They developed a bracket formalism as a gen-Beris and Edwards. Their linearized dissipation bracket has

eral framework for formulating all these time-evolution four contributions corresponding to the matricksB, C,

B. Bracket formalism of Beris and Edwards
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andD in Eq. (7.1-29 in [9]. We first consider thé contri- SE
bution and we give the corresponding metric mami%®) in ME| B, | 0. 97)
the GENERIC(1). As before, the superscripE] on the A
metric matrix indicates that the list of variabl&scontains T
the entropy densityso that the energy is the corresponding
thermodynamic potentigl as required when using the
tional restrictions on the metric matrix or the corresponding
TA. A E dissipation bracket. For the present choice of variables
') ' Sw, x=(w;j,s), the dissipative contribution to the time evolution
My = SE 1 6 oE (96)  of x is simply given by the last column vector of the metric

matrix. It is then straightforward to verify the equivalence of
the resulting equations with those of the bracket formalism.

reproduces the dissipative time evolution corresponding to 1h€B, C, andD contributions in Eq(7.1-24 of [9] can
the A contribution to the dissipation bracket. In this equation,P€ reformulated in a similar way. We next discuss e

the Einstein summation convention appliése summation contribution, which has the most complicated form and is the
over labels or j excludes @ The symmetry oM(® follows ~ only one required in hydrodynamics. Farj’=Df¢, the
from the symmetry ofA. Furthermore,MgE) is positive dissipation bracket is equivalently represented and a degen-
semidefinite ifA is negative semidefinite. The matrix ele- €racy condition analogous to E7) is satisfied by the sym-
mentsA,, of Beris and Edwards need to be zero in order toMetrc matrix

satisfy the degeneracy condition

S T T wy i by

—T _aﬁi ,iDqB if i o A——
a, g Ay N arg Sy ar, CargT
M E) = . (99
d OE B& 19 J 1 9 OE d OE 19 g 1 1] 9 d OE
— —|D¥—+ = —TD¥— - ———|D¥¥|— —|+=—TD¥—=——| —TDf— —
Mo do) T grg Tar, “Yarg Tlr, Swi] 1 |drg dw;| Tar, ~PargT T2lar, %drg o,

The spatial indicesr and 8 are summed from 1 to 3 and derivatives in square brackets do not act on any terms outside the
brackets. The matrixv (DE) can be shown to be positive semidefinitelf is assumed to be negative semidefinite. For
hydrodynamics, we have verified explicitly that the mai®8) implied by the matrixD of Beris and Edwards, after trans-
formation to the proper independent variables, coincides with the one i(BBx.

The B andC contributions in Eq(7.1-24 of [9] need to be considered simultaneously because they can be formulated in
the GENERIC form only if the matrice8 andC are related. FoB{; = Cj;, Bjo=Cg;, andC{p=Cgq,=0, the dissipation bracket
is equivalent to the symmetric matrix

TB‘“&+ aTC“ B d OE acaéE T2ga a1
ST e, T 0o, S| ar, e, | D0Gr, T
M= (99
0 OBl G OB 0 10, _20E_Jo SE] 1[9[ .,
OS] N Sy ar, Toar, O T Sw U dr, dw| T2or 0 5w,
|
Again, a degeneracy condition analogous to €&4) is sat- J 1l 9 6SE
isfied. The conditions on the matric& and C imply On- Sij o Tloar e
sager symmetrj9], which is thus inherent to the GENERIC Qo= “ R (101
structure(in the bracket formalism, this symmetry is im- 0 J 1
poseda posterior). ar, T

The various contributions to the dissipation bracket can be
expressed in a more compact way by introducing the matriwe then have the identity

ces
1 6E (y,MEz)= —f TE(Qy,0%;02,0%%)d%, (102

Q= T do; (100 whereE is the dissipation function characterizing the dissi-
0 0 pation bracket as introduced in E.1-19 of [9]. We have

explicitly verified this equivalence for bilinear functiof.
and Sincey and z are arbitrary, Eq.(102 defines the metric
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matrix. Its positive semidefiniteness generally follows from KT~
the negative-semidefinite character of the dissipation func- m—,ul(f)
tion E. The discussion on p. 175 6] shows that the sym- !
metry and degeneracy conditions for the metric matrix auto- kgT~
matically imply the Onsager-Casimir reciprocity relations. SE m—z,uz(f)
Beris and Edwards have introduced more general nonlin- | ke . (108
. . . . o . B!~
ear dissipation function&. In order to illustrate how the ——3(r)
more general situation can be handled within the GENERIC mg
approach, we here consider the prototype of an example for v(r)
which Beris and Edwards need a nonlinear dissipation func- T(r)

tion: a chemical reaction far from equilibriutsee Chap. 12
of [9] and[33,34)). For the sake of clarity we consider an

explicit example of a chemical reaction The time-evolution equations for the densitigsdue to the

chemical reaction(103 are of the form(see, e.g., Sec.
N,+3H,=2NH;. (103  17.B.2 of[4] or Sec. 12.4 of9])

Three species of particles are involved in this reactioR
trogen, hydrogen, and ammohiand the corresponding
stoichiometric coefficients are,=—1, vo,=—3, andv;=2.

The mass of a particle of species denoted bym; . For this
three-component system, we use the following list of state .
variables: the mass densitigg(r), p,(r), and ps(r), the wherg the pressurp and the temperatur& in the above
total momentum density(r), and the total entropy density €dquations are functions @f;, p, ps, ands,

s(r).

The energy and entropy are given by

0y _vimip

ST r(p,T)(e Vlﬁer;z_eVsﬁs), (109

= i ’ + ’ 1 (110
p_ =1 pJap] S(?S €(P1:P21P313),

£l J' [1 u(r)?
") 12 pi(n)+po(r)+ ps(r de(p1,p2,p3,S
p1(r)+ pa(r) +p3(r) T= (p1.p2,P3 ), (111)
Js
+e(pa(r),pa(r),ps(r),s(r)) |d% (104
andr(p,T) is a reciprocal time scale characterizing the re-
and action rate. Equilibrium states are characterized by the con-
dition
Szf s(r)dr. 10 ~ ~ ~
ol (109 A=vipgtvops+vaus=0. (112

We furthermore introduce the auxiliary quantities . . . .
ya The quantityA is closely related to the weighted combina-

_ m: SE tion of chemical potentials of the reaction partners, which is
Mj(f)=FJ(r) 3o (1 (j=1,2,3, (106  known as the affinity of the chemical reaction. By assuming
B Pi an ideal concentration dependence of the chemical potentials
which are closely related to the chemical potentials of thene recovers the mass action lasee Sec. 3.E d#)). _
different specie$33], As mentioned above, we here consider only the contribu-
tion to dp;/dt resulting from chemical reactions. The other
1 contributions are analogous to those previously discussed in
M~ §V2>' (107 the context of hydrodynamics. Chemical reactions are part of
the irreversible dynamics. We suggest the following metric
By taking functional derivatives with respect to the statematrix for reproducing the time-evolution equatioffs09)

~ m]-
KT keT

variables we then obtain for our three-component system:
mivi mlm2 &LP) mlm31/11/3 0 - kBm]_VlA
m1m2 ViVo mgvg m2m3V2V3 0 - kBm2V2A ~ ~ ~
2 2 p V33— @~ V1M1 V2K2
M= mimsvivs MmoM3vyv3 msv3 0 _kBm3V3A 2—r(p,T) = = = . (113)
v +v +v
0 0 0 0 0 B 1M1 T VoMo T V33
- kBmlle - kBm2V2.A - kBm3 V3.A 0 kéAz
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This matrix M is symmetric and positive semidefinite and Q0
satisfies the degeneracy requiremé)t Not only the gradi- P(Q=1- — (115
ent of energy but also the gradient of the total mass Q

(1,1,1,0,0) lies in the null space & (due to the conserva-
tion of massm;v,;+myv,+myr;=0). The time evolution
of the entropy density due to chemical reactions, as implie
by Eq. (109 and the GENERIC structure, is

The crucial change in the Poisson operate8) is the re-
(ﬁ)lacement of the last block in the second column by

J J J
Ao o Qo5 HnQPQQ 5 (119

= r(p,T)(e "H1-r2k2—glsks), (114

ot T with a corresponding change in the second row dictated by

the antisymmetry requirement. In the group theoretical con-
which coincides with Eq(12.4-14 of [9]. Even when Beris  struction of the Poisson operator, the transverse projector
and Edwards need a nonlinear dissipation functinwe  P(Q) expresses the fact that the connector vector describing
can reproduce their equations with the GENERIE. The  the rigid dumbbell can only be rotated by the action of space
more nonlinear appearance of the basic equations in thg@ansformations.
bracket formalism results from considering the explicit func-  For the gradient of the entropy to remain in the null space
tional dependence of the dissipation bracketdiiox and  of the modified Poisson operatd68) one also needs to
its gradients, whereas in the GENERIC framework only thechange the osmotic pressure tensor. The proper choice is
overall x dependence of the building blocks is considered.
This observation also shows why more nonlocal theories can d
be treated by the GENERIC but not by the bracket formal- H(r):kBT(r)f ‘r/’(r’Q){lJr,g_Q'[P(Q)Q]]dSQ
ism.
In summary, we have shown how the general structure of QQ 3

the bracket formalism results from the GENERIC approach. :kBT(r)f 21— 3_2 ¥(r,Q)d>Q. (117
The disadvantages of using the energy for generating the Q

irreversible dynamics are that) the total entropy density once more we see how powerful the requirement that the
needs to be in the list of variables afid) the dissipative g agient of the entropy must lie in the null space of the

bracket has a rather complicated form that cannot easily bByisson operator is: It fixes the well-known anisotropic con-
mte_rpreted in geom_etrlc terms. The greater erX|b|I|ty_|n_ theyribution to the stress tensor of rigid rods.

choice of variables is a major advantage when one is inter- Finally, we need to give the proper modifications of the

ested in more microscopic levels of description. The atric matrix(59). As mentioned before, we assurde=0,
GENERIC approach not only allows us such more general, {hat we actually start from a simplified version of Eq.

choices of variables but, in view of the great simplicity and 5g) \ve discuss the modifications of the entry in the lower

geometric significance of the irreversible term, is bettefiant corner and of the central block with entries proportional

suited for deriving equations from more microscopic theories 7.T separately.
by coarse graining. Microscopic expressions for the T;e entry in the lower right corner is replaced by
GENERIC building blocksE, S, L, andM have been de-

rived by projection operator techniqug35]. An important 9 2T 9

example for which neither the entropy density nor the tem-— 70" ?w(f.Q)P(Q)' £5(Q— Q")

perature is in the list of variables is the Boltzmann equation

(no local-equilibrium assumption can be madé/hile the g T J

formulation of the Boltzmann equation in the bracket formal-  — 5+ 57 P(r,QD(Q)- —-5(Q-Q"). (118

ism is therefore unclear, its GENERIC reformulation is pos-
sible due to the use of energy and entropy as two separaifye transverse projection operator betweenQrderivatives
generator$1,36]. Furthermore, the requireme(®) imposes  54in expresses the fact that the connector vector cannot
additional restrictions on the dissipation bracket, thus INchange its length. Between thederivatives we allow for a
creasing the predictive power of the GENERIC formalismensor p(Q) different from the unit tensor, that is, for
compared to the bracket formalistine Onsager-Casimir re-  qnfiguration-dependent translational diffusivity. The tensor
ciprocal relations are automatically implemerjted D(Q) must be positive semidefinite in order to ensure the
same property for the metric matri.

C. Rigid dumbbells While the diffusion equation obtained after the modifica-
ion (118 has the well-known form for rigid rodécf. Eq.
14.2-8 of [16]), a dissipative contribution to the stress ten-
sor is still missing. This can be incorporated in a compact
;]orm after introducing the fourth-rank tensor

In order to illustrate how constraints can be incorporate
into our general framework we consider a dilute solution of
rigid dumbbell moleculegsee Chap. 14 df16]). Our discus-
sion is based on the nonisothermal kinetic theory of Hookeal
dumbbell molecules presented in Sec. Ill. For rigid dumb-
bells, the interaction potential in the total enefg$) and the =1 (r)zﬂ QQQQw(r Q)d%Q (119
entropic potential in the entrop{49) can be omitted. The 4 Q? '
further modifications can be described most efficiently in
terms of the symmetric projection operator as an auxiliary variable. If one adds
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to the central block with entries proportional T in the a ¥ 9

metric matrix(59), then the usual dissipative contribution to 0 0 0 T o ke Jo

the stress tensor obtained in the kinetic theory of rigid rods is B

reproduced. Guided by the example of the Newtonian sol- (123

vent_ co_nt_ribution, _this additional symmetric and POSitive'where)\ is the reptation time scal@o integrations over, Q,
semidefinite plock is constructed such that the_gradlent of theng o are requiretl For the Doi-Edwards model, the osmotic
energy remains in the null space of the metric matrix. Theessre tensof122 is the full stress tensorl €0). In the
additional dissipative stress tensor shows up in the expect&g),iss-Bird model, an additional dissipative contribution to
manner in the energy balance equation. the stress tensor occurs. This can be reproduced by choosing

D. Reptation models |=—8)\kBT2f J' o(1-0) QQ4QQI,b(r,Q,O')d3QdO'
Many models for concentrated polymer solutions and 2 0 Q
melts are based on the idea of reptation or anisotropic fric- (124

tion (see Chap. 19 df16]; see alsd37]). Reptation models ) ) . o
can be described by a configurational distribution functionn EQ. (123, wheres is the link tension coefficient.
#(r,Q,d), whereQ is a unit vector andre[0,1] is a posi- . While the above equations show_ how the diffusion equa-
tion label varying from 0 to 1 in going from one end of a tion and the stress tensor of reptation models can be repro-
polymer chain to the other. With the usual independenfluced, they do not provide the boundary conditions for the
alignment approximation, the position label is not affectedconfigurational distribution function) at ¢=0 ando=1.
by space transformations so that the Poisson operator coif1€se need to be specified separately. It might be possible to
cides with the one for rigid dumbbellEq. (58) with the  incorporate boundary conditions into the fo_rmallsm by mim-
modification (116)]. More sophisticated ideas about the icking their effect through strongly repulsive and strongly
chain retraction after deformation can be incorporated veryandomizing dynamical terms. o _
elegantly through the action of space transformations on Des Cloizeaux suggested a modification of the Doi-
#(r,Q,0); the degeneracy requiremef®) then determines Edwards_model,'v.vhlc;h he named “.baS|c dlfoSlon model”
the corresponding modification of the stress tensor. [38]. This modification can be incorporated into the
We again use the enerdy of hydrodynamic4Eq. (19)], = GENERIC formalism by the replacements

and for the entropys we essentially use E¢49), Iny(r,Q,0)—In[B(a) (r,Q,0)] (125
,Q,0)— o o

1
S=f s(p(lr),e(lr))—ksf0 f P(r,Q,0) in Eq. (121) and

= _ 2
XIny(r,Q,0)d*Qdo y=(r,Q,0)—B(0)*¢(r,Q,0) (126)

der. (122

in Eq. (123, whereB(o) is a given function. The replace-
ment (125 implies a modification of the equilibrium distri-
The osmotic pressure tensor turns out to be very similar tution function, which is no longer uniform ior, whereas
Eq. (117 for rigid dumbbells: Eqg. (126) can be interpreted as a modification of the diffu-
sion along the chain contour. The important consequence of
) Q0 the GENERIC structure is that no additional modification of
_ 3 the pressure tens@i2?2) is required.

H(r)_kBT(r)L f (21_ 3@) $(r.Q.0)d*Qdo Polymer diffusion is not accounted for in the above theo-
(122 ries of concentrated solutions and méltsere is no stochas-

tic influence on the dynamics @j. For polymer melts, the

) o densityp(r) is proportional tof [ #d3Qde, so thatp could
It should be noticed that the normalization gfaffects the  pe eliminated from the list of variables.

entropy and the osmotic pressure tensor. It is natural to as-
sume thatf [ [ ¢d3rd®Qdo is proportional to the total num-
ber of polymer molecules times the number of segments in
each molecule. Further numerical factors included in the nor- Incorporation of hydrodynamic interactions into the
malization ofys, and hence further factors in the stress ten-dumbbell kinetic theory of Sec. Il requires only a modifica-
sor, cannot be obtained from the GENERIC formalism. tion of the metric matrix59). In all places wher¢ occurs in

The metric matrixM=M(r,Q, o) for reptation models has terms involving derivatives with respect @, the following
the form replacement should be made:

E. Hydrodynamic interaction
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1 We have not only shown the way in which many different
I 2(1— {Q), (1270 models can be expressed in the GENERIC form, but we have
also demonstrated that previously proposed formali§ims
ear thermodynamics of irreversible processes, extended irre-
where Q is the hydrodynamic interaction tens¢e.g., the versible thermodynamics, and the bracket formalism of Beris
Oseen-Burgers tenggrand the tensor introduced by the re- and Edwardsare contained in the GENERIC approach. The
placement127) should be contracted with th@ derivatives.  relationship between the matrix formalism of Jongschaap
In the lower right corner of the metric matr{§9), where{  (see[41] and references therdiand the GENERIC approach
occurs in combination with derivatives with respectriave  has been elaborated recenf2]. In order to establish this
need the replacement relationship it was necessary to study systems consisting of
open subsystems and their environments in some detail; as a
1 1 result, one also finds the GENERIC approach to driven sys-
— == (1+{Q). (129  tems. _ . o
¢ Concerning the four building blocks occurring in the
GENERIC(1), the various equations presented in this paper
should have made clear that the expressions for the total
energyE and for the entropysS typically have forms ex-
pected from equilibrium thermodynamics. In all cases, the
formulation of the Poisson operatdr was unproblematic
and it typically required only assumptions about the transfor-
mation behavior of the state variables under space transfor-
mations. The most difficult task is thus the determination of
3he metric matrix or friction matrixM. Its matrix elements

; . . . .__contain parameters such as viscosities, thermal conductivi-
While the incorporation of the hydrodynamic interaction _ - e i "
ties, friction or diffusion coefficients, hydrodynamic interac-

effect IS mathemaugally unprobler_natlc., '.t can be used totion tensors, or chemical reaction rates, that is, detailed ma-
discuss a subtle point about physical limitations. Hydrody-

namic interactions are related to the solvent dynamics whicl%erlal |nformat!on relqted to nonequlhbnum_ Processes.

is part of the full time evolution of the system under C(;nsid- If the metric matrix cannot be d_etermlned emplrlcglly,
: . ; one needs a framework for calculating it from more micro-

eration. More precisely, the solvent dynamics on the polymerSCOpiC arguments. We need a recipe for determiningof

length scale has already been taken into account by introduc- )

ing_hydrodynamic interaction tensors. Therefore, the mo_S|m|lar significance to the well-known rule that the thermo-

mentum balance equatia1) should certainly be used on dynamic potentials of equilibrium thermodynamics can be

length scales much larger than the polymer size in order t(())btalned by calculating partition functions. Such microscopic

avoid considering the same effect twiggobably even in an expressions for all the GENERIC building blocks have re-
inconsistent manngr The mere fact that hydrodynamic in- cently been obtained by the projection operator me{l%y

) . 2 Once we have formal expressions for the building blocks, we
teraction has been incorporated sets a limit for the length d ical hods f I luating th |
scale down to which the equations can be physically mean.c oo umerica methods for actually evaluating them, at least

approximately or with statistical error baflike Monte Carlo

ingful, and that should be kept in mind when discretizing the . " : :
. . X . methods for evaluating partition function$n view of com-
equations in numerical calculations. As long as no hydrody- . : L : )
uter simulations, it is very desirable to generalize the

namic interactions had been incorporated, the full set o ENERIC structure to time-discrete systefsse paper)|

Eg?vsggrr:sthgotlyjtlai dhsa\{ﬁatbieserc])nur?widcrfosrh(t)r;ﬁarslg:etn; S([iyl nnaag"(ﬁ/hen fundamental thermodynamic principles are respected
' ' 9 in numerical calculations then they might be much more

(of course, boundary conditions for the solvent velocity on .
stable and more meaningful.

the beads would then be requijed Since jumping from one level of description to another
one should be an integral part of the GENERIC approach, it
is natural to ask whether one could start from such a detailed
level of description that quantum-mechanical effects should
We have shown in great detail how various time-be taken into account. The GENERIC formulation for quan-
evolution equations for nonequilibrium systems can be fortum systems still remains to be worked out.
mulated in the GENERIC forngl). Important parts of the Throughout these papers, we have ignored integral mod-
proposed GENERIC structure are the complementary degemls or constitutive equations with memory effects in which
eracy requirement&2) and(3) and the condition§7)—(11). stresses are obtained from suitable functionals of strain his-
Equation(2) has, for example, important implications for the tory [43]. We believe that such models are less fundamental
pressurgGibbs-Duhem equation and osmotic presguie  and that memory effects enter the description because some
the form of the stress tens@ramers expression, effects of relevant slow variables have been ignored. Assuming the ex-
constraints and hydrodynamic interactinrend for the heat- istence of variables that would eliminate all memory effects,
flux vector. Equation(3), together with the symmetry of the one could try to develop a general theory of thermodynami-
metric matrix, implies that specifying a few elements of thecally admissible integral models from the GENERIC frame-
metric matrix is sufficient for determining the entire matrix work presented here.
uniquely. The discussion of this section shows that a number of

With these minor modifications, hydrodynamic interaction is
fully incorporated into the polymer kinetic theory of Sec. IlI
and the usual diffusion equation is reprodu¢see, e.g., Sec.
4.2.1 of[39] and, in particular, Exercise 4.18\otice that
while hydrodynamic interactions do affect the energy bal-
ance(62), they do not affect the momentum balan@&),
that is, the polymer contribution to the stress tensor for
dilute solution remains unchanged.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK
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