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Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
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We recognize some universal features of macroscopic dynamics describing the approach of a well-
established level of description~that is, successfully tested by experimental observations! to equilibrium. The
universal features are collected in a general equation for the nonequilibrium reversible-irreversible coupling
~abbreviated as GENERIC!. In this paper we formulate a GENERIC, derive properties of its solutions, and
discuss their physical interpretation. The relation of the GENERIC with thermodynamics is most clearly
displayed in a formulation that uses contact structures. The GENERIC is also discussed in the presence of
noise. In applications we either search for new governing equations expressing our insight into a particular
complex fluid or take well-established governing equations and cast them into the form of a GENERIC. In the
former case we obtain the governing equations as particular realizations of the GENERIC structure; in the
latter case we justify the universality of the GENERIC and derive some properties of solutions. Both types of
applications are discussed mainly in the following paper@Phys. Rev. E 56, 6633 ~1997!#.
@S1063-651X~97!06512-4#

PACS number~s!: 05.70.Ln, 05.60.1w, 51.10.1y
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I. INTRODUCTION

Our principal motivation for developing a general forma
ism for the dynamics of nonequilibrium systems comes fr
the modeling of rheological properties of complex fluids. W
recall that the modeling of flow properties of simple fluid
such as water, is based on~i! an unambiguous choice of th
state variables~the hydrodynamic fields! and~ii ! the require-
ment of the conservation of the total mass, momentum,
energy. The requirement~ii ! provides a general framewor
for the governing equations: They have the form of lo
conservation laws. In the modeling of complex fluids there
no unambiguous or universal choice of state variables a
consequently, a general framework for the time-evolut
equations cannot simply be based on conservation laws.
here suggest replacing the requirement~ii ! by a general equa
tion for the nonequilibrium reversible-irreversible couplin
which we abbreviate as GENERIC. The reason why~i! has
to be abandoned in the context of complex fluids is that
time evolution of the internal structure of complex fluid
~e.g., the structure of the macromolecules composing th!
cannot be separated from the time evolution of the hydro
namic fields. The experience collected in rheological mod
ing strongly indicates that there isno preferred universal se
of state variablesfor characterizing the internal structur
Their choice depends on the nature of the fluid. Con
quently, if we want to say something about rheological mo
eling without specifying the fluid under consideration, w
have to remain uncommitted to the choice of state variab
This in turn implies that the language and ideas to be use
formulating a GENERIC have to remain somewhat abstr

How can one expect to formulate the general structure
the time-evolution equations for an unspecified set of s
variables? Our formulation of the GENERIC is guided
561063-651X/97/56~6!/6620~13!/$10.00
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experimental observations. The most fundamental observa
tion is the approach to equilibrium; all time-evolution equ
tions for complex fluids should be formulated such that
structure of the equations guarantees that global equilibr
is approached.

In order to explain the idea of using more general obs
vations for formulating the GENERIC structure we introdu
the notion of alevel of description. We say that one leve
~level 1! is more microscopic~or less macroscopic! than an-
other level ~level 2! if the quantities used to describe th
states, called state variables, on level 1 depict more de
than the state variables used on level 2. For example,
level of fundamental particles is more microscopic than
level of hydrodynamics. The most macroscopic level is
level of equilibrium thermodynamics, on which states a
described by two real numbers, and no time evolution ta
place. If level 2 is successfully tested by experimental obs
vations, then the GENERIC structure of the time-evoluti
equations on a more microscopic level 1 must be formula
such that level 1 and level 2 arecompatible~that is, the
experimental observations are reproducible and in agreem
with predictions based on the corresponding dynamical th
ries!. In this and the following paper@1#, referred to as pape
II, we shall always take the more macroscopic level 2 to
the level of equilibrium thermodynamics. The developme
of a GENERIC in the context of the compatibility with mor
microscopic levels of description will be studied elsewhe
In paper II we work out many particular examples. In t
context of specific examples with specific choices of st
variables, the abstract ideas developed here for unspec
state variables are clarified in a simpler and more fami
language~see paper II!. The advantage of the abstract la
guage of this paper is that many general results can be
rived very efficiently: once for all applications.
6620 © 1997 The American Physical Society
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56 6621DYNAMICS AND THERMODYNAMIC S . . . . I. FORMALISM
If we have the choice of modeling experimental obser
tions on a more microscopic or more macroscopic level,
advantage of adopting the more macroscopic level 2 is
relative simplicity of the governing equations and t
straightforward access to the macroscopic properties of
direct interest. The disadvantage of level 2 is that the qu
tities through which the individual features of systems
expressed on level 2 can be obtained only from results
observations. The advantage of the more microscopic lev
is its more fundamental nature. We also depend on exp
mental observations to specify the quantities through wh
the individual features are expressed on level 1, but th
experimental observations are more fundamental. They p
etrate into deeper knowledge of the physical nature of
system under consideration. The disadvantage of level
the complexity of the passage from the governing equati
to the macroscopic features of our direct interest.

Once we have accepted to use the approach to equilib
as a fundamental experimental fact, how can we actu
develop the GENERIC structure guaranteeing a tim
evolution compatible with equilibrium thermodynamic
How can we recognize the features of the governing eq
tions that guarantee that their solutions are compatible w
the approach to equilibrium? The GENERIC structure t
we present in this paper is a result of theanalysis of many
particular examples. This structure has emerged gradua
@2,3# from an attempt to recognize common features.
should be pointed out that, with the exception of the Bol
mann equation, all the examples analyzed are for syst
near equilibrium that may be described in excellent appro
mation by local equilibrium states on the next higher level
description. An extrapolation to more general situations is
a hypothetical nature.

In general, the analysis of the compatibility of two leve
of description involves apattern recognition process. In the
spirit of the dynamical system theory the first thing that
shall do is to find the phase portrait on level 1, that is, the
of all solutions for all initial conditions and a family of pa
rameters through which the individual features are expres
~e.g., Hamiltonians in the case of classical mechanics!. We
then look at the phase portrait as a ‘‘painting’’ and try
recognize some pattern in it, typically neglecting the f
contributions to the dynamics. In fact, we look for a patte
that represents the phase portrait obtained on level 2. F
the extensively studied example of classical mechanics
sus equilibrium thermodynamics we know that the patt
recognition may be achieved by some kind of coarse gr
ing. From another example, namely, the Boltzmann kine
theory versus hydrodynamics, we know that the pattern
ognition consists of concentrating on a special part of
phase portrait, the part that is in the vicinity of local equili
rium solutions. Once the pattern has been extracted
found to be compatible with experimental observations,
can try to identify the structural features of the tim
evolution equations on level 1 that lead to the pattern. I
important to stress that if we succeed in identifying t
GENERIC structure leading to a certain pattern we provid
foundation of a specific realization of the GENERIC, no
foundation of a GENERIC in its abstract form. Th
GENERIC structure presented here can only be the resu
many different case studies.
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The paper is organized as follows. A general formulati
of the structure of the time-evolution equation expressing
compatibility with equilibrium thermodynamics is present
in Sec. II. In Sec. III we look deeper into the relation b
tween the GENERIC and the structure of thermodynam
and into its formulation in the presence of noise. Illustrati
examples are worked out in paper II. This paper and pape
are written in such a way that they can be read in eit
order, depending on whether one prefers to be motivated
considering the compatibility of two levels of descriptio
~this paper! or by discussing specific examples that inclu
classical hydrodynamics, the nonisothermal kinetic theory
polymeric fluids, and chemical reactions~paper II!.

II. COMPATIBILITY WITH EQUILIBRIUM
THERMODYNAMICS

In this section we present a general formulation of t
structure of a time-evolution equation expressing its comp
ibility with equilibrium thermodynamics. This GENERIC
structure is presented as an extension of the Ginzb
Landau equation. In Sec. II A we recall the classic
Ginzburg-Landau equation and its shortcomings. In Sec.
we consider the compatibility of a general time evoluti
with equilibrium thermodynamics. In Sec. II C we discu
the example of Boltzmann’s kinetic equation.

A. Ginzburg-Landau equation

Let x denote an order parameter andF(x,T) the Helm-
holtz free energy, whereT is the absolute temperature. A
equilibrium, the order parameterx assumes the valuexth that
minimizesF, i.e., xth is a solution of

dF

dx
50. ~1!

By d/dx we denote the derivative with respect tox. If x is a
function ~for example, a density or concentration field! then
d/dx denotes the Volterra functional derivative. Ginzbu
and Landau@4# have suggested that the time evolution th
carriesx to its equilibrium valuexth is described by the equa
tion

dx

dt
52M

dF

dx
, ~2!

whereM is a positive-definite linear operator. Note that ifx
is a function of position in addition to time, thendx/dt
should be read as]x/]t. Equation~2! is called a Ginzburg-
Landau equation. We may regard it as a generic relaxa
equation. It is important to point out that Eq.~2! has not been
derived. It is an equation that is justified solely on the ba
of comparing properties of its solutions with results of o
servations. The chosen observation is the approach ofx to xth
for large timest ~for t→`).

The proof that solutions to Eq.~2! describe the approac
to xth as t→` proceeds as follows. From Eq.~2! we see
immediately that

dF

dt
52 K dF

dx
,M

dF

dx L <0 ~3!
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6622 56MIROSLAV GRMELA AND HANS CHRISTIAN ÖTTINGER
by virtue of the positive definiteness ofM , where^,& denotes
the scalar product in the space of order parametersx. If F
reaches a minimum atxth thenF is convex in the neighbor
hood ofxth . The convexity together with the inequality~3!
then implies thatF plays the role of the Lyapunov functio
corresponding to the approachx→xth as t→`. As time in-
creases, the trajectories are trapped in smaller and sm
neighborhoodsU5$xuF(x),const% of xth .

Now we can regardx as a state variable on a wel
established level 1. For example,x may stand for the one
particle distribution function~level 1 is then called the leve
of one-particle kinetic theory! or x may represent the five
hydrodynamic fields ~see paper II!. Inspired by the
Ginzburg-Landau equation, we look for a general tim
evolution equation, a GENERIC, that would describe the
perimentally observed approach to a more macroscopic l
2. In this paper, we follow Ginzburg and Landau and ta
level 2 as the level of equilibrium thermodynamics.

As in the case of the Ginzburg-Landau equation, we s
regard the GENERIC as an equation justified by the fact
its solutions agree with the experimental observation of
approach to equilibrium. We naturally require that the we
established governing equations, such as the Boltzmann
netic equation or the Navier-Stokes-Fourier hydrodynam
equations, will all be particular realizations of th
GENERIC. We can thus regard the development of
GENERIC as a search for a common structure of w
established time-evolution equations. As in the case of
Ginzburg-Landau equation, we would like to express the
proach to equilibrium in a Lyapunov function. However, t
right-hand side of the GENERIC cannot be the same a
the relaxation equation~2! because it has to contain also
convective term~for example, the Euler part of the Navie
Stokes-Fourier equations!. Moreover, if the GENERIC is lin-
earized aboutxth ~the equilibrium state approached ast→`)
then the relaxation and the convection parts are expecte
obey the Onsager-Casimir symmetry@5,6#. In the general
nonlinear case, the relaxation and the convection parts
be shown to be related also through the requirement of
tain complementary degeneracies.

B. Formulation of the GENERIC

Let level 1 and the level of equilibrium thermodynami
~level 2! be found to be well established. This means that
experimental observations made are found to be reproduc
on level 1 and that predictions based on the dynamical the
formulated on level 1 agree with the results of the obser
tions. Moreover, the macroscopic systems under consi
ation are free from external influences so that they reach
time goes on infinity, states, called equilibrium thermod
namics states, at which they can be well described by s
dard equilibrium thermodynamics. We now present a gen
time-evolution equation on level 1 whose solutions are gu
anteed to agree with the observation that the behavio
appropriately prepared systems can be well described
equilibrium thermodynamics~the preparation process con
sists of leaving the systems free of external influences fo
sufficiently long time!.

We begin by establishing the terminology. With the sy
bol x we denote state variables used on level 1; the set o
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-
-
el

e

ll
at
e
-
ki-
c

e
-
e
-

in

to

ill
r-

e
le
ry
-
r-

as
-
n-
ic
r-
of
by

a

-
ll

admissible statesx is denoted byM ~i.e., xPM). The set
M is called the state space on level 1. The state variable
equilibrium thermodynamics are (n,e), wheren denotes the
number of particles per unit volume ande is the total energy
per unit volume. We shall denote the state space of equ
rium thermodynamics with the symbolN @i.e., (n,e)PN#.

To formulate the general time-evolution equation for t
unspecified state variablesx, we need the following structure
in the state spaceM.

1. Bundle structure.The state spaceM is represented as
bundle with the state spaceN of equilibrium thermodynam-
ics as its base space, that is,M5(M,N,P), where
P:M→N is the bundle projection.

2. Potentials (E,S). The potential E:M→R has the
physical meaning of the total energy and the poten
S:M→R has the physical meaning of the total entropy.

3. Poisson (nondissipative or reversible) kinematics.An
operatorL transforms the gradientdE/dx of the energyE
into a vectorLdE/dx.

4. Ginzburg-Landau (dissipative or irreversible) kinema
ics. An operatorM transforms the gradientdS/dx of the
entropyS into a vectorMdS/dx.

The general equation describing the approach ofx to
states at which the behavior is well described by equilibri
thermodynamics is:

dx

dt
5L

dE

dx
1M

dS

dx
. ~4!

This is the formulation of the GENERIC that extends t
Ginzburg-Landau equation~2!. In the rest of this subsection
we shall give a complete and more precise formulation of
structure 1–4 and some additional degeneracy requireme
We shall also discuss its physical interpretation as well
properties of solutions of the GENERIC~4!.

1. Bundle structure

Given the state variablesx, we want to know how the
equilibrium thermodynamic state variables (n,e) are ex-
pressed in terms ofx. This means that we want to introduc
a mapping

P:M→N,x°„n~x!,e~x!…. ~5!

This mapping can be interpreted as an introduction of co
dinates intoM. Every xPM can now be represented as
pair x5(y,z), whereyPN andzPP21(y) @P21(y),M is
the inverse image ofyPN#. In accordance with the estab
lished terminology of differential geometry, we callP21(y)
a fiber overy. Again, by using the established terminolog
we also regardM as a bundleM5(M,N,P), whereM is
the total space,N is the base space, andP is the bundle
projection. We assume thatP is surjective~i.e., to everyy
PN there is attached a fiber!. It will also be useful to regard
the introduction of the mappingP @see Eq.~5!# as an intro-
duction of two potentials~real-valued functions! in M,
namely,n:M→R,x°n(x) ande:M→R,x°e(x).

The considerations leading to the specification ofP are
based on the physical interpretation ofxPM and of (n,e)
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56 6623DYNAMICS AND THERMODYNAMIC S . . . . I. FORMALISM
PN. For example, ifx is the one-particle distribution func
tion f (r,v) (r andv stand for the position and velocity vec
tors!, then

n5
1

VE d3r E d3v f ~r,v! ~6!

and

e5
1

VE d3r E d3vh~r,v! f ~r,v!, ~7!

where V is the volume of the region in which the syste
under consideration is confined andh(r,v) is the energy of
one particle.

2. Potentials (E,S)

The energyE and the entropyS are two real-valued func
tions ofx. The individual features of the systems under co
sideration are expressed in these potentials. Roughly sp
ing, the internal interactions and all motions are expresse
E and the internal organization is inS. The methods devel
oped and the experience gained in equilibrium statistical
chanics are usually found to be useful in the specification
E andS. We shall see a few examples later in this paper a
many more in paper II.

We note thate(x) introduced in the mappingP equals
E(x)/V. It is therefore superfluous to introduceE(x) as a
separate potential. However, since we shall often cons
theories on one level only without specifyingP and since
one might also be interested in bundle projections that do
involve e(x), in general we need the potentialE(x).

3. Poisson (nondissipative or reversible) kinematics

We recall that in the context of classical mechanics ofN
particles the set of state variables isx5(r ,p), where
r 5(r1 , . . . ,rN), p5(p1 , . . . ,pN), and (r i ,pi) are the posi-
tion and momentum vectors of thei th particle. The time
evolution of x is governed by Hamilton’s equations of mo
tion

d

dtS r

pD 5LS ]E/]r

]E/]pD , ~8!

where

L5S 0 1

21 0D . ~9!

The operatorL ~the cosymplectic matrix! represents the ki-
nematics of (r ,p). It expresses mathematically the fact thax
is composed of two parts: One (r ) denotes the position co
ordinates and the other (p) conjugates of the velocities ass
ciated with the position coordinates.

An analysis of many different choices of the state va
ablesx ~see paper II for several choices, for example,
classical hydrodynamic fields and the fields serving as s
variables in the configuration space kinetic theory! revealed
that all the operatorsL expressing the kinematics ofxPM
share the following properties.

~a! The bracket
-
ak-
in

e-
f
d

er

ot

-
e
te

$A,B%5 K dA

dx
,L

dB

dx L ~10!

is a Poisson bracket;^,& denotes the scalar product andA,B
are sufficiently regular functionsM→R. We say that Eq.
~10! defines a Poisson bracket if the antisymmetry prope
$A,B%52$B,A% and the Jacobi identity
ˆA,$B,C%‰1ˆB,$C,A%‰1ˆC,$A,B%‰50 hold. Note thatL is
allowed to be a function ofx. It is easy to see that ifL is
independent ofx ~as it is, for example, in the case of class
cal mechanics!, then the skew symmetry ofL automatically
implies both the antisymmetry of the bracket and the Jac
identity. If L depends onx, then the Jacobi identity repre
sents a severe additional restriction.

~b! Consider the following real-valued functionals on th
state spaceM: E(x), S(x), and the components ofP(x). All
these functionals exceptE(x) are distinguished functions o
the Poisson bracket~10!. We say that a functionC:M→R is
a distinguished function of the bracket$,% if $A,C%50 holds
for all A. From Eq.~10! we see that ifC is a distinguished
function, its gradient lies in the null space ofL. The operator
L is thus degenerate. We note that the operatorL arising in
classical mechanics@see Eq.~9!# is nondegenerate. In mac
roscopic dynamics, the degeneracy is essential to satisfy
entropy inequality~see the discussion of the properties
solutions at the end of this subsection!. In other words, the
appearance of dissipation and the appearance of degen
are closely related.

The operatorsL satisfying properties~a! and~b! above are
called Poisson operators. Since these operators expre
mathematically the kinematics, we also use the termPoisson
kinematics. Equation ~4! with M50 is a Poisson time-
evolution equation~it is called a Hamiltonian time-evolution
equation ifL is nondegenerate!. We call this time evolution a
nondissipative or reversible time evolution.

4. Ginzburg-Landau (dissipative or irreversible) kinematics

The operatorM in the GENERIC~4! is closely related to
the operator appearing in the Ginzburg-Landau equation~2!.
We shall require thatM satisfies the following properties.

~a! The bracket@called a Ginzburg-Landau~dissipative!
bracket#

@A,B#5 K dA

dx
,M

dB

dx L ~11!

is symmetric, that is,@A,B#5@B,A# for all A,B, and satisfies
the positivity condition@A,A#>0 for all A. By A,B we
again denote sufficiently regular functionsM→R. The op-
eratorM depends in general onx.

~b! Consider again the real-valued functionalsE(x), S(x),
and the components ofP(x). All these functionals excep
S(x) are distinguished functions of the bracket~11!. ~We say
that a functionC:M→R is a distinguished function of the
bracket@ ,# if the equation@A,C#50 holds for allA.! The
operatorM is thus degenerate since the gradients of the
tinguished functions of the dissipative bracket lie in the n
space ofM . In macroscopic dynamics, the degeneracy ofM
is essential to satisfy the conservation of energy.
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The reason why we call the kinematics expressed inM a
dissipative or irreversible kinematics will become clear la
when we discuss properties of solutions of the GENER
~4!. If L50 in Eq. ~4!, then this equation becomes th
Ginzburg-Landau equation~2! ~we shall see the relationshi
between the potentialsF andS later in this section!. We note
that the contributions involving the operatorsL andM in Eq.
~4! are related to one another bymutual degeneracy require
ments. The potentialE that generates the nondissipati
~Poisson! time evolution is a distinguished function of th
dissipative~Ginzburg-Landau! bracket and, vice versa, th
potentialS that generates the dissipative time evolution i
distinguished function of the nondissipative bracket. Mo
over, the components ofP(x) are distinguished functions o
both brackets$,% and @ ,#.

In the analysis of solutions of Eq.~4!, we shall see that the
essential property of the bracket@ ,# is the positivity
@A,A#>0 for all A. The symmetry@A,B#5@B,A# and, in
fact, also the linearity of@A,B# regarded as a function o
dB/dx could be relaxed. From previous work~see@7# and
also @2,8#!, a need for a dissipative time evolution that
more general than the Ginzburg-Landau time evolution~2!
might be expected if one wants to include the Guldbe
Waage dynamics arising in chemical kinetics into our co
sideration@9# ~the so-called mass action law!. We shall see in
paper II that this dynamics can actually be cast in the form
Eq. ~2!; however, a generalization of Eq.~2! seems to be
interesting and possibly unavoidable in some cases. For
ample, later in this section, we shall illustrate a more gen
version of the GENERIC with the Boltzmann kinetic equ
tion @10#. This generalization~see @7# and also@2#! corre-
sponds to the following modification of the dissipativ
bracket. LetC, called a dissipative potential, be a rea
valued function of gradients of functionsM→R. ~In the
context of particular physical applications it is in gene
necessary that the argument ofC is dimensionless, and thi
may cause some problems.! We require thatC(0)50, C
reaches its minimum at 0, andC is convex in the neighbor
hood of 0. We then introduce the generalized bracket

@A,B#5 K dA

dx
,

dC

d~dB/dx!L . ~12!

We note immediately that@A,A#>0 by virtue of the proper-
ties of C and that in the special case whenC is a quadratic
dissipative potential then Eq.~12! reduces to Eq.~11!. The
degeneracy requirements are formulated as follows.P(x)
andE(x) are distinguished functions of Eq.~12!. We say that
C is a distinguished function of@ ,# if @A,C#5@C,A#50 for
all A. If Eq. ~12! replaces Eq.~11! then Eq.~4! takes the
form

dx

dt
5L

dE

dx
1

dC

d~dS/dx!
. ~13!

Equation~13! is a generalization of the GENERIC~4!. We
recall that Eq. ~4! corresponds to the particular choic
C(z)5(1/2)^z,Mz& of the dissipative potential.

We have now compiled all the properties of th
GENERIC building blocksE, S, L, and M . There are no
further restrictions on the functional form of these quantit
r
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-
-

f

x-
al
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s

except certain regularity requirements that guarantee tha
further mathematical operations are well defined.

5. Properties of solutions of the GENERIC

Details of solutions of the GENERIC~4! or ~13! depend,
of course, on the specific choice made in the bundle str
ture, potentials, and kinematics. There are, however, so
properties of solutions of the GENERIC~4! or ~13! that are
shared by all particular realizations. These properties dep
only on the general requirements about the bundle struct
potentials, and kinematics that were listed above. We reg
these properties as a mathematical expression of the com
ibility of the time evolution with equilibrium thermodynam
ics. We shall now present these properties.

Property 1. The time evolution takes place only in th
fibersP21(n,e). In other words, (n,e)PN are constants of
motion, i.e.,

dP~x!

dt
50. ~14!

This property arises as an immediate consequence of the
generacy of the kinematics. From the physical point of vie
Eq. ~14! expresses the conservation laws for the state v
ables of equilibrium thermodynamics.

Property 2.

dE~x!

dt
50, ~15!

dS~x!

dt
>0. ~16!

These properties arise again as a direct consequence o
degeneracy of the kinematics and of the properties$A,A%50
and @A,A#>0.

From the physical point of view, Eq.~15! expresses the
energy conservation and Eq.~16! the entropy inequality.
Note that ifM50, that is, if Eq.~4! reduces to the Poisso
time-evolution equation, then Eq.~16! becomesdS/dt50.
This means that all the potentialsP(x), E(x), andS(x) are
conserved.

Property 3. Our next task is to identify the time
independent solutions of the GENERIC and to study th
stability. Also, we want to derive the fundamental thermod
namic relation implied by the GENERIC. We shall here d
cuss Eq.~4! only. The extension of the results to Eq.~13! is
a straightforward exercise.

Properties 1 and 2 suggest that the time-independent
lutions of the GENERIC~4! approached ast→` are the
thermodynamic equilibrium states, denotedxth , that maxi-
mize the entropy under the constraintse(x)5const and
n(x)5const. We now prove this statement.

We introduce the potential

F5F~x!52S~x!1aE~x!1bN~x!, ~17!

wherea,b are constant coefficients,N(x)5Vn(x) @see Eq.
~5!#, andV is the volume. The statesxth that maximize the
entropy under the above constraints are solutions to
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dF

dx
50 ~18!

anda,b play the role of Lagrangian multipliers. Note thatxth
is in fact a two-parameter family of states (a,b are the two
parameters!.

The degeneracy of the kinematics allows us to rewrite
~4! as

dx

dt
5

1

a
L

dF

dx
2M

dF

dx
. ~19!

This equation~or its corresponding form involving the diss
pative potentialC) has been called in@2,3,11# a nonlinear
Onsager-Casimir equation. The reason for this terminol
will become clear in property 4 below.

We see now clearly that the statesxth , which are the
solutions to Eq.~18!, are time-independent solutions of E
~19! and thus also time-independent solutions of
GENERIC ~4!. Moreover, Eqs.~14!–~16! imply

dF

dt
<0, ~20!

thusF plays the role of the Lyapunov function in the stud
of the stability ofxth . If F reaches its minimum atxth and is
convex in the neighborhood ofxth then we can conclude tha
the statesxth are approached ast→`.

This proof of the approach toxth remains, of course, for
mal unless we precisely specify the meaning of converge
~i.e., we explicitly introduce a topological structure inM)
and we discuss also the problem of the existence of solut
of Eq. ~4!. Ideally, the topological details as well as the
physical interpretation should be provided for each particu
realization of Eq.~4!. In reality, this often appears to b
rather difficult and thus we have to be content with the f
mal proof. For example, the details have not yet been fu
clarified even in the context of the classical Boltzmann
netic theory.

From what we have said so far about the statesxth , they
are good candidates for the thermodynamic equilibri
states~i.e., the states at which the behavior of the system
found to be well described by equilibrium thermodynamic!.
In the remainder of this section we explicitly extract t
structure of equilibrium thermodynamics from Eq.~4! and
we elaborate the thermodynamic meaning ofF reaching its
nondegenerate minimum atxth ~since only then can we prov
that x→xth as t→`).

We recall the structure inN that expresses equilibrium
thermodynamics.

~a! In addition to the state variables (n,e)PN there is
another state variables, called entropy per unit volume, tha
is a function of (n,e) @i.e., s5s(n,e)#. This function is
called a fundamental thermodynamic relation. It is in th
relation that the individual features of the systems under c
sideration are expressed in equilibrium thermodynamics.

~b! The first derivatives ofs with respect ton ande ~de-
noted by ]s/]n52m/T and ]s/]e51/T, where T is the
temperature andm is the chemical potential per particle!
have the same status and importance as the state variabn,
e, and s themselves. The transformations that repla
.

y

e

ce

ns

r
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(n,e,s) or some subset of them with]s/]n and ]s/]e are
called Legendre transformations. In order to replace (n,e) by
(m,T) we first introduce a function

F~n,e,m,T!52s~n,e!1
1

T
e2

m

T
n. ~21!

Then we look for solutions, denoted (n,e) th , of

]F

]n
50,

]F

]e
50. ~22!

If we now insert (n,e) th into Eq. ~21!, then we obtain the
Legendre transforms̃(m,T) of s(n,e), that is,

F„~n,e! th ,m,T…5 s̃~m,T!. ~23!

For later use we shall formulate the structure introduc
above in a more geometrical language@12,13#. Let T*N de-
note the cotangent bundle ofN. Locally, we denote its coor-
dinates by (n,e,n* ,e* ), where (n,e)PN and (n* ,e* )
PT(n,e)* N @the cotangent spaceT(n,e)* N is the space of all
covectors in the point (n,e)#. Next we construct the spac
T*N3R; its coordinates are (n,e,n* ,e* ,s), where sPR.
This space has a natural contact structure defined by the
form dv5ds2n* dn2e* de. The Legendre transformation
are the transformations that preserve this contact struct
The fundamental thermodynamic relation is expressed in
way that includes both the points~a! and~b! of the structure
of equilibrium thermodynamics, as specification of a Le
endre submanifold ofT*N3R, that is, a submanifold on
which dv50. In local coordinates, the Legendre subma
fold is the image of the mapping

~n,e!°S n,e,
]s~n,e!

]n
,
]s~n,e!

]e
,s~n,e! D . ~24!

~c! In equilibrium thermodynamics, one has the identit

s̃~m,T!52
p

T
, ~25!

where p is the pressure ands̃ is Legendre transform ofs
introduced in Eq.~23!. This relation follows from the homo-
geneity of degree one ofS5S(N,E,V), whereS,N,E are the
total entropy, number of particles, and energy~not per unit
volume! andV is the volume. The relation~25!, that is, the
relationp5p(m,T), is the Gibbs-Duhem form of the relatio
s5s(n,e).

Now we return to the setting of level 1. By comparin
Eqs. ~17! and ~18! with Eqs. ~21! and ~22!, we see that we
can interpret the potentialF in Eq. ~17! as a potential arising
in the Legendre transformation inT*M3R. We denote the
local coordinates inT*M3R by (y,z,y* ,z* ,s), where
x5(y,z)PM, yPN @i.e., y5(n,e)#, zPP21(y), y*
PTy*N, z* PTz* P21(y), andsPR. If we make the identifi-
cation

a5
1

T
, b52

m

T
, ~26!
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then Eq.~17!, having now the form

F5F~x!52S~x!1
1

T
E~x!2

m

T
N~x!, ~27!

is the potential arising in the Legendre transformation
S(x) in T*M3R that corresponds toy* 5(2m/T,1/T) and
z* 50. Consequently, the potential~27! evaluated atxth @we
recall thatxth is defined as solution to Eq.~18!#, becomes
2pV/T @compare with Eq.~25!#, that is,

F~xth!52
pV

T
. ~28!

This relation@having the formp5p(m,T) sincexth is a func-
tion of m,T# is the fundamental thermodynamic relation im
plied by the GENERIC. Moreover, the statesxth @solutions of
Eq. ~18!# are indeed thermodynamic equilibrium states, t
is, the states that are approached ast→` and that represen
N in M.

Before turning our attention to the next property we no
that if xPM has the meaning of a probability distributio
~e.g., if x is theN-particle distribution function, whereN is
of the order of Avogadro’s number! andS(x) is an informa-
tional entropy@14#, then Eqs.~18! and ~27! can be inter-
preted as a search for the least-biased probability distr
tion, that is, the probability distribution that maximizes t
informational entropyS(x) subject to the constraints im
posed by the available information@14#. The available infor-
mation is, in the case of Eqs.~18! and ~27!, the information
associated with the knowledge of the energyE(x) and the
number of particlesN(x). The coefficients 1/T and 2m/T
play the role of the Lagrange multipliers. Jaynes@14# sug-
gests to accept the maximization of the informational
tropy subjected to constraints imposed by available inform
tion as a principle. We recall that in the case in which le
1 is the fully microscopic level of description~i.e., x is the
N-particle distribution function, whereN is of the order of
Avogadro’s number!, then the Jaynes principle is just a rei
terpretation of the ‘‘Gibbs principle’’~i.e., the Gibbs recipe
used in equilibrium statistical mechanics to pass from
fully microscopic level to the equilibrium thermodynamic
level!. The advantage of the Jaynes formulation is that it c
be applied to the passage from a general level 1 to a gen
level 2 ~provided, of course, we know how to express t
informational entropy on level 1 and how to express leve
as available information!.

We see now that if we accept the GENERIC structure
a principle then the Jaynes principle arises as a conseque
The informational entropy arises as a generating function
dynamics on level 1, this quantity is maximized since
look for the state approached as the time goes to infinity~the
entropy also plays the role of the Lyapunov function cor
sponding to this approach!, and the available information i
represented by the quantities that remain unchanged du
the time evolution on level 1.

In many previous papers attempts have been made to
eralize the concept of equilibrium entropy to nonequilibriu
situations. The typical perspective is that, starting from
level of equilibrium thermodynamics, one looks for a mo
microscopic level involving time evolution and for a gene
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alization of the concept of equilibrium entropy to that ne
level. In the GENERIC approach, on the other hand, we s
on the more microscopic level of description and we form
late the structure of the time-evolution equation such tha
guarantees the observed approach to equilibrium thermo
namics. One part of the proper structure is the potentialS(x),
which generally satisfies the inequality~16! and coincides
with the equilibrium entropy when evaluated for equilibriu
statesxth . From this alternative perspective, we therefo
interpretS(x) as a nonequilibrium entropy arising in the co
frontation of a more microscopic level with the level of equ
librium thermodynamics.

Property 4. If we now linearize Eq.~19! aboutxth , we
obtain

dj

dt
5~TLth2M th!H th

~F!j, ~29!

where we have useda51/T @see Eq. ~26!#, x5xth1j,
L th5L(xth), M th5M (xth), and H th

(F) is the Hessian ofF
evaluated atxth , that is,

H th
~F!5

d2F

dxdx U
xth

. ~30!

It follows directly from the properties ofL andM thatL th is
~formally! a skew symmetric linear operator andM th is ~for-
mally! a symmetric linear operator.~We have to use the ad
jective ‘‘formal’’ since we do not specify the domains of th
operatorsL th and M th .) In order to avoid problems with
antisymmetric contributions toM ~corresponding to dissipa
tive dynamics without entropy production!, we consider iso-
lated systems~no external magnetic fields! and we assume
that a sufficiently detailed level of description has been c
sen~see problems caused by the transition from an inertia
a noninertial level of description in@15#!. In addition, the
degeneracy ofL and M implies that bothL th and M th are
degenerate linear operators: The vectors (dS/dx)uxth

and

(dN/dx)uxth
lie in the null space ofL th and the vectors

(dE/dx)uxth
and (dN/dx)uxth

lie in the null space ofM th .

These properties ofL th andM th together with Eq.~29! con-
stitute our formulation of the Onsager-Casimir reciproc
relations@5,6# ~see also@16#; in that paper, it was shown tha
the Onsager-Casimir relations can only be assumed to
valid if there is a clear separation in time scales between
slow variablesx retained in the description and all the oth
variables that occur in a more microscopic description of
system; in@16#, any deviations from Onsager-Casimir sym
metry are shown to be only of second order in the time-sc
ratio for a suitable choice of variables!. If we compare this
formulation, which appeared as a consequence of
GENERIC structure, with the classical formulation@5,6# then
we recognize two important features:~i! the degeneracy o
L th andM th and~ii ! the presence of the Hessian ofF rather
than the Hessian ofS in Eq. ~29! ~the latter feature is share
by other theories of nonequilibrium dynamics!. The point is
that the equilibrium statexth about which we are investigat
ing the linearized dynamics is not the state that maximi
the entropy but the state that maximizes the entropy s
jected to constraints imposed by available information~i.e.,
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the state minimizing the potentialF). Both of the above
features are closely related to the conservation laws of
nonlinear time evolution. If the discussion is from the beg
ning limited to the linearized time evolution@5,6# then the
linear spaces on which the time evolution takes place
automatically and without saying chosen in such a way t
the time evolution is nondegenerate.

Property 5.Finally, we just note how the operatorsL and
M transform under a one-to-one transformationx→x8. It is
easy to verify that

L5
]~x!

]~x8!
L8F ]~x!

]~x8!
GT

, ~31!

M5
]~x!

]~x8!
M 8F ]~x!

]~x8!
GT

, ~32!

where L8,M 8 are the operatorsL,M in the coordinates
x8,](x)/](x8) is the transformation matrix an
@](x)/](x8)#T is its transpose~that is,L8 and M 8 are con-
tracted from both sides withx8). As an example of the trans
formationx→x8 we mention the transformation from hydro
dynamics in the energy representation to hydrodynamic
the entropy representation~see paper II!.

C. Boltzmann equation

The GENERIC structure introduced above can be use
two ways. First, we can accept it as a postulate and searc
its particular realizations in particular contexts. This means
that by using our physical insight into a particular syste
and situation, we suggest the state variablesx, the bundle
structure inM, the potentialsE,S, and the kinematics. In
this way we arrive at dynamics that may appear to b
reformulation of an already known and well-established
namics or at a new dynamical model. This will be illustrat
in paper II.

We note that this first use of the GENERIC structure
minds us of the very familiar use of various algebraic a
geometric structures in microscopic physics~for example,
postulating a group and looking for its representations!. The
second use of the GENERIC consists of accepting leve
and level 2~equilibrium thermodynamics! theories as given
and by analyzing solutions of level 1 dynamics and comp
ing them with solutions of an appropriate realization of t
GENERIC, we prove that the GENERIC structure inde
describes the approach of the chosen level 1 to equilibr
thermodynamics. This analysis thus amounts to aderivation
of the GENERIC in a particular contextof a specific theory.
Also this second use of the GENERIC will be illustrated
paper II.

Since we want to regard this paper and paper II as
self-contained papers, we here briefly describe an examp
a particular realization of the GENERIC. This example is n
included in paper II, but it has already been mentioned
@3,17#. We choose level 1 to be the level of the Boltzma
kinetic theory@18# and level 2 to be the level of equilibrium
thermodynamics. Experience shows that both levels are
established for externally unforced dilute gasses. For the
plicability of equilibrium thermodynamics we, of cours
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need to prepare the gasses suitably. The preparation pro
consists of leaving the gasses a sufficiently long time with
external influences. It is this preparation process that will
described by the GENERIC.

1. State variables and bundle structure

As the state variablex on level 1 we use the one-particl
distribution functionf (r,v), wherer and v denote the posi-
tion and velocity vectors of one particle. The state variably
on level 2 is (n,e) as in Sec. II B:

x5 f ~r,v!, y5~n,e!. ~33!

The bundle projectionP is given by

P: f ~r,v!

°S 1

VE d3r E d3v f ~r,v!,
1

VE d3r E d3v
1

2
mv2f ~r,v! D ,

~34!

wherem is the mass of one particle andV is the volume of
the region in which the gas under consideration is confin
This bundle projection follows directly from the physic
interpretation of the one-particle distribution function and t
assumed absence of interactions among the particles.

2. Potentials E,S

The equation

E~x!5E d3r E d3v
1

2
mv2f ~r,v! ~35!

again expresses that the only energy of the system is
kinetic energy of the particles. The expression

S~x!52kBE d3r E d3v f ~r,v!lnf ~r,v! ~36!

is the famous BoltzmannH function (kB is Boltzmann’s con-
stant; f is not dimensionless so that, strictly speaking,f
cannot be formed; we should hence use a dimension
quantity f / f 0, where f 0 is a suitable constant; since we a
not interested in constant additive contributions to the
tropy and in normalization factors for distribution function
we ignore f 0). We can either suggest this potential on t
basis of known properties~Boltzmann’sH theorem! of solu-
tions of the Boltzmann equation~that is assumed to be
known as a part of the experience included in level 1! or we
can suggest it on the basis of relating entropy with a meas
of information ~see@14#!. The first argument illustrates th
second type of application of the GENERIC, while the se
ond argument illustrates the first type of application.

From Eqs.~27! and~28! we can easily find the fundamen
tal thermodynamic relation that is implied by Eqs.~34!–~36!.
The solutionf th of Eq. ~18! is the Maxwell-Boltzmann dis-
tribution

f th~r,v!}expS m

kBTDexpS 2
mv2

2kBTD . ~37!

The thermodynamic relation~28! is thus
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F~xth!52kBE d3r E d3v f th~r,v!52
pV

T
~38!

or, in a more explicit form,

m

kBT
5 lnp2

5

2
lnkBT1const, ~39!

where the constant depends only on the particle massm. This
is the fundamental thermodynamic relation representing
ideal gas. As we have expected, by analyzing the equilibr
solutions of the Boltzmann kinetic equation, we have rec
ered the ideal gas fundamental thermodynamic relation.

3. Reversible kinematics

We introduce the Poisson bracket

$A,B%5E d3r E d3v
f ~r,v!

m F ]

]vg
S dA

d f D ]

]r g
S dB

d f D
2

]

]vg
S dB

d f D ]

]r g
S dA

d f D G , ~40!

where we use the summation convention. This Pois
bracket arises in a straightforward manner when we re
two facts. First, we note that in classical mechanics the t
evolution of (r,v) can be regarded as a group of canoni
transformations andf (r,v) as an element of the dual of th
Lie algebra associated with this group. The second fact
deep mathematical theory, introduced by Lie, that provi
the dual of a Lie algebra with a canonical Poisson brac
~see, e.g.,@19#!.

4. Irreversible kinematics

The dissipation potential is given by

C~X!5E d1E d2E d18E d28W~ f ;1,2,18,28!FexpS X

2 D
1expS 2

X

2 D22G , ~41!

where 15(r1 ,v1), and 25(r2 ,v2) are the coordinates an
velocities of two colliding particles before a collision
185(r18 ,v18), 285(r28 ,v28) are the coordinates and velocitie
after the collision~if the particles are assumed to be po
particles thenW50, except ifr15r25r185r28), W is the tran-
sition probability for the collision, and

kBX5
dS

d f ~1!
1

dS

d f ~2!
2

dS

d f ~18!
2

dS

d f ~28!
. ~42!

The transition probabilityW, which is closely related to the
differential cross section for particle collisions, has the f
lowing properties: W50 except if (v1)21(v2)25(v18)

2

1(v28)
2 andv11v25v181v28 , in which caseW.0; W is also

symmetric with respect to the interchanges (1,2)→(2,1) and
(18,28)→(28,18). We here again note the difficulty tha
arises due to the existence of physical dimensions of
potentials. The argumentX of C in Eq. ~41! clearly has to be
n
m
-

n
ll
e
l

a
s
t

-

e

dimensionless. If we chooseX as in Eq.~42!, that is, if the
potential is the entropyS, then X is indeed dimensionless
However, in the general definition of the dissipation brac
~12! we should be able to use in the argument ofC the
gradientdB/d f of any potentialB. We therefore have to
recognize that the gradients of the potentials appearing in
~12! all need to be~made! dimensionless.

It is easy to verify that the above specifications comp
with all the requirements included in the GENERIC structu
and that this particular realization of GENERIC is identic
to the Boltzmann kinetic equation. We can regard the ab
illustration either as an alternative introduction of the Bol
mann equation~in the spirit of the first type of application o
the GENERIC! or as a derivation of the GENERIC structu
in this particular context~in the spirit of the second type o
application of the GENERIC!. The information about solu-
tions of the Boltzmann equation that allows us to arrive
the GENERIC formulation is the BoltzmannH theorem.

III. ALTERNATIVE FORMULATIONS
OF THE GENERIC STRUCTURE

In this section we shall continue to confront two differe
levels of description. Our objective is to bring an addition
physical insight into this discussion.

In Sec. III A we focus our attention on the structure
thermodynamics. We recall that one of the essential featu
of thermodynamics is the existence of conjugate state v
ables and the importance that they enjoy. The question t
arises what the role of the conjugate variables in dynamic
In Sec. III B we add a white noise to the right-hand side
the GENERIC. The setting that we obtain in this way c
then be compared with the setting discussed previously
Onsager, Machlup, and others.

A. Contact dynamics

Conjugate state variables arise in both microscopic n
dissipative dynamics~e.g., classical mechanics! and thermo-
dynamics. The mathematical structures that provide a set
to deal with conjugate state variables are the symplectic
contact structures~see@20# for definitions of these structure
and for the analysis of relations among them!. This explains
why some mathematical techniques that are associated
those structures, for example, the Legendre transformat
play an important role in both classical mechanics and th
modynamics. The physics that is behind the emergenc
the conjugate variables in classical mechanics is, howe
different from the physics that is behind the conjugate va
ables in thermodynamics. In classical mechanics the co
gate state variables~the momenta! arise due to the presenc
of the inertia in the time evolution. In other words, the co
jugate state variable arises in classical mechanics since
equation governing the time evolution of the position co
dinates is a second-order~in time! differential equation. On
the other hand, in thermodynamics~and we may expect this
also in dissipative dynamics! the main role of the conjugate
state variable is to identify equilibrium states. We recall th
for example, the mechanical equilibrium is found by equ
ing pressures~pressure is the state variable that is conjug
to the volume!, the thermal equilibrium is found by equatin
the temperatures~temperature is the state variable that
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conjugate to the entropy!, etc. We shall now follow the con
jugate state variables in the context of dynamics gener
by the GENERIC. We again limit ourselves to the confro
tation of level 1 with the level of equilibrium thermodynam
ics.

We have already formulated the structure of thermo
namics in terms of the contact structure in Sec. II B. W
recall that inN the structure of equilibrium thermodynamic
is represented by a Legendre submanifold inT*N3R. The
local coordinates inT*N3R are (y,y* ,w), where yPN
@i.e., y5(n,e)#, y* PTy*N @i.e., y* 5(2m/T,1/T)#, and w
PR. The Legendre submanifold that represents thermo
namics, denoted by the symbolL(N), is the image of the
mapping~24! wheres, called entropy, is a functionN→R.
We also introduce a Legendre submanifold inT*M3R; we
shall denote it by the symbolL(M), as the image of the
mapping

x°S x,
dS~x!

dx
,S~x! D , ~43!

where S(x) is the potential arising in the GENERIC ap
proach. The local coordinates inT*M3R are (x,x* ,v),
wherexPM, x* PTx*M, andvPR.

In order to study Legendre transformations ofL(M) we
turn our attention to the potentialF introduced in Eq.~27!.
With the help of this potential we introduce two addition
Legendre submanifolds. The first, denotedLy*

(M) , is the im-
age of the mapping

x°S x,
dF~x!

dx
,F~x! D . ~44!

We note that Eq.~44! in fact represents a family of Legendr
submanifolds inT*M3R; the family is parametrized byy* .
The second Legendre submanifold constructed with the h
of the potentialF is the submanifold denotedLM(N) , in
T*N3R. This submanifold is defined as the image of t
mapping

y* °(N~xth!,E~xth!,y* ,F~xth!), ~45!

wherexth is a solution ofdF/dx50. The submanifoldLM(N)

@see Eq.~45!# is indeed a Legendre submanifold since it is
Legendre transform of the Legendre submanifoldL(M) @see
Eq. ~43!# corresponding toz* 50, wherez* PTz* P21(y).
We can indeed verify directly thatE(xth)5dF(xth)/d(1/T)
andN(xth)5dF(xth)/d(2m/T).

Now we turn our attention to the time evolution
T*M3R. We look for the time evolution that satisfies th
following requirements.

~i! The time evolution inT*M3R preserves the canon
cal contact structure~given by the one formx* dx2dv) of
T*M3R. This means that the time evolution inT*M3R is
a one-parameter~the parameter is the time! family of Leg-
endre transformations.

~ii ! The time evolution inT*M3R extends the time evo
lution governed by the GENERIC in the sense that the L
endre submanifoldsLy*

(M) @see Eq.~44!# are invariant sub-
ed
-

-

y-

lp

-

manifolds of this time evolution and the time evolutio
restricted to these submanifolds is the time evolution g
erned by the GENERIC.

~iii ! As the time goes to infinity, the time evolution o
Ly*

(M) brings each point of this Legendre submanifold to
fixed point that lies on the smaller Legendre submanif
LM(N) imbedded inT*N3R @see Eq.~45!#.

We shall prove that all three requirements are verified
the following time evolution@21#:

dx

dt
52

dK

dx*
, ~46a!

dx*

dt
5

dK

dx
1x*

dK

dv
, ~46b!

dv
dt

5K2K x* ,
dK

dx* L , ~46c!

K~x,x* !5
1

2
^x* ,M ~x!x* &2

1

2K dS~x!

dx
,M ~x!

dS~x!

dx L
2 K x* ,L~x!

dE~x!

dx L , ~47!

where^ , & denotes the scalar product. The proof of~i! con-
sists of the observation that Eq.~46! is a canonical form of
dynamics preserving the contact structure~see, e.g.,@20#!.
The potentialK is called contact Hamiltonian. Property~ii ! is
proven by direct verification after expressingE andS in K in
terms ofF. We note also that onLy*

(M) the contact Hamil-
tonianK equals zero. Property~iii ! is a direct consequence o
properties ~i!, ~ii !, and property 3 of solutions to th
GENERIC.

The contact Hamiltonian~47!, for which all the Legendre
submanifoldsLy*

(M) are invariant submanifolds of the tim
evolution, is independent ofy* . Furthermore, sinceK is also
independent ofv, Eqs. ~46a! and ~46b! are of the Hamil-
tonian form.

We will now make a few remarks about the physical co
tent and possible applications of Eq.~46!. We first note that
Eq. ~46! is an equivalent reformulation of the GENERIC. I
main contribution is that it is a reformulation that throw
additional light on the interrelationship between dissipat
dynamics and thermodynamics. The essence of the refor
lation is that the state spaceM, on which the time evolution
takes place in the original formulation of the GENERIC,
replaced byLy*

(M) . This space is not bigger thanM ~if, for

example, the dimension ofM is finite thenM and Ly*
(M)

have the same dimension!, but it has a richer structure tha
M. The new structure inLy*

(M) that is missing inM is the
structure of a Legendre submanifold~in the mathematical
interpretation! and the structure of thermodynamics~in the
physical interpretation!. This structure is then preserved du
ing the time evolution so that the time evolution is a contin
ous sequence of Legendre transformations. Finally, ast→`,
all states settle on a Legendre submanifold that expre
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mathematically the thermodynamics on level 2 that is i
plied by the GENERIC time evolution.

Another advantage of the reformulation~46! is that it
gives us the possibility to formulate the GENERIC time ev
lution for discrete times. We recall, for example, that t
discrete time Hamiltonian evolution is formulated as an
eration of a mapping that preserves the symplectic struct
Analogically, we can formulate discrete time GENER
evolution as an iteration of a Legendre transformation~i.e., a
mapping preserving the contact structure!. In numerical so-
lutions the time has to be discretized. It has been dem
strated in the context of Hamiltonian systems@22# that the
time discretization that does not destroy the invariance of
symplectic structure has many advantages. We may ex
that a similar situation will occur in the context of th
GENERIC time evolution.

B. Liouville and Fokker-Planck formulations

In the Introduction we suggested that we should reg
the passage from microscopic to macroscopic description
a pattern recognition in the set of trajectories correspond
to the microscopic theory. Intuitively, we may expect tha
good strategy in pattern recognition is to look at the traj
tories in different settings. Features that are difficult to r
ognize in one setting may appear more clearly in other
tings. In statistical mechanics, the standard first step in
passage to macroscopic descriptions is to present the pa
trajectories as an evolution of a distribution function.
other words, the equations governing the time evolution
particles are replaced by the Liouville equation. Anoth
very successful pattern recognition strategy is ‘‘to sm
off’’ and then to look for the pattern. In statistical mechani
this strategy is usually achieved by adding noise to the g
erning equations. Under some conditions these equat
then also lead to an equation governing the distribution fu
tion; however, the resulting equation is not the Liouvi
equation but the Fokker-Planck equation. We shall now
ply both of these pattern recognition strategies to
GENERIC. We are particularly interested to observe as
whether the formulations of the GENERIC in other conte
are again particular, but different, realizations of t
GENERIC.

The Liouville equation corresponding to the GENERIC

] f ~x,t !

]t
52

]

]xF f ~x,t !S L
]E

]x
1M

]S

]xD G , ~48!

wheref (x,t) is the distribution function~for clarity, we here
reserve the symbold for derivatives with respect to the dis
tribution functionf and use the symbol] for derivatives with
respect to the state variablesx, which may themselves b
functions!. We directly verify that Eq.~48! can also be writ-
ten as

] f

]t
5L̂

dÊ

d f
1M̂

dŜ

d f
, ~49!

where
-

-

-
e.

n-

e
ct
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$A,B%5 K dA

d f
,L̂

dB

d f L 5E dx fF ]

]xS dA

d f D GLF ]

]xS dB

d f D G ,
~50!

@A,B#5 K dA

d f
,M̂

dB

d f L 5E dx fF ]

]xS dA

d f D GM F ]

]xS dB

d f D G ,
~51!

Ê~ f !5E dx f~x!E~x!, ~52!

Ŝ~ f !5E dx f~x!S~x!. ~53!

By direct inspection we see that Eqs.~49!–~53! are particular
realizations of the GENERIC in whichf (x) plays the role of
the state variable. We also note that, in addition toŜ( f ),
there are many other distinguished functionals of$ , % @for
example, ifL is independent ofx, then*dx flnf is a distin-
guished functional of the bracket defined in Eq.~50!# and
that the potentials~52! and ~53! are only linear functions of
the state variablef . The Liouville equation~48! or ~49! has
proven to be an excellent starting point to look at mac
scopic theories but on its own is not very revealing. F
example, due to the linearity of the potentialsÊ( f ) andŜ( f ),
we find no solution to the equation ofdF/d f 50. However,
this equation would be physically meaningful if we add t
functional 2kB*dx flnf to Ŝ( f ). In fact, if S(x)50, then
dF/d f 50 would be solved by the Boltzmann distributio
function.

We now proceed to the Fokker-Planck reformulation. W
want to introduce a noise term into the GENERIC~4! so that
the corresponding Fokker-Planck equation will be the p
ticular realization of the GENERIC~49! with the brackets
~50! and ~51!, the energy~52!, and the entropy

Ŝ~ f !5E dx f~x!@S~x!2kBlnf ~x!#. ~54!

In other words, the time evolution of the distribution fun
tion is assumed to be governed by the Fokker-Planck eq
tion

] f ~x,t !

]t
52

]

]xF f ~x,t !S L
]E

]x
1M

]S

]xD G
1kB

]

]xFM
]

]x
f ~x,t !G . ~55!

We note, however, that in this case the degeneracy requ
ment forL̂ is not generally satisfied. From the physical po
of view this is because the added noise plays the role o
external influence. We expect to obtain equations that p
sess the complete GENERIC structure if the noise becom
state variable and we have another equation governing
time evolution of the noise.

The Fokker-Planck equation~55! is equivalent to the sto-
chastic differential equation obtained by adding noise~and
the divergence ofM ) to the GENERIC~4! @23#,
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dx5L
]E

]x
dt1M

]S

]x
dt1kB

]M

]x
dt1BdWt , ~56!

whereB is a solution of the equation

BBT52kBM ~57!

andWt is a multicomponent Wiener process, that is, a Gau
ian process with first and second moments given by

^Wt&50, ^WtWt8
T &5min~ t,t8!1 ~58!

or, more formally,

K dWt

dt L 50, K dWt

dt

dWt8
T

dt8
L 5d~ t2t8!1. ~59!

The expression~57! for B may be regarded as th
fluctuation-dissipation theoremof the second kind~see Secs.
1.6 and 2.9 of@24#!. In obtaining this theorem, we did no
make any assumptions about being close to equilibrium
even local equilibrium and, interestingly, no temperatu
variable is required for formulating this fluctuation
dissipation theorem.

As an illustration of the stochastic dynamics~56! and~57!
we refer the reader to the example of fluctuating hydro
namics. With the specifications ofL, M , E, S, andB given in
paper II, Eq.~56! becomes the governing equation of t
fluctuating hydrodynamics appearing, for example, in@25#.

There are properties of solutions of Eq.~55! that can be
extracted and that are of interest in the pattern recogni
process leading to macroscopic properties. Following O
sager and Machlup@26# ~see also@27,28#!, we write the so-
lutions to Eq.~55! as functional integrals involving the La
grangianA0(x,ẋ),

A05 K S ẋ2L
dE

dx
2M

dS

dxD ,
M 21

4kB
S ẋ2L

dE

dx
2M

dS

dxD L
~60!

~strictly speaking,M is degenerate; see@27,28# for a more
careful discussion!. In the saddle-point approximation, on
looks for solutions of the Hamiltonian system correspond
to the Lagrangian~60!. We hence realize that the dynami
arising in the Onsager-Machlup analysis takes place in
extended state spaceT*M. If the newly adopted state vari
able is set equal to zero, then the Hamilton equations red
to the GENERIC. We note that the physics behind
Onsager-Machlup extension of dynamics fromM to T*M
is very different from the physics behind the extension fro
M to T*M3R discussed in Sec. III A.
s-
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n
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Finally, we briefly mention related work of Graham an
Tél ~see review@28#!, who introduce a general dissipativ
time-evolution equation. Their equation has the same form
our GENERIC except that it has less structure. The oper
L is not required to be Poisson and, moreover,L andM are
not required to possess the complementary degeneracy.

IV. CONCLUDING REMARKS

Universal features of macroscopic dynamics have b
recognized and used by Onsager@5#, Casimir @6#, Ginzburg
and Landau@4#, and others@27,28#. The GENERIC approach
that we introduce in this paper sums up results of these s
ies and contributes to them by introducing an additio
structure, by developing different applications, and by thro
ing a light on the relation between dissipative dynamics a
thermodynamics.

We have emphasized that, from the physical point
view, the GENERIC structure expresses the experiment
observed approach of one well-established level of desc
tion to another level of description that is more macrosco
and also well established, in particular, the approach to e
librium. Time-evolution equations that do not describe th
type of approach may, but in general will not possess t
structure. For example, the equations governing the t
evolution of externally forced systems that generate comp
patterns~e.g., those discussed in@29#! will not in general
possess the GENERIC structure. What will possess
structure will be equations expressing the approach of
time evolution of these driven systems formulated on m
microscopic levels to the time evolution formulated in@29#.
We hope to systematically discuss these applications of
GENERIC in a future paper. The main result emerging
these applications will be the thermodynamics of driven s
tems formulated on the levels of description used in@29#.

The structure that makes the GENERIC approach v
powerful in applications is the Poisson structure of the n
dissipative part of the time evolution and the complement
degeneracy of the dissipative and nondissipative parts of
structure. The principal domain of applications that we ha
explored is hydrodynamics and kinetic theory of compl
fluids while the applications developed previously~applica-
tions of a less complete universal structure! were, for the
most part, limited to finite-dimensional dynamical system
We regard the applications as the problem of finding parti
lar realizations of the universal structure expressing the p
ticular physics under consideration~similarly to, for ex-
ample, the problem of finding a particular representation o
group!.
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