PHYSICAL REVIEW E VOLUME 56, NUMBER 6 DECEMBER 1997

Intermittent and quasiperiodic behavior in a Zeeman laser model with large cavity anisotropy
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The stability and dynamic behavior of a two-levék 0 J=1, Zeeman laser model is investigated in the
limit of large cavity anisotropy. The stability of the steady-state solutions is governed by two different Hopf
bifurcations, one affecting the polarization state of the laser light and the other affecting the intensity dynamics.
Above these bifurcations the dynamic behavior exhibited by the model is extremely rich. It has been found that
the routes to chaos almost always involve quasiperiodic as well as intermittent dynamics. When this quasi-
periodic behavior is locked, type-1 and -Il intermittencies have been identified. When unlocked, the torus can
destabilize through two different scenarios leading to chaos: a “quasiperiodic intermittency” or a cascade of
period-doubling bifurcations. On-off intermittency has also been fol®8063-651X97)04512-1

PACS numbgs): 05.45+b, 42.65.5f, 42.55.Ah

I. INTRODUCTION boundary occurs, and in the on-off intermittendy’] the
laminar phases correspond to the null value of a certain vari-

In this paper we study numerically the temporal dynamicsable that switches on chaotically due to some external ran-
of aJ=0+J=1 Zeeman laser model. As will be shown in dom variation of the parameters or to the chaotic motion of
detail throughout the paper, the dynamics exhibited by thether system variables. Most of these types of intermittency
model involves both quasiperiodic and intermittent dynam-have been predicted in physical models and observed experi-
ics. The interest of our results resides in the peculiarity of thenentally. In particular, we found the on-off intermittency
intermittencies that we find since, often, they are intimatelyscenario in the Zeeman laser model that we study in the
related to quasiperiodic motions. present pap€r8], as we show below.

The intermittency scenario is one of the three possible Of the three classical types of intermittency the most elu-
ways along which a periodic behavior can continuously besive one is type Il. As far as we know there are very few
transformed into a chaotic one, the other two being the quatheoretical predictions and experimental observations. The
siperiodic (or Ruelle-Takens and period-doubling (or  first theoretical prediction was made in RE3] for a peri-
Feigenbaurmm scenariog1,2]. Intermittency is characterized odically driven nonlinear oscillator model. Recently some of
by phases of almost periodic behavior interrupted by suddens found this intermittency in a cascade laser m#i@] that
chaotic bursts in such a way that the duration of the regularesembles in some aspects the laser model studied here.
(or laminap phases verify certain statistical regularities. In Also, in laser physics, type-Il intermittency has been numeri-
particular, the mean duration of the laminar phases shortensally observed in a model of a laser with saturable absorber
following well-defined laws as chaos is approached. In theiwith external excitatiorf11]. With respect to experimental
seminal papef3], Pommeau and Manneville established theobservations, the first one was made by Huang and Kim in
existence of up to three types of intermittency which differ inan electronic oscillatof12], aninvertedtype-Il intermittent
the way in which a periodic orbit loses its stability. The behavior was found by Sacher, Hsar, and Geel in a
classification is made according to the way the eigenvaluesemiconductor lasdrl3], and there was a very clear obser-
of the differentiable Poincanmap cross the unit circle at the vation in Ref.[14] during the oxidation of methanol.
instability point: type | is associated with one real eigenvalue In Ref.[10] we also found what seems to be a different
(+1), and corresponds to a tangent bifurcation; type Il istype of intermittency that is similar in some aspects to the
associated with a pair of complex-conjugate eigenvalues, anype-Il intermittency, but that is associated to quasiperiodic
corresponds to something similar to a subcritical Hopf bifur-motion. In it, the laminar phases are not periodic but quasi-
cation; and type Il is associated with a real eigenvdlug),  periodic. We will find this new type of intermittent dynamics
and corresponds to a subcritical period-doubling bifurcationagain in the Zeeman laser model analyzed here. Let us insist
In all three cases a reinjection mechanism is necessary ithat this quasiperiodic intermittent behavior is a different
order to approach the trajectory to the unstable periodic orbitype of intermittency, since the quasiperiodic nature of the
after every irregular burdfor details, see Ref$1,2)). laminar phases cannot be understood within the standard in-

Since the paper by Pommeau and Manneville, more typetermittency theory1,2]. However, before entering into a de-
of intermittent behavior have been identified. In particular,scription of the dynamic behaviors, we find it is necessary to
typeX intermittency[4] was introduced in order to extend comment on the physical model we study.
the type-l intermittency to cases in which the intermittency Dynamical properties of nonlinear optical systems, in
occurs near a hysteretic transition, and txpg5] was intro-  which the polarization of the fields involved in the interac-
duced for discontinuous maps; the crisis-induced intermittion plays a significant role, is a subject of present interest.
tency[6] accounts for the long transients that appear wherhis is because for a long time the light field has been treated
the coalescence between two unstable fixed points or peras a scalar quantity in the dynamical studies of such systems,
odic orbits and a strange attract@wnith a fractal basin in spite of the fact that this assumption removes an important
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degree of freedom. The reasons for this previous neglect dfcription of the material relaxation phenomena that occur in
the vector character of the light are, on the one hand, tha gas ofJ=1—J=0 two-level atoms. This improvement of
important simplification of the problem that this approxima-the model is important, since the anisotropy of the material
tion implies and, on the other hand, that real systems includgedium strongly depends on the material relaxation rates,
polarizing elementgsuch as Brewster windows in lasprs and then the polarization state selection, as well as its stabil-
that fix the polarization field state. ity, are determined by the relaxation rates. Nevertheless, in
Nevertheless, this is not always the case in laser physicéle present work we will consider the simplest model of
and there was early interest in the polarization properties ofuccioni et al. [18] (which is a limit of the more general
the light emitted by isotropic lasefsee Refs[15-17, and  Model of Ref.[22] for low gas pressurgsbecause we will
references thereinThis interest led to the identification of concentrate on the case of large cavily anisotropy, a param-
the conditions under which a laser based on a given)’ eter dor_naln wherg we expect that the mfluenc_e .Of the me-
transition would emit with linear or circular polarization dium anisotropy will be small.. Moreqvgr, our main interest is
[17]. Unfortunately these studies were made in the frame®" the routes _to chadscenarios exhibited by the model, a
work of the third-order Lamb theory, which is valid only for Kind of behavior where we do not expect that small model

pump values close to the emission threshold. However, iyariations. will be.ir.nportant. In fact, we found that the type
one is interested in the nonlinear dynamical properties of £f Scenarios exhibited by the model of RE28] have large

laser, one must take into account a more complete descriﬁ—'m('jlalr'tz'gs tﬁ th? o|r1¢s that we fo(;md In af cabscade Iasef.:r
tion that has no restrictions with respect to the pump value odel[29], thus implying a certain degree of robustness o

and to the matter relaxation constants values. At present t e scenarios with respect to c_hanges in the model param-
situation has drastically changed, and the number of pape ers that do not modify the main structure of the equations.
in which the polarization of the fields is explicitly taken into Like the J=1<J=0 t.wo-level Zeeman Ia}ser model, the
account has increased during the last few years. In particulaf@scade laser model involves three atomic level connected
there have been studies on two-level Zeeman g2 isS— y tvyo allgwe_d dlpolgr transitions, leading tovatype level
25], optically pumped laseri26—28, cascade laser9], qonﬁggraqon in the first case and to a ladder-type level con-
fiber laser§ 30,31 and vertical cavity surface-emitting lasers f|g'ura't|o.n 'F‘.the. second ca$3_9]. Thus one can expect cer-
[32—34 including transverse phenomefg5,36. tain similarities in the dynamical properties of both systems,

As far as we know, the first study of the nonlinear dynam_although the physics and the parameter values are different

ics of a laser model that did not put any restriction on theln both cases. . .
The rest of the paper is organized as follows. In Sec. Il,

field polarization state was that of Pucciostial. [18], in

which the stability of a two-level Zeeman laser model based® model is presented and its domain of applicability is
on aJ=1J=0 atomic transition was analyzed. In that discussed. In Sec. lll, the stationary solutions and their sta-

work it was found that besides the usual Lorenz-Haken inbility are studied. In this section we pay special attention to

stability [37,38 (a subcritical Hopf bifurcation that destabi- the impossibility of determining the real polarization state of
lizes the laser intensity giving rise to chaotic dynamics anothe laser with this _mode!.. In Sec. IV, Fhe dyna_m|cs pf the
that appears for large values of both the cavity losses an@Odel beyond the instability threshold IS nu.m.encglly Inves-
pump parameteysthere appears a second Hopf bifurcationtigated. We concentrate on the bad cavity limit with a large

that leads to a modification of the polarization state of theCavity anisotropy, where we find rich intermittent and quasi-

field. Moreover, this polarization instability usually occurs periodic dynamics. Finally, in Sec. V the main conclusions

for pump and cavity loss parameter values much less restri@'€ Stressed.
tive than those imposed by the Lorenz-Haken instability.

The dynamics of this model was recently investigated in Il. MODEL
the isotropic casgl9]. In that paper a numerical study of the _ . S _
model of Pucciongt al.[18] was maddassuming equal cav-  As in Refs.[8,18], we consider a unidirectional ring cav-

ity losses for both fieldsfor cavity loss values corresponding ity filled with a gas of two-level atoms with angular mo-
to the good cavity case, i.e., to the domain where the LorenzmentaJ=0 and 1 for the lower and upper levels, respec-
Haken instability does not exist. Emphasis was put on thdively. The medium is assumed to be homogeneously
nontrivial dynamics that the system exhibits when the polarbroadened and incoherently pumped. Furthermore, we will
ization instability is crossed, a fact related to some phas@ssume that the cavity frequency coincides with the atomic
instability effects. In a companion papg20] the slightly  transition frequency, and that the dephasing collisions be-
anisotropic case was also treated, paying special attention ta/een atoms are negligiblg.e., we consider the radiative
the polarization switching phenomenon that appears whelimit). In this case, the model studied by Puccienil.[18]
the atom-cavity detuning is varied across resonance. Afteand the one proposed by Abraham, Arimondo, and San
Ref. [19], Schramaet al. [21] identified analytically the so- Miguel [22] coincide, because all the atomic relaxation rates
lutions with elliptical polarizations that appear after the po-take their minimum valugwhich is the common relaxation
larization instability. In the present paper we continue therate of the level populationsin this case the model equa-
work of Refs.[20-22 by studying the dynamic behavior of tions read
the model of Ref[18] in the bad cavity limit, with special
emphasis on the case of a laser cavity with large anisotropy.
Recently Abraham, Arimondo, and San MigyigP], fol-
lowing previous work by Lenstrgl7], proposed a modifica-
tion of the model of Ref[18] in order to improve the de- e,=o(py—aey), (1b)

éx: o(Px—€x), (1a
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Px= _px+exDx+eyQa (10 Px= Px expligy), Py= Py exp(isoy),

py=—p,+e,D,+eq, (1d) a=Q exdi(ey—¢0 ], (3b)

with P,, Py, andQ real amplitudes. In terms of the real

Dy=(r —Dy) —[2(e} petepd) +(ek p,+e,pk)],
= (=D 2(& Pt ep) + (& Pyt eypy)] 19  amplitudes, Eqs(1) read

: E,=o(Py,—E 4
Dy=(r-Dy) (&Pt &)+ 2Spy o))l = o(Px—EY, (4a
0=—q—(exp; +€) py), 1 :
0= —q—(expy +eypy) (19 pi= P +EDEQ, 40
Equations(1) have been written in théJ=1,J;=0) (i :
=x,y,2z) basis, withz the field propagation axis, which has Di=(r—D;)—2(2E;P; +E;P;), (4d)
been chosen as the quantization axis. This causes the upper .
sublevel|J=1,J,=0) to be coherently uncoupled with the Q=—-Q—(EP,+E,Py), (4e
lower lasing leve|J=0). e, ande, are the linear polariza- o
tion (Cartesiah components of the electric fielgh andD; ~ With i,j=x,y andj#i. Let us remark that the values of the

are proportional to the polarization and atomic inversion asarbitrary constant phaseg, and ¢, do not appear in Egs.
sociated with the transitiof)=1, J;=0)«|J=0), andq is  (4), a fact that, as commented upon above, has important
proportional to the coherence between the upper subleveRflysical consequences since it is the phase differepge (
|J=1,3,=0) and|J=1,J,=0). The parameter represents ¢x) that determines the polarization state of light. Thus it
the incoherent pumping ratassumed to be equal for all the IS the initial condition the one that fixes the phase difference
upper level sublevelso and ao represent the cavity losses and, since this difference does not change in time, the one
along thex andy directions, respectively, thus representingthat determines the actual polarization state of light.

a the cavity anisotropy. For definiteness we choasel, Finally, let us remark that outside the radiative limit, one
thus y labels the direction in which the cavity losses areShould consider different relaxation rates for the polariza-
larger. In Eqs(1) all the frequencies have been normalizedtions (v.), the population differencesy), the coherence

to the (common material relaxation rate. Q(vc) as well as include a new variablthe difference of
A fundamental property of Eqgl) is their invariance the upper sublevels populationwith a different relaxation
under the transformations rate (y;) [22]. When doing this th¢J=1, J,=0) upper sub-
level appears involved in the dynamics through its incoher-
(e, Px)— (e, Pyx)expligy), ent coupling with the rest of levels. Thus E¢) are strictly
valid only in the radiative limit. Nevertheless, as commented
(ey,py)—(ey,pyexpliey), d—qexdi(ey—e)], upon above, we can be confident that for large cavity

(2 anisotropiedi.e., large values o&) our predictions will re-
main accurate, since in this case the medium anisotropy can

with ¢, and ¢, arbitrary constant phases. Since the polar-pe neglected, at least in a certain range of low gas pressures.
ization state of light depends on the relative phase between

the x andy components of the field, it is obvious that Egs. IIl. STEADY SOLUTIONS AND THEIR STABILITY
(1) do not fix the polarization state of the fielthis also
applies to the detuned laser case not considered.here Equations(4) have three sets of steady states, which are

Since Eqgs(1) correspond to a perfectly tuned laser cav-the off state
ity, we assume that the solutiofisither stationary or time
dependentare resonant, i.e., they do not exhibit a frequency Ex=E,=P,=Py=Q=0, D,=Dy=r, )
shift with respect to the common value of the cavity and

atomic transition frequenciegthere is no pulling and/or

pushing effegt Nonresonant solutions, i.e., frequency pulled
solutions, may also exist. Nevertheless, due to the symmetry E,=P,=

properties of Egs(1), if a solution with frequencyw exists,
another solution with the same amplitude and frequenay
will do. The coexistence of this type of symmetrically de-

tuned solutions gives rise to pulsing solutions that appear at

the linearly polarized state along tiedirection,

a Hopf bifurcation point. This situation has been previously

found in a resonant cascade laser md@&@l. This assump-
tion is physically feasible and is compatible with Eq%).
Thus we write

&= Ex explig,), €= Ey expli ‘Py) ) (39

with E, and E, real amplitudes, andp, and ¢, arbitrary
constant phases. This form leads to

i% =y 6a)

1
D=1, Dy=j5(r+1), (6b)
E,=P,=Q=0, (60)

and a linearly polarized state along thedirection that for
a=1 is given by Eq(6) replacingx with y, but it is always
unstable fora>1. Thus we will not consider this last solu-
tion in the following.

In the isotropic caser=1, Egs.(4) also have the steady
state(Refs.[8,18—22)
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EZ+EZ=%(r—1), P,=E,, P,=E,, (73 40
v
D,=1+2EZ, D,=1+2E;, Q=-2EE,, (7b - LH

and represents the only case in which both field components ;3,1
are excited in a steady staf@vo-mode steady state o=
Throughout this paper we will be mainly concerned with
the anisotropic casea>1), and thus not much attention
will be paid to the two-mode steady state since it does not . =5
exist for «>1. Nevertheless it is worth insisting that, as op- 0
posed to the anisotropic case in which the polarization of ]
solution(6) is perfectly defined, in the isotropic case there is B
a complete degeneracy of solutions all of them having the
same intensityl =EZ+EZ. Thus solution (7) describes 10 — V'poi
equally circularly polarized lighfEZ=EZ=1/2, (¢y— @x=
+7/2)], linearly polarized light[EZ=EZ=1/2, (@,— ¢« - o=1
=0,m)], or any other state of light.
Obviously the same difficulty is found when characteriz- ) b it B i S et il et
ing the polarization state in the dynamical regifisee be- 0 2 4 6 8 10
low). Thus, although the nomenclature of linear and circular o
polarized solutions has been applied to the solutions of this
model[18-232, it would be more appropriate to speak of one  FIG. 1. Lorenz-Haker(thick line) and polarization instability
and two-mode solutions specifying the atomic basis in whichhresholds for several values of the anisotropy paranfeterThe
the equations are writtgf@ “circular” solution in our case is  dashed line marks the lasing threshold.
a two-mode solution but if the equations were written in the

o=4

o=2

{J,=+1,3,=0,J,= —1} basis, it would be a one-mode so- 6+c(4a—1)
lution). Of course this indetermination does not apply to the r=rpo=(2a0c+1) 20?302 (109
linearly polarized solutior{6) when there is a cavity anisot-
ropy (i.e., a preferred direction in the spacgnce in this for cavity losses values larger than
case, this steady solution is the only existing one.
We now consider the stability of the steady states. The —3++9+8a
stability analysis of the off-state solution shows that it suffers OBCLPO) ™ 4, (10b)

a pitchfork bifurcation at the pump value=1. Above this
value the off state becomes unstable, and the lasing solutiomhich is the generalization of the polarization instability first
appears. described in the isotropic casexr€1) by Puccioniet al.
The stability of the lasing state is governed by a seventhf18].
order characteristic equation that appears factorized into In the isotropic case, these instability boundaries are also
three polynomials: valid and thus the two-mode steady stdfBsare stablémar-
ginally stable, in fact, due to the relative phase indetermina-
(AM+1)AB=0, (88 tion) for pump values below boundarié®) or (10). This was
not clearly appreciated in Refgl8—22. In fact the instabil-
A=N>+(o+2)\*+(oc+r)N+20(r—1), (80 ity boundaries fore=1 can be directly obtained from those
of Ref.[22] by taking all the material relaxation rates equal
to unity in them.
The linearly polarized solution given by Ed$) becomes
unstable for pump values larger thayy or rpy. In Fig. 1
the instability boundaries are represented in({the) plane
for several values of the cavity anisotropy parametefhe
Lorenz-Haken instability curve remains unchanged since it is
PolynomialsA andB give rise to a Hopf bifurcation each of not affected by, and it can be seen how larger values of the

1
B=A3+(ac+2)\%+ 7 [8+r—20(1+r—4m]

+%o-(r+3)(a—1). (80

them. These bifurcations occur at pump are necessary for reaching the polarization instability
as «a increases. Whewm tends to infinity, the model of Egs.
f—r :0(0+ 4) (9a) (4) reduces to the Lorenz-Haken model, since in this case a
LH™ -2 single (linear polarization component of the field can be

supported by the resonator, and a scalar treatment holds.
for cavity losses values larger than
IV. DYNAMIC BEHAVIOR

TBCL(LH)= 2, (9b) _ _ _ _ .
In this section the dynamic behaviour of the system is

which is the well-known Lorenz-Haken instabilif7,3§,  analyzed. For doing that we will first present bifurcation dia-
and at grams in the(o,r) plane corresponding to several values of
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the cavity anisotropy parametet This will allow us to ob- 50
tain a global perception of the dynamics of the system, which -
is clearly dominated by quasiperiodic and chaotic motions. sl

Later we will analyze in detail several special scenarios in
which type-l, type-Il, and on-off intermittencies have been
clearly identified. A different type of intermittendyquasi-

periodic” intermittency will be also presented, as well as a -
rich transition to chaos involving a period-doubling torus. 20}

30—

VL S

7
) . ) ok VP9 Periodic
A. Bifurcation diagrams

In Figs. 2a)-2(d) we show the bifurcation diagrams in Stationary
the({o,r) plane obtained for=1, 2, 4, and 7, respectively. T

Although for the perfectly isotropic casex&1) the ad- "
equacy of the model is not very large, as previously com- sl
mented, we present its corresponding bifurcation diagram for L
the sake of completeness. Several conclusions can be ex-
tracted. In all the figures the stable steady state for small

values of the pump is the linearly polarized statée,+# 0,

Chaos
Periodic C

30 i~

E,=0), but fora=1 the polarization state is not determined, o= PeriodicB .
as we have stated. This linearly polarized state becomes un- - NAECERFTCILEL i
stable by increasing pump values when either the curygs o

or r y (the Hopf bifurcations of the systénare crossed.
In Fig. 2@ (a=1), it can be seen that the leading bifur-
cation is the polarization one. When crossing it the dynamics r
is periodic, and involves oscillations in the two field compo-
nentsE, and E,. The periodic attractor appears smoothly
from the steady state because the polarization bifurcation is
supercritical. This periodic dynamics is destabilized to a qua-
siperiodic motion that occupies a narrow region in the pa-
rameter space, and that further destabilizes increasing the
pump parameter to a chaotic attractor. Thus, the scenario is
the Ruelle-Takens-Newhouse off)]. Let us stress that al-
though both field€, andE, oscillate after the polarization 10 -
instability, nothing can be said with respect to the actual | Stationary (C)
polarization state since the relative phase between the two
fields is absolutely undetermined.
When cavity anisotropy is considered, the dynamics be- i
comes much richer. In Fig.(B) the cavity anisotropy can be a0
said to be moderates{=2). As for =1, the dominating L
bifurcation remains the polarization one, that again is super- ol '
critical. As a result, the truly linearly polarized steady state | Fpy Ao remmemmemmeneieians
continues destabilizing to a periodic attractor. But now, as I
opposed to the previous case, there are several types of pe- -
riodic attractor§we have found up to four of them, and their -
domains of stability are marked in Fig(l] that coexist in o
certain domains of the parameter spdoet shown in the Stationary d
figure). When the pump value is increased these attractors ( )
become quasiperiodic, but this quasiperiodic motion is stable 0 2 4 6 8 10
in a very small domain of parameters, and the trajectory in
the phase space falls into the next periodic attractor. The last (0}
of these periodic attractors also becomes quasiperiodic. By . . . _
further increasing the quasiperiodic attractor becomes cha- FIG. 2. Bifurcation diagrams for several values of the anisot-
otic through an intermittent scenario. ropy parameteta).
For a=4 [Fig. 2(c)] the bifurcation diagram becomes
much more involved. An important difference from the pre- Thus for cavity losses in which the stability is governed by
vious cases is that the two Hopf bifurcatiofthe Lorenz- the polarization bifurcation the transition is from steady to
Haken and polarization bifurcationbave approached each periodic motion. But for cavity loss values where the two
other considerably. Notice that for cavity losses smaller tharpifurcations are clos¢roughly o €[ 4,8]), there is a mutual
o~4 and larger tham~7, the polarization bifurcation still influence between the two bifurcations that makes the desta-
dominates over the Lorenz-Haken one, which is subcriticalbilization of the steady state occur in a quasiperiodic motion.

| 1
L

\’ ChaosB |

Pe},iodic o
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Stationary Op; For Iarge_r pump vaIue; th_e qhaotic dynamips_is stabilizet_:l

. through an inverse quasiperiodic scenario. Within the quasi-

/H Periodic ‘|CH \“ P, |mtH)\ Chaos periodic domain we have found very complex dynamics,

Or , , , , , ' such as a period-doubling torus that will be analyzed in Sec.
15 20 25 30 35 y IV B. Also, a quasiperiodic intermittency is present. For

larger pump values the periodic behavior is again destabi-
lized to a quasiperiodic attractor that leads to chaos via in-
termittency.

/P“ P"'\ It Il In order to clarify the rich phenomenology described
- - above, we next summarize our observations. For values of
Periodic | | Intil Chaos) Il ||{ Ops smaller than 4.5, the polarization instability is the first to be
S R R reached for all values of. In this case we find the basic
28 29 30 31 32 33 sequence
FIG. 3. Sequence of hifurcations for increasing pump valugs ( SS—P—QP—QP INT—CH,

for a=4 ando=6.

. . L . .where SS, P, QP, INT, and CH mean steady state, periodic
Nevertheless the domain where this quasiperiodic motion igyractots), quasiperiodic attractor, intermittency, and chaos,

stable is small, and periodic oscillations are recovered fofegpectively. For larger than 4.5, the first bifurcation is the
pump parameter values slightly exceeding the bifurcation orenz-Haken one for large enough cavity losses. In this
values. For increasing pump values there is a transition t@ase the basic sequence is

chaos and, as fa=2, this occurs through a mixture of the

guasiperiodic and intermittent scenarios. SS—Lorenz CH-on-off INT-=CH—QP INT—QP—P
A concrete example of this type of bifurcation diagram is
the one corresponding te=4, =6, and increasing pump —QP—type Il INT—CH.

values, shovyn in Fig. 3. First the Imearly.pqlanzed SteadyThus, the transitions from periodic behavior to chaos are
state destabilizes to a torus due to the proximity of both Hopf, "~ S :
) . : ) . . dominated by quasiperiodic attractors independently othe
bifurcations. By increasing, the dynamics becomes peri- : .
odic. Th iodic attractor destabili A i0d-4 .value. But asa increases it becomes more clear that the
Ic. 1he periocic attractor destablizes 10 a period-2 Perly, a1 secenarios are the intermittent ones. When the quasi-
odic attractorP_4 (i.e., the field intensity pattern repe"f“s afterperiodic attractors are frequency locked it is more or less
four peal_<$ \.Nh'Ch corresponds to. a frequency Iockmg of aeasy to identify type-l and -Il intermittenciéae have never
quaS|per|od|c attractdlvv_e know this becausB, is continu- (1) type Ill, but, when the torus is unlocked, the type of
?hus ‘f’Y'th at([):rus thgt et);'StS fprva[{uesmz{t_:los? to Lhe one in intermittency is obviously different, and cannot be assimi-
€ 'gl.”e' rom P, thére IS a transition 1o chaos via a 540y g any of the known intermittencies. Another clear con-
type-Il intermittency followed by an inverse type-I intermit-

i igwhich is th | in Sec. IV.C clusion is that, for largex values, the transition to fully de-
ency scengrldw Ich 1S the one we analyze In Sec. 1V. veloped chaos in the model occurs directly from the steady
This intermittency ends in a period-1#{,) periodic attrac-

Further i na th IBe, b . state via the on-off intermittency, whenever the Lorenz-
tor. Further increasing the pump vallg, becomes a quasi- 5 e pifurcation dominates the stability of the steady state.
periodic attractoQP; in the figure through a complicated

In the following subsections we show examples, with their

intermittent behavior that seems to be a type-Il intermittency . osnonding characterizations, of each of the encountered
This torus locks, leading to a period-3 periodies] attractor  ¢-anarios

which finally destabilizes to chaos via type-Il intermittency.
Let us finally consider the case of large cavity anisotropy
a=7 [Fig. 2d)], which qualitatively represents what occurs
for « values larger than, roughly, 4.5. In this case the stabil- A remarkable result of our study corresponds to the com-
ity of the linearly polarized steady state is dominated by theplicated transformations that a torus can develop during its
Lorenz-Haken instability for cavity loss values within the transition to chao$41-44. Figure 4 shows the first return
domain delimited by the two codimension-2 points definedmap for the cascade of different quasiperiodic behaviors ob-
by the crossings of the two bifurcations. As in the Lorenz-served fora=7 ando=6. For decreasing pump value, the
Haken model, crossing this bifurcation leads to Lorenznitial T2 torus in Fig. 4a) suffers two consecutive period
chaos. But this chaotic behaviour only affects to the subdoubling bifurcations, Figs.(®) and 4c). [The correspond-
space defined byE,,P,,D,,D}, and the rest of system ing frequency spectra are shown in Figé)s-5(d), see cap-
variables(i.e., {E, ,P,,Q}) remain in their steadynull) val- tion]. For still lowerr the torus becomes a strange attractor
ues. This is true for pump values not very far from the bi-that seems to be & torus[Fig. 4(d)], as was also found in
furcation value. When is further increased, the null vari- Ref.[41]. However, it has been impossible to find this third
ables begin to oscillate chaotically at random instants ofrequency by studying its power spectryffig. 5e)]. The
time, returning to the null value after each switching-on pe-final transition to chaos occurs through a intermittent behav-
riod. As the pump value is increased, the duration of the offor that will be analyzed in Sec. IV E.
states is shorter, until eventually all the variables behave cha- Such a cascade of dynamical behaviors varies drastically
otically. This is the on-off intermittency scenafid], that we  aso is changed. This is due to two different processes that
analyzed in detail in Ref8]. We will return to it, briefly, in  can alter the steps of the cascade. On the one hand we see
Sec. IVF. that the tori may suffer destabilizations that lead directly to

B. Period-doubling torus
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FIG. 6. Intensity maxima series far=4, =6, andr=31.62
(@), r=31.61(b), orr=31.60(c).

C. Type-l intermittency
We have seen only one case in which the transition from

fragile and unstable, and in that case the destabilizations ira locked torus to chaos occurs via type-l intermittency. It
terrupts the cascade. On the other hand, frequency lockingsrresponds to the transition from chaoshg, in the case
(which are quite common in our modedhange the steps of «=4 ando=6 shown in Fig. 3, commented upon above.
the cascade in different ways depending on the stage at Figure 6 shows the time evolution of the intensity maxima
which the frequency locking occurs. In particular, frequencyof the x component of the field #2) for three decreasing

locking transforms the quasiperiodic intermitten¢$ec.

IV E) in type-Il intermittency(Sec. IV D.

Log[Power Spectrum]

FIG. 5. Power spectrum fow=7, 0=6, andr=37 (a), r
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=36.6(b), r=35.9(c), r =35.145(d), orr=35.141(e).

values of the pump parameter(see captionThe intensity
maxima evolution is shown for the sake of clarity, since in
the whole intensity evolution it is impossible to identify any
clear feature. Although the laminar phases look quite com-
plex, the existence of 14 structures can be recognized. The
first return map of one of these structures is shown in Fig.
7(a), and the parabolic shape of the map, characteristic of
this type of intermittency1], is clearly apparent. In fact, this
map can be converted into the form

Xni1=€+Xn+ X2, (12)
which defines type-I intermittency. In E¢L1) x,, is propor-
tional to the intensity maximé, after a suitable rescaling
and shifting have been used, asnds the coupling parameter
(e=0 at the onset of intermittengy

We have constructed the probability distribution of the
laminar phase duration, an example of which is shown in
Fig. 7(b), and corresponds to the study of °1taminar
phases. It clearly exhibits two maxima, one for short and one
for long laminar phases, as predicted by the type-I intermit-
tency theory{1].

In order to characterize the intermittency better, we stud-
ied the dependence of the mean duration of a laminar phase,
(1), with the pump parameter). Our results show the typi-
cal regularity of the intermittent phenomenidd. In particu-
lar we obtain a scaling law of the tygé)o(r —rg) ~¢, with
ro the pump parameter value at the intermittency onset. Ac-
cording to the standard theory of intermittency the expected
law is (Iyece A, with B=3, with & the control parameter
appearing in Eq(11), and b=3(l)xe #, with g=3 (al-
though, recently, scaling laws wiig+ 1/2 and even of loga-
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FIG. 7. First return maga) and laminar phase duration histo-
gram(b) for a=4, =6, andr =31.615. In(c), the variation of the
larger Floquet multipliers with is shown for the same case.

rithmic form have been determingd5]). For checking this
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FIG. 8. Sequence of bifurcations for increasing pump valugs (
for a=7 ando=4.

some of us used this method in REE0]. Unfortunately, in

the present case this is not very useful, because there is a
great dispersion in the values obtained £0The same type

of difficulty appears with the type-Il intermittency analyzed

in Sec. IV D.

Finally, there is another way of ensuring that the type of
intermittency we are analyzing is type I. This can be done by
calculating the evolution of the Floquet multipligtk| of the
periodic attractofthe P4, attractor in the present cases the
intermittency is approached. Figurécy shows this evolu-
tion, and it is clearly seen that, although the larger Floquet
multipliers are initially two complex-conjugate ones, they
become real as the intermittency onset is approached in such
a way that only one of them crosses the unit circle through
A=1 (the other Floguet multiplier moves leftwards on the
real axis before reaching=1), as it corresponds to the
type-1 intermittency{1].

D. Type-Il intermittency

Type-Il intermittency is ubiquitous in the transitions to
chaos in our system. We have chosen this particular case
(a=7, o=4) for illustrating this scenario because it repre-
sents well what is observed for other parameter sets. The
scenario is shown in Fig. compare with Fig. @&)]: the
periodic attractor destabilizes to a quasiperiodic attractor
which frequency locks, giving rise to a period8g, peri-
odic attractor. After thisPg attractor a type-Il intermittency
scenario follows, eventually leading to chaos.

The type-ll intermittency is characterized by a two-
dimensional map of the forrfi]

pn+1:(1+8)Pn+Pﬁa (12)

Oni1= Ot &,

wherep exp(6) is a complex variable and is the coupling
parameter. Intermittency onset occurseat0, and ¢ is a
constant phase.

Figure 9 shows the intensity maxima time evolution for
three increasing values of the pumpA progressive short-
ening of the laminar phases is clearly noticeable. It can be
appreciated that there are six different structures in the lami-
nar phases, each of them showing a typical oscillation of

scaling law, it is necessary to determine the relation betweetype-II intermittency. Nevertheless, and contrary to the stan-

the actual control parametéthe pump parametear in our
casg ande. This can be done by using mapl) to deter-
mine the value ot numerically, and then its relation with
by repeating the operation for several valuesr ofindeed

dard behaviof1], the frequency of this oscillatiofrelated to

@) is not constant. Interestingly enough, this oscillation fre-
quency even changes its sign. This is clearly appreciated as a
change in the direction of the spiraling out in the first return
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0.02 H

map, as can be seen in Fig.(&0 These features are related
with higher-order nonlinearities not considered in ni&p).

In order to characterize this intermittent behavior better, 0.01 H
we studied the distribution of the laminar phase duration, and
the histogram is shown in Fig. l). A single peak for short L
durations is observed, in agreement with theldryy Never-
theless this is not a sufficient signature of type-Il intermit- 0
tency, since for type-lll intermittency the same behavior is
predicted. Moreover, as for the case of the type-I intermit- n
tency analyzed in Sec. IV C, we do not have the possibility
of determining the actual value af Thus, as for type-l
intermittency, we calculated the evolution of the Floquet
multipliers of the periodic orbit as the pump parameter ap-
proaches the transition from periodic to intermittent behav-
ior. A clearest signature of type-Il intermittency is shown in
Fig. 10(c): two complex-conjugate Floquet multipliers cross
the unit circle with non-null imaginary parts.

Let us insist that type-Il intermittency is commonplace in
the Zeeman laser model we are considering, and remark that
it appears in an unusual way: it is not a periodic attractor, but
a frequency-locked quasiperiodic attractor, that destabilizes
(this type of behavior was found previously by some of us in
a cascade laser moddl0]). This fact makes the number of
nearly periodic structures that can be found in a laminar
phase depend on the locking ratio. Moreover, in our example
we showed the nonconstant character of the oscillation fre-
guency along the laminar phases, a feature that cannot be
reproduced with a standard type-Il intermittency nhap

0 100 200 300

FIG. 10. First return maga) and laminar phase duration histo-
gram(b) for =7, c=4, andr =47.25. In(c), the variation of the
Although the type-l and -l intermittency behaviors ana- larger Floquet multipliers withr is shown for the same case.
lyzed above have some unusual features, the most exotic
intermittency we found is what we call “quasiperiodic” in- siperiodic nature and chaotic bursts, whose relative abun-
termittency. This kind of intermittent behavior was previ- dance is larger as the control parameter is moved away from
ously found in a cascade laser mod&D], which shares the bifurcation point.
some features with the model studied here. In this kind of In Fig. 11 we show the intensity maxima evolution for
behavior, a torus is destabilized, giving rise to an intermit-three values of the pump parameter. Figuregt11(c) cor-
tency between laminar phasés this case they are of qua- respond to & torus, and intermittency with long and short

E. Quasiperiodic intermittency
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FIG. 13. Time series of thg component of the field fon=7,
o=4, andr=20.5.

from the fact that it is usually very difficult to distinguish, in

an automatic way, what is a laminar phase and what is not.
Even in the cases in which the chaotic bursts are clearly
separable from the laminar phases, we have been able to
obtain only qualitative information: we see that the histo-

laminar phases, respectively. In this case the structure of tH@m Of the laminar phase duration shows a single maximum

laminar phases is much more complicated than in the case gp_rhshor;] laminar phases. This is, in principle, compatible
Fig. 9, a fact that is better seen in the first return maps of Fig/ith Poth type-Il and -l intermittencies. _
In any case we can affirm that this quasiperiodic intermit-

12 that correspond to tHE® torus(a) (notice the broadenin
P @ ( - tency does not correspond to any of the ones described in

of the first return map typical of three-frequency quasiperi- ; . .
L : . Ref. [3], because the first return map is absolutely different
odicity), and to a single laminar phagthe denser part of the | . . o
) 9 phasth b in this case. The only way of identifying and completely

figure) including the beginning of the final buréh). > - : .
We have not been able to make a clear statistical charagharacterizing this new type of intermittency would be by

terization of the laminar phase duration. The problem come§onstructing a map that could reproduce the quasiperiodic
nature of the laminar phases.

FIG. 11. Intensity maxima series fow=7, o0=6, and r
=35.141(a), r =35.1395(b), or r =35.125(c).

F. On-off intermittency

]n+] (a) There is still another type of intermittency present in the
20 Zeeman laser model: the on-off intermittency. Since it was
studied in detail in Ref.8], we simply comment briefly on it
for the sake of completeness.
- As stated in Sec. IV A, whenever the bifurcation first
crossed by the steady state is the Lorenz-Haken one, the
variablesX={E,,P,,D,,D} begin to oscillate chaotically,
10 exhibiting Lorenz chaos, but the rest of variablés
={E,,P,,Q} remain on its stationary valugvhich is the off
statg. This occurs because the hyperplafie 0 is invariant
under the time evolution oX, a fact that can be easily seen
in Egs.(4). Nevertheless, if the variables ¥freach adequate
values under time evolutior¥ =0 can be destabilized, and
the variablesy can switch on during the time that the per-
turbation remains in its adequate value. This is on-off inter-
mittency[7]. As the pump is increased, the switch-off peri-
ods are shorter, and eventually all the system variables
behave chaotically. Figure 13 shows an example of the time
evolution exhibited by the componef, of the field in
which the off-state laminar phases are clearly noticeable.

In Ref. [8] we studied the dependence of the laminar
. phase mean duration as a function of the pump parameter
L | value, and confirmed the predictions of the on-off intermit-
10 20 tency theony[46]: the probability of finding a laminar phase
I of length| is | =32 for smalll, and follows an exponential
decay for largel, and the mean duration of the laminar

FIG. 12. First return maps far=7, 0=6, andr =35.141(a), or  phases depend on the coupling parametes as near the
r=35.1395(b). intermittency onset. We also discussed the importance of the

n
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way in which the laminar phases are counted in order tdype-ll and -1l intermittenciel but we have not been able to

obtain the right exponent in this last law.

V. CONCLUSIONS

characterize the statistics of these new intermittencies be-
cause of the difficulty in the automatic recognition of laminar
phases.

Another instability mechanism affecting tori, consisting

In this paper the dynamic behavior of the model of Puc-of 3 period-doubling cascade, has also been found. This

cioni et al.for aJ=0<J=1 Zeeman lasdrl8| generalized

mechanism has been found to be extremely sensitive to small

to anisotropic cavities has been analyzed, paying special afsarameter value variations. In particular, it is observed that
tention to the case of large cavity anisotropy. We have disthe cascade sequence can change because of the appearance
cussed in detail the inability of the model to predict the po-of frequency lockings, and because the stability of the inter-
larization state of the light in the dynamic regime. In the mediate period-doubled tori is not very robust.

isotropic case this indetermination extends even to the steady ith regard to the observability of these dynamical fea-
states of the system, as it also occurs in the more accuraifres, some comments are in order. The model studied here

model of Ref[22].

is strictly valid in the radiative limit, which implies low gas

We have analyzed the stability of the stationary solutionspressures. At the same time the scenarios described through-
showing how the competition between the two independengyt this paper require large values of both the cavity losses

Hopf bifurcations present in the systefthe Lorenz-Haken

and the pump. It seems difficult to find a laser that fulfills

and the polarization instabilitigghanges as a function of the {nese conditions.

cavity anisotropy parameter. We have also analyzed how

Nevertheless, as stated, we can expect the same type of

the dynamic behavior exhibited by the system depends 08cenarios to be found in the more complete model of Ref.

this factor.

[22], that is adequate for higher pressures since the modifi-

In particular, we have shown that transitions to chaos may.ation of the relaxation rates does not modify the nonlineari-
occur in three different ways: through the Ruelle-Takenstjes in the model, which determines the nonlinear dynamics.

Newhouse scenarifor small values ofa), through on-off
intermittency (for values of @ and o, such that the first
crossed bifurcation is the Lorenz-Haken prend through a

On the other hand, large values of the pump and the cavity
losses can be simultaneously achieved for certain types of
lasers(e.g., far-infrared ammonia lasgr7]). Moreover, the

variety of intermittencies that are intimately related to qua-consideration of important physiocal factors such as Doppler
siperiodic motions. These latter ones include both type-l angroadening can considerably lower the thresholds without
-Il intermittencies(that occur when the quasiperiodic attrac- affecting seriously the type of dynamic behavi@sg]. In

tor is frequency locked and a new type of intermittency
(previously found by some of uglQ] in a cascade laser

model[39]) in which the laminar phases are quasiperiodic,

and that we have named quasiperiodic intermittency.

This quasiperiodic intermittency occurs when the attractor
is aT® unlocked torus. We have seen that in the this type of
intermittency the laminar length distribution is such that

short laminar phases are more probafds it occurs with

conclusion, we can expect the type of dynamics described
here to be observable in Zeeman lasers.
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