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Synchronized chaos in extended systems and meteorological teleconnections
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While synchronized chaos is familiar in low-order systems, the relevance of this paradigm to natural phe-
nomena and spatially extended systems is questionable because of the time lags introduced by finite signal
propagation speeds. A form of partially synchronized chaos is here demonstrated in a low-order numerical
model of the coupled large-scale atmospheric circulation patterns in the northern and southern hemispheres.
The model is constructed using a Green’s function method to represent the time-lagged boundary forcing of the
flow in each hemisphere by Rossby waves emanating from the opposite hemisphere. The two hemispheric
subsystems are semiautonomous because Rossby waves cannot penetrate the tropics except in narrow longi-
tudinal bands where the background winds are westerly. Each hemisphere has previously been described by a
10-variable model, derived from a spectral truncation of the barotropic vorticity equation. The model exhibits
dynamical regimes corresponding to ‘‘blocked’’ and ‘‘zonal’’ atmospheric flow patterns in the hemisphere.
Applying the same spectral truncation to the Green’s functions that define the coupling, we construct a
28-variable model of the coupled flow on a planet with simplified geometry and background wind field. Partial
synchronization is manifest in a significant tendency for the two hemispheric subsystems to occupy the same
regime simultaneously. This tendency is observed in actual meteorological data. Partial synchronization of this
form can be viewed as an extension of on-off intermittency in a system with a synchronization manifold, to a
region of parameter space that is far from the bifurcation point at which this manifold loses stability.
@S1063-651X~97!00912-4#

PACS number~s!: 05.45.1b, 02.30.Jr, 92.60.Bh
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I. INTRODUCTION

It is now well established that coupled low-order chao
systems can fall into synchronized motion along their stra
attractors under a variety of conditions. The best known c
figuration is probably that of Pecora and Carroll@1#, who
demonstrated synchronization of two identical systems,
rectionally coupled through the sharing of common dyna
cal variables, which drive both systems but are driven
only one. This phenomenon is seen, for instance, in a pa
Lorenz systems where thex or y variable of the driving
system is inserted in the role of thex or y variable, respec-
tively, of the driven system. Earlier work by Fujisaka a
Yamada@2# and also by Afraimovichet al. @3# had examined
synchronization in systems dissipatively coupled throug
bidirectional control signal. For identical systems, the lat
authors@3# found that, as the coupling is weakened, synch
nization degrades through the increasingly frequent app
ance of periods of desynchronization, timed chaotica
amidst other periods of synchronization.

Low-order chaotic synchronization has been found to
robust under a variety of sources of degradation. If the s
tems are nonidentical,generalized synchronization, in which
the the state of one system is a function of the state of
other may result@4#. Experimental and theoretical studie
have shown synchronization, or generalized synchronizat
to be preserved in the presence of realistic noise levels in
coupling signal@5#. This has led to the proposal that chao
synchronization could be useful in secure communicati
@6#.

Missing from these studies is evidence that synchroni
chaos pertains to natural phenomena. As low-order ch
561063-651X/97/56~6!/6475~19!/$10.00
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and the regularities observed in chaotic low-order syste
have led to insights and predictions regarding the behavio
extended systems, as in the case, for instance, of the Fe
baum sequence or of the Lorenz system itself, it is to
hoped that the same would be true of low-order chaotic s
chronization. But while the earlier investigators@2,3# sug-
gested applications to fluids or continuous media, subseq
investigations focused on low-order or man-made syste
with the notable exception of synchronization in high-ord
but discrete, neuronal networks@7,8#. A starting point for
investigating synchronization in continuous systems mi
be a system with a twofold symmetry, rather than one en
sioned as the continuum limit of a large number of chao
oscillators to be synchronized collectively. This would allo
a natural decomposition into two subsystems and so
might be able to exploit the low-order results directly.
principal difficulty remaining with such a configuration o
extended systems is that, because information propagat
finite speed, not all paired degrees of freedom in the t
systems can exchange information at once, as they do in
low-order models.@Very recently, Kocarevet al. @9# demon-
strated synchronization in pairs of coupled partial differen
equation~PDE! systems, but in one space dimension.# The
central question becomes whether the various time lags
conspire to give robust synchronized evolution of the t
individually chaotic systems, typically each with a pow
spectrum unbounded in frequency, or to give some vestig
synchronicity.

Trivially, any experimental apparatus that realizes lo
order chaotic synchronization@1,10,11# demonstrates syn
chronization in an extended system. But here the rigidity
solid objects or the physical relevance of variables such
6475 © 1997 The American Physical Society
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current to describe collective motion eliminate the troub
some time lags. We wish to examine the possibility of sy
chronization in a pair of coupled fluid systems, each sys
consisting of a continuum of dynamically distinct parts.

To investigate synchronized chaos in fluids, we turn
meteorology, historically a source of inspiration in nonline
dynamics, for a theoretical model that can readily be co
pared to observations. The nearly two-dimensional struc
of the atmosphere allows a simple description of the dyna
ics through a low-order chaotic model that vacillates b
tween weather regimes@12#. We apply this description to a
system that can be naturally decomposed into two semia
nomous, but coupled subsystems. Correlations between
regimes occupied simultaneously by the two subsystem
various instants of time give a crude indication of synch
nicity in the model. Specifically, the two subsystems are
northern and southern hemisphere midlatitude syste
which are semiautonomous because Rossby waves do
penetrate the tropical regions where upper-troposph
winds are easterly, for reasons reviewed in Sec. III. The
subsystems are coupled through the relatively narrow reg
in the tropics, thewesterly ducts, where upper-tropospheri
winds are westerly@13#. The large-scale weather regimes a
blocked flowand zonal flow, the latter corresponding to th
normal progression of weather patterns from west to east
the former corresponding to an obstruction of this progr
sion, typically by a large high-pressure center@14#. A ten-
dency for blocking to co-occur in the northern and south
hemispheres constitutes an interhemisphericteleconnection.

The subset of phase space for which the two mode
subsystems are in the same state constitutes an invariansyn-
chronization manifold. That is, because the two systems a
dynamically identical in the model, once they are synch
nized they remain so. For couplings not involving time la
it has been shown that dynamics governed by a stable
chronization manifold will bifurcate into chaotically alterna
ing periods of synchronization and desynchronization as
coupling is weakened@3,15#, as noise is introduced
@16,5,15#, or as the symmetry between the subsystems is
ken @15#. On-off synchronization is in fact a special case
on-off intermittency@17,18#, a phenomenon occurring whe
an invariant manifold is slightly unstable, causing trajec
ries to spend long periods very close to the manifold, then
deviate from it wildly for a while, then return, and so on. Th
point of this paper is that the time lags that arise in coup
extended systems generate an extreme form of the sam
ratic behavior, but one in which a synchronization tenden
is still discernible.

In the next section, we show that a time lag can be int
duced in the coupling of a pair of Lorenz systems in t
Pecora-Carroll configuration@1#. A short time lag generate
on-off synchronization while longer lags give rise to regim
correlations with no distinct periods of synchronization. Th
paper then analyzes the dynamics of the two coupled at
spheric flow systems, represented by standard low-o
models as reviewed in Sec. III, and using a Green’s func
method to formulate the time-lagged coupling, to show t
correlations of a similar type arise. As shown in Sec. IV, t
coupling depends on the differences between the state
ables of the systems, as previous authors@19# have suggested
might occur for geophysical fluid systems in the absence
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specific model, but involves time integrals of these diffe
ences expressed more conventionally as new dynamical
ables. The phase-space trajectories of this model, exam
in Sec. V, contain no macroscopic segments that are v
close to synchronization as in on-off intermittency, but s
maintain an average distance from the synchronization m
fold that is reduced as compared to the case of no coupl
The synchronization manifold thus affects the global dyna
ics of the coupled system. The coupled system is show
reside in a portion of parameter space that is part of
on-off intermittent regime, but is further from the bifurcatio
point at which the invariant manifold loses stability than sy
tems usually considered. One manifestation is a small co
lation between the phase-space regimes of the two s
systems, corresponding to blocked or zonal flow. Su
correlations are actually observed in meteorological da
presented in Sec. VI. We conclude that an extension of
off synchronization to more remote regions of parame
space, with recognizable synchronization periods poss
absent, can underlie partially synchronized chaos in exten
systems.

II. PARTIAL SYNCHRONIZATION OF CHAOTIC
SYSTEMS WITH TIME-LAGGED COUPLING

An illustrative example of time-lagged coupling is the fo
lowing configuration of two Lorenz systems in the variabl
X,Y,Z andX1 ,Y1 ,Z1, respectively, coupled through the au
iliary variableS:

Ẋ5s~Y2X!, ~1a!

Ẏ5r~X2S!2Y2~X2S!Z, ~1b!

Ż52bZ1~X2S!Y, ~1c!

Ṡ52GS1Gc~X2X1!, ~1d!

Ẋ15s~Y12X1!, ~1e!

Ẏ15r~X11S!2Y12~X11S!Z1 , ~1f!

Ż152bZ11~X11S!Y1 . ~1g!

The dynamical variableS accumulates information abou
the difference between the states of the two Lorenz s
systems. AsG→` in Eq. ~1d!, with Ṡ finite, S→c(X2X1).
In this limit, Eq. ~1! reduces to

Ẋ5s~Y2X!, ~2a!

Ẏ5r@~12c!X1cX1#2Y2@~12c!X1cX1#Z, ~2b!

Ż52bZ1@~12c!X1cX1#Y, ~2c!

Ẋ15s~Y12X1!, ~2d!

Ẏ15r@cX1~12c!X1#2Y12@cX1~12c!X1#Z1 ,
~2e!
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FIG. 1. The difference between the simultaneous states of two Lorenz systems with time-lagged coupling, as specified in Eq.~1!, depicted
by Z(t)2Z1(t) vs t for various values of the inverse time lagG. Average Euclidean distance^D& between the states of the two systems
also shown. The trajectories are generated by adaptive Runge-Kutta numerical integrations withs510, r528, andb58/3.
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Ż152bZ11@cX1~12c!X1#Y1 . ~2f!

The system~2! is a generalization of the Pecora-Carroll co
pling scheme@1# to a case with bidirectional coupling an
where each subsystem is partially driven and partially
tonomous, with the degree of autonomy given by the qu
tity 12c. It is readily confirmed that this configuration syn
chronizes, for a range of values ofc, including c51, by
direct simulation.

In the general case of the coupled system~1! with finite
G, the subsystems exchange information more slowly: iX
andX1 are slowly varying, thenS asymptotes toc(X2X1),
over a time scale 1/G. Thus, whilec may be interpreted a
the degree of coupling,G is an inverse time lag in the cou
pling dynamics.

Trajectories of Eq.~1! are depicted in Fig. 1 through
Z(t)2Z1(t), for c51 and decreasing values ofG. For large
G, the case represented in Fig. 1~a!, the subsystems synchro
nize. AsG is decreased in Figs. 1~b!–1~d!, corresponding to
increased time lag, increasingly frequent bursts of des
chronization are observed, until in Fig. 1~e! no portion of the
trajectory is synchronized. The bursting behavior can be
derstood as an instance of on-off intermittency@18,17#, the
phenomenon that may occur when an invariant manif
containing an attractor loses stability, so that the attracto
no longer an attractor for the entire phase space, but is
-
-

n-

n-

d
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effective in portions of the phase space. Trajectories t
spend finite periods very close to the invariant manifold,
terspersed with bursts away from it.~Experimental evidence
of on-off intermittency in an extended physical system h
been reported in a context not involving synchronizati
@20#.! As has been pointed out by others@16,5,15#, varying
the dynamics of a system possessing a stable synchroniz
manifold that contains a strange attractor so as to destab
this manifold may give rise to this phenomenon. Here,
enlarge the class of dynamical systems possessing a syn
nization manifold to include ones with time-lagged coupli
as in Eq.~1!, and show that the time lag is yet another p
rameter that may be varied to induce instability.

A quantitative measure of the deviation of the behavior
the system at large time lag from on-off synchronization
provided by the average Euclidean distance^D& between the
states of the two subsystems, where

D[A~X2X122S!21~Y2Y1!21~Z2Z1!2

so thatD/A2 is the distance of the system as a whole fro
the synchronization manifold.^D& is also shown in Fig. 1 for
the various time lags. It is seen that^D& for the case of no
macroscopic periods of synchronization in Fig. 1~e! is still
less than̂ D& for the case of decoupled systems, shown
Fig. 1f. The former case, whereG51, is the physically rel-
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6478 56GREGORY S. DUANE
evant situation in which the time scale of the delay due to
coupling is the same as the time scale of the intrinsic dyn
ics of the subsystems. The partial synchronization obser
in this situation is thus seen to be related to the more fam
case of partial synchronization through on-off intermitten
but occurs further from the point in parameter space at wh
the synchronization manifold loses stability than syste
usually considered.

Another measure of partial synchronization is provided
correlation between the gross regimes simultaneously o
pied by the two subsystems. In the case of large time
shown in Fig. 1~e!, where there are no macroscopic perio
of synchronization, regime correlations can still be observ
The regimes are the two halves of the butterfly-shaped att
tor of the Lorenz system, defined byX,0 and X.0.
The co-occurrence statistics can be expressed as joint pr
bilites Pi , j—defined as the fraction of total time that the tw
subsystems spend in any pair of regimesi , j , respectively,
where i 5 1 or 2, j 5 1 or 2. The matrix Pi , j for the
trajectory shown in Fig. 1~e! is given in Table I. Also given
are the corresponding probability valuesPi , j

ind in the case
where the two subsystems individually have the sa
statistics but are assumed independent, i.e.,Pi , j

ind

5(( r 51,2Pi ,r)((s51,2Ps, j ). The joint probability matrix
is significantly more diagonal than in the case of independ
subsystems. The standard correlation between the
binary-valued random variablesQ and R, which label the
regimes of the two subsystems, is defined
C[Š(Q2^Q&)(R2^R&)‹/(sQsR), where Q51 (R51)
whenX.0 (X1.0) andQ50 (R50) otherwise. The cor-
relation can also be expressed in terms of the joint proba
ties as

C[
P112P11

ind

A (
r 52,1

P2,r (
r 52,1

P1,r (
s52,1

Ps,2 (
s52,1

Ps,1

.

~3!

A significant positive correlation is observed for the ca
analyzed in Table I. This is but one manifestation of t
effect of the synchronization manifold on the global dyna

TABLE I. ~a! The joint probability matrix for the trajectory
shown in Fig. 1~e! of the time-lagged coupled Lorenz system
specified in Eq.~1!, where the regimes are given byX.0 (X1.0)
and X,0 (X1,0). Pi , j is the probability that the coupled mode
occupies a regime given by rowi and column j . ~b! The joint
probabilitiesPi , j

ind for independentsubsystems, each with the sam
probability of occupying either regime as in~a!, i.e.,
Pi , j

ind5(( j 51,2Pi , j )(( i 51,2Pi , j ), with the regime correlationC as
defined in Eq.~3!.

~a! ~b!

P Pind

X.0 X,0 X.0 X,0

X1.0 0.50 0.13 0.39 0.23
X1,0 0.13 0.24 0.23 0.24

C50.44
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ics of the system, even in the absence of periods of n
synchronization. The remainder of this paper is devoted
showing that correlations similarly come about in a pair
coupled extended systems.

III. BACKGROUND: METEOROLOGICAL REGIMES
AND LOW-ORDER MODELS

A. Blocking regimes in the general atmospheric circulation

Low-order spectral truncations of the primitive equatio
of quasi-two-dimensional fluid dynamics, on a rotatin
sphere with varying bottom topography, are known to ca
ture the qualitative features of the large-scale atmosph
circulation in middle latitudes. In this section, we review t
construction of one such low-order model, due to de Sw
@12#. The starting point is thebarotropic vorticity equation,
which states that in a vertically homogeneous atmosph
vorticity is conserved except when vortices are compres
by advection over topographic features or dissipated by b
tom friction. This equation is

]~¹2C!

]t
1J~C,¹2C1 f !1gJ~C,h!1C¹2~C2C* !50,

~4!

where C is the stream function, which gives thex and y
components of horizontal velocityu52]C/]y, v5]C/]x,
t is time, f is twice the locally vertical component of th
rotation vector, which defines the Coriolis force,h is bottom
topographic height,H is the average height of the atmo
sphere,g5 f 0h0 /H is a coefficient of topographic forcing,f 0
is a typical value off , h0 is a topographic height scale, an
C is a coefficient of bottom friction. The forcing stream
function C* represents the flow forced by the equator-po
temperature gradient, which would define an equilibriu
state in the absence of topographic effects. The advec
JacobianJ is defined as

J~A,B![
]A

]x

]B

]y
2

]A

]y

]B

]x
, ~5!

so that the co-moving, or ‘‘Lagrangian,’’ derivative can b
expressed asD/Dt5]/]t1J(C,•). The second term in Eq
~4! thus gives the advection of total vorticity, which is th
sum ofrelative vorticityz[]u/]y2]v/]x5¹2C andplan-
etary vorticity f. A detailed derivation of Eq.~4!, with an
explanation of the approximations used, can be found
@21#.

We represent the mid-latitude system as a narrow cha
between two circles of latitude, of widthB ~in the meridi-
onal, ory, dimension! and lengthL ~in the zonal, orx, di-
mension!, with periodic boundary conditions inx, and with
the conditions at the northern and southern boundaries
the meridional windv and the circulation*udx vanish, i.e.,

]C

]x
50, y50 or y5pb, ~6a!

E ]C

]y
dx50, y50 or y5pb, ~6b!
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where we have nondimensionalizedx and y by defining a
length scaleL/2p and we have introduced the nondime
sional constantb[2B/L. The second boundary conditio
~6b! is necessary since while Eq.~6a! implies thatC is con-
stant along the boundaries, Eq.~6a! taken alone permits this
constant to vary in time.@The specific condition~6b! can be
justified by integrating ut1uux1vuy2 f v52(1/r)px
2Cu1Cu* ~where subscripts denote derivatives!, which
follows from the Navier-Stokes equations with dissipati
and forcing terms added, along each boundary, notingv50.
Assuming the ‘‘forcing velocity’’ u* [2Cy* itself has a
vanishing boundary integral, the total circulationV[*udx
satisfiesV t52CV, so thatV decays to zero.# We further
assume thatf varies linearly withy in the channel, with
] f /]y5b. The time t is nondimensionalized by defining
time scale equal to 105 s51.16 days, giving a nondimen
sionalb of order unity.

A six-component spectral truncation of the barotrop
vorticity equation~4! has been shown by Charney and D
Vore @22# to exhibit multiple equilibria corresponding to dif
ferent weather regimes in the atmosphere, following the
proach of Lorenz, who applied the same expansion to m
complex dynamical equations describing a two-layer mo
@23#. More recently, de Swart@12# showed that a correspond
ing 10-component spectral truncation of Eq.~4! exhibits cha-
otic behavior@12# with a strange attractor that gives vacill
tion between regimes. de Swart projected onto eig
functionsF j of the Laplacian operator in the channel defin
above with boundary conditions~6!. A complete set of such
eigenfunctions is defined byF j5F j 1 , j 2

for j 1 an integer and

j 2 a positive integer:

F0,j 2
5A2cosS j 2

y

bD , ~7a!

F j 1 , j 2
5A2ei j 1xsinS j 2

y

bD . ~7b!

The corresponding eigenvaluesl j defined by ¹2F j
52l jF j @where j 5( j 1 , j 2)# are found to bel j5 j 1

2

1 j 2
2/b2. The j 150 modes consist of purely zonal flow

(v52]F0,j 2
/]x50), while the u j 1u.0 modes consist o

Rossby waves that are traveling inx and standing iny. That
is, the modeF j 1 , j 2

multiplied by a temporal factore2 ivt,
where

v5
2b j 1

l j
5

2b j 1

j 1
21~ j 2 /b!2

~8!

satisfies Eq.~4! with h5C5C* 50, defining a Rossby
wave @21# when j 1Þ0.

The expansion of the stream functionC, the forcing
‘‘stream function’’ C* , and the topographyh in the basis~7!
is defined by

~C,C* ,h!5(
j

~c j ,c j* ,hj !F j . ~9!

The projection of the barotropic vorticity equation~4! onto
the eigenfunctions~7! is found to be
-

p-
re
l

-

l j ċ j5
1

2(l ,m cjlm~l l2lm!c lcm1g(
l ,m

cjlmc lhm

1(
l

bj l c l2Cl j~c j2c j* !, ~10!

where

cjlm[
1

2p2b
E F̄ j J~F l ,Fm!dxdy,

bjl [
1

2p2b
E F̄ j J~F l , f !dxdy,

with J denoting the advection Jacobian defined by Eq.~5!
and overbars denoting complex conjugates. Equation~10!
describes the time evolution of the coefficients of the exp
sion ~7!.

Assuming simple forms for the topography and forcing

h5
1

2A2
~F1,11F21,1!5cosxsin

y

b
, ~11!

C* 5x1* A2bcos
y

b
1x4* A2bcos

2y

b
, ~12!

where x1* and x4* are constants, truncating Eq.~9! to
u j 1u, j 2<2, and substituting an expansion in a real ba
C5( ixiY i for the expansion~9!, where x15c01/b, x2

5(c111c211)/bA2, x35 i (c112c211)/bA2, x45c04/b,
x55(c121c212)/bA2, x65 i (c122c212)/bA2, x75(c21

1c221)/bA2, x85 i (c212c221)/bA2, x95(c221c222)/
bA2, x105 i (c222c222)/bA2, de Swart@12# obtained the
dynamical system

ẋ15g11* x32C~x12x1* !,

ẋ252~a11x12b11!x32Cx22d11x4x62r11~x5x82x6x7!,

ẋ35~a11x12b11!x22g11x12Cx31d11x4x51r11~x5x7

1x6x8!,

ẋ45g12* x62C~x42x4* !1e1~x2x62x3x5!1e2x7x102x8x9 ,

ẋ552~a12x12b12!x62Cx52d12x3x41r12~x2x82x3x7!

1g128 x8 ,

~13!

ẋ65~a12x12b12!x52g12x42Cx61d12x2x42r12~x2x7

1x3x8!2g128 x7 ,

ẋ752~a21x12b21!x82Cx72d21x4x102r21~x2x61x3x5!

1g218 x6 ,
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ẋ85~a21x12b21!x72Cx81d21x4x91r21~x2x52x3x6!

2g218 x5 ,

ẋ952~a22x12b22!x102Cx92d22x4x8 ,

ẋ105~a22x12b22!x92Cx101d22x4x7 ,

with coefficients defined by

anm5
8A2n

p

m2

4m221

n2b21m221

n2b21m2
,

bnm5
bnb2

n2b21m2
,

gnm* 5
4m

4m221

A2nbg

p
,

gnm5
4m3

4m221

A2nbg

p~n2b21m2!
,

~14!

gnm8 5
3bg

4~n2b21m2!
,

dnm5
64A2n

15p

n2b22m211

n2b21m2
,

en5
16A2n

5p
,

rnm5
9

2

~n22!2b22~m22!2

n2b21m2
.

For concreteness, we list the real basis functions explicitly
Table II.

A typical trajectory of the system~13! is represented in
Fig. 2. Regime structure is manifest as different ranges
oscillation in different portions of the time series. A caref
analysis@12# actually reveals three regimes, corresponding
three unstable fixed points, but two regimes are easily
cerned in the figure. The value of the variablex1 is sufficient
to distinguish between these. The interpretation of wea
phenomena in terms of vacillation among regimes has l
been favored by meteorologists@14# and a three-regime

TABLE II. The truncated basis that defines the de Swart mo
~ 13! of the single-hemisphere mid-latitude circulation, given by t
stream functionC5( i 51

10 xi(t)Y i .

Y15A2bcosy/b Y252bcosxsiny/b
Y352bsinxsiny/b Y45A2bcos2y/b

Y552bcosxsin2y/b Y652bsinxsin2y/b
Y752bcos2xsiny/b Y852bsin2xsiny/b
Y952bcos2xsin2y/b Y1052bsin2xsin2y/b
n

f
l
o
s-

er
g

scheme has indeed been proposed@24#, in which the weather
alternates between ‘‘zonal flow’’ periods of strong weste
lies, a transitional regime, and a ‘‘blocked’’ regime in whic
a wavy flow pattern is typically associated with a persist
high pressure center that interferes with the flow of weat
from west to east. Sincex15c01/b is the coefficient of the
lowest zonal-flow modeF01, the regimes apparent in Fig.
were argued to correspond to zonal and blocked flow in
atmosphere@12#. To the author’s knowledge, no higher ord
truncations of the barotropic vorticity equation~4! on a b
plane have been investigated.~On a sphere, truncations o
the barotropic vorticity equation which retain up to 25 mod
have been investigated@25#.! It has commonly been assume
that the low-order truncations capture the qualitative dyna
ics of the atmospheric regimes and transitions between th

B. Coupling of the mid-latitude systems
through the tropical westerly ducts

Thus far we have not justified the boundary conditi
~6a!, which defines the mid-latitude region as an autonom
system. The condition for the polar (y5pb) boundary may
be regarded as resulting from the spherical geometry, an
any case will be unchanged in the two-hemisphere mode
be described in the next section. On the other hand, the
planation of the tropical (y50) boundary condition, which
will be important for the formulation of the coupled mode
rests on the existence of processes@not included in the
simple model~4!# that maintain an average zonal wind
tropical latitudes@13#. It is found that this wind is typically
easterly (u,0) in the tropics, in contrast to predominant
westerly (u.0) winds in the mid-latitude regions.

The effect of this band of tropical easterlies may be u
derstood heuristically by considering the dispersion relat
for Rossby waves@21# on a prescribed background state wi

l

FIG. 2. A typical trajectory of the 10-component de Swa
model@12# of the mid-latitude atmospheric circulation, specified
Eqs.~13!. x1 vs t is plotted for an adaptive Runge-Kutta numeric
integration with b51.25, C50.1, g51, b51.6, x1* 54, and
x4* 528. Only t.1500~in nondimensional time units! is displayed
so as to exclude transients.
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slowly varying winds@26#. Generalizing Eq.~8!, in which
the zonal and meridional wave numbers arek5 j 1 and
l 5 j 2 /b, to the case in which there is a background windū ,
one finds

v5 ūk2bk/~k21 l 2!,

which gives a zonal phase speed:

cx5 ū2b/~k21 l 2!. ~15!

Equation~15! implies that meridionally propagating wave
(cx50) can only exist whenū.0 and more generally tha
waves can only exist whenū2cx.0. Thus waves are per
mitted in the middle latitudes, in which a westerlyū arises
from the forcing byC* , but these waves must be eith
absorbed or reflected when they reach a critical line~differ-
ent for each wave mode!, near the tropical boundary, wher
ū2cx50. Since waves cannot exist in the region of tropic
easterlies, and since the only nonwave modes consis
purely zonal flow, we must havev50 in this region, hence
Eq. ~6!.

Next we note that the band of tropical easterlies is som
times broken by smaller regions of tropical westerlies o
the Atlantic or Pacific oceans, each such region typically
more than 45° in longitudinal extent. Previous authors@13#
have demonstrated that Rossby waves can penetrate thr
thesewesterly ducts, as illustrated in Fig. 3 for a numerica
model more highly resolved than the models to be con
ered in this paper. To the extent that the boundary conditi
~6! accurately represent the physical effects of the trop
easterly barrier, the same boundary conditions with holes
be used to construct a model of the two mid-latitude syste
coupled through the westerly ducts.

IV. THE COUPLED LOW-ORDER MODEL

To formulate the coupling between the two mid-latitu
systems that is engendered by the transmission of Ro
waves through the westerly ducts, we neglect the meridio
extent of the region of tropical easterlies, taking this reg
to be a line at the equator, and also assume that the
mid-latitude systems lie on a singleb plane.~It can be veri-
fied that the latter assumption, which corresponds tof vary-
ing linearly with latitude everywhere, would be exact on
planet with a shape that is not spherical but that is also
terribly unrealistic.! The effect of the opposite hemisphere
that of a boundary forcing in the longitudinal range cor
sponding to the tropical westerly ducts. The forcing is giv
by replacing the boundary condition of zero meridional wi
by the condition that meridional winds match across
tropical boundary, i.e., thatv(x,01)5v(x,02) in the duct
regions, or equivalently that]C/]x matches across th
boundary in these regions.

To isolate the effects of the boundary forcing in a line
equation that can be solved by conventional methods,
express the stream functionC as the sum of two parts
C5C01CB . The boundary-forced, or ‘‘diffracted,’’ par
CB solves the linearized vorticity equation
l
of

-
r
o

gh

-
s
l

an
s,

by
al
n

o

ot

-
n

e

r
e

]~¹2CB!

]t
1J~CB , f !1C¹2CB50 ~16!

with matching boundary conditions, as described above
the duct regions; the remaining free partC0 satisfies the
Charney-DeVore boundary conditions~6! and is such that
the total stream functionC satisfies the full vorticity equa-
tion ~4!. This decomposition is possible because the bou
ary conditions involve linear operators. Since]C0 /]x van-
ishes by definition, we must have (]CB

N/]x)(x,0,t)
5(]CB

S/]x)(x,0,t), valid both within and outside the duc
regions, where the superscriptsN andS will henceforth de-
note quantities in the Northern and Southern hemisphe
respectively. ShiftingCB by an arbitrary constant in eithe
hemisphere, we can requireCB

N(x,0,t)5CB
S(x,0,t). Also,

CB must satisfy the condition~6b! on the circulation*u dx
at the northern and southern boundaries. One boundary
dition at the interface remains to be specified. Motivated
an analogy with optics, we posit a specific form forCB , the

FIG. 3. Rossby-wave penetration of the tropical westerly du
in a high-resolution numerical model of shallow-fluid dynami

@13#: ~a! Contours of a prescribed basic state zonal wind fieldū ~in
m/s!, intended to represent climatological conditions in the tropi

Regions of easterly windū,0 are shaded.~b! Contours of pertur-
bation zonal windu at t5100 days, with basic state as in~a!, after
initialization by a localized perturbation at 20° N att50 ~reprinted
from @13# by permission!.
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6482 56GREGORY S. DUANE
‘‘diffracted’’ part of the stream function, on the tropica
boundary: the stream function in the duct regions is set eq
to the sum of the southward-propagating part of the fl
north of the boundary and the northward-propagating par
the flow south of the boundary. That is,

CB
N~x,0,t !5CB

S~x,0,t !

5H 0 outside ducts

T(
j

~c j
NF j
↓1c j

SF j
↑! @ ducts J

[D~x,t !, ~17!

where T is a parametric transmission coefficient, and t
coefficients c j

N and c j
S are just the coefficients in th

Charney-DeVore and de Swart spectral truncations of the
stream function in either hemisphere:CN,S5( jc j

N,SF j
N,S .

The modesF j
N,S are chosen so that the single-hemisph

equations derived from Eq.~10! will be the same on both
sides of the equator. This requirement is met if the Ros
modes have the same form, while the zonal flow mo
change sign, i.e.,

F0,j 2

S ~x,y!52F0,j 2

N ~x,y!, ~18a!

F j 1 , j 2

S ~x,y!5F j 1 , j 2

N ~x,y![F j~x,y!, j 1Þ0. ~18b!

The northward- and southward-propagating parts of
Rossby modesF j5A2ei j 1xsin(j2y/b) u j 1u, j 2.0 are given by

F j5F j
↑1F j

↓ , ~19a!

F j
↑56

i

A2
ei j 1x7 i j 2y/b, ~19b!

F j
↓57

i

A2
ei j 1x6 i j 2y/b, ~19c!

where the upper~lower! signs apply whenj 1.0, v j,0
~when j 1,0, v j.0). The zonal flow modes
F0,j 2

5A2cos(j2y/b) ( i 51 or 4 in the de Swart model!, with

v j50, have no northward- or southward-propagating pa
Lastly, we also require thatCB50 at the exterior boundarie
at y56pb, which is equivalent~with CB50 at y50) to
requiring that the instantaneous zonal circulation vanis
when averaged across the hemisphere. In summary,
boundary conditions satisfied byCB ~in a domain that is
periodic inx) are Eq.~17! and

CB
N,S50, y56pb, ~20!

E ]CB
N,S

]y
dx50, y50,6pb. ~21!

The ansatz~17! will be shown to lead to a nondivergen
solution to Eq.~4!. It is intended to model the linear propa
gation of waves through the tropics that atmospheric sc
tists have used consistently at times@26,13# to describe the
phenomenology of the large-scale circulation. Because
al

of

e

ll

e

y
s

e

s.

s
he

n-

of

our assumptions regarding the shapes of the ducts and
background wind field, however, the sizes of the ducts a
the transmission coefficientT are not to be taken literally and
will remain open to interpretation. The coupling defined
Eq. ~17! is illustrated schematically in Fig. 4.

Note that because of the symmetry of Eq.~16! ~for
f 5by), with the boundary condition~17!:

CB
N~x,y,t !5CB

S~x,2y,t ! ~22!

so we will henceforth refer only to one diffracted strea
function CB(x,y,t)[CB

N(x,y,t).
To find CB from the boundary condition~17! we use the

method of boundary Green’s functions@27#. In this method,
a Green’s function that might have been used to solve
inhomogeneous equation with homogeneous boundary
ditions is transformed to another type of Green’s functi
that can be used to solve the corresponding homogen
equation with inhomogeneous boundary conditons. This
ter function, the boundary Green’s functionGb, must exist
because the linearity of Eq.~16! and the fact that initial con-
ditions att52` can be ignored due to the dissipative ter
implies thatCB must depend linearly on the boundary va
ues, given in this case by the quantityD in ~17!. That is

CB~r ,t !5E
t0,t

D~x0 ,t0!Gb~r ,tux0 ,t0!dx0dt0 ~23!

@where r5(x,y) and r05(x0 ,y0)#. As discussed in@27#,
there is usually a simple relationship between the bound
Green’s functionGb and the ordinary Green’s functionG,
which in the present case satisfies

1

C

]~¹2G!

]t
1

1

C
J~G, f !1¹2G5d2~r2r0!d~ t2t0! ~24!

with the causal boundary conditionG(r ,tur0 ,t0)50 for
t,to , and with homogeneous spatial boundary condition

G50, y50 or y5pb, ~25a!

E ]G

]y
dx50, y50 or y5pb. ~25b!

FIG. 4. Schematic diagram of the two-hemisphere coup
model. The tropical easterly barrier is assumed infinitely thin a
both hemispheres are taken to lie on a singleb plane. The two
mid-latitude systems are boundary forced by the outwa
propagating components of the meridionally standing wave mo
in the opposite hemisphere.
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The relationship betweenGb andG in the present case turn
out to be

Gb~x,y,tux0 ,t0!52S 11
1

C

]

]t D F]G~r ,tur0 ,t0!

]y0
G

y050

~26!

as proved in Appendix A.
A spectral expansion of the Green’s function can now

combined with a spectral expansion of the stream functio
yield a low-order model upon truncation. The governi
equation is obtained by subtracting the linearized vortic
equation~16! from the full vorticity equation~4!, yielding

]~¹2C0
N,S!

]t
1J~C0

N,S, f !1J~CN,S,¹2CN,S!1gJ~CN,S,h!

1C¹2~C0
N,S2C* !50, ~27!

whereC0
N,S satisfies homogeneous boundary conditions~6!,

and

CN~x,y,t !5C0
N~x,y,t !1CB~x,y,t !,

~28!

CS~x,y,t !5C0
S~x,y,t !1CB~x,2y,t !

and CB is given by the Green’s function relation~23! in
terms of the boundary values~17! of CN,S. The topography
h has the same form, given by Eq.~11!, in both hemispheres
on our model planet, and there is no seasonal cycle.
forcing stream functionC* , given by Eq.~12!, has the same
symmetry as the zonal flow modes~18a!:

C* S52C* N52x1* A2bcos
y

b
2x4* A2bcos

2y

b
.

A complete set of orthonormal functions satisfying E
~25! are the eigenmodes~7b! of the Laplacian.@The zonal
flow modes in ~7a! are excluded by boundary conditio
~25a!.# Therefore, we must have

G~r ,tur0 ,t0!5 (
j 1Þ0

AjF j~r !

for some coefficientsAj5Aj (t,r0 ,t0), where as before
j 5( j 1 , j 2). Using the orthonormality relation for the eigen
modesF j

1

2p2b
E F̄ j~r !Fk~r !dxdy5d jk

~where the overbar again denotes the complex conjug!
and using the fact that the eigenmodes given by Eq.~7! are
also eigenfunctions of the operator]/]x, it can be verified
that the function

G~r ,tur0 ,t0!52u~ t2t0!C
1

2p2b
(

j 1Þ0

F̄ j~r0!F j~r !

l j

3exp@~2 iv j2C!~ t2t0!# ~29!
e
to

y

e

.

e

satisfies Eq.~24! as required, whereu is the step function

u~x!5H 1, x>0

0, x,0.

As before,v j52 j 1b/l j and the quantitiesl j5 j 1
21 j 2

2/b are
the eigenvalues of¹2F j52l jF j . Therefore, by Eq.~26!:

Gb~r ,tux0 ,t0!52 iu~ t2t0!
1

2p2b

3 (
j 1Þ0

v j~]F̄ j /]y!~x0,0,t0!F j~r !

l j

3exp@~2 iv j2C!~ t2t0!#. ~30!

Note that if we substitute Eq.~30! in the integral in Eq.
~23! we get a sum of eigenmodes for homogeneous bound
conditions ~multiplied by overlap integrals! as a purported
solution to the linearized equation with inhomogeneo
boundary conditions. Our method@27# will give errors in a
boundary layer near the ducts that will narrow as we ret
an increasing number of terms in the expansion.

We express the sum of eigenmodes that definesCB ex-
plicitly:

CB5 (
j 1Þ0

z j~ t !F j . ~31!

This sum is also seen to be over Rossby modes only
substitution of Eq.~30! in Eq. ~23!. The physical reason fo
the decoupling of the zonal flow modes~7a! is that
u52]F j /]y for these modes at the interface, so they wou
not contribute to the spectral expansion ofGb in Eq. ~30!
regardless of the imposed boundary conditions, implying t
the arbitrary choiceCB5G50 along the boundaries outsid
the ducts was appropriate. Since the Rossby modes are
in y, CB(x,2y,t)52CB(x,y,t), so Eq.~28! becomes sim-
ply

CN~x,y,t !5C0
N~x,y,t !1CB~x,y,t !,

~32!

CS~x,y,t !5C0
S~x,y,t !2CB~x,y,t !,

where we regardCB as a single analytic function over th
whole domain.

Changing to the real bases$Y i% i
N,S corresponding to the

basis defined in Table II for the single-hemisphere case,
define the time-dependent coefficientsxi

N , xi
S , andyi :

C0
N,S5(

i 51

N

xi
N,S~ t !Y i

N,S, ~33a!

CB5(
i 51

N

yi~ t !Y i
N5(

i 51

N

yi~ t !Y i
S , ~33b!

sincey15y450 andY i
N5Y i

S for iÞ1,4, whence
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TABLE III. The equations of the 28-component two-hemisphere model. The coefficients are as
single-hemisphere model~14! except where specified as different in the two hemispheres by the supers

N and S. The coupling coefficientsci ,k are given in Table IV.x̂i
N5xi

N1yi and x̂i
S5xi

S2yi , so the 28
variables are the 10xi

N , the 10xi
S , and the 8yi . ~The frequencies are the positive quantitiesv25uv11u,

v55uv12u, etc.!

ẋ1
N5 g11*

Nx̂3
N 2C(x1

N2x1*
N)

ẋ2
N52a11x1

Nx̂3
N2b11x3

N 2Cx2
N

2d11x4
Nx̂6

N 2r11( x̂5
Nx̂8

N2 x̂6
Nx̂7

N)

ẋ3
N5a11x1

Nx̂2
N2b11x2

N 2g11
N x̂1

N2Cx3
N 1d11x4

Nx̂5
N 1r11( x̂5

Nx̂7
N1 x̂6

Nx̂8
N)

ẋ4
N5 g12*

Nx̂6
N2C(x4

N2x4*
N) 1e1( x̂2

Nx̂6
N2 x̂3

Nx̂5
N) 1e2( x̂7

Nx̂10
N 2 x̂8

Nx̂9
N)

ẋ5
N52a12x1

Nx̂6
N2b12x6

N 2Cx5
N

2d12x̂3
Nx4

N 1r12( x̂2
Nx̂8

N2 x̂3
Nx̂7

N) 1g128
Nx̂8

N

ẋ6
N5a12x1

Nx̂5
N2b12x5

N 2g12
N x4

N2Cx6
N

1d12x̂2
Nx4

N 2r12( x̂2
Nx̂7

N1 x̂3
Nx̂8

N) 2g128
Nx̂7

N

ẋ7
N52a21x1

Nx̂8
N2b21x8

N 2Cx7
N

2d21x4
Nx̂10

N 2r21( x̂2
Nx̂6

N1 x̂3
Nx̂5

N) 1g218
Nx̂6

N

ẋ8
N5a21x1

Nx̂7
N2b21x7

N 2Cx8
N

1d21x4
Nx̂9

N 1r21( x̂2
Nx̂5

N2 x̂3
Nx̂6

N) 2g218
Nx̂5

N

ẋ9
N52a22x1

Nx̂10
N 2b22x10

N 2Cx9
N

2d22x4
Nx̂8

N

ẋ10
N 5a22x1

Nx̂9
N2b22x9

N 2Cx10
N

1d22x4
Nx̂7

N

ẋ1
S5 g11*

Sx̂3
S 2C(x1

S2x1*
S)

ẋ2
S52a11x1

Sx̂3
S2b11x3

S 2Cx2
S

2d11x4
Sx̂6

S 2r11( x̂5
Sx̂8

S2 x̂6
Sx̂7

S)

ẋ3
S5a11x1

Sx̂2
S2b11x2

S 2g11
S x̂1

S2Cx3
S 1d11x4

Sx̂5
S 1r11( x̂5

Sx̂7
S1 x̂6

Sx̂8
S)

ẋ4
S5 g12*

Sx̂6
S 2C(x4

S2x4*
S) 1e1( x̂2

Sx̂6
S2 x̂3

Sx̂5
S) 1e2( x̂7

Sx̂10
S 2 x̂8

Sx̂9
S)

ẋ5
S52a12x1

Sx̂6
S2b12x6

S 2Cx5
S

2d12x̂3
Sx4

S 1r12( x̂2
Sx̂8

S2 x̂3
Sx̂7

S) 1g128
Sx̂8

S

ẋ6
S5a12x1

Sx̂5
S2b12x5

S 2g12
S x4

S2Cx6
S

1d12x̂2
Sx4

S 2r12( x̂2
Sx̂7

S1 x̂3
Sx̂8

S) 2g128
Sx̂7

S

ẋ7
S52a21x1

Sx̂8
S2b21x8

S 2Cx7
S

2d21x4
Sx̂10

S 2r21( x̂2
Sx̂6

S1 x̂3
Sx̂5

S) 1g218
Sx̂6

S

ẋ8
S5a21x1

Sx̂7
S2b21x7

S 2Cx8
S

1d21x4
Sx̂9

S 1r21( x̂2
Sx̂5

S2 x̂3
Sx̂6

S) 2g218
Sx̂5

S

ẋ9
S52a22x1

Sx̂10
S 2b22x10

S 2Cx9
S

2d22x4
Sx̂8

S

ẋ10
S 5a22x1

Sx̂9
S2b22x9

S 2Cx10
S

1d22x4
Sx̂7

S

ẏ25v2y32Cy21
Tv2

l2

1

2p2b
(

k
c3k~ x̂k

N2 x̂k
S!

ẏ352v2y22Cy32
Tv2

l2

1

2p2b
(

k
c2k~ x̂k

N2 x̂k
S!

ẏ55v5y62Cy51
Tv5

l5

1

2p2b
(

k
c6k~ x̂k

N2 x̂k
S!

ẏ652v5y52Cy62
Tv5

l5

1

2p2b
(

k
c5k~ x̂k

N2 x̂k
S!

ẏ75v7y82Cy71
Tv7

l7

1

2p2b
(

k
c8k~ x̂k

N2 x̂k
S!

ẏ852v7y72Cy82
Tv7

l7

1

2p2b
(

k
c7k~ x̂k

N2 x̂k
S!

ẏ95v9y102Cy91
Tv9

l9

1

2p2b
(

k
c10k~ x̂k

N2 x̂k
S!

ẏ1052v9y92Cy102
Tv9

l9

1

2p2b
(

k
c9k~ x̂k

N2 x̂k
S!
e
ting
CN5(
i 51

N

x̂i
N~ t !Y i

N , x̂i
N[xi

N1yi , ~34a!

CS5(
i 51

N

x̂i
S~ t !Y i

S , x̂i
S[xi

S2yi . ~34b!
The boundary forcing ~17! is seen to be D(x)
5T(kYk

↑(x,0)(x̂k
N2 x̂k

S) at the longitudes of the ducts, wher
we have defined northward- and southward-propaga
parts for the real modesYk , which are linear combinations

of the F j , using Eq.~19! @e.g.,Y3
↑(x,0)5bcosx5 1

2Y2(x,0),

Y5
↑(x,0)52bsinx52 1

2Y6(x,0)# and have notedYk
↑(x,0)
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TABLE IV. The coupling coefficients for the two-hemisphere system in Table III, in terms of ove
integrals that depend on the sizes and relative positions of the ducts in Fig. 4.~Coordinates are chosen so th
*xPductscos2xdx50.!

c1k5ci15c4k5ci4 50

c2352c325c2652c35 5
2
b

I A I A[ 1
2 *xPductsdx

c785c7,10 5
2
b

(I A1I A8)

2c8752c89 5
2
b

(I A2I A8) I A8[
1
2 *xPductscos4xdx

c225c2552c3652c33 5
2
b

I B

c285c2,105c735c76 5
2
b

I C I B[2*xPductscosxsinxdx

c275c2952c8352c86 5
2
b

I D

2c3852c3,105c725c75 5
2
b

I E I C[*xPductscosxcos2xdx

c375c395c825c85 5
2
b

I F

c7752c8,105c7952c88 5
2
b

I G I D[2*xPductscosxsin2xdx

c5652c655c5352c62 5
4
b

I A

c9,105c98 5
4
b

(I A1I A8) I E[2*xPductssinxcos2xdx

2c10,952c10,7 5
4
b

(I A2I A8)

2c635c555c5252c66 5
4
b

I B I F[2*xPductssinxsin2xdx

c585c5,105c965c93 5
4
b

I C

c575c5952c10,352c10,6 5
4
b

I D I G[2*xPductssin2xcos2xdx

2c6852c6,105c955c92 5
4
b

I E

c675c695c10,55c10,2 5
4
b

I F

2c10,85c9952c10,105c97 5
4
b

I G
als:

-
the

me-

al
52Yk
↓(x,0). The coefficients of the modes inCB are then

found from Eqs.~23! and ~30!:

z j~ t !5E
2`

t

e~2 iv j 2C!~ t2t0!
1

2p2b
(

k
E

xPducts
S ]

]y
F̄ j~x,0! D

3Yk
↑~x,0!

2 iv jT@ x̂k
N~ t0!2 x̂k

S~ t0!#

l j
dxdt0 ~35!

or, differentiating,

ż j5~2 iv j2C!z j2 iv j

T

2p2b
(
k51

N

wjk~ x̂k
N2 x̂k

S!/l j ,

~36!
where we have introduced notation for the overlap integr

wjk[E
xPducts

S ]

]y
F̄ j~x,0! DYk

↑~x,0!dx. ~37!

From Eqs.~27! and ~4! it is apparent that first-order dif
ferential equations for the coefficients of the modes in
coupled model can be obtained by substitutingx̂i for xi in all
terms of the single-hemisphere equations except the ti
derivative, b-effect, and dissipation (;C) terms, then in-
cluding equations for y˙

i that can be obtained from the re
and imaginary parts of Eq.~36!, according to the definitions
in Eqs. ~33b!, ~31!, ~7!, and Table II. The equations forẏi
can be expressed in terms of the coefficients
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cik[
1

b2ExPducts
S ]

]y
Y i~x,0! DYk

↑~x,0!dx, ~38!

which are analogous to thewjk . For the coupled system
corresponding to the 10-component single-hemisphere
Swart system (N510), the resulting 28-variable system
specified in Table III. There are 10 variables for each he
sphere as before, plus 8 for the coefficents of the coup
modes, since for the zonal flow modesy15y450, whence
also x̂15x1, x̂45x4. The coupling coefficientscik are ex-
pressed in terms of eight independent quantities, given
overlap integrals that depend formally on the sizes and r
tive positions of the ducts, in Table IV.

The key approximation that enables the formulation
our coupled model is that the state of the whole system
be expanded in the tensor product basis$Fm

N
^ Fn

S%m,n51
`

composed of the modes of the two separate mid-latitude
tems. This assumption would clearly be false if, for instan
the westerly ducts spanned the entire equator. In that c
even modes~in y) of the whole system, corresponding
half-integer values ofj 2 with a phase shift, which satisfie
the boundary conditions~6! only at y5pb and y52pb,
would have to be considered~if the forcing terms were simi-
larly generalized!. But such modes could not be expanded
the tensor product basis. A heuristic argument for the su
ciency of our approximation with a realistic configuration
westerly ducts, on the other hand, is then the following: c
sidering solutions of the dynamical equation in the en
two-hemisphere region except for the easterly barriers,
stream function might contain an even component at the
gitudes of the ducts that would vanish at the longitudes of
barriers. But it would require a summation to higher order
the zonal wave number than we have considered to pa
these two parts of the solution together, for ducts that
'45° wide. So to the extent that the low-order mod
@22,12# adequately describe single-hemisphere dynamics,
tensor product approximation should describe the coup
system.

The form of the coupling in Table III is similar to that o
a control signal that vanishes when the two systems are
chronized, as in@2#, @3#, and@19#. But in the model described
here the yi ’s involve a time integral~35! that depends on
prior states of the system at the tropical boundary. The st
ture of the model, as schematized in Fig. 5, is similar to t
of the generalized Pecora-Carroll@1# configuration of Lorenz

FIG. 5. Schematic representation of the stucture of the trunc
28-component model of the coupled hemispheres. Zonal fl
modes are uncoupled, while each Rossby mode is coupled t
Rossby modes in the opposite hemisphere at all past times.
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systems described in Sec. II. The zonal flow modes play
role of the uncoupled variables that appeared in these ea
models and that are especially significant in the Peco
Carroll configuration@1#. @Specifically, the variableS in Eq.
~1c! plays a role analogous to that of the yi ’s in the equations
in Table III, while the expressions (X2S) and (X11S) in
the two subsystems~1a–1c! and ~1e–1f!, are analogous to
the x̂i

N’s and x̂i
S’s, respectively.# The central question is

whether partial synchronization, as described in Sec. II
also possible in an intermediate model such as that of Ta
III.

V. RESULTS AND INTERPRETATION

The difference between the corresponding variablesx1
N

andx1
S , for a typical numerical integration of the 28-variab

coupled system is shown in Fig. 6. Because of the ideal
tions in the shape and transmission properties of the d
depicted in Fig. 4, and because the ‘‘ducts’’ that transm
different modes are differently shifted longitudinally, accor
ing to the Doppler-shift analysis in Sec. III B, we did n
compute coefficients for a specific configuration of ducts
simply chose values of the overlap integrals in Table IV th
are typical for ducts totaling 90° in width.

It is apparent that the two subsystems do not synchron
even intermittently. We therefore assess the possibility t
some correlation between the gross states of the two
systems may still be discerned. Since the single-hemisp
system lends itself to a description in terms of regimes@12#,

ed
w
all

FIG. 6. The difference between the simultaneous states of
two hemispheres as given byx1

N2x1
S vs t for an adaptive Runge-

Kutta numerical integration of the 28-component coupled sys
specified in Table III with transmission coefficientT50.95, and
with the coupling coefficientscik given by I A50.8, I A850,
I B50.25, I C50.47, I D520.47, I E520.23, I F520.23, and
I G520.25. (I A850 is equivalent to approximating coefficien
coupling modes with the same zonal structure by their average
ues for given total width of ducts.! Other parameters are as in Fig
2.
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we compute the joint probabilities of the simultaneous re
dence of the two subsystems in given pairs of regimes, as
did for the coupled Lorenz systems in Sec. II. Absent a r
orous definition of ‘‘regime,’’ but given the apparent regim
structure of the trajectory in Fig. 2, we call subsystemN (S)
zonalat any timet if x1

N(t).3 @x1
S(t).3#. Otherwise we call

subsystemN (S) blockedat timet. ~The separate identity o
the seldom-occupied ‘‘transitional’’ regime described in@12#
is ignored here.! The joint probabilitesPi , j , and the corre-
sponding probability valuesPi , j

ind in the case where the tw
subsystems individually have the same statistics but are
sumed independent, are given in Table V.

The diagonal elements of the matrixP are larger than

FIG. 7. The interhemispheric regime correlationC ~39!, which
quantifies the tendency for blocked states to co-occur, for vary
interhemispheric transmission coefficientT, as defined in Eq.~17!,
for integrations of the model defined in Table III with differe
randomly chosen initial conditions. Crosses denote correlation
ues for integrations with other parameters as in Fig. 6. Squares
for I A51.2, I A850, I B50.18, I C50.4, I D520.4, I E520.5,
I F50.5, and I G520.125. Diamonds for I A51.2, I A850.3,
I B50.18, I C50.4, I D520.4, I E520.5, I F520.5, and
I G520.125. Triangles are for runs with different topographic p
rameters in the two hemispheres:gN51.2, gS50.85 and other pa-
rameters as in Fig. 6. The dotted line isC for observed data@29#.

TABLE V. Joint probability matrices as in Table I, but for th
trajectory depicted in Fig. 6 of the coupled meteorological syste
specified in Table III, where the regimes are zonal flow and bloc
flow, defined byx1.3 and x1,3, respectively, in either hemi
sphere.

~a! ~b!

P Pind

N zonal N blocked N zonal N blocked

S zonal 0.67 0.11 0.65 0.14
S blocked 0.15 0.06 0.18 0.04

C50.16
i-
e

-

s-

those of the matrixPind, while the off-diagonal elements ar
smaller. This indicates correlation. Letting

C[
Pbb2Pbb

ind

A (
r 5z,b

Pz,r (
r 5z,b

Pb,r (
s5z,b

Ps,z (
s5z,b

Ps,b

~39!

be the standard measure of this correlation, we plotC as a
function of the transmission coefficientT in Fig. 7. While
T51 in Fig. 7 corresponds to a naive assumption about
nature of the ducts, corresponding to the illustration in Fig
and one might expect smaller values ofT in the realistic case
that Rossby waves are attenuated, there is also evidence
realistically shaped ducts might serve to focus Rossby wa
@28#, possibly giving an effectiveT.1. The scatter of the
data points in Fig. 7 at the higher values ofT for which
several integrations were conducted demonstrate the cor
tions in this numerical experiment to be significant.

Results for numerical integrations with two alternati
configurations of somewhat larger ducts are also shown
Fig. 7. The correlations are little affected. The effects
asymmetry between the hemispheres can be assessed
realistic context by choosing different topographic para
eters,gSÞgN, for the two hemispheres, in the system
equations in Table III. Though the resulting joint probabi
ties listed in Table VI show less blocking in the southe
hemisphere and more blocking in the northern hemispher
compared to the case analyzed in Table V, for example,
value of the correlation~also plotted in Fig. 7! shows that a
physically significant degree of asymmetry can be tolerat

To interpret the regime correlation results in the abse
of clear synchronization in any portion of the trajectories,
ask how far the system is from a synchronized state a
function of time. The Euclidean distance between the sta
of the two subsystems is defined as it was for the coup
Lorenz systems in Sec. II. In the meteorological case,
distance is

D~ t !5A(
i 51

10

~ x̂i
N2 x̂i

S!25A(
i 51

10

~xi
N2xi

S12yi !
2,

~40!

which corresponds to anL2 norm on the space of stream
functions.D(t) vanishes if and only if the system is in a sta
which is and will remain synchronized. Such states form
dynamically invariant synchronization manifold.D(t)/A2

g

l-
re

-

s
d

TABLE VI. Joint probability matrices as in Table V, but for a
integration with a smaller topography parameter in the south
hemisphere:gS50.85, than in the northern hemispheregN51.2
(T51.11 and other parameters are as in Table V!.

~a! ~b!

P Pind

N zonal N blocked N zonal N blocked

S zonal 0.51 0.34 0.48 0.37
S blocked 0.05 0.09 0.08 0.07

C50.17
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FIG. 8. The distanceD between the states of the two hemispheres@defined in Eq.~40!# vs time, for ~a! the trajectory of the coupled
system represented in Fig. 6 and~b! a trajectory of the same system with the coupling turned off (T50 in the equations in Table III!.
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gives the distance from this manifold.D(t) is plotted in Fig.
8, for the trajectory of the coupled system shown in Fig.
and for the same system with the coupling turned off (T50).
Histograms ofD values for the two trajectories are display
in Fig. 9. It is seen that the coupled system generally spe
more time near the synchronization manifold. This is attr
utable to effects in all parts of phase space—even portion
the trajectory far from synchronization are drawn in.

To inquire as to whether the correlations in the 2
component meteorological system are of the same dynam
origin as the correlations in the time-lagged-coupled Lore
systems, one might naively scale the coupling matrix defi
by the equations in Table III to uncover on-off intermittenc
Scaling all the coefficientsci j was found to be ineffective
however, apparently because the fast-time-scale fixed po
given approximately byyi5(xi

S2xi
N)/2 ~or equivalently

x̂i
N5 x̂i

S) are unstable or have inadequate basins of attrac
in the system defined by the scaled coefficients. A sys
defined by scaling just some of the coefficientsci j , on the

FIG. 9. Histograms ofD for the two plots shown in Fig. 8. The
solid line is for the coupled case@Fig. 8~a!#; the dashed line is for
the uncoupled case@Fig. 8~b!#. The frequencies are the numbers
time steps spent in bins of sizeDD51 in the respective numerica
integrations.
,

ds
-
of

-
al
z
d

.

ts

n
m

other hand, has the same fixed points, but possibly with
ter stability properties, making the equations in Table
more efficacious in achieving the quasi-steady-state value
the yi . Manifestly on-off intermittent behavior in fact ap
pears in the trajectory in Fig. 10 for a system defined
scaling only those coefficients that couple correspond
modes in the two hemispheres. The magnified values
larger than can be realized with any configuration of ducts
the model and can instead be interpreted as due to a dec
in the time scale associated with the coupling. But the eff
of the scaling is also to increase the relative magnitudes
select coupling coefficients as compared to others.

The loss of periods of exact synchronization in the case
physical parameter values is therefore due both to finite

FIG. 10. A trajectory of the coupled-hemisphere system
picted byx1

N2x1
S vs t as in Fig. 6 but with the coupling coefficient

c23,c32,c56,c65,c78,c87,c9,10, andc10,9 increased by a factor of 38
~These are the diagonal coupling coefficients in the equations

the ẏi in Table III.! Other coefficients are as in Fig. 6.
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56 6489SYNCHRONIZED CHAOS IN EXTENDED SYSTEMS AND . . .
nal propagation speed and to the particular set of mode c
couplings in a realistic setting. One might therefore be c
cerned as to whether the partial synchronization beha
would be preserved as the number of modes is increa
since the number of troublesome coupling terms increa
faster than the number of effective couplings. However, t
effect is offset by a decrease in the size of the nondiago
coefficients for higher modes, due to the decreasing value
the overlap integrals in the ducts for modes with differi
zonal wave number, and by a decrease in the factorsv j in
the equations for the coupling variables, since according
Eq. ~8!, v j 1 j 2

varies inversely as the zonal wave numberj 1

and as the inverse square of the meridional wave numbej 2.
Furthermore, the synchronization tendency is expected t
enhanced by the inclusion of meridionally even modes of
two-hemisphere system regarded as a whole, which wil
required in a higher-order truncation for the reasons d
cussed near the end of Sec. IV. Therefore the correlat
observed in the low-order model may be preserved.

VI. COMPARISON WITH OBSERVATIONS

While a complete discussion of observational eviden
for co-occurrence of blocked states in opposite hemisph
will be given elsewhere, here we summarize the relev
meteorological data. Using a standard meteorological d
nostic, described in Appendix B, for blocking at 60° N la
tude ~any longitude! and 40° S latitude~any longitude!, we
have computed the relative frequencies of co-occurenc
the possible regime pairs for the period 1979–1995, in d
at 6-h increments obtained from the National Centers
Environmental Prediction~NCEP! @29#. Results are pre-
sented in Table VII, in the same form as the joint probab
ties of regime co-occurrence for the low-order model. Bloc
ing events are seen to co-occur to a small degree. Additio
confirmation of the synchronized chaos theory can be
tained by restricting the statistics to the months Decem
January, and February, since it is generally only during th
months when the westerly ducts are open, as seen in Fig
and only then is interhemispheric coupling possible.~An al-
ternative explanation of the co-occurrence statistics is
there is a common causative factor in the tropics, associ
with the westerly ducts, which induces blocking in eith
hemisphere, as might be inferred from@30#, for example.
Further work is needed to clarify the implications of th
data.! The correlationC for these winter statistics, analyze
in Table VIII, is indeed higher than the correlation for th
full-year statistics in Table VII. The statistical significance
these results is implied by the error bars onC in Table VIII,

TABLE VII. Relative frequencies of co-occurrence of regim
pairs in observed meteorological data~NCEP data@29#! for the
period 1979–95, expressed as joint probabilities as in Table V

~a! ~b!

P Pind

N zonal N blocked N zonal N blocked

S zonal 0.33 0.41 0.31 0.43
S blocked 0.09 0.17 0.11 0.15

C50.09
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which were derived by partitioning the 16-y data set into fi
segments and computing the standard error of the mean

It is noteworthy that blocking events at 60° N correla
with events at 40° S, breaking the naively expected symm
try. This is apparently the result of topographic asymme
due to the different distribution of the land masses in
southern hemisphere in the direction of the equator. The
served correlations can be viewed as an extension of
phenomenon of generalized synchronization, observed
asymmetric low-order systems@4#, to the context of a con-
tinuous medium.

Analysis of weather phenomena in terms of correlatio
between data at remote points on the globe is not new
meteorology. In 1924, Walker@31# first postulated the exis
tence of a web of such relationships in his unsuccessful
tempt to find predictors for the strength of the Indian mo
soon. Later, Bjerknes@32# coined the termteleconnectionin
reference to the now well-known relationships between
Nino and global weather phenomena. Systematic studies@33#
subsequently identified a number of teleconnection patte
that are quite useful in describing the variability of the atm
spheric circulation. Observed correlations are thought to

FIG. 11. Contour plot of the zonal component of the upp
tropospheric~200 mbar! tropical windu ~in m/s!, which defines the
westerly ducts, vs longitude and time. The tropical wind is defin
as the average of the wind between 10° N and 10° S, also aver
over 30 days. Only positive~westerly! values of the wind are
shown.

TABLE VIII. Relative frequencies of co-occurrence of regim
pairs in the period 1979–95 as in Table VII, but for the mont
December, January, and February only.~Error bars onC were com-
puted as the standard error of the mean in a partitioned data s!

~a! ~b!

P Pind

N zonal N blocked N zonal N blocked

S zonal 0.16 0.16 0.12 0.20
S blocked 0.21 0.47 0.25 0.43

C50.1860.08
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6490 56GREGORY S. DUANE
mediated by the exchange of Rossby waves@26# between
teleconnected subsystems. But in general, each of these
systems evolves according to its own intrinsically chao
dynamics. The results of the previous section demonst
that the Rossby-wave-mediated correlations are consis
with the chaotic subsystem dynamics and that the two beh
iors can be captured in a low-order bidirectionally coup
model.

VII. SUMMARY AND CONCLUSIONS

We have shown that a form of partially synchroniz
chaos can occur in a pair of adjacent bidirectionally coup
extended systems, with spatial separation between co
sponding degrees of freedom, in a spectrally truncated th
retical model. We have presented preliminary evidence
these results may approximate physical behavior in
Earth’s atmosphere. In particular, the time lags introduced
the spatial separation do not destroy all trace of synchron
behavior.

In regard to the robustness of this behavior, we ha
shown that it is preserved in the presence of signific
asymmetry between the two systems. While we have
directly addressed the issue of noise, results obtained by
ers@5# for synchronization of low-order systems in the pre
ence of noise should apply to our low-order representati
of continuous systems as well. Indeed, the high-order mo
that were omitted through our truncation, and that have
been thought to affect the qualitative large-scale dynamic
either hemisphere separately, are also not expected to c
greater degradation of the synchronous behavior than w
an equal amount of uncorrelated noise. We also have
addressed the issue of variations in the coupling channe
would be due to periodic closure of the westerly ducts,
instance, but recent findings on the possibility of synchro
zation with only occasional coupling@34# are encouraging.

Partial synchronization occurs in our model because
the attractive properties of a synchronization manifold in
coupled system. Though this manifold is unstable, its pr
ence affects the global dynamics of the system. It is not
case, for instance, that trajectories are affected only w
they are near synchronization, as compared to the case o
coupling. While we have shown by example that such beh
ior can result from the extension of on-off intermittency
regions of parameter space far from the blowout bifurcat
point, a thorough description of this behavior, which is o
off intermittent in name only, is still desired.

The analysis presented here has been possible becau
the fortuitous circumstance that the two coupled systems
semiautonomous. One would hope that partially synch
ub-
c
te
nt
v-

d
re-
o-
at
e
y

us

e
t

ot
th-
-
s

es
ot
of
use
ld
ot
as
r
i-

f
e
s-
e
n
no
v-

n
-

e of
re
-

nized chaos might be observed in a fluid system where th
is no analog of the belt of tropical easterlies nearly separa
the hemispheres. A theory of laminar regions in a turbul
fluid ~indeed the segments of on-off intermittent trajector
very near the invariant manifold are often called the ‘‘lam
nar phase,’’ e.g.,@17#!, or of coherent structures in turbu
lence generally, would be such an application. Unfor
nately, the methods of this paper do not lend themselve
the case of fully coupled subsystems. Whether and how l
order chaotic synchronization can be applied to general
bulence remain open questions.

Nevertheless, complex systems in nature often give w
to decomposition into loosely coupled subsystems. It
been suggested@35# that the utility of the concept of low-
dimensional chaos in the Earth’s atmosphere, for instanc
in describing such subsystems, rather than weather a
whole. When such subsystems are identical or similar, t
there is the possibility of partially synchronized chaos.
some cases this may take the form of recognizable on
intermittency. In others, more subtle correlations may still
discerned, since it has been shown that this is not preclu
by the finite spatial extent of the subsystems.
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APPENDIX A: BOUNDARY GREEN’S FUNCTION
FOR THE LINEAR VORTICITY EQUATION

ON A b PLANE

To construct a boundary Green’s function that can
used to generate a solution to the linear vorticity equati
with inhomogeneous boundary conditions, via Eq.~23!, we
follow the methods of@27#. It is useful to first establish the
reciprocity relation:

Gb~r ,tur0 ,t0!5G2b~r0 ,2tur ,2t0! ~A1!

for the ~ordinary! Green’s functionGb satisfying Eq.~24!
with homogeneous boundary conditions, on the ‘‘b plane’’
f 5by.

The proof of Eq.~A1! is as follows: consider the two
equations
1

C

]

]t
¹2Gb~r ,tur0 ,t0!1

b

C

]

]x
Gb~r ,tur0 ,t0!1¹2Gb~r ,tur0 ,t0!5d2~r2r0!d~ t2t0!

2
1

C

]

]t
¹2G2b~r ,2tur1 ,2t1!2

b

C

]

]x
G2b~r ,2tur1 ,2t1!1¹2G2b~r ,2tur1 ,2t1!5d2~r2r1!d~ t2t1!,

which follow from Eq.~23!. Multiply the first equation byG2b(r ,2tur1 ,2t1) and the second byGb(r ,tur0 ,t0), subtract, and
integrate over the region of interest~northern hemisphere! and overt from 2` to t0

1 , to obtain
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1

CE2`

t0
1

dtE dxdyS G2b~r ,2tur1 ,2t1!
]

]t
¹2Gb~r ,tur0 ,t0!1Gb~r ,tur0 ,t0!

]

]t
¹2G2b~r ,2tur1 ,2t1! D

1
b

CE2`

t0
1

dtE dxdyS G2b~r ,2tur1 ,2t1!
]

]x
Gb~r ,tur0 ,t0!1Gb~r ,tur0 ,t0!

]

]x
G2b~r ,2tur1 ,2t1! D

1E
2`

t0
1

dtE dxdy@G2b~r ,2tur1 ,2t1!¹2Gb~r ,tur0 ,t0!2Gb~r ,tur0 ,t0!¹2G2b~r ,2tur1 ,2t1!#

5G2b~r0 ,2t0ur1 ,2t1!2Gb~r1 ,t1ur0 ,t0!. ~A2!

We shall show that the left-hand side of Eq.~A2! vanishes. The first integral in Eq.~A2! can be simplified by integrating th
second term in the integrand by parts in the temporal dimension, yielding

E
2`

t0
1

dtE dxdyS G2b~r ,2tur1 ,2t1!
]

]t
¹2Gb~r ,tur0 ,t0!1Gb~r ,tur0 ,t0!

]

]t
¹2G2b~r ,2tur1 ,2t1! D

5E
2`

t0
1

dtE dxdyS G2b~r ,2tur1 ,2t1!
]

]t
¹2Gb~r ,tur0 ,t0!2

]

]t
@Gb~r ,tur0 ,t0!#¹2G2b~r ,2tur1 ,2t1! D

1E dxdy@Gb~r ,tur0 ,t0!¹2G2b~r ,2tur1 ,2t1!# t52`

t5t0
1

. ~A3!

Considering the last integral in Eq.~A3!, the second factor in the integrand vanishes at the lower limit because of the c
boundary condition onG, while the first factor vanishes at the upper limit for the same reason~assuming, without loss o
generality, thatt1,t0). The first integral on the right hand side of Eq.~A3! can be evaluated with the aid of Green’s theore
in two dimensions:

E @U¹2V2V¹2U#dA5 R @U¹W V2V¹W U#•n¢ds, ~A4!

whereU andV are any scalar fields andn¢ is the outward-pointing unit normal along the boundary of the two-dimensional~2D!
domain. LettingU5G2b(r ,2tur1 ,2t1) andV5(]/]t)Gb(r ,tur0 ,t0), we find

E
2`

t0
1

dtE dxdyFG2b~r ,2tur1 ,2t1!
]

]t
¹2Gb~r ,tur0 ,t0!1Gb~r ,tur0 ,t0!

]

]t
¹2G2b~r ,2tur1 ,2t1!G

5E
2`

t0
1

dt R S G2b~r ,2tur1 ,2t1!
]

]t
@¹W Gb~r ,tur0 ,t0!#2Gb~r ,tur0 ,t0!

]

]t
@¹W G2b~r ,2tur1 ,2t1!# D •n¢ds. ~A5!

This vanishes by virtue of the homogeneous boundary conditions onG.
Turning next to the second integral in Eq.~A2!, it is seen to be the integral of a totalx derivative, and so vanishes becau

of the periodic boundary conditions. The third integral in Eq.~A2! can be rewritten, using Green’s theorem~A4!, as

E
2`

t0
1

dt R @G2b~r ,2tur1 ,2t1!¹W Gb~r ,tur0 ,t0!2Gb~r ,tur0 ,t0!¹W G2b~r ,2tur1 ,2t1!#•n¢ds,

which vanishes, again because of the homogeneous boundary conditions onG. Thus all terms on the left-hand side of Eq.~A2!
vanish and Eq.~A1! is proved.

Using the reciprocity relation~A1!, we can write an equation forG(r ,tur0 ,t0) as a function of (r0 ,t0):

2
1

C

]¹0
2G

]t0
2

b

C

]G

]x0
1¹0

2G5d2~r2r0!d~ t2t0! ~A6!

having suppressed the subscriptb. Also, by Eq.~16!,

1

C

]¹0
2CB~r0 ,t0!

]t0
1

b

C

]CB~r0 ,t0!

]x0
1¹0

2CB~r0 ,t0!50. ~A7!

Multiplying Eq. ~A6! by CB(r0 ,t0) and Eq.~A7! by G, subtracting, and integrating over the region of interest~northern
hemisphere! and overt0 from 2` to t1, we obtain
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2
1

CE2`

t1

dt0E dx0dy0FCB~r0 ,t0!
]

]t0
¹0

2G1G
]

]t0
¹0

2CB~r0 ,t0!G2
b

CE2`

t1

dt0E dx0dy0FCB~r0 ,t0!
]

]x0
G1G

]

]x0
CB~r0 ,t0!G

1E
2`

t1

dt0E dx0dy0@CB~r0 ,t0!¹0
2G2G¹0

2CB~r0 ,t0!#5CB~r ,t !. ~A8!

The first term can be evaluated by integrating by parts in time, and using Green’s theorem~A4! to write the resulting
expression as a boundary integral, as in the derivation of Eqs.~A3! and ~A5!. In the present case this yields

E
2`

t1

dt0E dx0dy0FCB~r0 ,t0!
]

]t0
¹0

2G1G
]

]t0
¹0

2CB~r0 ,t0!G
5E dx0dy0@G¹0

2CB~r0 ,t0!# t052`
t05t1

1E
2`

t1

dt0 R FCB~r0 ,t0!
]

]t0
¹W 0G2

]

]t0
G¹W 0CB~r0 ,t0!G•n¢0ds0 .

The upper limit in the first term on the right-hand side vanishes because of the causal boundary conditions onG, while the
second term in the boundary integral vanishes becauseG satisfies homogeneous boundary conditions.@By reciprocity Eq.
~A1!, G vanishes for eitherr0 or r on the boundary.# Therefore

E
2`

t1

dt0E dx0dy0FCB~r0 ,t0!
]

]t0
¹0

2G1G
]

]t0
¹0

2CB~r0 ,t0!G52E dx0dy0G~r ,tur0 ,2`!¹0
2CB~r0 ,2`!

2E
2`

t1

dt0 R CB~r0 ,t0!
]

]t
~¹W 0G!•n¢0ds0 ~A9!

having also used]G/]t052]G/]t, which follows from the time-translation invariance of Eq.~24!.
The second integral in Eq.~A8! is again the integral of a totalx derivative, and so vanishes due to the periodic bound

conditions. The third integral is again reexpressed using Green’s theorem~A4!:

E
2`

t1

dt0E dx0dy0@CB~r0 ,t0!¹0
2G2G¹0

2CB~r0 ,t0!#5E
2`

t1

dt0 R @CB~r0 ,t0!¹W 0G2G¹W 0CB~r0 ,t0!#•n¢0ds0 . ~A10!

Since the second term in the integrand on the right-hand side of Eq.~A10! vanishes, withG, on the boundary, Eq.~A10!
can be combined with the expression Eq.~A9! for the first integral in~A8!, to yield finally

E
2`

t1

dt0 R CB~r0 ,t0!S 11
1

C

]

]t D ~¹W 0G!•n¢0ds01
1

CE dx0dy0G~r ,tur0 ,2`!¹0
2CB~r0 ,2`!5CB~r ,t !. ~A11!
fe
,
.

ght

hy-

ed
i.e.,
The second term on the left-hand side represents the ef
of conditions at initial timet052`. This term vanishes
sinceG→0 ast2t0→`, due to the dissipative term in Eq
~24!. Equation~A11! is then of the form

CB~r ,t !5E
2`

t

dt0 R ds0CB~r0 ,t0!Gb~r ,tur0 ,t0!,

where

Gb~r ,tur0 ,t0!5S 11
1

C

]

]t D @n¢0•¹W 0G~r ,tur0 ,t0!#.

~A12!

For the configuration depicted in Fig. 4,Gb is given by Eq.
~26!.
cts APPENDIX B: THE DEFINITION OF BLOCKING
IN OBSERVED METEOROLOGICAL DATA

Blocking is commonly defined in terms of thegeopoten-
tial height field ZP(x,y). Formally, at any pair of longitude
and latitude coordinates (x,y):

ZP~x,y![
1

g0
E

0

p~x,y,z!5P
g~x,y,z!dz,

wherep(x,y,z) is the pressure at the same location at hei
z, g is the local gravitational constant, andg0 is the mean
surface gravitational constant.Z500 mbar is thus very nearly
the physical height of the 500 mbar isobar.Z500 can also be
thought of as a proxy for surface pressure in a roughly
drostatic atmosphere.

We use the Tibaldi-Molteni diagnostic@36# to define
blocking. To discount high-frequency transients, filter
heights are first defined as five-day averages,
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Z̃500(x,y,t)[@1/(5 days)#* t22.5 days
t12.5 daysZ500(x,y,t)dt, where

the dependence ofZ500(x,y,t) on time t has been indicated
explicitly. We will say that the atmospheric circulation
blocked at a given location (x,y), if ( x,y) is near a local
maximum of Z̃500 in latitude y, with a falloff rate on the
poleward side that exceeds a prescribed threshold. Spe
cally, the atmosphere is said to be blocked at (x,y) in the
northern hemisphere if and only if the two conditions
,

v.

s,
ifi-

@ Z̃500~x,y1d!2 Z̃500~x,y1d220°!#/20°.0,

@ Z̃500~x,y1d!2 Z̃500~x,y1d120°!#/20°.10 m/deg

are both met either ford50°, d55°, or d525°. In the
southern hemisphere, the right-hand sides of the two
equalities are interchanged.
s.
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