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Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters
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Statistical and localization properties of dipole eigenmog#asmons of fractal and random nonfractal
clusters are investigated. The problem is mathematically equivalent to the quantum-mechanical eigenproblem
for vector(spin-1) particles with a dipolar hopping amplitude in the same cluster. In fractal clusters, individual
eigenmodes are singular on the small scale and their intensity strongly fluctuates in space. They possess neither
strong nor weak localization properties. Instead, an inhomogeneous localization pattern takes place, where
eigenmodes of very different coherence radii coexist at the same frequency. Chaotic behavior of the eigen-
modes is found for fractal clusters in the region of small eigenvalues, i.e., in the vicinity of the plasmon
resonance. The observed chaos is “stronger” than for quantum-mechanical problems on regular sets in the
sense that the present problem is characterize@éterministically chaotic behavior of the amplitude corre-
lation function (dynamic form factor. This chaotic behavior consists of rapid changes of the phase of the
amplitude correlation in spatial and frequency domains, while its magnitude is a very smooth function. A
transition between the chaotic and scaling behavior with increase of eigenvalue is observed. In contrast to
fractal clusters, random clusters with nonfractal geometry do not exhibit chaotic behavior, but rather a meso-
scopic delocalization transition of the eigenmodes with decrease of eigenf@l&3-651X97)01112-4

PACS numbgs): 05.45:+b, 71.45.Gm, 78.20.Bh, 61.43.Hv,

[. INTRODUCTION toprocesses. Note that localization of plasmons in disordered
fractal clusters and creation of nanoregions of high local-
The problem of properties of disordered systems is ofield intensity(speckleg have been experimentally observed
universal significance in physics. There is a wide class ofvith the use of a photon scanning tunneling microsddie
mutually related phenomena associated with disorderSimilar to the conventional focusing, the nonlinear-optical
Among those phenomena are localization of elementary exenhancement due to the plasmon localization is stronger the
citations (quasiparticles and eigenmodefluctuations and higher the order of nonlinearityr].
enhancement of local fields, correlation of such fluctuations, Because of the mutual mapping of a plasmon eigenprob-
and spatial-temporal chaos, including quantum chaos. lfem and the corresponding quantum eigenproblem, another
turn, the correlation of fluctuations is related to the linearfield of relevance for the class of phenomena under consid-
response function of a system by the fluctuation-dissipatiomeration is quantum chaos, which mathematically is chaos in
theorem[1]. In this paper we consider localization, spatially solutions(we will call them interchangeably eigenfunctions
correlated fluctuations, and chaos of polar eigenmdttas  or eigenvectonsof the corresponding linear eigenproblems
ditionally called “plasmons’) of large disordered clusters. (Schralinger-type equations Among many properties of
This problem mapé§.e., it is mathematically equivalerto a  quantum chaos, the most relevant for the present paper are
tight-binding eigenproblem for the Schilinger equation for real-space localization and spatial correlations of eigenvec-
a vector(spin-1 particle. tors. A partial localization of chaotic eigenfunctions is mani-
Of the phenomena mentioned above, electron localizatiofested by their scarring8,9]. Related properties are spatial
is responsible, in particular, for Anderson’s metal-insulatorcorrelations of the probability amplitudggigenfunctions
transitiong 2]. A similar phenomenon of importance for us is and probability densities. A seminal paper by Beff0]
localization of plasmons. Such a localization is intimatelyconjectured that the Wigner density matrix for a noninte-
related to fluctuations and enhancement of local electromaggrable chaotic system respects a microcanonical distribution.
netic fields in disordered systems, which cause surfaceAs a result, the spatial correlation function behaves as the
enhanced Raman scattering from surfat®k and fractal Bessel functionj((kr), resulting in a power-law decay pro-
clusters[4], and giant enhancement of nonlinear-optical re-portional to 1f. Thus no long-range spatial correlation of
sponses of such clustefS]. Physically, the localization of wave functions should exist. The absence of long-range spa-
plasmons is of principal importance for the optical-responsdial correlation in chaotic systems with time revergaithout
enhancement because it is a near-zone analog of focusing afmagnetic fieltlhas been confirmed analytically by Fal’co
electromagnetic radiatiofor it is a counterpart of the cre- and Efetov using the supersymmetacmodel. Note that in
ation of speckles by scattering of light waves from a randonthe presence of an intermediate-strength magnetic fibhdt
objecy. The “focusing” (or creation of specklg¢of electro- is, in the crossover region between orthogonal and unitary
magnetic fields by plasmon localization occurs on a nanomelasses weak long-range spatial correlation for electrons is
eter scale rather than on a micrometer scale as in convepredicted[11]. The widely used random matrix theory of
tional optical far-zone focusing. A near-zone focusing,quantum chaos also does not include the long-range spatial
similar to a far-zone optical focusing, creates local regions otorrelations. In contrast to the above theories that are appli-
high-field intensity, causing enhancement of nonlinear phoeable to massive particles moving in potential fields, we will
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show below that in our case there are long-range spatial coself-similar (fracta) cluster fill in the whole space of the
relations present in correlation functions of both amplitudecluster only on average. Each particular eigenmode is ex-
and probability(intensity). tremely nonuniform. Consequently, it creates charges
We consider both fractgkelf-similay and nonfractal ge- throughout the volume of a cluster causing long-range inter-
ometries of clusters. There exists some understanding of Iactions. For these reasons, we will call the polar excitations
calization of eigenmodes in self-similéfractal) systems. A  of disordered clusters plasmons, omitting the term “surface”
nontrivial geometry of localized eigenmodes described by as inadequate.
multifractal statistic§12] has been established recently for ~ The investigation in the present paper is aimed at under-
vibrations of fractalg“fractons”) [13—16. Localized vibra-  standing spatial behavior of the eigenmodes of the dipolar
tional excitations of fractal drums at low frequencies haveeigenproblenfor eigenfunctions of the equivalent quantum-
been found[17]. The polar excitationgplasmony that are mechanical vector eigenproblemiefined below in Sec. Il A.
considered in the present paper differ significantly from vi-We obtain and discuss numerical data of four types. First, we
brations mentioned above. We demonstrate below that theonsider individual eigenmodé$Sec. Il B). We show that
polar excitations exhibit a highly singular behavior through-that the eigenmodes of fractal clusters are chaotic, with
out the spectral region. In contrast, for instance, the vibrahighly random and singular distributions of polarizati@r
tional excitations of fractal drums are multifractal only for quantum-mechanical amplitudeThe eigenmodes change
large enough wavelengtli®w frequencies[17], where they  dramatically with small changes of their frequenciegen-
can “feel” the fractal boundary of the drum. Related but values, which is another signature of chaos. We also show
opposite behavior is typical for nonpolar waves in locally that not only individual eigenmodes but also local fields cre-
disordered media, i.e., media with short-length correlation ofited by external waves are chaotic and highly singular. This
the disorder. In this case, as soon as the wavelength exceeef3aos and singularity are undoubtedly responsible for the
the correlation length of the disorder, the excitation “sees”giant fluctuations of local fields and nonlinear-optical en-
an almost uniform medium and propagates with little scatterhancement found earli¢7].
ing (the Anderson transition The other three groups of results deal with data averaged
Intrinsically, polar excitations in a disordered medium arestatistically yielding various distribution and correlation
principally different from nonpolar modes because they crefunctions introduced in Sec. Il B. This statistical averaging is
ate charges throughout the medium, causing an infioitea  done in two steps: over many eigenmodes belonging to a
very long range of interaction. This results in differences in relatively narrow spectral region in the vicinity a given fre-
spectra: Polar excitations have spectral gap, i.e., they amguency for a single cluster and then over a large ensemble of
non-Goldstonian excitations, different from, say, acousticclusters. Specifically, the second group of data deals with
type vibrationg 18]. Earlier we formulated a hypothesis that statistical measures of the eigenmode localizatiGec.
the polar excitations of fractal clusters are strongly localized!l C). It is based on the distribution functid®(L,X), where
[19]. This implies that there exists only one spatial scalelL is the localization length anX is an eigenvalue of the
characterizing the excitation that plays the role of wave{roblem that is uniquely related to the physical frequency
length and total localization length of the cluster simulta-w=w(X); see Sec. Il A. We show in particular that for frac-
neously. This hypothesis was formulated analogously to Al{al clusters this distribution is very wide. In view of its width,
exander and Orbach’'s strong-localization hypothesis fothe average localization length at a given frequehgy
vibrations[20]. However, the theoretical prediction of Ref. (“dispersion relation’) is not nearly sufficient to character-
[19] did not agree with our subsequent results of more deize the distribution. A boundary of the distributid?(l,X)
tailed and higher-resolution numerical simulatiop®1]. has scaling form and the whole distribution obeys scaling
Later we found that polar eigenmodes of fractals clusters doependence as a consequence of clusters’ self-similarity. For
not follow familiar behavior of strong or weak localization nonfractal random clusters, the functi®{L,X) indicates a
[22]. Instead, these eigenmodes respect a new pattern that wielocalization transition of the eigenmodes as frequency de-
call inhomogeneous localization, where eigenmodes of vergreases X—0).
different localization lengths, from the typical nearest- The third group of data deals with the correlation function
neighbor distanc®, (the minimum scaleto the total size of S(r,X) of the eigenmode amplitudes at two spatial points
the clusterR, (the maximum scale coexist at any given separated by a distancat a frequencyn(X), averaged over
frequency frequency in a very wide spectral rafig2]. The  a narrow interval of frequencies and over an ensemble of
pattern of inhomogeneous localization is supported by exterelusters(Sec. Ill D). This correlation function is called syn-
sive numerical investigation of this paper. onymously the dynamic form factor of a system. It is related
Polar excitations of clusters are traditionally called “sur- to the imaginary part of the system’s polarizability and also
face plasmons.” It is implied that the wavelengthof the  describes different physical phenomena including energy
exciting electromagnetic radiation greatly exceeds the totdbsses of charged particles and equilibrium fluctuations of
size of the clusteR;. In a spherical particle, the surface electromagnetic fields(as described by the fluctuation-
plasmon is described by a spatially uniform polarization ex-dissipation theorei 1]. In addition, the dynamic form fac-
tended over the whole sphere, oscillating harmonically intor contains other physical information on a system includ-
time. This polarization creates charges only at the surface afg, but not limited to, dispersion of different branches of
the particle, thus justifying the name surface plasmon. As welementary excitations and localization-delocalization transi-
have found and present in this paper, in contrast to the beions of these excitations. As found below in Sec. Il D, for
havior of surface plasmons in regular spherical particles, fofractal clusters, the dynamic form factor exhibits a nonuni-
the whole spectral region the polar excitations of a larggform, quasichaotid“turbulent”) pattern in the coordinate-
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frequency domain. This chaotic behavior appears abruptlgillating at an optical frequency. This field polarizes mono-
(as in a phase transitipras eigenvalueX [and frequency mers, inducing oscillating dipole moments, which are
w(X)] decreases and, correspondingly, the correlation lengtrandom quantities due to the random structure of the cluster.
of the eigenmodes increases. At the point of the transition\We assume that the radius of the cluster is much smaller than
pronounced binary and ternary branches disappear, replacéite wavelength of the optical radiatid®.<<\. Then the in-
by chaotic behavior. In a sense, the chaos found is strongeluced dipole moments obey a well-known system of equa-
than the chaos predicted by Beifd0], since not only indi- tions
vidual eigenvectors but also their dynamic form factor are
chaotic. Also in contrast to Ref10], the correlation of am-
plitudes is long range, extending over the whole volume of
the clusters, in agreement with the above-mentioned data on
the localization-length distribution. In contrast to fractals, foryherez = agl, ag is the dipole polarizability of an isolated
random nonfractal clusters the behavior of the dynamic formyonomer, greek letters in subscripts denote vector indices
factor is predominantly nonchaotic, dominated by binary anqa,ﬁ, ...=X,Y,2), with the summation over the repeated
ternary branches disappearing at the point of a mesoscopjfgices implied W is the dipole-interaction tensor
delocalization transition aX—0.

The fourth group of data deals with the correlation func- [riZJ_ 5aﬁ_3(rij)a(r”)ﬁ]ri5, i #j
tion C(r,X) of the eigenmode intensitigprobability densi- W, .= o )
ties for the corresponding quantum eigenprobleah two llfT 0,1 =],
points separated by a distancdor eigenvalues close t¥
(Sec. lll B. Different from the dynamic form factor, the in- andri;=r;—r;.
tensity correlation function is insensitive to relative phases of |ntroducing a -dimensional vectofd) with the compo-
the eigenvectors, but is sensitive to their intensiﬂpﬂ)b- nents (a|d):dia (and similar for other Vecto}swe obtain
ab|l|t|es) This is one of the correlation functions studied for a Sing'e equation in al8-dimensional Spac@_Squ
guantum-chaos electronic problems in REE1] with the
conclusion that there are no long-range spatial correlations in (Z+W)|d)=|Ey), 3)
the absence of a magnetic field. In contrast, we find for our
problem that there are such correlations extended over th&here the dipole-interaction operator is defined by its matrix
whole available volume of system. Distinct from the dy- elements asi@|W|j8)=Wi,, ;. Similar to Ref.[19], we
namic form factorS(r, X), the correlation functio€(r,X) is  introduce the spectral variabl= —ReZ that will be used
smooth in the whole spectral region. This implies that theinstead of the frequency and a parameter—ImZ, which
fluctuations causing the turbulent behavior of the dynamiaetermines dissipation in a monomer. The main advantage of
form factor are associated with phases of the cluster plaspectral theory is the separation of the geometrical and ma-
mons, while their intensities on average have a smooth, reguerial properties of a system. The latter enter the theory only
lar second-order correlator. Finally, we show that thisthrough the parametef, while geometry is taken into ac-
intensity-correlation functiorC(r,X) obeys a scaling rela- count by eigenvectors of E3). In particular, frequencyw
tion with a very high accuracy. This implies that there is onlyis a function(though not necessarily a single-valued function
one significant length scale in the problem and that it is thén the whole spectral regionof X defined by the relation
whole size of the systerR.. This property is certainly due X=—Rea, ().
to the long range of the interaction and to self-similarity of  The solution of Eq(2) is determined by the eigenvalues

the clusters. This scaling behavior is one of the signatures of,, and eigenvectorgeigenmodes|n) of the W operator
the inhomogeneous localization of the eigenmogdsster  [19],

N
de=E§°>—j§1 Wiisdig 1)

plasmong

With regard to the analytical part of the paper, in Sec. Il (W—w,)|n)=0, 4
we present the necessary relations in the spectral representa-
tion. In particular, we introduce relevant correlation func-where n=1,... N is the eigenmode’'s number. These

tions and predict their scalingSec. 11 B) and we obtain eigenmodes are the plasmons discussed in Sec. |. Equation
simple predictions within the framework of a binary approxi- (4) has the form of a Schedinger equation for vectdspin 1)
mation(Sec. Il Q. Section Il is devoted to numerical inves- particles on a latticgr;}, where |n) are stationary wave

tigation (discussed above in the Introductjon functions. Thus the present results are valid also for the cor-
responding quantum vector problem. The projectiom|i)
Il. BASIC RELATIONS is the amplitude of amth eigenmode at aith particle with
a polarizationa or the quantum-mechanical amplitude for a
A. Spectral representation and linear response vector particle at théth node with polarizationy.

For the sake of completeness, in this section we will The solution of Eq(3) in terms of spectral representation
briefly summarize spectral theofjl9] of the dipolar re- IS
sponse of clusters and also introduce necessary definitions
and relations. Consider a cluster consistingNo€onstituent d.=S G. E9 (5)
particle (called below monomeyspositioned at points;, la 44 FalBEip
i=1,...N. The monomers are subjected to an external-
wave electric fieldthe field at arith monomer isE(”)) os-  whereg is the Green’s function
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LJ'B =2 (ia|m)(jBIn)(Z+w,) J C(r,X)d%r =w(X) (11b
Z+W n n ) ’ f

(6)
The polarizationP(r) is given by the conventional formula
[1] Po(r)=J xap(r.r YES(r")d® . For a composite con-

sisting of the clusters, the susceptibilify,(r,r’) is ex-
pressed in terms of the Green’s function as

giayjﬁ=(ia

where v is the spectral density of eigenmodes
v(X)=X,8(X—w,). Equation(11g is obviously equivalent
to the dipole sum rule. The polarizabilig) for a single
cluster satisfies the optical theorem

€
SaB(r,X)=;f azM(r—r’)a#B(r')d%I (12
XaplaT)= < .212 Grajpdlr =1 oAr r])>, @ that follows from the orthonormality and closure of the vec-
tor set|ia). We used this relation to independently check
where the angular brackets denote ensemble averaging ow@sults of numerical computations. We also note that the
clusters, including their positions and orientation. For a comfunction Gyx(r) introduced in Ref[22] is related to Eq(10)
posite consisting of randomly positioned clusters, the polarby Gy(r)=C(r,X)/v(X).
izability obviously depends only on the difference of coordi- A useful parameter to characterize the localization of an
nates, nth eigenmode is its localization radius, defined as the
gyration radius for the eigenmode’s intensities,

2

aaﬁ(r,r'):aaﬁ(r—r’):<i2’j gia,jlgé(r—rij)>. (8) - (13)

Li=2 riigIn?=| 2 r(iBIn)?
I |

The susceptibility (7) in this case is x,g(r.r')

=na,g(r—r’), wheren is the concentration of clusters in

the composite.

Apart from the distributions of Eqg9) and (10), we also
introduce the distributio?(L,X) of the localization lengths
at a given frequencw(X), namely,

B. Correlation and distribution functions
P(L,X>=<E 5<L—Ln>5<X—wn>>. (14)
n

The dynamic form factoB,4(r,X) is defined as the cor-
relation function of polarization amplitudesia|n) and
(iBIn) at two pointsr; andr;, separated by a given distance
r=ri—r; for eigenvectorgn) with eigenvaluesv, close to

This distribution is normalized similar to Eq(11b),
JP(L,X)dL=w»(X). The average localization length, at a

the given value o. Namely, given X can be expressed in the equivalent forms
saﬁ<r,x>=%|maaﬁ<x,r) L§=<§ L§6<X—wn)> / ¥(X)
= nZH (ia|n)(j BIn) S(X—wp) 8(r—r) ), =f:P(L,X)L2dL/ (X)
© :%f r2C(r,X)d3r/ v(X). (15)

where we also indicate the relation between the form factor

and the polarizabilityer,, 5 (in establishing this relation, we Thijs length as a function o plays the role of the “disper-
neglect the spectral width compared toX). The same form  sjon relation” of excitations in the clustergf. Refs.[18]
factor defines also the correlation of the equilibrium fluctua-and[21]).
tions of the polarization in the composite, in accord with the  For self-similar(fracta) clusters there is no characteristic
fluctuation-dissipation theorepi]. size except for the minimum sizthe distance between near-
Similarly, we introduce the second-order correlatorggt monomer®,) and the maximum scalghe total size of
C(r,X), i.e., the correlation function of the eigenmode inten-the clusterR,). Because the interaction is very long range,
sities (a|n)? and (B|n)?, for distances >R, the minimum size should not be relevant.
On the other hand, for the same reason, the total size of a
B . 2, 2 clusterR, may be an essential parameter. Therefore, one can
C(f,x)—<r§j (ia|n)(jBIn) 5(X_W”)5(r_r”)>' expect scaling of the correlation and distribution functions
(10) with R., namely,

2|

The correlators of Eq99) and (10) are normalized in the S(r X)=8< r X) (163

following way: c

Jw Sup(r,X)dX=N8,58(r), (118 C(r,X)=C( [ ,x), (16b)

D
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L wheref(r)=N({5(r —p)) is the distribution function of the
P(L,X)=P(E,X), (160  distancep, a smooth regular function.
¢ To interpret Eq.(20) let us consider, e.g., the spectral
detuning to the red from the plasmon resonance. For metallic
lusters this is the most interesting case because the light
requency is in the visible range. In this caxe:0 and Eq.
(20) shows that at small there is a band of self-correlation
that does not depend aoX, i.e., is parallel to theX axis,
described by the firsé function in Eq.(20). Asr increases,
S(r,X)ocrs (179 this band is followed by a narrow negative-correlation band
' ' described byX=—1/r3, followed by another narrow band
with positive correlation described by

where S, C, and P are functions whose first argument is
dimensionless and of order 1 or less. If the maximum scal
R. is also not relevan{possibly due to a strong dynamic
screening, one expects a power-law form of the correspond
ing functions

C(r,X)ecr€, (170
P(L,X)LP, (179 X=-3. (22)

wheres, ¢, andp are the corresponding scaling indices. Be-  The first correction to the binary approximation is the
cause the frequency paramerenters the basic equations ternary approximation, where an eigenmode is constituted
(1) and(3) only in a combination with the cube of the radius, not by two but by three excited regions separated by dis-
then necessarily the indices should not depend on the fregances much larger than their sizsémilar to what is shown

quency(parameteix). in the right lower panel of Fig.)1 Consider, for instance, a
completely aligned symmetric mode, where the three excited
C. Binary approximation regions are center-symmetrically positioned along a straight

The correlation functions introduced above cannot be call—ine' Such modes at a given total sipeyield six different
: ! : eigenvalues, where three of them are twice degenddate
culated analytically in the general case. Here we will employ

the binary approximatiofil9] to calculateS(r,X). The bi- hoted by®?2),

nary approximation assumes that each of the contributing 1 2 1 1
eigenmodes is concentrated in two small regions separatel,= — —5®2, —, —3(—1%=+57), 53(1= V57 ®2.
by some distancg. In that case the eigenmode equatidh p PP p

can be solved exactly. (22)

For a given pair of localization regions, the solution yieIdSThe largest-magnitude eigenmode will manifest itself in the

SIX delgenrr]nodesh. 'I;jhere_ are ftwﬁ Iong_lltlud_lnald_moldes, I:e'dynamic form factor foiX<<0 as a band of positive correla-
modes where the direction of the oscillating dipoles coin-;q, given by the equation

cides with p. Denoting these modes #8*), one gets the
corresponding eigenvalues and the localization amplitudes as

x=—£3(1+ J57). (23
25 =2, (x0T r
W, =*—, (zx|la)=—=, (zx|2a)=F—,
= pd ( V2 V2 Below, we will compare the simple picture predicted by
(18 binary-ternary approximation to the results of numerical
computations.
where n=p/p. There are also four transverse eigenmodes
[x+) and|y=), with the eigenvalues and localization am- IIl. NUMERICAL RESULTS

plitudes
A. Procedures

(x) n'X Numerical calculations have been made using cluster-

1 o
Wi =Wy = i;@ (x*[1a) R (xx[2a)= iﬁy cluster aggregatéCCA) clusters generated similarly to Refs.
(19 [23] and[24]. Random lattice gaéRLG) clusters also have
been used to elucidate the relative roles of disorder and frac-
tality. Clusters of both types are generated on a rectangular
100X 100x 100 lattice. The RLG clusters are generated by
randomly placing monomers within a sphere whose radius is
chosen in such a way that these clusters have the same gy-
ration radius as the CCA clusters with the same number of

and similarly for|y+), wheren® andn® are normal unit
vectors in the plane perpendicular to the directiompoSub-

stituting Eqs.(18) and (19) into Eq. (9) and taking into ac-
count that in this cas@=r;;, we obtain for the dynamic

form factor S(r,X) = 5Sea(r . X), monomers to allow for direct comparison. Clusters of sizes
N=1500 andN =500 have been used to test the scaling pre-

2 2 dicted by Eqs(16).
S(r.X)= 5(r)v(x)+f(r)[5 X+ 3| 5(X_ r_g) The solution procedure consists in using the spectral ex-

pansion technique as described above in Sec. Il A. The di-
(20 agonalization of the dipole-dipole interaction matrix has
' been performed using the well-known Lanczos algorithms

1 1
+20 X_r_3 —20 X+r—3
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FIG. 1. Spatial distribution of the local-field intensities for an individdat 1500 CCA cluster shown over a two-dimensional projection
of the cluster for the values af, indicated. The coordinates are shown in units of the lattice spd&ind@he values ofv,, are in units of
R53. The value of the gyration radius, of the eigenmodes is shown relative to the cluster raRius

for large matrix diagonalization[25]. The number of consisting of hot spots fluctuating in space and oscillating in
N=1500 clusters used in the accumulation of the Montelime with coherent phases.

Carlo statistics is 300, and fo¢=500 it is 2000. Good sta- ~ The behavior described above is in agreement with our
tistical convergence has been found for all quantities calcuPrevious findings of inhomogeneous localizat[@2]. How-
lated. ever, the present findings disagree with our original hypoth-

esis of strong localizatiof19] that implies that the eigen-
modes in most of the spectrum should have small
localization radiiL,<R.. The numerical results presented
We will first consider local fields of individual eigen- above, along with the results that will be described below,
modes(plasmong in the system. An example of local-field show that the related numerical findings of Re6] support-
intensity distributions for four chosen eigenmodes of a CCAing the strong localization hypothesis are indeed incorrect.
cluster is shown in Fig. 1. Features of these distributions ar€All the eigenvectors shown and discussed in R26] have
quite remarkable. First, the distributions change dramaticallwery small localization radii.
even for a small change of the eigenvalugs In particular, Let us consider now spatial distributions of the local field
the upper left distribution atv,=1.029 is extremely local- intensity at a given monomdr=d?, [see Eq.(5)] for the
ized, with the localization radiu&, of only 0.06&;. In  case of excitation by aexternalfield. An example of such a
contrast, just a few tenthfd % change of the eigenvalue to distribution is shown in Fig. 2 for two frequenci¢saram-
w,=1.033 brings about a dramatic increase of the localizaeterX) that are very close to each other and two perpendicu-
tion radius that makes it comparable with the total sizelar linear polarizations. These distributions are also ex-
L,=0.7R; (see the upper right paneHowever, this delo- tremely singular and fluctuating in space, even between the
calized mode aiv,=1.033 is not uniform. To the opposite, it nearest-neighbor monomers. This property of the local fields
is formed by two sharp peak&hot spots”). These peaks is the reason underlying the giant fluctuations of the local
correspond to coupled dipoles that oscillate coherently, afields found earlief7]. The overall width of the distribution
assumed in the binary approximatidsee Sec. || & The is of the order of the total cluster size. This is explained by
above-described strong and random variations of eigenvethe fact that the external radiation at a given frequency ex-
tors (eigenfunctionseven for next or very close eigenvalues cites a group of individual eigenmodes, within which there
is one of the most intuitive signatures @uantum chaos. always are delocalized modes. Because the interaction is
A situation similar in many respects occurs for the lagy-  very long rangedndthe clusters are self-similar, there is no
part of the spectrunisee the lower panels in Fig),li.e., in  intrinsic length scale characteristic of the problem. Conse-
the vicinity of the plasmon resonance in isolated monomersguently, the spatial extent of the intensity distribution is lim-
The difference from the case above is that the individualted only by the clusters’ size.
groups of peaks are wider. Nevertheless, the intensity distri- A change of polarization of the exciting radiation at a
bution inside the peaks is highly singular and nonuniform,given frequency brings about a dramatic redistribution of

B. Local fields and localization of individual plasmons
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4
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I(x,y)

100

FIG. 2. Spatial distribution of the local-field intensities for external excitation of an individeal 500 CCA cluster for the values of the
frequency parametet and polarizations of the exciting radiation shown. The value of the dissipation paragfnelé)r’st.

local intensities and change in the maximum intensifes C. Localization-length distributions

the left and right distributions in Fig.)2The physical reason The distribution of the localization lengths of E€L4)

for this is that the resonant configurations of the monomerg - jated for an ensemble ®i=1500 CCA clusters is
in most cases are highly anisotropic. This explains the highy,on in Fig. 3. The most conspicuous feature of this distri-
selectivity of the cluster photomodification in the radiationy ion is its very large width. This width extends from al-

polarization observed experimentall27]. The change of most R, (where R;~40, the mean gyration radius of the

frequency of the exciting radiation by less than 1% aISOclusters to some minimum cutoff sizk, that is a function of

bringfs about pronounced changes in t.he i_ntensity spatial diSffequencya)(X). The cutoff is clearly seen in Fig. 3, where it
tributions (cf. upper and lower panels in Fig).2 is also indicated in the lower panel by a thick dashed line.

Genera_lly,. the observed mtensny d'St”bl,"t'onS areé 1N a  The distribution width is so large that the characterization
good qualitative agreement with the recent direct experimen-

| ob ion by Moskovi q K £ th of the distributionP(L,X) by a single dispersion relation
;?I(;) sirva;tllcpr: d y IOS OV.'ItS anl io-vgor : rs 0 tFt et. neéar(1s) is absolutely insufficient. For most of the spectral re-
I€ld optical TIelds In 1arge Siver clus efs]. (_ quantitative - gion, the cutoff lengtiy by magnitude is intermediate be-
comparison is not possible because the distributions for in

dividual clust herently chaotic. stronaly fluctuati tween the maximum and minimum scaRg<!|x<R.. This,
vidual clusters are inherently chaotic, strongly fluctua Ingalong with the self-similarity of the clusters, suggests that
from one cluster to anotherHowever, the conclusion of

scales withX, i.e., Ix=I*. Indeed, Fig. 3 supports the possi-
Ref. [6] that the observed phenomena support the strong qu)ility of such a )écaling with thg corrggponding pindex

calization hypothesis contradicts the conclusions of th ~_ 025 We have also verified that the distribution

present paper. We have.commented thgt the observatlpns Bf(L,X) obeys with high accuracy the scaling relatidro
Ref. [6] do not support its strong localization conclusmns(data not shown
[28,29. In fact, these observations do support the inhomo- Another characteristic feature of the distribution shown in

geneous _Iocalization picture_ de_scribed in this paper, incomFig_ 3 is the presence of a narrow ridge seen in the lower
patible with the strong localization. panel between a{~1 and 3. In this region, the distribution

The patterns of the local fields discussed above show thafnction scales as the approximately equidistant isolines sug-
the inhomogeneous localization scenario of polar excitationgest, in accord with Eq17¢ with p~ — 3. The presence of

(plasmonsgin large self-similar clusters is principally distinct sych a scaling region, albeit a narrow one, indicates that the
from both the strong- and weak-localization scenarios ofjgenmodes forx~1—3 tend to be more localized and
nonpolar excitations. The above-discussed individual eigenscreened. Therefore, the maximum scale does not affect the
vectors(eigenstatgsare chaotic. Consequently, they are dif- distribution and power-law scaling takes place. We will re-
ficult to compare quantitatively with each other. Therefore,turn to the discussion of this region below in Sec. Il D.

we consider below the statistical characteristiceasures The clusters considered above are disordered and self-
of the eigenvectors. similar (fracta). It is interesting to separate effects of disor-
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FIG. 4. Localization-length distributioR(L,X) of eigenmodes

FIG. 3. Localization-length distributioR(L,X) of eigenmodes o random lattice ga¢RLG) clusters ofN= 1500 monomers each.
for CCA clusters ofN=1500 monomers each. The position of the

lower-X cutoff |« is qualitatively indicated by the dashed bold line. nificant feature of this figure is a developed pattern of cha-

otic correlations. The “landscape” seen in Fig. 5 deserves

der from those of fractality. To do so, we consider the dis-the name of a “devil’s hill,” where narrow regions of posi-
tribution function P(L,X) for a disordered but not fractal tive and negative correlation are interwoven resulting in a
system, a random lattice gas; see Sec. Il A. The result of theetwork reminding one of turbulence. Interestingly enough,
corresponding computations for a RLG is shown in Fig. 4.the islands of correlatioteither positive or negatiyehave
As one can see, the distribution f8=0.1 is similar to that almost vertical boundaries and the absolute values of the
of a CCA (Fig. 3), characteristic of inhomogeneous localiza- form factor for the adjacent regions are very close. This im-
tion. The major distinction from Fig. 3 is that the distribution plies that the regions of positive and negative correlations
in Fig. 4 shows the complete delocalization of the plasmongorm domains with narrow boundaries, resembling a binary
for |X|<0.01 that appears in a narrow range. Such a delo(telegraph noise superimposed on some smooth surface.
calization is expected for the loX-part of the spectrum, i.e., ~ We emphasize that the changes S{fr,X) are not un-
at frequencies close to the plasmon resonance of the indstablerandom fluctuations. The chaos seen in Fig. 5 is com-
vidual monomers. In contrast, there is no such delocalizatiopletely deterministic. Calculations with an independent sta-
for fractal (CCA) clusters, as seen in Fig. 3. tistical set of clusters of the same size reproduce the picture
of Fig. 5. We also note that the distribution in Fig. 5 is not a
spatial distribution, but rather a distribution in a combined
. _ coordinate-spectrum space, and it has no geometrical relation

As noted above in Sec. Il B, the dynamic form factor 4 the spatial randomness of the fractal clusters. This distri-
S(r,X) = 3S,.(r,X) is an important measure that determinesbution is obtained by averaging over a large ensemble of
the correlation of the eigenmode amplitudes, electromagneticlusters and is a characteristic “fingerprint” for the given
(polarization fluctuations, electromagnetic absorption by thetype of clusters. The ensemble averaging does not smooth
clusters, and energy loss of charged patrticles in cluster conout the distribution.
posites. The results of the computation 8{r,X) for The chaotic behavior of the dynamic form factor takes
N=1500 CCA clusters are shown in Fig. 5. The most sig-place for|X|<1, while for|X|>1 this function is dominated

D. Dynamic form factor
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FIG. 5. Dynamic form facto8(r,X) for N=1500 CCA clusters. FIG. 6. Same as in Fig. 5, but fot=500. Ther axis is scaled
A three-dimensional profile on double-logarithmic scale iandX  so that the total vertical size remains approximately double the
is shown in the upper panel and the corresponding contour map imean gyration radius of the clusters.
the lower panel. The scale foB(r,X) (the vertical scalg is
pseudologarithmic to show simultaneously positive and negative|ysters is presented. One can see a remarkable general simi-
values of S(r,X). To obtain it, a small region of the plot for |arity between this figure and Fig. 5. However, fine details of
S(r.X)[<10 is removed. The function plotted s {he chaotic distribution are not completely reproduced. This
l0gso|S(r, X)1)sgri S(r,X)]. The solid white line is the plot of Eq. g, n4eqts that the fingerprint in its fine details may be specific
I(iit) i!‘?r':;a:g‘r%;:‘yeC%?Pe‘?a;’i;s'BZ% Z‘?\r/frl]att)';rgé;he dashed whiteg, "o clusters of a given size. However, a study with much

' larger statistical sets and lattice sizes will be needed to arrive

by scaling ridges seen in Fig. ®xtending vertically in the at a final conclusion regarding the scaling of the fine struc-
right lower corner of the bottom pangtorresponding to the ture of the dynamic form factor. Another important conclu-
similar structure in Fig. 3. This region of high eigenvalues ission that can be drawn from the comparison of Figs. 5 and 6
remarkable in many respects. In particular, the giant fluctuais that the eigenmodes in a wide spectral range fill the whole
tions of local fields and enhancement of optical nonlineari-available space occupied by the cluster, limited by the total
ties are maximum in this regiofir]. We will call this a  size of the cluster. This feature is characteristic of the inho-
scaling region because the correlation functions in this remogeneous localization pattern and inconsistent with strong
gion are described by power dependences. To the(feft localization.
smaller eigenvalugsthe scaling region borders the chaotic  To distinguish between effects of fractality and nonfractal
region. disorder, we compare below the above-presented results with

The binary-approximation band of positive correlation ofthe similar data for the RLG clusters, which are a random,
Eqg. (21 is shown in Fig. 5 by the solid white line. For but not fractal. The dynamic form factor for RL®I& 1500)
0.1<|X|=10, this line coincides with the strongest positive- is displayed in Fig. 7. One can see that there is a dramatic
correlation features, but departs from them|[ff=0.1. The difference between fractal and non-fractal disordefeh-
ternary correlation band of EqR3) is weaker, as one would dom) clusters. For the RLG clusters, some chaotic structure
expect. In the same region of @1X|=<10, it fits well the is seen only fofX|=1 (i.e., in the blue wing of the spec-
corresponding band obtained numerically, as is evident fronrum). In a wide region, forlX|=0.001, the dynamic form
Fig. 5. We emphasize that the lines shown are given by Eqdactor is dominated by the localized-plasmon branch seen
(21) and(23) and do not contain any adjustable parametersextending diagonally in Fig. 7. There is a parallel band of

The prediction of scalin§see Eq.(163] is tested in Fig. negative correlation seen at smaller. The binary-
6, where the dynamic form factor fi=500 monomer CCA  approximation predictior{Sec. Il Q for the position of the



56 INHOMOGENEOUS EIGENMODE LOCALIZATION. .. 6503

[X]
0.001
0.0001
S(r,X) S(r,X)
r
100 A
10 1
4
l IR e ——— xS =N
= : = = = X % : : | | X
104 10° 1072 0.1 1 10 107 1072 1072 0.1 1 10
FIG. 7. Dynamic form facto8(r,X) for N=1500 RLG clusters; FIG. 8. Same as in Fig. 7, but fd&f=500. Ther axis is scaled
otherwise similar to Fig. 5. so that the total vertical size remains approximately double the

mean gyration radius of the clusters.
positive-correlation banflsee Eq.(21)] is shown in the fig-
ure by the white solid line. It is in very good agreement with r=|X|"¥3=R,. (24)
the corresponding numerically obtained branch, as seen in
Fig. 7, especially keeping in mind that there are no adjustThis delocalization has a mesoscopic nature because the size
able parameters. The ternary-approximation band of positivef the cluster is a governing parameter.
correlation is shown with the white dashed line and is also in  The transition frequency is determined by the equation
a good agreement with the corresponding numerical featurex|~R_3xN~1. In such a way, foN=500 RLG clusters

We note also that the correlation bands seen @n Fig. 7 are dyge transition is expected BX|~0.008; otherwise the corre-

to localized plasmons. In contrast, a propagating wave woulghtion pattern should be similar to Fig. 7. To test these pre-
have resulted in a periodic pattern of parallel dark and whitjictions, we present in Fig. 8 the numerical results for
fringes. o ) . N=500 RLG clusters. As one can see, there is indeed a shift
. Another important featurg seen in Fig. 7 is the delocalizayf the delocalization-transition frequency | ~0.008, as
tion of the plasmons occurring &~0.0025. At smalleiX,  expected. Except the transition position, there is a similarity
we see uniform positive correlation extending to the geometpetween Figs. 7 and 8. In particular, the dominating bands of
ric limit of the clusters. This correlation implies that the po- cgrrelation are described by the same binary- or ternary-
larization is uniform inside the clusters, thus all charges beapproximation formulas of Eqg¢21) and (23). This result

ing localized at the cluster surface. This is clearly a transitions,trong|y supports the mesoscopic, related to the total size of

to surface plasmons and it is a very sharp and well-defineg|sters, nature of the delocalization transition, distinct from
transition. This result is in agreement with the localization-the Anderson transition.

length data of Fig. 4. Similarly to the Anderson transition,
this one occurs when the correlation radius of the wave in-
creases. A principal distinction is that the plasmons are not
running, but rather localized waves. Therefore, the scattering The sharp features seen in the devil's (ifig. 5 and in
cross section for plasmons is not defined and the AndersoRigs. 7 and 8 are the boundaries where the dynamic form
criterion is not applicable. Instead, the transition occursfactor changes sign, i.e., correlation changes to anticorrela-
when the radius of the localized plasmon becomes compdion. One can infer from these figures that the change of the
rable to the size of the cluster, i.e., the delocalization critephase of the polarization is quite abrupt. To further elucidate
rion is the relative importance of the phase and magnitude fluctua-

E. Intensity correlations
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FIG. 9. Second-order correlation functi@r,X) calculated for FIG. 10. Same as in Fig. 9, but fof=500.
CCA clusters ofN=1500 monomers each, averaged over ensemble

of 300 clusters. The upper panel is the distribution plotted in thesuch a localization pattern is scalifgee Eq(16b)]. To test

triple-logarithmic scale and the lower panel is the correspondinqt, we consider the correlation functiad(r,X) for N=500,
contour map. displayed in Fig. 10. Comparing this distribution with that of

) . ] Fig. 9, we conclude that far>1 they are virtually indistin-
tions of the local fields, we consider below the second-ordegyishaple. This result strongly supports the scaling predicted
(intensity correlation functionC(r,X) of Eq. (10. This  py Eq. (16b.

function is determined by the intensity correlations of the |4 Figs. 9 and 10, in the scaling region|Xj~2—3, the

local fields and is insensitive to changes of their phases. Thﬁower dependence of E6L70) appears to hold. This conclu-
second-order correlator for CCA clusters is presented iiion is indicated by the straight lines of the slopes in the

Fig. 9. - :
. upper panels and by equidistant contours in the bottom pan-
The most pronounced difference of the second-order cor : Lo ; . .
relation (Fig. 9) from the dynamic form factofFig. 5) is its els of Figs. 9 and 10. Its presence implies that in this region

. the plasmons do not feel the external boundary of a cluster.

smoothness. This implies that the devil's hill landscape | his conclusion is consistent with the data derived above
Fig. 5 is created due to the abrupt, chaotic changes of th .
rom the dynamic form factor.

phases of the local fields, but not their magnitudes. Thi ™ f b entl din Fig. 11. wh
supports the qualitative picture of the amplitude correlation | N€ Scaling can be conveniently traced in Fig. 11, where

of the plasmons as a binaf§telegraph”) phase modulation sele_cteq sections of the corrglation functipn are shown. The
superimposed on a very smooth envelope. Note that the ifs¢@ling index found foiX~2 is c=—-2.1, in a reasonable
tensity correlation is extended over the whole cluster and i§greement with the value of 2.3 obtained in Ref22]. The
limited by the cluster size, in contrast to the case of electror$ize of the clusters in the present calculation is larger and the
quantum-mechanical eigenproblems studied in Haf311].  Statistical accuracy is higher than in R¢R2]. Note that
The above-described behavior of intensity correlation is=D¢—1, whereD, is the Hausdorff dimension for the
consistent with the inhomogeneous localization of the plasplasmons. Because this index is less thah, it is impos-
mons. In particular, it implies that the eigenmodt® plas- sible that such a correlation is possessed by any material
mong behave in a certain sense as a gas, filling up the wholdistribution. The value obtained shows that the plasmons in
available volume of a cluster. A related property expected fothe wings of the absorption conto(for |X|~1—3) have an
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essential singularity at smal| supporting the conclusions of the volume of the whole cluster, as seen in Fig. 2. When the
Ref.[22]. polarization or frequency of the exciting wave change, the
distribution of the local field intensity changes dramatically,
IV. DISCUSSION supporting the general idea @fuantum chaos in such sys-

In thi r we have investinated the localization br tems. These features are in a good qualitative agreement with
. S paper we have investigated the localization props,, experimental data of Rd6]; however, the conclusion of
erties, correlation, and fluctuations of the polar eigenmode

(plasmon excitations of large clusters. This problem is ?&ef: [6] that its gxperimental Qata support the strong local-
mathematically equivalent to the Sctiinger equation ization hypothesis is not confirmddee also Refqd.28] and

eigenproblenjsee Eq(3)] for vector particles with a dipole [29)). o

intgeragtion. The eiggnmodes of the%ipole-response groblem For the fractal CCA clusters, the distributi¢t(L,X) of
(plasmons map to the eigenstates of the correspondingth_e plasmons over their Ioca[|zat|on lengths is exftremely
quantum problem. We have found complex behavior of theVide, supporting the coexistence of very different
eigenmodes and their correlators, including inhomogeneou§calization-length plasmons at virtually the same frequency
localization and chaos of the individual eigenmodesas shown in Fig. 3, which is a signature of inhomogeneous
deterministic-chaotic behavior of the amplitude correlationlocalization. This distribution does not show any transition to
function (the dynamic form factorin fractal cluster-cluster localization or delocalizatiofweak localization of the plas-
aggregates, and the sharp delocalization transition for plagnons in the whole range of the spectral parameteiThe
mons in a random lattice gas of spheres. distribution spread irL is limited from below byL=<lIy,

We have confirmed the earlier results of REE2] that  wherel « scales withX asl o |X|* with A~ —0.25. The scal-
plasmons in fractal clusters do not obey either strong- oing of this cutoff is attributed to the self-similariffractality)
weak-localization patterns. Instead, a different pattern, inhoef the CCA clusters.
mogeneous localization, takes place. At any frequepey In contrast to this case of fractal clusters, the distribution
rameterX) there coexist plasmons with dramatically differ- P(L,X) for disordered but not fractal RLG clusters demon-
ent localization lengths, from the minimum scdleto the  strates a sharp transition to delocalization [i§f<0.01, as
total size of the clusterR; (see Secs. Ill B and Ill £ The seen in Fig. 4. This transition is confirmed and its mecha-
individual plasmons, as illustrated by Fig. 1, are highly sin-nism is elucidated by considering the dynamic form factor
gular and chaotic, consisting of sharp peaks, strongly fluctufor RLG clusters; cf. Fig. 7 and its discussion. Bogreater
ating in space. The plasmons with large coherence rddjus than the edge of the delocalization transitios™>0.0025),
actually consist of similar sharp peaks, separated by a dighe dynamic form factor is dominated by the branch of lo-
tance of the order of the cluster size. In contrast, a delocalealized plasmons whose dispersion is in excellent quantita-
ized wave in a nonfractal disordered system has a smoottive agreement with the binary approximation formula of Eq.
envelope(as confirmed for the plasmons in a RLG (21), as shown by the solid white line in Fig. 7. The first

The local fields in fractals induced by an external opticalcorrection to the binary approximation, the ternary approxi-
excitation also are also chaotic, consisting of sharp singulamation of Eq.(23) (shown by the white dashed lineaccu-
peaks strongly fluctuating in space. Despite their singularately describes the position of the weaker satellite band of
structure on the small scale, these fields are delocalized oveositive correlation.
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As discussed, due to the long range of the Coulomb intertal clusters has also another signature. As seen from Figs. 5
action, the delocalization transition of the eigenmodes occurand 6, the transition between the regions of positive and
when their coherence radius becomes comparable with theegative correlation is very abrupt. They strongly resemble
total size of the cluster; cf. Eq24). Consequently, distinct in this respect domains of magnetization in a ferromagnet.
from the Anderson transition, the delocalization of RLG- The physical interpretation that we can give to this fact is
cluster plasmons is a mesoscopic phenomenon, depending 8i@t the binary approximation favors either the parallel on
the total size of the system. The underlying difference from@ntiparallel alignment of the nearest excited regi¢8sc.
Anderson localization is that the plasmons in the disorderedf C): Whether the geometry of these domains is itself fractal

clusters are not propagating waves; in particular, the scatteFSaqurires r“"m ad%tiﬁna_l invcfasrt]ig%tion. i« form f for f
ing cross section that would play a major role in the Ander- The chaotic behavior of the dynamic form factor for frac-

son localization is not defined for the plasmons. As foIIowsta.lI clusters is a reflection of the underlying chaos of the

from Eq. (24), for N=500 clusters compared wit= 1500 eigenmodegplasmong These modes are chaotic in most of

clusters, the delocalization transition should happehXat the spectral regiorifor [X|<1). As the frequency moves

three times greater. This is indeed confirmed by the numerig V&Y f_rom the plasmon resonance, |LH“|,_|ncreas_es, ChQOtIC :
cal data; cf. Fig. 8. behavior changes to scaling. The scaling manifests itself in

One of the most interesting and intriguing findings of thesmooth ridges seen in all of the distribution and correlation
present study, in our opinion, is the “turbulent,” quasicha- func_tlons fqr C.CA clusters_ajtx|21. Despite the fact_the_
otic behavior of the dynamic form factdr.e., the pair cor- scallng_ region 1S comparatwe_ly narrow on the Ioganthmlc
relation function of the amplitudes of the p,Iasm))fm the scale, it is important because it corresponds to the maximum

fractal CCA clusters; shown in Figs. 5 and 6. In Comrast,enhancement of the optical responpés].

such a behavior is absent for random, but not fractal, RLG
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