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Intermittent and quasiperiodic behavior in a Zeeman laser model with large cavity anisotropy

Javier Redondo, Germa´n J. de Valca´rcel, and Eugenio Rolda´n
Departament d’O` ptica, Universitat de Vale`ncia, Dr. Moliner 50, 46100 Burjassot, Spain

~Received 3 March 1997; revised manuscript received 17 June 1997!

The stability and dynamic behavior of a two-level,J50↔J51, Zeeman laser model is investigated in the
limit of large cavity anisotropy. The stability of the steady-state solutions is governed by two different Hopf
bifurcations, one affecting the polarization state of the laser light and the other affecting the intensity dynamics.
Above these bifurcations the dynamic behavior exhibited by the model is extremely rich. It has been found that
the routes to chaos almost always involve quasiperiodic as well as intermittent dynamics. When this quasi-
periodic behavior is locked, type-I and -II intermittencies have been identified. When unlocked, the torus can
destabilize through two different scenarios leading to chaos: a ‘‘quasiperiodic intermittency’’ or a cascade of
period-doubling bifurcations. On-off intermittency has also been found.@S1063-651X~97!04512-1#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.55.Ah
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I. INTRODUCTION

In this paper we study numerically the temporal dynam
of a J50↔J51 Zeeman laser model. As will be shown
detail throughout the paper, the dynamics exhibited by
model involves both quasiperiodic and intermittent dyna
ics. The interest of our results resides in the peculiarity of
intermittencies that we find since, often, they are intimat
related to quasiperiodic motions.

The intermittency scenario is one of the three poss
ways along which a periodic behavior can continuously
transformed into a chaotic one, the other two being the q
siperiodic ~or Ruelle-Takens! and period-doubling ~or
Feigenbaum! scenarios@1,2#. Intermittency is characterize
by phases of almost periodic behavior interrupted by sud
chaotic bursts in such a way that the duration of the reg
~or laminar! phases verify certain statistical regularities.
particular, the mean duration of the laminar phases short
following well-defined laws as chaos is approached. In th
seminal paper@3#, Pommeau and Manneville established t
existence of up to three types of intermittency which differ
the way in which a periodic orbit loses its stability. Th
classification is made according to the way the eigenva
of the differentiable Poincare´ map cross the unit circle at th
instability point: type I is associated with one real eigenva
(11), and corresponds to a tangent bifurcation; type II
associated with a pair of complex-conjugate eigenvalues,
corresponds to something similar to a subcritical Hopf bif
cation; and type III is associated with a real eigenvalue~21!,
and corresponds to a subcritical period-doubling bifurcati
In all three cases a reinjection mechanism is necessar
order to approach the trajectory to the unstable periodic o
after every irregular burst~for details, see Refs.@1,2#!.

Since the paper by Pommeau and Manneville, more ty
of intermittent behavior have been identified. In particul
type-X intermittency@4# was introduced in order to exten
the type-I intermittency to cases in which the intermitten
occurs near a hysteretic transition, and typeV @5# was intro-
duced for discontinuous maps; the crisis-induced interm
tency @6# accounts for the long transients that appear wh
the coalescence between two unstable fixed points or p
odic orbits and a strange attractor~with a fractal basin
561063-651X/97/56~6!/6589~12!/$10.00
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boundary! occurs, and in the on-off intermittency@7# the
laminar phases correspond to the null value of a certain v
able that switches on chaotically due to some external r
dom variation of the parameters or to the chaotic motion
other system variables. Most of these types of intermitte
have been predicted in physical models and observed ex
mentally. In particular, we found the on-off intermittenc
scenario in the Zeeman laser model that we study in
present paper@8#, as we show below.

Of the three classical types of intermittency the most e
sive one is type II. As far as we know there are very fe
theoretical predictions and experimental observations.
first theoretical prediction was made in Ref.@9# for a peri-
odically driven nonlinear oscillator model. Recently some
us found this intermittency in a cascade laser model@10# that
resembles in some aspects the laser model studied h
Also, in laser physics, type-II intermittency has been nume
cally observed in a model of a laser with saturable absor
with external excitation@11#. With respect to experimenta
observations, the first one was made by Huang and Kim
an electronic oscillator@12#, an invertedtype-II intermittent
behavior was found by Sacher, Elsa¨sser, and Go¨bel in a
semiconductor laser@13#, and there was a very clear obse
vation in Ref.@14# during the oxidation of methanol.

In Ref. @10# we also found what seems to be a differe
type of intermittency that is similar in some aspects to
type-II intermittency, but that is associated to quasiperio
motion. In it, the laminar phases are not periodic but qua
periodic. We will find this new type of intermittent dynamic
again in the Zeeman laser model analyzed here. Let us in
that this quasiperiodic intermittent behavior is a differe
type of intermittency, since the quasiperiodic nature of
laminar phases cannot be understood within the standard
termittency theory@1,2#. However, before entering into a de
scription of the dynamic behaviors, we find it is necessary
comment on the physical model we study.

Dynamical properties of nonlinear optical systems,
which the polarization of the fields involved in the intera
tion plays a significant role, is a subject of present intere
This is because for a long time the light field has been trea
as a scalar quantity in the dynamical studies of such syste
in spite of the fact that this assumption removes an impor
6589 © 1997 The American Physical Society
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degree of freedom. The reasons for this previous neglec
the vector character of the light are, on the one hand,
important simplification of the problem that this approxim
tion implies and, on the other hand, that real systems incl
polarizing elements~such as Brewster windows in laser!
that fix the polarization field state.

Nevertheless, this is not always the case in laser phys
and there was early interest in the polarization propertie
the light emitted by isotropic lasers~see Refs.@15–17#, and
references therein!. This interest led to the identification o
the conditions under which a laser based on a givenJ↔J8
transition would emit with linear or circular polarizatio
@17#. Unfortunately these studies were made in the fram
work of the third-order Lamb theory, which is valid only fo
pump values close to the emission threshold. Howeve
one is interested in the nonlinear dynamical properties o
laser, one must take into account a more complete des
tion that has no restrictions with respect to the pump val
and to the matter relaxation constants values. At presen
situation has drastically changed, and the number of pa
in which the polarization of the fields is explicitly taken in
account has increased during the last few years. In partic
there have been studies on two-level Zeeman lasers@8,18–
25#, optically pumped lasers@26–28#, cascade lasers@29#,
fiber lasers@30,31# and vertical cavity surface-emitting lase
@32–34# including transverse phenomena@35,36#.

As far as we know, the first study of the nonlinear dyna
ics of a laser model that did not put any restriction on
field polarization state was that of Puccioniet al. @18#, in
which the stability of a two-level Zeeman laser model bas
on a J51↔J50 atomic transition was analyzed. In th
work it was found that besides the usual Lorenz-Haken
stability @37,38# ~a subcritical Hopf bifurcation that destab
lizes the laser intensity giving rise to chaotic dynamics a
that appears for large values of both the cavity losses
pump parameters!, there appears a second Hopf bifurcati
that leads to a modification of the polarization state of
field. Moreover, this polarization instability usually occu
for pump and cavity loss parameter values much less res
tive than those imposed by the Lorenz-Haken instability.

The dynamics of this model was recently investigated
the isotropic case@19#. In that paper a numerical study of th
model of Puccioniet al. @18# was made~assuming equal cav
ity losses for both fields! for cavity loss values correspondin
to the good cavity case, i.e., to the domain where the Lore
Haken instability does not exist. Emphasis was put on
nontrivial dynamics that the system exhibits when the po
ization instability is crossed, a fact related to some ph
instability effects. In a companion paper@20# the slightly
anisotropic case was also treated, paying special attentio
the polarization switching phenomenon that appears w
the atom-cavity detuning is varied across resonance. A
Ref. @19#, Schramaet al. @21# identified analytically the so-
lutions with elliptical polarizations that appear after the p
larization instability. In the present paper we continue
work of Refs.@20–22# by studying the dynamic behavior o
the model of Ref.@18# in the bad cavity limit, with specia
emphasis on the case of a laser cavity with large anisotro

Recently Abraham, Arimondo, and San Miguel@22#, fol-
lowing previous work by Lenstra@17#, proposed a modifica
tion of the model of Ref.@18# in order to improve the de
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scription of the material relaxation phenomena that occu
a gas ofJ51↔J50 two-level atoms. This improvement o
the model is important, since the anisotropy of the mate
medium strongly depends on the material relaxation ra
and then the polarization state selection, as well as its sta
ity, are determined by the relaxation rates. Nevertheless
the present work we will consider the simplest model
Puccioni et al. @18# ~which is a limit of the more genera
model of Ref.@22# for low gas pressures! because we will
concentrate on the case of large cavity anisotropy, a par
eter domain where we expect that the influence of the m
dium anisotropy will be small. Moreover, our main interest
on the routes to chaos~scenarios! exhibited by the model, a
kind of behavior where we do not expect that small mo
variations will be important. In fact, we found that the typ
of scenarios exhibited by the model of Ref.@18# have large
similarities to the ones that we found in a cascade la
model @29#, thus implying a certain degree of robustness
the scenarios with respect to changes in the model par
eters that do not modify the main structure of the equatio
Like the J51↔J50 two-level Zeeman laser model, th
cascade laser model involves three atomic level conne
by two allowed dipolar transitions, leading to aV-type level
configuration in the first case and to a ladder-type level c
figuration in the second case@39#. Thus one can expect cer
tain similarities in the dynamical properties of both system
although the physics and the parameter values are diffe
in both cases.

The rest of the paper is organized as follows. In Sec.
the model is presented and its domain of applicability
discussed. In Sec. III, the stationary solutions and their
bility are studied. In this section we pay special attention
the impossibility of determining the real polarization state
the laser with this model. In Sec. IV, the dynamics of t
model beyond the instability threshold is numerically inve
tigated. We concentrate on the bad cavity limit with a lar
cavity anisotropy, where we find rich intermittent and qua
periodic dynamics. Finally, in Sec. V the main conclusio
are stressed.

II. MODEL

As in Refs.@8,18#, we consider a unidirectional ring cav
ity filled with a gas of two-level atoms with angular mo
mentaJ50 and 1 for the lower and upper levels, respe
tively. The medium is assumed to be homogeneou
broadened and incoherently pumped. Furthermore, we
assume that the cavity frequency coincides with the ato
transition frequency, and that the dephasing collisions
tween atoms are negligible~i.e., we consider the radiative
limit !. In this case, the model studied by Puccioniet al. @18#
and the one proposed by Abraham, Arimondo, and S
Miguel @22# coincide, because all the atomic relaxation ra
take their minimum value~which is the common relaxation
rate of the level populations!. In this case the model equa
tions read

ėx5s~px2ex!, ~1a!

ėy5s~py2aey!, ~1b!
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56 6591INTERMITTENT AND QUASIPERIODIC BEHAVIOR IN . . .
ṗx52px1exDx1eyq, ~1c!

ṗy52py1eyDy1exq* , ~1d!

Ḋx5~r 2Dx!2@2~ex* px1expx* !1~ey* py1eypy* !#,
~1e!

Ḋy5~r 2Dy!2@~ex* px1expx* !12~ey* py1eypy* !#,
~1f!

q̇52q2~expy* 1ey* px!, ~1g!

Equations ~1! have been written in theuJ51, Ji50& ( i
5x,y,z) basis, withz the field propagation axis, which ha
been chosen as the quantization axis. This causes the u
subleveluJ51, Jz50& to be coherently uncoupled with th
lower lasing leveluJ50&. ex andey are the linear polariza
tion ~Cartesian! components of the electric field,pi and Di
are proportional to the polarization and atomic inversion
sociated with the transitionuJ51, Ji50&↔uJ50&, andq is
proportional to the coherence between the upper suble
uJ51, Jx50& anduJ51, Jy50&. The parameterr represents
the incoherent pumping rate~assumed to be equal for all th
upper level sublevels!. s andas represent the cavity losse
along thex andy directions, respectively, thus representi
a the cavity anisotropy. For definiteness we choosea>1,
thus y labels the direction in which the cavity losses a
larger. In Eqs.~1! all the frequencies have been normaliz
to the ~common! material relaxation rate.

A fundamental property of Eqs.~1! is their invariance
under the transformations

~ex ,px!→~ex ,px!exp~ iwx!,

~ey ,py!→~ey ,py!exp~ iwy!, q→q exp@ i ~wy2wx!#,
~2!

with wx and wy arbitrary constant phases. Since the pola
ization state of light depends on the relative phase betw
the x and y components of the field, it is obvious that Eq
~1! do not fix the polarization state of the field~this also
applies to the detuned laser case not considered here!.

Since Eqs.~1! correspond to a perfectly tuned laser ca
ity, we assume that the solutions~either stationary or time
dependent! are resonant, i.e., they do not exhibit a frequen
shift with respect to the common value of the cavity a
atomic transition frequencies~there is no pulling and/or
pushing effect!. Nonresonant solutions, i.e., frequency pull
solutions, may also exist. Nevertheless, due to the symm
properties of Eqs.~1!, if a solution with frequencyv exists,
another solution with the same amplitude and frequency2v
will do. The coexistence of this type of symmetrically d
tuned solutions gives rise to pulsing solutions that appea
a Hopf bifurcation point. This situation has been previou
found in a resonant cascade laser model@39#. This assump-
tion is physically feasible and is compatible with Eqs.~1!.
Thus we write

ex5Ex exp~ iwx!, ey5Ey exp~ iwy!, ~3a!

with Ex and Ey real amplitudes, andwx and wy arbitrary
constant phases. This form leads to
per
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en
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y
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px5Px exp~ iwx!, py5Py exp~ iwy!,

q5Q exp@ i ~wy2wx!#, ~3b!

with Px , Py , and Q real amplitudes. In terms of the rea
amplitudes, Eqs.~1! read

Ėx5s~Px2Ex!, ~4a!

Ėy5s~Py2aEy!, ~4b!

Ṗi52Pi1EiDi1EjQ, ~4c!

Ḋ i5~r 2Di !22~2Ei Pi1Ej Pj !, ~4d!

Q̇52Q2~ExPy1EyPx!, ~4e!

with i , j 5x,y and j Þ i . Let us remark that the values of th
arbitrary constant phaseswx and wy do not appear in Eqs
~4!, a fact that, as commented upon above, has impor
physical consequences since it is the phase differencewy
2wx) that determines the polarization state of light. Thus
is the initial condition the one that fixes the phase differen
and, since this difference does not change in time, the
that determines the actual polarization state of light.

Finally, let us remark that outside the radiative limit, o
should consider different relaxation rates for the polari
tions (g'), the population differences (g i), the coherence
Q(gc) as well as include a new variable~the difference of
the upper sublevels populations! with a different relaxation
rate (gJ) @22#. When doing this theuJ51, Jz50& upper sub-
level appears involved in the dynamics through its incoh
ent coupling with the rest of levels. Thus Eqs.~4! are strictly
valid only in the radiative limit. Nevertheless, as commen
upon above, we can be confident that for large cav
anisotropies~i.e., large values ofa! our predictions will re-
main accurate, since in this case the medium anisotropy
be neglected, at least in a certain range of low gas press

III. STEADY SOLUTIONS AND THEIR STABILITY

Equations~4! have three sets of steady states, which
the off state

Ex5Ey5Px5Py5Q50, Dx5Dy5r , ~5!

the linearly polarized state along thex direction,

Ex5Px56
1

2
Ar 21, ~6a!

Dx51, Dy5
1

2
~r 11!, ~6b!

Ey5Py5Q50, ~6c!

and a linearly polarized state along they direction that for
a51 is given by Eq.~6! replacingx with y, but it is always
unstable fora.1. Thus we will not consider this last solu
tion in the following.

In the isotropic casea51, Eqs.~4! also have the stead
state~Refs.@8,18–22#!
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Ex
21Ey

25 1
4 ~r 21!, Px5Ex , Py5Ey , ~7a!

Dx5112Ey
2, Dy5112Ex

2, Q522ExEy , ~7b!

and represents the only case in which both field compon
are excited in a steady state~two-mode steady state!.

Throughout this paper we will be mainly concerned w
the anisotropic case (a.1), and thus not much attentio
will be paid to the two-mode steady state since it does
exist for a.1. Nevertheless it is worth insisting that, as o
posed to the anisotropic case in which the polarization
solution~6! is perfectly defined, in the isotropic case there
a complete degeneracy of solutions all of them having
same intensity I 5Ex

21Ey
2. Thus solution ~7! describes

equally circularly polarized light@Ex
25Ey

25I /2, (wy2wx5

6p/2)#, linearly polarized light @Ex
25Ey

25I /2, (wy2wx

50,p)#, or any other state of light.
Obviously the same difficulty is found when character

ing the polarization state in the dynamical regime~see be-
low!. Thus, although the nomenclature of linear and circu
polarized solutions has been applied to the solutions of
model@18–22#, it would be more appropriate to speak of o
and two-mode solutions specifying the atomic basis in wh
the equations are written~a ‘‘circular’’ solution in our case is
a two-mode solution but if the equations were written in t
$Jz511, Jz50, Jz521% basis, it would be a one-mode so
lution!. Of course this indetermination does not apply to t
linearly polarized solution~6! when there is a cavity anisot
ropy ~i.e., a preferred direction in the space! since in this
case, this steady solution is the only existing one.

We now consider the stability of the steady states. T
stability analysis of the off-state solution shows that it suff
a pitchfork bifurcation at the pump valuer 51. Above this
value the off state becomes unstable, and the lasing solu
appears.

The stability of the lasing state is governed by a seven
order characteristic equation that appears factorized
three polynomials:

~l11!AB50, ~8a!

A5l31~s12!l21~s1r !l12s~r 21!, ~8b!

B5l31~as12!l21
1

4
@31r 22s~11r 24a!#l

1
1

4
s~r 13!~a21!. ~8c!

PolynomialsA andB give rise to a Hopf bifurcation each o
them. These bifurcations occur at

r 5r LH5
s~s14!

s22
~9a!

for cavity losses values larger than

sBCL~LH!52, ~9b!

which is the well-known Lorenz-Haken instability@37,38#,
and at
ts

t
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e
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e

e
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-
to

r 5r Pol5~2as11!
61s~4a21!

2as213s22
, ~10a!

for cavity losses values larger than

sBCL~Pol!5
231A918a

4a
, ~10b!

which is the generalization of the polarization instability fir
described in the isotropic case (a51) by Puccioniet al.
@18#.

In the isotropic case, these instability boundaries are a
valid and thus the two-mode steady states~7! are stable~mar-
ginally stable, in fact, due to the relative phase indetermi
tion! for pump values below boundaries~9! or ~10!. This was
not clearly appreciated in Refs.@18–22#. In fact the instabil-
ity boundaries fora51 can be directly obtained from thos
of Ref. @22# by taking all the material relaxation rates equ
to unity in them.

The linearly polarized solution given by Eqs.~6! becomes
unstable for pump values larger thanr LH or r Pol. In Fig. 1
the instability boundaries are represented in the^r ,s& plane
for several values of the cavity anisotropy parametera. The
Lorenz-Haken instability curve remains unchanged since
not affected bya, and it can be seen how larger values of t
pump are necessary for reaching the polarization instab
asa increases. Whena tends to infinity, the model of Eqs
~4! reduces to the Lorenz-Haken model, since in this cas
single ~linear! polarization component of the field can b
supported by the resonator, and a scalar treatment holds

IV. DYNAMIC BEHAVIOR

In this section the dynamic behaviour of the system
analyzed. For doing that we will first present bifurcation d
grams in thê s,r & plane corresponding to several values

FIG. 1. Lorenz-Haken~thick line! and polarization instability
thresholds for several values of the anisotropy parameter~a!. The
dashed line marks the lasing threshold.
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56 6593INTERMITTENT AND QUASIPERIODIC BEHAVIOR IN . . .
the cavity anisotropy parametera. This will allow us to ob-
tain a global perception of the dynamics of the system, wh
is clearly dominated by quasiperiodic and chaotic motio
Later we will analyze in detail several special scenarios
which type-I, type-II, and on-off intermittencies have be
clearly identified. A different type of intermittency~‘‘quasi-
periodic’’ intermittency! will be also presented, as well as
rich transition to chaos involving a period-doubling torus.

A. Bifurcation diagrams

In Figs. 2~a!–2~d! we show the bifurcation diagrams i
the ^s,r & plane obtained fora51, 2, 4, and 7, respectively
Although for the perfectly isotropic case (a51) the ad-
equacy of the model is not very large, as previously co
mented, we present its corresponding bifurcation diagram
the sake of completeness. Several conclusions can be
tracted. In all the figures the stable steady state for sm
values of the pumpr is the linearly polarized state~ExÞ0,
Ey50!, but fora51 the polarization state is not determine
as we have stated. This linearly polarized state becomes
stable by increasing pump values when either the curvesr Pol
or r LH ~the Hopf bifurcations of the system! are crossed.

In Fig. 2~a! (a51), it can be seen that the leading bifu
cation is the polarization one. When crossing it the dynam
is periodic, and involves oscillations in the two field comp
nentsEx and Ey . The periodic attractor appears smooth
from the steady state because the polarization bifurcatio
supercritical. This periodic dynamics is destabilized to a q
siperiodic motion that occupies a narrow region in the
rameter space, and that further destabilizes increasing
pump parameterr to a chaotic attractor. Thus, the scenario
the Ruelle-Takens-Newhouse one@40#. Let us stress that al
though both fieldsEx andEy oscillate after the polarization
instability, nothing can be said with respect to the act
polarization state since the relative phase between the
fields is absolutely undetermined.

When cavity anisotropy is considered, the dynamics
comes much richer. In Fig. 2~b! the cavity anisotropy can b
said to be moderate (a52). As for a51, the dominating
bifurcation remains the polarization one, that again is sup
critical. As a result, the truly linearly polarized steady sta
continues destabilizing to a periodic attractor. But now,
opposed to the previous case, there are several types o
riodic attractors@we have found up to four of them, and the
domains of stability are marked in Fig. 2~b!# that coexist in
certain domains of the parameter space~not shown in the
figure!. When the pump value is increased these attrac
become quasiperiodic, but this quasiperiodic motion is sta
in a very small domain of parameters, and the trajectory
the phase space falls into the next periodic attractor. The
of these periodic attractors also becomes quasiperiodic
further increasingr the quasiperiodic attractor becomes ch
otic through an intermittent scenario.

For a54 @Fig. 2~c!# the bifurcation diagram become
much more involved. An important difference from the pr
vious cases is that the two Hopf bifurcations~the Lorenz-
Haken and polarization bifurcations! have approached eac
other considerably. Notice that for cavity losses smaller th
s'4 and larger thans'7, the polarization bifurcation stil
dominates over the Lorenz-Haken one, which is subcriti
h
.
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Thus for cavity losses in which the stability is governed
the polarization bifurcation the transition is from steady
periodic motion. But for cavity loss values where the tw
bifurcations are close~roughly sP@4,8#!, there is a mutual
influence between the two bifurcations that makes the de
bilization of the steady state occur in a quasiperiodic moti

FIG. 2. Bifurcation diagrams for several values of the anis
ropy parameter~a!.
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Nevertheless the domain where this quasiperiodic motio
stable is small, and periodic oscillations are recovered
pump parameter values slightly exceeding the bifurcat
values. For increasing pump values there is a transition
chaos and, as fora52, this occurs through a mixture of th
quasiperiodic and intermittent scenarios.

A concrete example of this type of bifurcation diagram
the one corresponding toa54, s56, and increasing pump
values, shown in Fig. 3. First the linearly polarized stea
state destabilizes to a torus due to the proximity of both H
bifurcations. By increasingr , the dynamics becomes per
odic. The periodic attractor destabilizes to a period-4 p
odic attractorP4 ~i.e., the field intensity pattern repeats aft
four peaks! which corresponds to a frequency locking of
quasiperiodic attractor~we know this becauseP4 is continu-
ous with a torus that exists for values ofs close to the one in
the figure!. From P4 there is a transition to chaos via
type-II intermittency followed by an inverse type-I intermi
tency scenario~which is the one we analyze in Sec. IV C!.
This intermittency ends in a period-14 (P14) periodic attrac-
tor. Further increasing the pump valueP14 becomes a quasi
periodic attractor~QP3 in the figure! through a complicated
intermittent behavior that seems to be a type-II intermitten
This torus locks, leading to a period-3 periodic (P3) attractor
which finally destabilizes to chaos via type-II intermittenc

Let us finally consider the case of large cavity anisotro
a57 @Fig. 2~d!#, which qualitatively represents what occu
for a values larger than, roughly, 4.5. In this case the sta
ity of the linearly polarized steady state is dominated by
Lorenz-Haken instability for cavity loss values within th
domain delimited by the two codimension-2 points defin
by the crossings of the two bifurcations. As in the Loren
Haken model, crossing this bifurcation leads to Lore
chaos. But this chaotic behaviour only affects to the s
space defined by$Ex ,Px ,Dx ,Dy%, and the rest of system
variables~i.e., $Ey ,Py ,Q%! remain in their steady~null! val-
ues. This is true for pump values not very far from the
furcation value. Whenr is further increased, the null vari
ables begin to oscillate chaotically at random instants
time, returning to the null value after each switching-on p
riod. As the pump value is increased, the duration of the
states is shorter, until eventually all the variables behave c
otically. This is the on-off intermittency scenario@7#, that we
analyzed in detail in Ref.@8#. We will return to it, briefly, in
Sec. IV F.

FIG. 3. Sequence of bifurcations for increasing pump valuesr )
for a54 ands56.
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For larger pump values the chaotic dynamics is stabiliz
through an inverse quasiperiodic scenario. Within the qu
periodic domain we have found very complex dynami
such as a period-doubling torus that will be analyzed in S
IV B. Also, a quasiperiodic intermittency is present. F
larger pump values the periodic behavior is again dest
lized to a quasiperiodic attractor that leads to chaos via
termittency.

In order to clarify the rich phenomenology describ
above, we next summarize our observations. For valuesa
smaller than 4.5, the polarization instability is the first to
reached for all values ofs. In this case we find the basi
sequence

SS→P→QP→QP INT→CH,

where SS, P, QP, INT, and CH mean steady state, peri
attractor~s!, quasiperiodic attractor, intermittency, and cha
respectively. Fora larger than 4.5, the first bifurcation is th
Lorenz-Haken one for large enough cavity losses. In t
case the basic sequence is

SS→Lorenz CH→on-off INT→CH→QP INT→QP→P

→QP→type II INT→CH.

Thus, the transitions from periodic behavior to chaos
dominated by quasiperiodic attractors independently of tha
value. But asa increases it becomes more clear that t
actual scenarios are the intermittent ones. When the qu
periodic attractors are frequency locked it is more or le
easy to identify type-I and -II intermittencies~we have never
seen type III!, but, when the torus is unlocked, the type
intermittency is obviously different, and cannot be assim
lated to any of the known intermittencies. Another clear co
clusion is that, for largea values, the transition to fully de
veloped chaos in the model occurs directly from the ste
state via the on-off intermittency, whenever the Loren
Haken bifurcation dominates the stability of the steady sta
In the following subsections we show examples, with th
corresponding characterizations, of each of the encount
scenarios.

B. Period-doubling torus

A remarkable result of our study corresponds to the co
plicated transformations that a torus can develop during
transition to chaos@41–44#. Figure 4 shows the first return
map for the cascade of different quasiperiodic behaviors
served fora57 ands56. For decreasing pump value, th
initial T2 torus in Fig. 4~a! suffers two consecutive perio
doubling bifurcations, Figs. 4~b! and 4~c!. @The correspond-
ing frequency spectra are shown in Figs. 5~b!–5~d!, see cap-
tion#. For still lower r the torus becomes a strange attrac
that seems to be aT3 torus@Fig. 4~d!#, as was also found in
Ref. @41#. However, it has been impossible to find this thi
frequency by studying its power spectrum@Fig. 5~e!#. The
final transition to chaos occurs through a intermittent beh
ior that will be analyzed in Sec. IV E.

Such a cascade of dynamical behaviors varies drastic
ass is changed. This is due to two different processes t
can alter the steps of the cascade. On the one hand we
that the tori may suffer destabilizations that lead directly
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chaos. This is because, asr is changed, the tori become mo
fragile and unstable, and in that case the destabilizations
terrupts the cascade. On the other hand, frequency lock
~which are quite common in our model! change the steps o
the cascade in different ways depending on the stag
which the frequency locking occurs. In particular, frequen
locking transforms the quasiperiodic intermittency~Sec.
IV E! in type-II intermittency~Sec. IV D!.

FIG. 4. First return maps fora57, s56, and r 536.6 ~a!, r
535.9 ~b!, r 535.145,~c!, or r 535.141~d!.

FIG. 5. Power spectrum fora57, s56, and r 537 ~a!, r
536.6 ~b!, r 535.9 ~c!, r 535.145~d!, or r 535.141~e!.
n-
gs

at
y

C. Type-I intermittency

We have seen only one case in which the transition fr
a locked torus to chaos occurs via type-I intermittency.
corresponds to the transition from chaos toP14 in the case
a54 ands56 shown in Fig. 3, commented upon above

Figure 6 shows the time evolution of the intensity maxim
of the x component of the field (Ex

2) for three decreasing
values of the pump parameterr ~see caption! The intensity
maxima evolution is shown for the sake of clarity, since
the whole intensity evolution it is impossible to identify an
clear feature. Although the laminar phases look quite co
plex, the existence of 14 structures can be recognized.
first return map of one of these structures is shown in F
7~a!, and the parabolic shape of the map, characteristic
this type of intermittency@1#, is clearly apparent. In fact, this
map can be converted into the form

xn115«1xn1xn
2, ~11!

which defines type-I intermittency. In Eq.~11! xn is propor-
tional to the intensity maximaI n after a suitable rescaling
and shifting have been used, and« is the coupling paramete
~«50 at the onset of intermittency!.

We have constructed the probability distribution of t
laminar phase duration, an example of which is shown
Fig. 7~b!, and corresponds to the study of 105 laminar
phases. It clearly exhibits two maxima, one for short and o
for long laminar phases, as predicted by the type-I interm
tency theory@1#.

In order to characterize the intermittency better, we st
ied the dependence of the mean duration of a laminar ph
^ l &, with the pump parameter (r ). Our results show the typi-
cal regularity of the intermittent phenomenon@1#. In particu-
lar we obtain a scaling law of the type^ l &}(r 2r 0)2j, with
r 0 the pump parameter value at the intermittency onset.
cording to the standard theory of intermittency the expec
law is ^ l &}«2b, with b5 1

2 , with « the control paramete
appearing in Eq.~11!, and b5 1

2 ^ l &}«2b, with b5 1
2 ~al-

though, recently, scaling laws withbÞ1/2 and even of loga-

FIG. 6. Intensity maxima series fora54, s56, andr 531.62
~a!, r 531.61~b!, or r 531.60~c!.
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rithmic form have been determined@45#!. For checking this
scaling law, it is necessary to determine the relation betw
the actual control parameter~the pump parameterr in our
case! and «. This can be done by using map~11! to deter-
mine the value of« numerically, and then its relation withr
by repeating the operation for several values ofr . Indeed

FIG. 7. First return map~a! and laminar phase duration histo
gram~b! for a54, s56, andr 531.615. In~c!, the variation of the
larger Floquet multipliers withr is shown for the same case.
n

some of us used this method in Ref.@10#. Unfortunately, in
the present case this is not very useful, because there
great dispersion in the values obtained for«. The same type
of difficulty appears with the type-II intermittency analyze
in Sec. IV D.

Finally, there is another way of ensuring that the type
intermittency we are analyzing is type I. This can be done
calculating the evolution of the Floquet multipliers@1# of the
periodic attractor~theP14 attractor in the present case! as the
intermittency is approached. Figure 7~c! shows this evolu-
tion, and it is clearly seen that, although the larger Floq
multipliers are initially two complex-conjugate ones, the
become real as the intermittency onset is approached in
a way that only one of them crosses the unit circle throu
l51 ~the other Floquet multiplier moves leftwards on th
real axis before reachingl51!, as it corresponds to the
type-I intermittency@1#.

D. Type-II intermittency

Type-II intermittency is ubiquitous in the transitions
chaos in our system. We have chosen this particular c
~a57, s54! for illustrating this scenario because it repr
sents well what is observed for other parameter sets.
scenario is shown in Fig. 8@compare with Fig. 4~d!#: the
periodic attractor destabilizes to a quasiperiodic attrac
which frequency locks, giving rise to a period-6,P6 , peri-
odic attractor. After thisP6 attractor a type-II intermittency
scenario follows, eventually leading to chaos.

The type-II intermittency is characterized by a tw
dimensional map of the form@1#

rn115~11«!rn1rn
3,

~12!

un115un1f,

wherer exp(iu) is a complex variable and« is the coupling
parameter. Intermittency onset occurs at«50, and f is a
constant phase.

Figure 9 shows the intensity maxima time evolution f
three increasing values of the pumpr . A progressive short-
ening of the laminar phases is clearly noticeable. It can
appreciated that there are six different structures in the la
nar phases, each of them showing a typical oscillation
type-II intermittency. Nevertheless, and contrary to the st
dard behavior@1#, the frequency of this oscillation~related to
f! is not constant. Interestingly enough, this oscillation f
quency even changes its sign. This is clearly appreciated
change in the direction of the spiraling out in the first retu

FIG. 8. Sequence of bifurcations for increasing pump valuesr )
for a57 ands54.
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map, as can be seen in Fig. 10~a!. These features are relate
with higher-order nonlinearities not considered in map~12!.

In order to characterize this intermittent behavior bett
we studied the distribution of the laminar phase duration,
the histogram is shown in Fig. 10~b!. A single peak for short
durations is observed, in agreement with theory@1#. Never-
theless this is not a sufficient signature of type-II interm
tency, since for type-III intermittency the same behavior
predicted. Moreover, as for the case of the type-I interm
tency analyzed in Sec. IV C, we do not have the possibi
of determining the actual value of«. Thus, as for type-I
intermittency, we calculated the evolution of the Floqu
multipliers of the periodic orbit as the pump parameter
proaches the transition from periodic to intermittent beh
ior. A clearest signature of type-II intermittency is shown
Fig. 10~c!: two complex-conjugate Floquet multipliers cro
the unit circle with non-null imaginary parts.

Let us insist that type-II intermittency is commonplace
the Zeeman laser model we are considering, and remark
it appears in an unusual way: it is not a periodic attractor,
a frequency-locked quasiperiodic attractor, that destabil
~this type of behavior was found previously by some of us
a cascade laser model@10#!. This fact makes the number o
nearly periodic structures that can be found in a lami
phase depend on the locking ratio. Moreover, in our exam
we showed the nonconstant character of the oscillation
quency along the laminar phases, a feature that canno
reproduced with a standard type-II intermittency map@1#.

E. Quasiperiodic intermittency

Although the type-I and -II intermittency behaviors an
lyzed above have some unusual features, the most ex
intermittency we found is what we call ‘‘quasiperiodic’’ in
termittency. This kind of intermittent behavior was prev
ously found in a cascade laser model@10#, which shares
some features with the model studied here. In this kind
behavior, a torus is destabilized, giving rise to an interm
tency between laminar phases~in this case they are of qua

FIG. 9. Intensity maxima series fora57 ands54: r 547.23
~a!, r 547.30~b!, andr 547.40~c!.
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siperiodic nature! and chaotic bursts, whose relative abu
dance is larger as the control parameter is moved away f
the bifurcation point.

In Fig. 11 we show the intensity maxima evolution fo
three values of the pump parameter. Figures 11~a!–11~c! cor-
respond to aT3 torus, and intermittency with long and sho

FIG. 10. First return map~a! and laminar phase duration histo
gram ~b! for a57, s54, andr 547.25. In~c!, the variation of the
larger Floquet multipliers withr is shown for the same case.
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6598 56REDONDO, de VALCÁRCEL, AND ROLDÁN
laminar phases, respectively. In this case the structure o
laminar phases is much more complicated than in the cas
Fig. 9, a fact that is better seen in the first return maps of F
12 that correspond to theT3 torus~a! ~notice the broadening
of the first return map typical of three-frequency quasipe
odicity!, and to a single laminar phase~the denser part of the
figure! including the beginning of the final burst~b!.

We have not been able to make a clear statistical cha
terization of the laminar phase duration. The problem com

FIG. 11. Intensity maxima series fora57, s56, and r
535.141~a!, r 535.1395~b!, or r 535.125~c!.

FIG. 12. First return maps fora57, s56, andr 535.141~a!, or
r 535.1395~b!.
he
of

g.

i-
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from the fact that it is usually very difficult to distinguish, i
an automatic way, what is a laminar phase and what is
Even in the cases in which the chaotic bursts are cle
separable from the laminar phases, we have been ab
obtain only qualitative information: we see that the his
gram of the laminar phase duration shows a single maxim
for short laminar phases. This is, in principle, compatib
with both type-II and -III intermittencies.

In any case we can affirm that this quasiperiodic interm
tency does not correspond to any of the ones describe
Ref. @3#, because the first return map is absolutely differe
in this case. The only way of identifying and complete
characterizing this new type of intermittency would be
constructing a map that could reproduce the quasiperio
nature of the laminar phases.

F. On-off intermittency

There is still another type of intermittency present in t
Zeeman laser model: the on-off intermittency. Since it w
studied in detail in Ref.@8#, we simply comment briefly on it
for the sake of completeness.

As stated in Sec. IV A, whenever the bifurcation fir
crossed by the steady state is the Lorenz-Haken one,
variablesX5$Ex ,Px ,Dx ,Dy% begin to oscillate chaotically
exhibiting Lorenz chaos, but the rest of variablesY
5$Ey ,Py ,Q% remain on its stationary value~which is the off
state!. This occurs because the hyperplaneY50 is invariant
under the time evolution ofX, a fact that can be easily see
in Eqs.~4!. Nevertheless, if the variables ofX reach adequate
values under time evolution,Y50 can be destabilized, an
the variablesY can switch on during the time that the pe
turbation remains in its adequate value. This is on-off int
mittency @7#. As the pump is increased, the switch-off pe
ods are shorter, and eventually all the system variab
behave chaotically. Figure 13 shows an example of the t
evolution exhibited by the componentEy of the field in
which the off-state laminar phases are clearly noticeable

In Ref. @8# we studied the dependence of the lamin
phase mean duration as a function of the pump param
value, and confirmed the predictions of the on-off interm
tency theory@46#: the probability of finding a laminar phas
of length l is l 23/2 for small l , and follows an exponentia
decay for largel , and the mean duration of the lamina
phases depend on the coupling parameter as«21 near the
intermittency onset. We also discussed the importance of

FIG. 13. Time series of they component of the field fora57,
s54, andr 520.5.
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way in which the laminar phases are counted in order
obtain the right exponent in this last law.

V. CONCLUSIONS

In this paper the dynamic behavior of the model of Pu
cioni et al. for a J50↔J51 Zeeman laser@18# generalized
to anisotropic cavities has been analyzed, paying specia
tention to the case of large cavity anisotropy. We have d
cussed in detail the inability of the model to predict the p
larization state of the light in the dynamic regime. In t
isotropic case this indetermination extends even to the ste
states of the system, as it also occurs in the more accu
model of Ref.@22#.

We have analyzed the stability of the stationary solutio
showing how the competition between the two independ
Hopf bifurcations present in the system~the Lorenz-Haken
and the polarization instabilities! changes as a function of th
cavity anisotropy parametera. We have also analyzed how
the dynamic behavior exhibited by the system depends
this factor.

In particular, we have shown that transitions to chaos m
occur in three different ways: through the Ruelle-Take
Newhouse scenario~for small values ofa!, through on-off
intermittency ~for values of a and s, such that the first
crossed bifurcation is the Lorenz-Haken one!, and through a
variety of intermittencies that are intimately related to qu
siperiodic motions. These latter ones include both type-I
-II intermittencies~that occur when the quasiperiodic attra
tor is frequency locked!, and a new type of intermittenc
~previously found by some of us@10# in a cascade lase
model @39#! in which the laminar phases are quasiperiod
and that we have named quasiperiodic intermittency.

This quasiperiodic intermittency occurs when the attrac
is aT3 unlocked torus. We have seen that in the this type
intermittency the laminar length distribution is such th
short laminar phases are more probable~as it occurs with
ev
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type-II and -III intermittencies!, but we have not been able t
characterize the statistics of these new intermittencies
cause of the difficulty in the automatic recognition of lamin
phases.

Another instability mechanism affecting tori, consistin
of a period-doubling cascade, has also been found. T
mechanism has been found to be extremely sensitive to s
parameter value variations. In particular, it is observed t
the cascade sequence can change because of the appe
of frequency lockings, and because the stability of the int
mediate period-doubled tori is not very robust.

With regard to the observability of these dynamical fe
tures, some comments are in order. The model studied
is strictly valid in the radiative limit, which implies low ga
pressures. At the same time the scenarios described thro
out this paper require large values of both the cavity los
and the pump. It seems difficult to find a laser that fulfi
these conditions.

Nevertheless, as stated, we can expect the same typ
scenarios to be found in the more complete model of R
@22#, that is adequate for higher pressures since the mo
cation of the relaxation rates does not modify the nonline
ties in the model, which determines the nonlinear dynam
On the other hand, large values of the pump and the ca
losses can be simultaneously achieved for certain type
lasers~e.g., far-infrared ammonia lasers@47#!. Moreover, the
consideration of important physiocal factors such as Dopp
broadening can considerably lower the thresholds with
affecting seriously the type of dynamic behavior@48#. In
conclusion, we can expect the type of dynamics descri
here to be observable in Zeeman lasers.
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mun.117, 344 ~1995!; 121, 168~E! ~1995!.
@23# A. P. Voitovich, A. M. Kul’minskii, and V. N. Severikov, Opt.

Commun.126, 152 ~1996!.
@24# L. P. Svirina, Opt. Commun.111, 370 ~1994!.
@25# R. J. Ballagh and N. J. Mulgan, Phys. Rev. A52, 4945~1995!.
@26# R. Corbala´n, R. Vilaseca, M. Arjona, J. Pujol, E. Rolda´n, and

G. J. de Valca´rcel, Phys. Rev. A48, 1483~1993!.
@27# E. Roldán, G. J. de Valca´rcel, R. Vilaseca, and R. Corbala´n,

Phys. Rev. A49, 1487~1994!.
@28# A. Kul’minskii, R. Vilaseca, and R. Corbala´n, Opt. Lett.20,

2390 ~1995!.
@29# V. Espinosa, G. J. de Valca´rcel, E. Rolda´n, and R. Vilaseca, J

Mod. Opt.42, 895 ~1995!.
@30# R. Leners and G. Ste´phan, Quantum Semiclassic. Opt.7, 757

~1995!.
@31# H. Zeghlache, Phys. Rev. A52, 4229~1995!; 52, 4243~1995!.
@32# C. Serrat, N. B. Abraham, M. San Miguel, R. Vilaseca, and

Martı́n-Regalado, Phys. Rev. A53, R3731~1996!.
@33# M. Travagnin, M. P. van Exter, A. K. Jansen van Doorn, and

P. Woerdman, Phys. Rev. A54, 1647~1996!.
@34# J. Martı́n-Regalado, M. San Miguel, N. B. Abraham, and

Prati, Opt. Lett.21, 351 ~1996!.
@35# M. San Miguel, Q. Feng, and J. V. Moloney, Phys. Rev. A52,

1728 ~1995!.
.

.

@36# M. San Miguel, Phys. Rev. Lett.75, 425 ~1995!.
@37# E. N. Lorenz, J. Atmos. Sci.20, 130 ~1963!.
@38# H. Haken, Phys. Lett. A53, 77 ~1975!.
@39# G. J. de Valca´rcel, E. Rolda´n, and R. Vilaseca, Phys. Rev. A

45, R2674~1992!; 49, 1243~1994!.
@40# D. Ruelle, F. Takens, and D. Newhouse, Commun. Ma

Phys.64, 35 ~1978!.
@41# V. Franceschini, Physica D6, 285 ~1983!.
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