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Synchronized chaos in extended systems and meteorological teleconnections

Gregory S. Duane
Program in Atmospheric and Oceanic Sciences and Department of Astrophysical, Planetary, and Atmospheric Sciences,
University of Colorado, Boulder, Colorado 80309
(Received 4 August 1997

While synchronized chaos is familiar in low-order systems, the relevance of this paradigm to natural phe-
nomena and spatially extended systems is questionable because of the time lags introduced by finite signal
propagation speeds. A form of partially synchronized chaos is here demonstrated in a low-order numerical
model of the coupled large-scale atmospheric circulation patterns in the northern and southern hemispheres.
The model is constructed using a Green’s function method to represent the time-lagged boundary forcing of the
flow in each hemisphere by Rossby waves emanating from the opposite hemisphere. The two hemispheric
subsystems are semiautonomous because Rossby waves cannot penetrate the tropics except in narrow longi-
tudinal bands where the background winds are westerly. Each hemisphere has previously been described by a
10-variable model, derived from a spectral truncation of the barotropic vorticity equation. The model exhibits
dynamical regimes corresponding to “blocked” and “zonal” atmospheric flow patterns in the hemisphere.
Applying the same spectral truncation to the Green’s functions that define the coupling, we construct a
28-variable model of the coupled flow on a planet with simplified geometry and background wind field. Partial
synchronization is manifest in a significant tendency for the two hemispheric subsystems to occupy the same
regime simultaneously. This tendency is observed in actual meteorological data. Partial synchronization of this
form can be viewed as an extension of on-off intermittency in a system with a synchronization manifold, to a
region of parameter space that is far from the bifurcation point at which this manifold loses stability.
[S1063-651X97)00912-4

PACS numbgs): 05.45+hb, 02.30.Jr, 92.60.Bh

I. INTRODUCTION and the regularities observed in chaotic low-order systems,
have led to insights and predictions regarding the behavior of
It is now well established that coupled low-order chaoticextended systems, as in the case, for instance, of the Feigen-
systems can fall into synchronized motion along their strangbaum sequence or of the Lorenz system itself, it is to be
attractors under a variety of conditions. The best known conhoped that the same would be true of low-order chaotic syn-
figuration is probably that of Pecora and Carrdl, who chronization. But while the earlier investigatdi2,3] sug-
demonstrated synchronization of two identical systems, digested applications to fluids or continuous media, subsequent
rectionally coupled through the sharing of common dynami-investigations focused on low-order or man-made systems,
cal variables, which drive both systems but are driven bywith the notable exception of synchronization in high-order,
only one. This phenomenon is seen, for instance, in a pair dfut discrete, neuronal networkg,8]. A starting point for
Lorenz systems where the or y variable of the driving investigating synchronization in continuous systems might
system is inserted in the role of tkeor y variable, respec- be a system with a twofold symmetry, rather than one envi-
tively, of the driven system. Earlier work by Fujisaka and sioned as the continuum limit of a large number of chaotic
Yamadd 2] and also by Afraimoviclet al.[3] had examined oscillators to be synchronized collectively. This would allow
synchronization in systems dissipatively coupled through a natural decomposition into two subsystems and so one
bidirectional control signal. For identical systems, the lattermight be able to exploit the low-order results directly. A
authorg 3] found that, as the coupling is weakened, synchro{principal difficulty remaining with such a configuration of
nization degrades through the increasingly frequent appeaextended systems is that, because information propagates at
ance of periods of desynchronization, timed chaoticallyfinite speed, not all paired degrees of freedom in the two
amidst other periods of synchronization. systems can exchange information at once, as they do in the
Low-order chaotic synchronization has been found to bdow-order models[Very recently, Kocareet al.[9] demon-
robust under a variety of sources of degradation. If the sysstrated synchronization in pairs of coupled partial differential
tems are nonidenticafieneralized synchronizatipin which  equation(PDE) systems, but in one space dimens]ofihe
the the state of one system is a function of the state of theentral question becomes whether the various time lags can
other may resul{4]. Experimental and theoretical studies conspire to give robust synchronized evolution of the two
have shown synchronization, or generalized synchronizatiorindividually chaotic systems, typically each with a power
to be preserved in the presence of realistic noise levels in thgpectrum unbounded in frequency, or to give some vestige of
coupling signal5]. This has led to the proposal that chaotic synchronicity.
synchronization could be useful in secure communications Trivially, any experimental apparatus that realizes low-
[6]. order chaotic synchronizatiofi,10,1] demonstrates syn-
Missing from these studies is evidence that synchronizedhronization in an extended system. But here the rigidity of
chaos pertains to natural phenomena. As low-order chaosplid objects or the physical relevance of variables such as
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current to describe collective motion eliminate the trouble-specific model, but involves time integrals of these differ-
some time lags. We wish to examine the possibility of syn-ences expressed more conventionally as new dynamical vari-
chronization in a pair of coupled fluid systems, each systenables. The phase-space trajectories of this model, examined
consisting of a continuum of dynamically distinct parts. ~ in Sec. V, contain no macroscopic segments that are very
To investigate synchronized chaos in fluids, we turn toclose to synchronization as in on-off intermittency, but still
meteorology, historically a source of inspiration in nonlinearmaintain an average distance from the synchronization mani-
dynamics, for a theoretical model that can readily be comfold that is reduced as compared to the case of no coupling.

pared to observations. The nearly two-dimensional structurd N€ Synchronization manifold thus affects the global dynam-

of the atmosphere allows a simple description of the dynamiCS Of the coupled system. The coupled system is shown to

ics through a low-order chaotic model that vacillates be-€Sid€ in a portion of parameter space that is part of the

tween weather regimdd2]. We apply this description to a on-off intermittent regime, but is further from the bifurcation

system that can be naturally decomposed into two semiauti—o'm at which the invariant manifold loses stability than sys-

nomous, but coupled subsystems. Correlations between t gms usually considered. One manifes_tation is a small corre-
regimes occupied simultaneously by the two subsystems é?t'ctm between the dphas?—s%allcek rccejglmes of Ithf? MOSSUE'
various instants of time give a crude indication of synchro-SyS €ms, cofresponding 1o blocked or zonal Tow. suc

nicity in the model. Specifically, the two subsystems are thecorrelations are actually observed in meteorological data,

northern and southern hemisphere midlatitude Systemgresented in Sec. VI. We conclude that an extension of on-

which are semiautonomous because Rossby waves do n%flf synchronization to more remote regions of parameter

penetrate the tropical regions where upper—tropospheriépace’ with recog.nizabk_a synchroniza_ltion period; possibly
winds are easterly, for reasons reviewed in Sec. lll. The twc?bsem’ can underlie partially synchronized chaos in extended

subsystems are coupled through the relatively narrow regiondStems:

in the tropics, thewesterly ductswhere upper-tropospheric

winds are westerly13]. The large-scale weather regimes are Il. PARTIAL SYNCHRONIZATION OF CHAOTIC
blocked flowand zonal flow the latter corresponding to the SYSTEMS WITH TIME-LAGGED COUPLING

normal progression of weather patterns from west to east and
the former corresponding to an obstruction of this progres
sion, typically by a large high-pressure cenféd]. A ten-
dency for blocking to co-occur in the northern and souther
hemispheres constitutes an interhemispheslieconnection
The subset of phase space for which the two modeled K= _

) . . ) =o(Y—X), (13
subsystems are in the same state constitutes an invayiant
chronization manifoldThat is, because the two systems are

An illustrative example of time-lagged coupling is the fol-

Towing configuration of two Lorenz systems in the variables
X,Y,Z andX,,Y,,Z,, respectively, coupled through the aux-

r]Iiary variable S:

dynamically identical in the model, once they are synchro- Y=p(X=9—Y-(X=9)Z, (1b)
nized they remain so. For couplings not involving time lags .
it has been shown that dynamics governed by a stable syn- Z=—BZ+(X-9)Y, (10
chronization manifold will bifurcate into chaotically alternat-
ing periods of synchronization and desynchronization as the S=_-TS+ Tc(X—X,), (1d)
coupling is weakened[3,15], as noise is introduced
[16,5,15, or as the symmetry between the subsystems is bro- XK. = o (Y1—X 1e
ken[15]. On-off synchronization is in fact a special case of 1=0(Ya=Xa), (19
on-off intermittency{17,18, a phenomenon occurring when .

i Aty : V1= p(Xy+ )~ Yy = (X, +9)Zy, (19

an invariant manifold is slightly unstable, causing trajecto-
ries to spend long periods very close to the manifold, then to .
deviate from it wildly for a while, then return, and so on. The Z1=—BZ1+ (X1t Y. (19
point of this paper is that the time lags that arise in coupled ] ) ] .
extended systems generate an extreme form of the same er- The dynamical variabl& accumulates information about
ratic behavior, but one in which a synchronization tendencyhe difference between the states of the two Lorenz sub-
is still discernible. systems. Ad"—» in Eq. (1d), with S finite, S—c(X—X;).

In the next section, we show that a time lag can be introdn this limit, Eq. (1) reduces to
duced in the coupling of a pair of Lorenz systems in the

Pecora-Carroll configuratiofl]. A short time lag generates X=a(Y-X), (23
on-off synchronization while longer lags give rise to regime

correlations with no distinct periods of synchronization. This Y=p[(1—Cc)X+cX]-Y—[(1—c)X+cX,]Z, (2b)
paper then analyzes the dynamics of the two coupled atmo-

spheric flow systems, represented by standard low-order o _

models as reviewed in Sec. I, and using a Green'’s function Z==pZH[(1=c)X+cXy]Y, (20)
method to formulate the time-lagged coupling, to show that :

correlations of a similar type arise. As shown in Sec. IV, the X1=0(Y1=Xy), (2d)
coupling depends on the differences between the state vari-

ables of the systems, as previous autfd€3 have suggested Yi=p[cX+(1—c)X{]-Yi—[cX+(1—-c)X ]Z4,

might occur for geophysical fluid systems in the absence of a (29
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FIG. 1. The difference between the simultaneous states of two Lorenz systems with time-lagged coupling, as specifigd defigted
by Z(t) —Z4(t) vst for various values of the inverse time l&g Average Euclidean distang®) between the states of the two systems is
also shown. The trajectories are generated by adaptive Runge-Kutta numerical integrations-Wthp =28, andg=8/3.

Z1=—ﬁz1+[CX+(1—C)X1]Y1- (2f) effectivg .in poryions of the phase space. .Trajecto_ries then
spend finite periods very close to the invariant manifold, in-

The systen(2) is a generalization of the Pecora-Carroll cou- {erspersed with bursts away from {Experimental evidence

pling scheme1] to a case with bidirectional coupling and of on-off intermittency in an extended physical system has

where each subsystem is partially driven and partially aubeen reported in a context not involving synchronization

tonomous, with the degree of autonomy given by the quan[2C]") AS has been pointed out by othdf,5,19, varying

tity 1 —c. It is readily confirmed that this configuration syn- the q%/r:gmr:cs ofa system possessing a stable syncgronlzbgllyon
chronizes, for a range of values of including c=1, by manifold that contains a strange attractor so as to destabilize

direct simulation. this manifold may give rise to this phenomenon. Here, we
In the general case of the coupled systénwith finite e_nlar_ge the c_Iass of (_jynam|cal syste_ms_possessmg a syr_lchro-

I', the subsystems exchange information more slowly if nization manifold to include ones_wnh t|mg-|agged coupling

andX, are slowly varying, ther§ asymptotes t@(X—X,), as in Eq.(1), and show that the time lag is yet another pa-

over a time scale IJ. Thus, whilec may be interpreted as rameter thgt may be varied to '”d“C? |nstab|llty. .
the degree of coupling; is an inverse time lag in the cou- A guantitative measure of the deviation of the behavior of

pling dynamics the system at large time lag from on-off synchronization is
Trajectories of Eq.(1) are depicted in Fig. 1 through provided by the average Euclidean distafbe between the

Z(t)—2Z4(t), for c=1 and decreasing values bf For large states of the two subsystems, where
I', the case represented in Figall the subsystems synchro- B P - -
nize. AsI is decreased in Figs(l)—1(d), corresponding to D=1(X=X,=29)°+(Y-Y)*+(Z-Zy)

increased time lag, increasingly frequent bursts of desyn-

chronization are observed, until in Figlel no portion of the  so thatD/+/2 is the distance of the system as a whole from
trajectory is synchronized. The bursting behavior can be unthe synchronization manifoldD) is also shown in Fig. 1 for
derstood as an instance of on-off intermitteri@,17), the  the various time lags. It is seen th@) for the case of no
phenomenon that may occur when an invariant manifoldnacroscopic periods of synchronization in Fige)lis still
containing an attractor loses stability, so that the attractor itess than(D) for the case of decoupled systems, shown in
no longer an attractor for the entire phase space, but is stiffig. 1f. The former case, whelé=1, is the physically rel-
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TABLE I. (a) The joint probability matrix for the trajectory ics of the system, even in the absence of periods of near
shown in Fig. 1e) of the time-lagged coupled Lorenz systems synchronization. The remainder of this paper is devoted to
specified in Eq(1), where the regimes are given By>0 (X;>0)  showing that correlations similarly come about in a pair of
andX<0 (X;<0). P is the probability that the coupled model coupled extended systems.
occupies a regime given by row and columnj. (b) The joint
probabilitiesP:"‘jd for independensubsystems, each with the same
probability of occupying either regime as ina, i.e.,
PI=(Sj_+ -Pi )(Si—. _Pi ), with the regime correlatiod as

Ill. BACKGROUND: METEOROLOGICAL REGIMES
AND LOW-ORDER MODELS

defined in Eq(3). A. Blocking regimes in the general atmospheric circulation
@ (b) Low-order spectral truncations of the primitive equations
p pind of quasi-two-dimensional fluid dynamics, on a rotating
X>0 X<0 X=>0 X<0 sphere with varying bottom topography, are known to cap-
ture the qualitative features of the large-scale atmospheric
X;>0 0.50 0.13 0.39 0.23 circulation in middle latitudes. In this section, we review the
X;<0 0.13 0.24 0.23 0.24 construction of one such low-order model, due to de Swart

[12]. The starting point is th&arotropic vorticity equation
which states that in a vertically homogeneous atmosphere,
vorticity is conserved except when vortices are compressed

evant situation in which the time scale of the delay due to tht%)gma(fjr\ilcet%'r?n.r%\i/gret(;)&)t%ﬁpig'c features or dissipated by bot-

coupling is the same as the time scale of the intrinsic dynam-
ics of the subsystems. The partial synchronization observeg, y2y)

in this situation is thus seen to be related to the more famiIiarT +J(V, V2 + )+ yJ(¥,h)+ CV3(¥ —¥*)=0,
case of partial synchronization through on-off intermittency, 4)
but occurs further from the point in parameter space at which

the synchronization manifold loses stability than Systems, hore W is the stream function. which gives theandy

us‘f”ﬂﬁons'dered‘ f partial hronization i ided b components of horizontal velocity= — oW/dy, v=dV¥/dx,
nother measure of partial synchronization IS provided by; s time f is twice the locally vertical component of the

CYotation vector, which defines the Coriolis fort¢eis bottom

s b the o subsystrs. 1 e caseof B ms i g e averae neign o e s
of synchronization, regime correlations can still be observed>Pere” = foho/H is a coefficient of topographic forcingy

X is a typical value off, hg is a topographic height scale, and
The regimes are the two halves of the butterfly-shaped attra% is y; coefficient of t())ottom fFr)ic?ionp The fgrcing stream
tor of the Lorenz system, defined b¥<0 and X>0. .

. N i
The co-occurrence statistics can be expressed as joint probfunctlon W™ represents the flow forced by the equator-pole

- : X . fie'mperature gradient, which would define an equilibrium
bilites P; —defined as the fraction of total time that the tWo g0 i the absence of topographic effects. The advection
subsystems spend in any pair of regimejs respectively,

wherei= + or —, j = + or —. The matrixP; ; for the Jacobiany is defined as

trajectory shown in Fig. (&) is given in Table I. Also given JA B JA JB

are the corresponding probability valué>$”‘jd in the case JAB=————— (5)
where the two subsystems individually have the same
statistics but are assumed independent, i.é?;f‘jd
=(2r=+,-Pi)(Zs=1 _Psj). The joint probability matrix

C=0.44

so that the co-moving, or “Lagrangian,” derivative can be

is significantly more diagonal than in the case of independen A)f()ptrr(]asseo! a§/t[r)1t= ’Zm +t'J(\P11.°)t. 'trhle set(':qnd terr]r'nr:n. Egh
subsystems. The standard correlation between the twi us gives the advection of total vorticity, which is the

: ) ; ; sum ofrelative vorticity = du/ 9y — dv/ 9x=V?¥ andplan-
Eég?r;ye;/alugg r?r:\ed on:w\garlastﬂiyiyedmz, Wri];(:h (Ijaetfﬁeghe astary vorticity f. A detailed derivation of Eq(4), with an

_ . _ lanation of the approximations used, can be found in
C=({(Q—(Q)(R—(R)Y(vqur), where Q=1 (R=1) P
whenX>0 (X;>0) andQ=0 (R=0) otherwise. The cor- [21\]N t the mid-latitud ¢ h |
relation can also be expressed in terms of the joint probabili- € represent the mid-iatitude system as a narrow channe
ties as between two circles of latitude, of widtB (in the meridi-

onal, ory, dimension and lengthL (in the zonal, orx, di-
mension, with periodic boundary conditions ix, and with
the conditions at the northern and southern boundaries that
the meridional windv and the circulationfudx vanish, i.e.,

ind
Pis—PL

2 P2 P, 2 P> P,
r=—,+ r=-—,+ s=—,+ s=—,+ oV
(3) W:O’ y=0 0ry=7-rb, (6@

C=

A significant positive correlation is observed for the case
analyzed in Table I. This is but one manifestation of the f Al (6b)

effect of the synchronization manifold on the global dynam- de: 0, y=0ory=mb,
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where we have nondimensionalizedandy by defining a o1
length scalel/27 and we have introduced the nondimen- )\j’ijEE CitmN = Am) Y1 tm+ ¥ Cjimtihm
sional constanb=2B/L. The second boundary condition hm hm

(6b) is necessary since while E(fa) implies that¥ is con-

stant along the boundaries, Ha) taken alone permits this +§|: by — CNj(4— o), (10
constant to vary in timg.The specific conditiori6b) can be
justified by integrating u;+uu,+vuy,—fo=—(1/p)py
—Cu+Cu* (where subscripts denote derivatiyesvhich
follows from the Navier-Stokes equations with dissipation 1
and forplng terms aglded, anng each bounda_ry, nating. Cjim= _2] D, J(D, P dxdy,
Assuming the “forcing veIouty”u*E—\If; itself has a 2mb

vanishing boundary integral, the total circulatior= fudx

satisfies(),= — C(}, so that() decays to zerd.We further 1 _

assume thaf varies linearly withy in the channel, with bjlzz_zbf ®;J(P,f)dxdy,
afldy=B. The timet is nondimensionalized by defining a ™
time scale equal to £&=1.16 days, giving a nondimen-
sional 8 of order unity.

A six-component spectral truncation of the barotropic
vorticity equation(4) has been shown by Charney and De-
Vore[22] to exhibit multiple equilibria corresponding to dif-
ferent weather regimes in the atmosphere, following the ap-
proach of Lorenz, who applied the same expansion to more
complex dynamical equations describing a two-layer model h= i(¢)11+¢)_1 1)=cos<sini—;, (11)
[23]. More recently, de Swaftl2] showed that a correspond- 232 7 '
ing 10-component spectral truncation of E4). exhibits cha-
otic behavior{12] with a strange attractor that gives vacilla- y 2y
tion between regimes. de Swart projected onto eigen- P*=x3 \/Ebco%anZ \/EbCOSF, (12)
functions®; of the Laplacian operator in the channel defined
above with boundary condition$). A complete set of such
eigenfunctions is defined bsp; = ® for j, an integer and

where

with J denoting the advection Jacobian defined by .
and overbars denoting complex conjugates. Equatidi
describes the time evolution of the coefficients of the expan-
sion (7).

Assuming simple forms for the topography and forcing

where x; and xj are constants, truncating Eq9) to

. o . R li1l.iz<2, and substituting an expansion in a real basis
]2 @ positive integer: T=3,xY,; for the expansion(9), where X,= ¢o,/b, Xo
Ly = (Yt ¥-1010\2, X3:i('3011_¢711)/b\/§v X4= Yol b,
CDO,jz:\/ECOS(JzB), (78 Xs= (Y1t _12/bV2, X6=i(P1= h_1)/bV2, X7= (P

F_o)/bV2, Xg=i(Wa1— -2 IbN2, Xo= (gt y_2)!
) y b2, X10=i(¢r— _,5)/b\2, de Swart[12] obtained the
q>jl’12: \/Ee'llxsin(jzg). (7b) dynamical system

The corresponding eigenvalues; defined by Vzd)é- X1= ¥iXs— COX = X7),

=—\®; [where j=(j;,j,)] are found to bei;=j; _

+j,2/b%. The j;=0 modes consist of purely zonal flow X,=—(aqX;— B11)X3— CXo— 811X4Xg— p11(XsXg— XgX7),
(v=—0®y;,/9x=0), while the|j,|>0 modes consist of

Rossby waves that are _tre}velinQXrand standing iry. That X3= (@11X1— B11)Xa— Y11X1 — CXz+ 811XaXs5+ p12(XsX7
is, the moded; ; multiplied by a temporal factoe™ ',
12 + XgXg)
where 678/
—Bi1 —Bi1 ® X4= Y1 Xe— C(Xa— X} ) + €1(XoXg— X3X5) + €X7X 19— XgXg,
w= =

N 3+ (j2/b)? .
X5= — (@1X1 = B12)Xe— CX5— 1X3Xa + p1A XoXg — X3X7)
satisfies Eq.(4) with h=C=v*=0, defining a Rossby

wave[21] whenj;#0. tr12Xs,

The expansion of the stream functiohk, the forcing (13
“stream function” ¥*, and the topographly in the basig7) )
is defined by Xe= (@12X1— B12) X5~ Y12Xa— CXg+ O1XoXa— p1o X2X7

+X3Xg) = Y12X7,
=3 (005 )y ) wen

o ) o ) X7= = (@21X1 = B21)Xg = CX7 = 821XaX10~ p21(X2Xe + X3Xs)
The projection of the barotropic vorticity equatiéd) onto ,
the eigenfunctiong7) is found to be + ¥21X6»
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TABLE II. The truncated basis that defines the de Swart model 6
( 13) of the single-hemisphere mid-latitude circulation, given by the

stream function¥ =31%,x(1)Y; .

Y, =2bcos//b
Y ;= 2bsinxsiny/b
Y 5=2bcossin2y/b
Y ;= 2bcosXsiny/b
Y 9= 2bcosXsin2y/b

Y ,=2bcossiny/b
Y,= \2bcos3/b
Y = 2bsinxsin2y/b
Y g= 2bsinZsiny/b
Y ;0= 2bsinZsin2y/b

Xg= (@21X1 = B21)X7 = CXg+ 821XaXg T p21(XoX5— X3Xg)
— ¥21%5,
Xg= = (@22X1 = B22) X190~ CXg— J25X4Xg,
X10= (@22X1 = B22)Xg— CX1gt J20X4X7,
with coefficients defined by

8v2n m? n?b2+m2-1

T 4m?—1 n%b%+m?

Anm=

Bnb?

nm— )
n’b%+m?

4am  \2nby
4m’-1 7

*
Yam™

_am? J2nby
4am?—1 mw(n?b2+m?)’

Ynm

(14

3by
4(n%b%+m?)’

7r,1m:
_64\/§n n’b?—m?+1
" 157 n2p2+m?

16v2n

57 '

€En=

9 (n—2)2b%—(m—2)2
Prm=2 n?b%+m? '

zonal

blocked

-6
1500 4000
t

FIG. 2. A typical trajectory of the 10-component de Swart
model[12] of the mid-latitude atmospheric circulation, specified by
Egs.(13). x; vst is plotted for an adaptive Runge-Kutta numerical
integration with 3=1.25, C=0.1, y=1, b=1.6, xj=4, and
X} = —8. Onlyt>1500(in nondimensional time unitss displayed
S0 as to exclude transients.

scheme has indeed been propogt], in which the weather
alternates between ‘“zonal flow” periods of strong wester-
lies, a transitional regime, and a “blocked” regime in which
a wavy flow pattern is typically associated with a persistent
high pressure center that interferes with the flow of weather
from west to east. Since;= ¢y,/b is the coefficient of the
lowest zonal-flow mod&,, the regimes apparent in Fig. 2
were argued to correspond to zonal and blocked flow in the
atmospher¢l2]. To the author’'s knowledge, no higher order
truncations of the barotropic vorticity equati¢d) on a g3
plane have been investigate@®n a sphere, truncations of
the barotropic vorticity equation which retain up to 25 modes
have been investigat¢@5].) It has commonly been assumed
that the low-order truncations capture the qualitative dynam-
ics of the atmospheric regimes and transitions between them.

B. Coupling of the mid-latitude systems
through the tropical westerly ducts

Thus far we have not justified the boundary condition
(6a), which defines the mid-latitude region as an autonomous
system. The condition for the polay € 7b) boundary may
be regarded as resulting from the spherical geometry, and in
any case will be unchanged in the two-hemisphere model to

For concreteness, we list the real basis functions explicitly irbe described in the next section. On the other hand, the ex-

Table II.

planation of the tropicaly(=0) boundary condition, which

A typical trajectory of the systenil3) is represented in will be important for the formulation of the coupled model,
Fig. 2. Regime structure is manifest as different ranges ofests on the existence of procesgest included in the
oscillation in different portions of the time series. A careful simple model(4)] that maintain an average zonal wind at
analysiq 12] actually reveals three regimes, corresponding taropical latitudeq13]. It is found that this wind is typically
three unstable fixed points, but two regimes are easily diseasterly (1<0) in the tropics, in contrast to predominantly

cerned in the figure. The value of the variakieis sufficient

westerly 4>0) winds in the mid-latitude regions.

to distinguish between these. The interpretation of weather The effect of this band of tropical easterlies may be un-
phenomena in terms of vacillation among regimes has longerstood heuristically by considering the dispersion relation
been favored by meteorologisfd4] and a three-regime for Rossby wavef21] on a prescribed background state with
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slowly varying winds[26]. Generalizing Eq(8), in which
the zonal and meridional wave numbers &ej, and

I=j,/b, to the case in which there is a background wind
one finds

w=uk—Bk/(K3+12),

which gives a zonal phase speed:

Latitude

cy=U—BI(K2+12). (15)

Equation(15) implies that meridionally propagating waves
(cx=0) can only exist wheru>0 and more generally that
waves can only exist when —c¢,>0. Thus waves are per-

mitted in the middle latitudes, in which a westenlyarises
from the forcing by¥*, but these waves must be either
absorbed or reflected when they reach a critical (dhéfer-
ent for each wave modenear the tropical boundary, where

u—c,=0. Since waves cannot exist in the region of tropical
easterlies, and since the only nonwave modes consist o
purely zonal flow, we must hawe=0 in this region, hence
Eq. (6).

Next we note that the band of tropical easterlies is some-
times broken by smaller regions of tropical westerlies over
the Atlantic or Pacific oceans, each such region typically no
more than 45° in longitudinal extent. Previous authdr3]
have demonstrated that Rossby waves can penetrate throug
thesewesterly ductsas illustrated in Fig. 3 for a numerical 60°S Lot
model more highly resolved than the models to be consid- -180" Longitude (') +180
ered in this paper. To the extent that the boundary conditions
(6) accurately represent the physical effects of the tropical g 3. Rossby-wave penetration of the tropical westerly ducts
easterly barrier, the same boundary conditions with holes cap  high-resolution numerical model of shallow-fluid dynamics
be used to construct a model of the two mid-latitude systemsma]: (a) Contours of a prescribed basic state zonal wind fieidin

80" Longitude 0 +180°

Latitude

coupled through the westerly ducts. m/s), intended to represent climatological conditions in the tropics.
Regions of easterly wind <0 are shadedb) Contours of pertur-
IV. THE COUPLED LOW-ORDER MODEL bation zonal windu att=100 days, with basic state as(a, after

initialization by a localized perturbation at 20° Ntat O (reprinted
To formulate the coupling between the two mid-latitude from [13] by permission
systems that is engendered by the transmission of Rossby
waves through the westerly ducts, we neglect the meridional (V2P )
extent of the region of tropical easterlies, taking this region
to be a line at the equator, and also assume that the two at
mid-latitude systems lie on a singgplane.(It can be veri- ] ) N ] ]
fied that the latter assumption, which corresponds wary- with matchm_g boundary cor_ld_ltlons, as descrlb_ed_ above, in
ing linearly with latitude everywhere, would be exact on athe duct regions; the remaining free pairy, satisfies the
planet with a shape that is not spherical but that is also ndgharney-DeVore boundary conditiori) and is such that
terribly unrealistic, The effect of the opposite hemisphere is the total stream functiol’ satisfies the full vorticity equa-
that of a boundary forcing in the longitudinal range corre-tion (4). This decomposition is possible because the bound-
sponding to the tropical westerly ducts. The forcing is given@’y conditions involve linear operators. Sing®,/dx van-
by replacing the boundary condition of zero meridional windishes by ~definition, we must have 9 5/9x)(x,01)
by the condition that meridional winds match across the=(J¥3a/dx)(x,0t), valid both within and outside the duct
tropical boundary, i.e., that(x,0")=v(x,07) in the duct regions, where the superscrigisand S will henceforth de-
regions, or equivalently thapW¥/gx matches across the note quantities in the Northern and Southern hemispheres,
boundary in these regions. respectively. ShiftingV'g by an arbitrary constant in either
To isolate the effects of the boundary forcing in a linearhemisphere, we can requirwg(x,o,t)=\If§(x,0,t). Also,

equation that can be solved by conventional methods, w& g must satisfy the conditiof6b) on the circulationfu dx
express the stream functiolf as the sum of two parts: at the northern and southern boundaries. One boundary con-
¥ =v¥,+WV¥g. The boundary-forced, or “diffracted,” part dition at the interface remains to be specified. Motivated by
Vg solves the linearized vorticity equation an analogy with optics, we posit a specific form fbg, the

+J(¥g,f)+CV2¥z=0 (16)
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“diffracted” part of the stream function, on the tropical b
boundary: the stream function in the duct regions is set eque 1T AR
to the sum of the southward-propagating part of the flow N
north of the boundary and the northward-propagating part o T
the flow south of the boundary. That is, = o ¢
WE(x,04)=P¥5(x,01) S
0 outside duct —nb v i 4 U
= N | o 7S 1 O 27
T ('@l +y7®]) @ ducts «
j
=D(x,t) (17) FIG. 4. Schematic diagram of the two-hemisphere coupled

model. The tropical easterly barrier is assumed infinitely thin and

where T is a parametric transmission coefficient, and thePoth hemispheres are taken to lie on a singleplane. The two
coefficients w!\l and ws are just the coefficients in the mld-latltu.de systems are bounda.ry' forced by. the outward-
Charney-DeV]ore and cjie Swart spectral truncations of the fulpropagating components of the meridionally standing wave modes

. . . . th ite hemisphere.
stream function in either hemispher@™-S=3,yM-Sd NS, In the opposite hemisphere

N,S . .
The modes®; " are chosen so that the single-hemispherg, - 4ssumptions regarding the shapes of the ducts and the
equations derived from Eq10) will be the same on both pacxaround wind field, however, the sizes of the ducts and
sides of the equator. This requirement is met if the ROSSbyyq ransmission coefficiefitare not to be taken literally and
modes have the same form, while the zonal flow modes,iji remain open to interpretation. The coupling defined by
change sign, i.e., Eq. (17) is illustrated schematically in Fig. 4.

s — _®N Note that because of the symmetry of EJ.6) (for
®g5j,(%Y) Poj,(%¥), (183 f=By), with the boundary conditiofl7):

oS

I

(X y) =@} i (x,y)=®j(x,y), j1#0. (18D PR(X,y,1)=P5(X,—y,1) (22)
The northward- and southward-propagating parts of theso we will henceforth refer only to one diffracted stream
Rossby moded; = y2e'lsin(j,y/b) |j4|,j,>0 are given by  function Wg(x,y,t)=W§(X,y,t).
To find ¥z from the boundary conditiofil7) we use the
D=0+, (198 method of boundary Green’s functiof7]. In this method,
a Green’s function that might have been used to solve an
- i SR, inhomogeneous equation with homogeneous boundary con-
b= iﬁe v (190 ditions is transformed to another type of Green’s function
that can be used to solve the corresponding homogeneous
equation with inhomogeneous boundary conditons. This lat-
giiix=iigylb. (199 ter function, the boundary Green’s functi@P, must exist
because the linearity of E¢16) and the fact that initial con-
ditions att= — can be ignored due to the dissipative term,
where the uppellower) signs apply whenj;>0, w;<0  implies that¥g must depend linearly on the boundary val-
(when j;<0, ®;>0). The zonal flow modes ues, given in this case by the quantilyin (17). That is
®o;,=2cos{oy/b) (i=1 or 4 in the de Swart modelwith
w;=0, have no northward- or southward-propagating parts. _ f b
Léstly, we also require thal g=0 at the exterior boundaries Ve(r) to<tD(X0't°)G (r.thxo.to) dxgdto - (23)
at y= = 7b, which is equivalen{with ¥3=0 aty=0) to
requiring that the instantaneous zonal circulation vanisheBvhere r=(x,y) and ro=(Xq,Yo)]. As discussed if27],
when averaged across the hemisphere. In summary, tibere is usually a simple relationship between the boundary
boundary conditions satisfied b (in a domain that is Green’s functionG® and the ordinary Green’s functio®,

=7

ol -

periodic inx) are Eq.(17) and which in the present case satisfies
wNS=0, y==+mxbh, 20 14(V3G) 1
B y==m 20 R )+—J(G,f)+VZG=52(r—r0)5(t—to) (24)
Cc 4t C
oS
f 2y dx=0, y=0*mb. (2D with the causal boundary conditiofs(r,t|rg,to)=0 for
t<t,, and with homogeneous spatial boundary conditions:
The ansat417) will be shown to lead to a nondivergent
solution to Eq.(4). It is intended to model the linear propa- G=0, y=0ory=mb, (259
gation of waves through the tropics that atmospheric scien- G
tists have used consistently at tim{e6,13 to describe the j 22 dx=0, y=0 ory=mb. (25b)
phenomenology of the large-scale circulation. Because of ay
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The relationship betweeB” andG in the present case turns satisfies Eq(24) as required, wheré is the step function
out to be
1, x=0

0, x<0.

G (X,y,t[X0,to) = —

1 9\|dG(r,t O(x)=
1+__)[ (r, |r0,to)} (x)
C at Yo yoz0

(26)  As before,wj=—j;8/\; and the quantities; —]1+12/b are

] ) the eigenvalues 0V2<I> =—\®;. Therefore by Eq(26):
as proved in Appendix A.

A spectral expansion of the Green’s function can now be

combined with a spectral expansion of the stream functionto  GP(r t|x,to)=—i6(t—tq)
yield a low-order model upon truncation. The governing b
equation is obtained by subtracting the linearized vorticity _
equation(16) from the full vorticity equation(4), yielding > @j(9P;/3y)(X0,0%0) Pj(T)
i120 Nj
AV J(WES, ) +I(WNS V2WNS) 4 g (WS h . i |
o P H+( : )+ d( ,h) Xexd (—iwj—C)(t—tg)]. (30)
+CVA(WyS—¥*)=0, (27) Note that if we substitute E¢30) in the integral in Eq.

(23) we get a sum of eigenmodes for homogeneous boundary
where\IfB"S satisfies homogeneous boundary conditiB)s  conditions(multiplied by overlap integrajsas a purported

and solution to the linearized equation with inhomogeneous
N N 5 boundary conditions. Our methd@7] will give errors in a
YE(X Y, ) =Ya(x,y,t) +¥E(X,y,1), boundary layer near the ducts that will narrow as we retain

(28 an increasing number of terms in the expansion.

S s 8 We express the sum of eigenmodes that defifigsex-
WXy, 0 =Yaxy,t) +¥=(x, —y,t) plicitly:

and ¥ is given by the Green's function relatiof23) in

terms of the boundary valug47) of ¥N'S, The topography V=D, §(HD;. (31)
h has the same form, given by Ed.1), in both hemispheres 11#0

on our model planet, and there is no seasonal cycle. The

forcing stream function?*, given by Eq.(12), has the same This sum is also seen to be over Rossby modes only by
symmetry as the zonal flow modés8a): substitution of Eq(30) in Eg. (23). The physical reason for
the decoupling of the zonal flow mode&a) is that

y 2y u=—J®;/gy for these modes at the interface, so they would
WrS= —PrN=—x7 \/EbCOSE—XZ \/EbCOSF- not contribute to the spectral expansion@? in Eq. (30)
regardless of the imposed boundary conditions, implying that
A complete set of orthonormal functions satisfying Eq. the arbitrary choice?’g=G=0 along the boundaries outside
(25) are the eigenmode@h) of the Laplacian[The zonal the ducts was appropriate. Since the Rossby modes are odd
flow modes in(7a are excluded by boundary condition Ny, ¥a(X,~y,t)=—¥p(xy,t), so Eq.(28) becomes sim-
(253.] Therefore, we must have ply

PN(x,y, ) =PN(x,y,t) +TB(x,y,1),
G(r,tlro,to>=j§0 A;D(r) °
1

(32
for some coefficientsA;=A;(t,ro,tg), where as before \Ifs(x,y,t)=\If§(x,y,t)—\lf3(x,y,t),
i=(j1.j2). Using the orthonormality relation for the eigen-
modes®; where we regardV'z as a single analytic function over the

whole domain.

Changing to the real basé¢¥ |} corresponding to the

basis defined in Table Il for the single-hemisphere case, we
define the time-dependent coefficienf$, x>, andy; :
(where the overbar again denotes the complex conjugate
and using the fact that the eigenmodes given by (Egare NS NS NS
also eigenfunctions of the operatatdx, it can be verified TEs=2 xS YIS, (333
that the function -

1
> zbfcb (N @y (r)dxdy= &ji

N

D;(ro)®;(r)

272bj170 A

N N
G(r,t|ro,to) = — B(t—to)C ‘I’B:; yi(tmN:i:El yi(hY?, (33b

Xexf(—iwj—C)(t—to)] (29 sincey,=y,=0 andY]N=Y? for i #1,4, whence
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TABLE lll. The equations of the 28-component two-hemisphere model. The coefficients are as in the
single-hemisphere modél4) except where specified as different in the two hemispheres by the superscripts
N and S. The coupling coefficients; , are given in Table IVx'=x"+y; and x’=x’—y;, so the 28
variables are the 1@{\‘, the 1Oxi3, and the 8y;. (The frequencies are the positive quantities=|w1|,
ws=|wy], etc)

N NZN N
X1= Yirxy —C(xy—xi")
N NN N —cxN NZN ININ_ ONON
X = — a11X1 X3 — B11X3 Cx — 611X Xg —p11(XsXg —XgX7)
N NSN N NCN N NZN SNIN SNON
X3 = 11Xy Xo — B11Xp —712%1 —CXg + 611X X5 +p11(XsX7 +XgXg)
N NIN N SNIN_ SNON ONIN _ SNON
Xg= Y12 XG_C()’E‘4_XZN + €1(XaXg —X3X5)  + €2(X7X10— XgXg)
ON_ NSN N _ NN ONIN_ SNSN NN
X5 =~ a1X1 Xg — B12Xg - CX‘?\‘ = 819X Xy Tp1AXoXg —X3X7)  +V12Xg
ON_ NSN N _ _ NN ONINL ONON NIN
Xg = a1X1 X5 — B12X5 Y12X4 CXS + 819X Xy —p1AXaX7 +X3Xg)  —¥12X7
N NSN N _ NZN SNON L ONSN NIN
X7 =~ ap1X1 Xg — BaiXg CXZI — 621%4 X0 —p21(XaXg +X3X5) V21 Xg
N NSN N _ NZN ONIN_ SNSN NIN
Xg = ap1Xy X7 — BarX7 Cxg + 621X Xg +p21(XaXs —X3Xg)  — Y21 X5
N NN N —cxN NZN
Xg =~ X1 X130~ B22X10 CX,?, — 022X4 Xg
N NSN N _ NZN
X10= @22X1 Xg — B22Xg Cxio + 60Xy X7
.S oS s
X1= YIlsxs —C(x3—x719)
LS_ >S s —Cxs °S $SCS_$SLS
Xo=— allexs_ B1iX3 Cx; - 511X§X6 - P11(X§X3_ XgX7)
0S_ ) s Szs S ) 0SCS, 0SS
X5= a1 X3X5— B1iX5 —y1iX7— CX3 + 811X3Xq + p12(XEXT+ XgXg)
.S o) s SSCS_SS0S sSCS _LS0S
X3= Y12 Xs —C()é4—xjs) +er(XXg—XXE)  + €(XPXT— X5X5)
.S ) s _ 2S,S ISCS_LS0S o~
X5=— a1 X5~ B1oXg . . CXZ — 81X3X; +p1aXXG—XXF)  + 15X
.S oS s _ _ 2SS 0SCS, OS0S o)
Xg= a1 XsXe— B1X3 Y12%Xa ng + 81 X5Xg —p1XEXTHXEXG)  — yioXS
.S scS s _ oS 0S5S, OS5S oS
X7= — a1X7Xg— B21Xg CX; _521X§X10 _le(X§X6+X§X5) + ¥21X5
.S ) s _ ses 085S 0SLS oS
Xg= Qo1XsXy— B2iXS Cxg + 921X3Xg +pa(XSXE—X5Xg)  — Yaixs
LS_ >S S —Cx3 >S
Xg= — a22X§XlO_ BaXTo Cxg - 522X§X8
vS — CS s S ~g
X0= @2XiX5— B22X§ Cxio + 8, X33
. T(1)2 l N ~
N_(S
Yo=w3Y3— CYo+—— ——— 2, Cau(X —Xy)
A 2772b2k ke Tk
. Tw, 1 P
=— —Cy3— — —— >, (X=X
Y3= —woy>—LY3 )\2 zwzbZk 2k(Xi — %)
. Tw5 1 N ~
N_2S
Ys=wsYs— CYs+ —— ——— 2, Cel( Xk — %)
5= WsYg 57 Ne szbEk k(XK — X
. Tws 1 ay A
=— —Cyg— — —— D, Ce(XN—x°
Ye= ~wsys—LYs s ZWZbEk sk(Xik = XK)
. Tw7 ~ ~
N_2S
y7=w7Yg— Cyrt —— ——— 2, Ca(Xik —Xg)
7= W7Ys (A 2772b2k k(X — X
. Tw7 1 ~ ~
N_2S
Yg= —w7y7=Cyg— —— —— 2, Ca(Xx = Xy)
8 7Y7 8T\, 2772b2k 7k(X = Xg
. T(,!)g 1 ~ ~
= —Cygt+ — —— D, Cig X=X
Yo= @o¥10~ C¥ot < 2772b2k 10Xk — %)
. T(.Og 1 ~ ~
_ —Cyj— —— ——— > Cou(XN-%3
Y10= ~ @o¥o~ CY10~ 2772b2k ok(Xic = Xi)
N The boundary forcing (17) is seen to be D(x)
N_ °N N  ZN_UN AN A .
v —El X (DY, X =X+, (348 =TI, Y}(x,0)(x}—x) at the longitudes of the ducts, where
i= . .
we have defined northward- and southward-propagating
parts for the real mode¥,, which are linear combinations
N .
- - of the ® ., using Eq.(19) [e.g.,Y }(x,0)=bcosx=3Y»(x,0),
\I;S:z X,S(t)Yls, XiSEXiS_yi ) (34b) j g Eq [ g 3( ) 2 2( )

= Y [(x,0)= —bsinx=—3Y4(x,0)] and have notedY|(x,0)
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TABLE IV. The coupling coefficients for the two-hemisphere system in Table Ill, in terms of overlap
integrals that depend on the sizes and relative positions of the ducts in Fi@patdinates are chosen so that
fXE duct£0SXdx=0.)

C1k=Ci1=Cg=Cjs =0
_ e~ =1
C23= —C32=C= —C35 BIA | A= 3J xc ductd X

2
C78=C710 = B(IA+ Iar)

—Cg7=—Cgg = %(IA_IA’) 1A= 3J xc duceCOSAKAX
2
C22=C25= —Ca6— ~Caz — ;s
C28=C2,10=C73=C76 = % Ic I8=—J xc ducrCOSSINXdAX
C27=Co9= —Cg3z= —Cgs = %ID
—C3g= —C310=C72=Cy5 = % le I c=[xc duct£OSXCOS XX
C37=C39=Cg2=Cgs = ; le
C77= —Cg,10=C79= —Cgg = %' G Ip=~Jxc ducr€OSSIN2XCX
C56= —Ce5— C53= —Ce2 = %IA
Cg,10=Cog = %(IA+IA’) le=— [ e quaSinxcosxadx
—Ci09= —C107 = g(' A= lar)
—Cg3= C55= C52= —Cgp = gha I£= — [ xc duasSinxsindx
C58= C5,10~ Co6~ Cgz = % Ic
C57= Cs9= —C103= ~C106 — %' D l6=—JxecquasSin2xcosxdx
—Cgg= —Cp,10=C95=Cg2 = g le
Ce7= Ce9= C105=C102 = g I
—C10,6= Cg9= —C10,10~ Co7 = % le

=—YL(x,0). The coefficients of the modes g are then where we have introduced notation for the overlap integrals:
found from Eqgs.(23) and (30):

—f (aqT o)YT 0)d 3
Wik= XEdUCtSW j(x, ) k(x’ )dx. S

J —
(—(I)J—(x,O))

t
(t :J al—iwj=C)(t-to) J
gl( ) — 2m2b K Jxeducts\ 9Y

o TIRY (1) — X3(to) ] From Eqgs.(27) and (4) it is apparent that first-order dif-
XY (x,0) ] LTk 07 k0 dxdt (35)  ferential equations for the coefficients of the modes in the
Aj coupled model can be obtained by substituttnépr x; in all

i o terms of the single-hemisphere equations except the time-
or, differentiating, derivative, B-effect, and dissipation~+C) terms, then in-

N cluding equations for ythat can be obtained from the real

Z Wi (Y= %)/ and imaginary parts of Eq36), according to the definiti_ons
22piSy Tk TR in Egs. (33b), (31), (7), and Table Il. The equations for,

(36) can be expressed in terms of the coefficients
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8
zonal zonal
flow = E flow
modes [x~] x| modes
XY |t Y. Y2 > X5
[ fe—Lp L I——r
Rossby i 7| integrals v Ix;| Rossby
wave [x1le Yo 5 over Yo pxs| wave
modes [Fle—Ypg! hijstory Y. __pixs| modes
[ fe—g Vi plx,s] “n
™ Yy > N e ><"‘
;‘_ﬂ:‘ Yie — Y :T}; )
o] < o] 2 0
FIG. 5. Schematic representation of the stucture of the truncated *<
28-component model of the coupled hemispheres. Zonal flow
modes are uncoupled, while each Rossby mode is coupled to all
Rossby modes in the opposite hemisphere at all past times.
1J (‘9 Y( 0)>YT( 0)d (38)
Cik=— —Y;(X, x,0)dx, _
K b2 J xeducts, Y l k 8
1500 4000

which are analogous to the;,. For the coupled system

corresponding to the 10-component single-hemisphere de t

Swart system N=10), the resulting 28-variable system is g 6. The difference between the simultaneous states of the

specified in Table Ill. There are 10 var.|ables for each hemltwo hemispheres as given k)~ xS vs t for an adaptive Runge-

sphere as before, plus 8 for the coefficents of the couplingytta numerical integration of the 28-component coupled system

mOd?S, Sinc? for the zonal flow modgs=y,=0, whence specified in Table Il with transmission coefficiefit=0.95, and

also x; =Xy, X4=X4. The coupling coefficients;, are ex- with the coupling coefficientscy given by 1,=0.8, 1,,=0,

pressed in terms of eight independent quantities, given bys=0.25, 1c=0.47, Ip=-0.47, 1g=-0.23, 1g=-0.23, and

overlap integrals that depend formally on the sizes and reldc=—0.25. (=0 is equivalent to approximating coefficients

tive positions of the ducts, in Table IV. coupling modes with the same zonal structure by their average val-
The key approximation that enables the formulation ofues for given total width of ductsOther parameters are as in Fig.

our coupled model is that the state of the whole system caf

be expanded in the tensor product ba&kﬁ@@ﬁ}ﬁln:l

composed of the modes of the two separate mid-latitude Sy§_ystems described in Sec. Il. The zonal flow modes play the

tems. This assumption would clearly be false if, for instance©!€ Of the uncoupled variables that appeared in these earlier
odels and that are especially significant in the Pecora-

the westerly ducts spanned the entire equator. In that casg! . i - , :
even modegin y) of the whole system, corresponding to Carroll configuratior 1]. [Specifically, the variabl& in Eq.

half-integer values of, with a phase shift, which satisfied (10 Plays a role analogous to that of thesyin the equations
the boundary conditiong6) only aty=wb andy=— b, in Table 1ll, while the expressionsX(—S) and X;+9S) in
would have to be considerd the forcing terms were simi- the two subsysteméla—1¢ and (1e—1, are analogous to
larly generalizeyl But such modes could not be expanded inthe X;'s and X;’s, respectivelyl The central question is
the tensor product basis. A heuristic argument for the suffiwhether partial synchronization, as described in Sec. Il, is
ciency of our approximation with a realistic configuration of also possible in an intermediate model such as that of Table
westerly ducts, on the other hand, is then the following: condll.
sidering solutions of the dynamical equation in the entire
two-hemisphere region except for the easterly barriers, the
stream function might contain an even component at the lon-
gitudes of the ducts that would vanish at the longitudes of the The difference between the corresponding variabfs
barriers. But it would require a summation to higher order inandxf, for a typical numerical integration of the 28-variable
the zonal wave number than we have considered to patcltoupled system is shown in Fig. 6. Because of the idealiza-
these two parts of the solution together, for ducts that ard¢ions in the shape and transmission properties of the ducts
~45° wide. So to the extent that the low-order modelsdepicted in Fig. 4, and because the “ducts” that transmit
[22,12 adequately describe single-hemisphere dynamics, thdifferent modes are differently shifted longitudinally, accord-
tensor product approximation should describe the couplethg to the Doppler-shift analysis in Sec. Il B, we did not
system. compute coefficients for a specific configuration of ducts but
The form of the coupling in Table Il is similar to that of simply chose values of the overlap integrals in Table IV that
a control signal that vanishes when the two systems are syme typical for ducts totaling 90° in width.
chronized, as if2], [3], and[19]. But in the model described It is apparent that the two subsystems do not synchronize,
here the ys involve a time integral35) that depends on even intermittently. We therefore assess the possibility that
prior states of the system at the tropical boundary. The strucsome correlation between the gross states of the two sub-
ture of the model, as schematized in Fig. 5, is similar to thasystems may still be discerned. Since the single-hemisphere
of the generalized Pecora-Carrdll] configuration of Lorenz ~ system lends itself to a description in terms of regirftes,

V. RESULTS AND INTERPRETATION
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TABLE V. Joint probability matrices as in Table I, but for the TABLE VI. Joint probability matrices as in Table V, but for an
trajectory depicted in Fig. 6 of the coupled meteorological systemsntegration with a smaller topography parameter in the southern
specified in Table 1ll, where the regimes are zonal flow and blockechemisphere:y=0.85, than in the northern hemisphey®=1.2
flow, defined byx,;>3 andx;<3, respectively, in either hemi- (T=1.11 and other parameters are as in Table V
sphere.

@ (b)

(@ (b) P pind
P pind N zonal N blocked N zonal N blocked
N zonal N blocked N zonal N blocked
S zonal 0.51 0.34 0.48 0.37
S zonal 0.67 0.11 0.65 0.14 S blocked 0.05 0.09 0.08 0.07
S blocked 0.15 0.06 0.18 0.04 C=0.17
C=0.16

those of the matri®™™, while the off-diagonal elements are
we compute the joint probabilities of the simultaneous resismaller. This indicates correlation. Letting
dence of the two subsystems in given pairs of regimes, as we

did for the coupled Lorenz systems in Sec. Il. Absent a rig- Pbb P'nd

orous definition of “regime,” but given the apparent regime C= (39
structure of the trajectory in Fig. 2, we call subsystenS) \/ p = = =

zonalat any timet if x}'(t)>3 [x3(t)>3]. Otherwise we call rzzb 2r E b, rsZzb Sz E sb

subsysteniN (S) blockedat timet. (The separate identity of
the seldom-occupied “transitional” regime described 112] be the standard measure of this correlation, we glas a
is ignored herg.The joint probabilitesP; ;, and the corre-  function of the transmission coefficiefit in Fig. 7. While
sponding probability valuei§>'”Jd in the case where the two T=1 in Fig. 7 corresponds to a naive assumption about the
subsystems individually have the same statistics but are asature of the ducts, corresponding to the illustration in Fig. 4,
sumed independent, are given in Table V. and one might expect smaller valuesloin the realistic case
The diagonal elements of the matrix are larger than that Rossby waves are attenuated, there is also evidence that
realistically shaped ducts might serve to focus Rossby waves
[28], possibly giving an effectivdl>1. The scatter of the
data points in Fig. 7 at the higher values Bffor which
several integrations were conducted demonstrate the correla-
tions in this numerical experiment to be significant.
° Results for numerical integrations with two alternative
7\ x configurations of somewhat larger ducts are also shown in
020 _____ _ . X " . 3 Fig. 7. The correlations are little affected. The effects of
~ obsérved . .
asymmetry between the hemispheres can be assessed in a

g40m T T T T T

T
[u]
|

0.30

§ A
o o realistic context by choosing different topographic param-
G010 x 8 x ¥ eters, yS# N, for the two hemispheres, in the system of
x equations in Table Ill. Though the resulting joint probabili-
x ties listed in Table VI show less blocking in the southern
X ° hemisphere and more blocking in the northern hemisphere as
compared to the case analyzed in Table V, for example, the
value of the correlatiorfalso plotted in Fig. Y shows that a
physically significant degree of asymmetry can be tolerated.
To interpret the regime correlation results in the absence
020 0 of clear synchronization in any portion of the trajectories, we
0.0 0.5 1.0 1.5 ask how far the system is from a synchronized state as a
T function of time. The Euclidean distance between the states
of the two subsystems is defined as it was for the coupled
FIG. 7. The interhemispheric regime correlatiér(39), which ~ Lorenz systems in Sec. Il. In the meteorological case, this
quantifies the tendency for blocked states to co-occur, for varyinglistance is
interhemispheric transmission coefficiehtas defined in Eq(17),

X7

0.00

-0.10

XX
1

for integrations of the model defined in Table Il with different 10

randomly chosen initial conditions. Crosses denote correlation val-  D(t)= 2 (x —x 5)2= 2 Xi —xs+ 2y,)?,

ues for integrations with other parameters as in Fig 6. Squares are

for 1,=1.2, 1,=0, 1g=0.18, 1c=0.4, Ip=—0.4, lg=—0.5, (40

Ig=0.5, and Ig=-0.125. Diamonds forl,=1.2, IA, 0.3, .
15=0.18, 1c=0.4, Ip=-04, lg=—05, I,=—05, and Which corresponds to ah2 norm on the space of stream

Ig=—0.125. Triangles are for runs with dlfferent topographic pa-functions.D(t) vanishes if and only if the system is in a state
rameters in the two hemisphereg'= 1.2, y5=0.85 and other pa- Which is and will remain synchronized. Such states form the
rameters as in Fig. 6. The dotted lineddor observed datf29]. dynamically invariant synchronization manifoIdD(t)/\/E
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0
1500 4000 1500 4000
t t

FIG. 8. The distanc® between the states of the two hemisphddefined in Eq.(40)] vs time, for(a) the trajectory of the coupled
system represented in Fig. 6 afii a trajectory of the same system with the coupling turned ©f Q in the equations in Table I

gives the distance from this manifolB.(t) is plotted in Fig.  other hand, has the same fixed points, but possibly with bet-
8, for the trajectory of the coupled system shown in Fig. 6ter stability properties, making the equations in Table |l
and for the same system with the coupling turned ®#0).  more efficacious in achieving the quasi-steady-state values of
Histograms oD values for the two trajectories are displayed the y; . Manifestly on-off intermittent behavior in fact ap-
in Fig. 9. It is seen that the coupled system generally spendsears in the trajectory in Fig. 10 for a system defined by
more time near the synchronization manifold. This is attrib-scaling only those coefficients that couple corresponding
utable to effects in all parts of phase space—even portions ahodes in the two hemispheres. The magnified values are
the trajectory far from synchronization are drawn in. larger than can be realized with any configuration of ducts in
To inquire as to whether the correlations in the 28-the model and can instead be interpreted as due to a decrease
component meteorological system are of the same dynamicél the time scale associated with the coupling. But the effect
origin as the correlations in the time-lagged-coupled Lorenof the scaling is also to increase the relative magnitudes of
systems, one might naively scale the coupling matrix definedelect coupling coefficients as compared to others.
by the equations in Table Ill to uncover on-off intermittency.  The loss of periods of exact synchronization in the case of
Scaling all the coefficients;; was found to be ineffective, physical parameter values is therefore due both to finite sig-
however, apparently because the fast-time-scale fixed points
given approximately byyi:(xis— xiN)/Z (or equivalently 3
xN=x5) are unstable or have inadequate basins of attraction
in the system defined by the scaled coefficients. A system
defined by scaling just some of the coefficients, on the

6.0x10 4
5.0x10

4.0x10
3.0x10

frequency

4
4
4
20x104
4

1.0x10
0

0 4300
D t

FIG. 9. Histograms oD for the two plots shown in Fig. 8. The FIG. 10. A trajectory of the coupled-hemisphere system de-
solid line is for the coupled cag€ig. 8a)]; the dashed line is for picted byx)—x$ vst as in Fig. 6 but with the coupling coefficients
the uncoupled cadéig. 8b)]. The frequencies are the numbers of €23,C32,Css,Ce5,C78,Ca7,Co,10, @NdCyg gincreased by a factor of 38.
time steps spent in bins of sizeD =1 in the respective numerical (These are the diagonal coupling coefficients in the equations for
integrations. they; in Table I1l.) Other coefficients are as in Fig. 6.
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TABLE VII. Relative frequencies of co-occurrence of regime 1/1/85 T e T
pairs in observed meteorological daidCEP data[29]) for the —
eriod 1979-95, expressed as joint probabilities as in Table V.
P P ome 1/1/84 S o
@ (b)
P P 1/1/83 £ E
N zonal N blocked N zonal N blocked ]
Szonal 033 041 031 043 £ 1/1/82k ey =
S blocked  0.09 0.17 0.11 0.15 = .
C=0.09 0 ==
1/1/81} == B3
nal propagation speed and to the particular set of mode cross ] - £
couplings in a realistic setting. One might therefore be con- 171780 i-% i"j
cerned as to whether the partial synchronization behavior g.m_ —_
would be preserved as the number of modes is increased, VIO e
since the number of troublesome coupling terms increases 0 100 200 300
faster than the number of effective couplings. However, this longitude E

effect is offset by a decrease in the size of the nondiagonal

coefficients for higher modes, due to the decreasing values of FIG. 11. Contour plot of the zonal component of the upper-
the overlap integrals in the ducts for modes with differingtropospheriq200 mbay tropical windu (in m/s), which defines the
zonal wave number, and by a decrease in the fa(m?r'm westerly ducts, vs longitude and time. The tropical wind is defined
the equations for the coupling variables, since according t@s the average of the wind between 10° N and 10° S, also averaged
Eq. (8), ), varies inversely as the zonal wave numper ~ OVer 30 days. Only positivéwesterly values of the wind are

: . . hown.
and as the inverse square of the meridional wave nuiber Snown
Furthermore, the synchronization tendency is expected to t\ﬁ
enhanced by the inclusion of meridionally even modes of theS

two-hemisoh i ded hol hich will b egments and computing the standard error of the mean.
WO-NemiSphere system regarded as a wnole, wnich will be ;o noteworthy that blocking events at 60° N correlate
required in a higher-order truncation for the reasons dis:

cussed near the end of Sec. IV. Therefore the correlatio With events at 40° S, breaking the naively expected symme-

. rlI:'?y. This is apparently the result of topographic asymmetry
observed in the low-order model may be preserved. due to the different distribution of the land masses in the

southern hemisphere in the direction of the equator. The ob-
VI. COMPARISON WITH OBSERVATIONS served correlations can be viewed as an extension of the

While a complete discussion of observational evidencd’heénomenon of generalized synchronization, observed in
for co-occurrence of blocked states in opposite hemispheredSymmetric low-order systenjd], to the context of a con-
will be given elsewhere, here we summarize the relevantinuous medium. _ _
meteorological data. Using a standard meteorological diagt-) Analysis of weather phenomena in terms of correlations
nostic, described in Appendix B, for blocking at 60° N lati- Pefween data at remote points on the globe is not new to
tude (any longitud¢ and 40° S latitudéany longitudg, we meteorology. In 1924, Walke{Bl] first postulated the exis-
have computed the relative frequencies of co-occurence ¢BNce of @ web of such relationships in his unsuccessful at-
the possible regime pairs for the period 1979—1995, in dat¥mPpt to find predictors for the strength of the Indian mon-
at 6-h increments obtained from the National Centers fof0ON- Later, Bjerkneg32] coined the ternteleconnectiorin

Environmental PredictionNCEP [29]. Results are pre- reference to the now well-known relationships between El
sented in Table VI, in the same form as the joint probabili-Nin0 and global weather phenomena. Systematic stdils

ties of regime co-occurrence for the low-order model. Block-Subsequently identified a number of teleconnection patterns

ing events are seen to co-occur to a small degree. Additiond1at are quite useful in describing the variability of the atmo-
confirmation of the synchronized chaos theory can be obsPheric circulation. Observed correlations are thought to be

tained by restricting the statistics to the months December, , ) )
TABLE VIIl. Relative frequencies of co-occurrence of regime

January, and February, since it is generally only during these ' h iod 1979-9 i Table VI but for th h
months when the westerly ducts are open, as seen in Fig. 1%?"3 In the perio —95 as in Table VII, but for the months
ecember, January, and February otiBrror bars orC were com-

and O.nly then is m.terhemISphenC coupling pOSS!W a.l_ axfuted as the standard error of the mean in a partitioned daja set.
ternative explanation of the co-occurrence statistics is th

there is a common causative factor in the tropics, associated @ )
with the westerly ducts, which induces blocking in either

hich were derived by partitioning the 16-y data set into five

: : , P pind
hemisphere, as might be inferred frgf@0], for example.
FurtheF; work is negeded to clarify the implications gf the N zonal N blocked N zonal N blocked
data) The correlatiorC for these winter statistics, analyzed s zonal 0.16 0.16 0.12 0.20
in Table VIII, is indeed higher than the correlation for the s plocked 0.21 0.47 0.25 0.43
full-year statistics in Table VII. The statistical significance of C=0.18+0.08

these results is implied by the error bars®m Table VIII,
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mediated by the exchange of Rossby wa{28] between nized chaos might be observed in a fluid system where there
teleconnected subsystems. But in general, each of these sub-no analog of the belt of tropical easterlies nearly separating
systems evolves according to its own intrinsically chaoticthe hemispheres. A theory of laminar regions in a turbulent
dynamics. The results of the previous section demonstratiiuid (indeed the segments of on-off intermittent trajectories
that the Rossby-wave-mediated correlations are consistemery near the invariant manifold are often called the “lami-
with the chaotic subsystem dynamics and that the two behawar phase,” e.g.[17]), or of coherent structures in turbu-
iors can be captured in a low-order bidirectionally coupledlence generally, would be such an application. Unfortu-
model. nately, the methods of this paper do not lend themselves to
the case of fully coupled subsystems. Whether and how low-
VIIl. SUMMARY AND CONCLUSIONS order chaotic synchronization can be applied to general tur-

We have shown that a form of partially synchronizedbulence remain open questions. _
chaos can occur in a pair of adjacent bidirectionally coupled Nevertheless, complex systems in nature often give way
extended systems, with spatial separation between corré@ decomposition into |005€|Y_ .coupled subsystems. It has
sponding degrees of freedom, in a spectrally truncated thed€en suggestefB5] that the utility of the concept of low-
retical model. We have presented preliminary evidence thaf;jlmenspn_al chaos in the Earth’'s atmosphere, for instance, is
these results may approximate physical behavior in thé? describing such subsystems, rather than weather as a
Earth’s atmosphere. In particular, the time lags introduced byvhole. When such subsystems are identical or similar, then
the spatial separation do not destroy all trace of synchronod§€re is the possibility of partially synchronized chaos. In
behavior. some cases this may take the form of recognizable on-off

In regard to the robustness of this behavior, we havdntermittency. In others, more subtle correlations may still be
shown that it is preserved in the presence of significangiscem?d_: since _it has been shown that this is not precluded
asymmetry between the two systems. While we have noY the finite spatial extent of the subsystems.
directly addressed the issue of noise, results obtained by oth-
ers[5] for synchronization of low-order systems in the pres- ACKNOWLEDGMENTS

ence of noise should apply to our low-order representations This work was performed under National Science Foun-
of continuous systems as well. Indeed, the high-order modegation Grants NSE-ATM-9526030 and NSE-ATM-9312760.
that were omitted through our truncation, and that have nothe author wishes to thank Professor Peter Webster for sug-
been thought to affect the qualitative large-scale dynamics ofesting the configuration of atmospheric systems that was
either hemisphere separately, are also not expected to causgalyzed in this paper as a possible example of synchronized
greater degradation of the synchronous behavior than woulghaos, and Professor Jeffrey Weiss for many useful discus-

an equal amount of uncorrelated noise. We also have n@fions. He also thanks Dr. Antonello Provenzale for editorial
addressed the issue of variations in the coupling channel, g&mments.

would be due to periodic closure of the westerly ducts, for
instance, but recent findings on the possibility of synchroni- ~ APPENDIX A: BOUNDARY GREEN'S FUNCTION
zation with only occasional coupling®4] are encouraging. FOR THE LINEAR VORTICITY EQUATION
Partial synchronization occurs in our model because of ON A B PLANE
the attractive properties of a synchronization manifold in the )
coupled system. Though this manifold is unstable, its pres- 10 construct a boundary Green’s function that can be
ence affects the global dynamics of the system. It is not th&/Sed to generate a solution to the linear vorticity equation,
case, for instance, that trajectories are affected only whelith inhomogeneous boundary conditions, via E2f), we
they are near synchronization, as compared to the case of fi@llow the methods of27]. It is useful to first establish the
coupling. While we have shown by example that such behateciprocity relation:
ior can result from the extension of on-off intermit.tency 'to Gg(r,tlro,to)=G_5(ro,—tlr,—to) (A1)
regions of parameter space far from the blowout bifurcation
point, a thorough description of this behavior, which is on-for the (ordinary Green’s functionG, satisfying Eq.(24)
off intermittent in name only, is still desired. with homogeneous boundary conditions, on the plane”
The analysis presented here has been possible becausefef 8y.
the fortuitous circumstance that the two coupled systems are The proof of Eq.(Al) is as follows: consider the two
semiautonomous. One would hope that partially synchroequations

1 aVZ B 0 2 @
Ca Gﬁ(r,t|ro,to)+E&Gﬁ(r,t“o,to)*'v Gg(r,t[rg,to)=6%(r—rq) 8(t—to)
190 2 B 0 2 2
etV Gopr—tr, —ty) = 5 oo Gp(r = tlry, —t) + VEG (1, —tlry, —ty) = 55 (r—ry) 8(t—ty),

which follow from Eq.(23). Multiply the first equation b)G,B(r,—t|r1,—tl) and the second b@B(r,t|r0,to), subtract, and
integrate over the region of interestorthern hemispheyeand overt from —« to t; , to obtain
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= wdtf dxdv( G_p(r,—tfry,—t atVZGﬁ(r t[ro,to) + Ga(r,tlro, to) V G_g(r, t|r1,—tl))
ty d J
dt dxd —t|rl,—tl)aGB(r,ﬂro,to)+Gﬁ(r,t|r0,to)5G,B(r,—t|r1,—t1)

.
+ jto dtJ’ dxdy G_g(r, —t|ry, —t) VZG4(r,t]ro,t) = Gu(r,tlro,to) VAG_g(r, —t[ry,—ty)]

=G_4(ro,—tolry, —t1) = Gg(ry,tqfro,to). (A2)

We shall show that the left-hand side of E§2) vanishes. The first integral in EGA2) can be simplified by integrating the
second term in the integrand by parts in the temporal dimension, yielding

f dtJ dxdy( G_p(r,—tfry,—t V Gy(r,t[rg,to) + Gg(r,t|ro, to) V G_p(r,—tfry,—t )

o 9
:fio dtf dXd><GB(r,—t|r1,_tl)ﬁvzeﬁ(r,ﬂro,to)_E

+fdxdy{Gﬁu,tlro,tOWZG,B(r,—t|r1,—tl>]‘=‘° . (A3)

{=—x

,to)]VZGﬁ(r:_t“l,_tl))

Considering the last integral in EA3), the second factor in the integrand vanishes at the lower limit because of the causal
boundary condition or, while the first factor vanishes at the upper limit for the same regaassuming, without loss of
generality, that,<ty). The first integral on the right hand side of E&3) can be evaluated with the aid of Green'’s theorem

in two dimensions:

f [UV2V-VV2U]dA= fﬁ [UVV—VVU]-nds, (A4)

whereU andV are any scalar fields amis the outward-pointing unit normal along the boundary of the two-dimensi@ial
domain. LettingU =G _g(r,—t|r;,—t;) andV=(d/dt)Gg(r,t|ro,to), we find

+ Jd
f_to dtf dxdy{G_ﬁ(r,—t|r1,— t) = V2G4(r,t[ro,to) +Gu(r,t|rg, to) V G_p(r, t|r1,—t1)}

:fidtfﬁ(G—ﬁ(f’—tlfll ) [VG4(r.tlro.to)] - Gg(rt|r0to) [VG_4 .—t|r1,—t1)])-ﬁds. (A5)

This vanishes by virtue of the homogeneous boundary conditiorG.on
Turning next to the second integral in E&\2), it is seen to be the integral of a totaderivative, and so vanishes because
of the periodic boundary conditions. The third integral in E&2) can be rewritten, using Green’s theoréf#), as

fto dt 3g [G_g(r,—t|ry, —t1) VG 4(r,tro,te) = G(r,tlro,te) VG _4(r,—t|ry, —t1)]-nds,

which vanishes, again because of the homogeneous boundary conditi@ngbuas all terms on the left-hand side of E§2)
vanish and Eq(Al) is proved.

tg) as a function of (y,tp):

1 9V3G BIG ..
- — = —+V3G=64(r—r)8(t—to) (AB)

having suppressed the subscrfptAlso, by Eq.(16),

1 IV e(ro,to) N B dWg(ro,to)
C ity C %

+VaWg(rg,tg)=0. (A7)

Multiplying Eq. (A6) by ¥g(rg,tp) and Eq.(A7) by G, subtracting, and integrating over the region of intef@strthern
hemisphergand overt, from —o tot™, we obtain
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tt J 1%
VOG+G VZ\PB(rO to)} Bf dtoj dxodyo[\PB(ro,to)ﬁTG+G—\IfB(rO,to)
® 0

J
- E dtoj dXodYO[ B(roto)—— 7%

dtg
t+
+ f dto f dxodyol Wa(ro,to) V5G — GV5Wa(ro,to)1="W(r,t). (A8)

The first term can be evaluated by integrating by parts in time, and using Green’s th@oteno write the resulting
expression as a boundary integral, as in the derivation of &®.and (A5). In the present case this yields

tt J
fﬁmdtof dxodYO[‘I’B(royto)ato ZG+G VOWPB(rOatO)}

f dxodyol GVEWa(ro,to) |21 + f dt05£ Vo, to)&t VoG- Osv*owB(ro,towﬁodso.

The upper limit in the first term on the right-hand side vanishes because of the causal boundary condiBoneghdae the
second term in the boundary integral vanishes bec&usatisfies homogeneous boundary conditidBsy. reciprocity Eq.
(Al), G vanishes for eithery or r on the boundary.Therefore

ft dtof dxod Yo

J
V0(3+C5 Vg‘l’ (ros to)} fdXodyoG(r:”ro,_O")VS‘I’B(ro'_"O)

‘I’B(ro,to)ato

tt J . R
—f_ dto jg We(ro.to) 7 (VoG) - Nedsy (A9)

having also usedG/dty= — dG/dt, which follows from the time-translation invariance of E&4).
The second integral in EqA8) is again the integral of a total derivative, and so vanishes due to the periodic boundary
conditions. The third integral is again reexpressed using Green's théd#¥m

t
[ dto [ axcdyel Wolro.to) V36— 6¥aWo(ro.to)1= [ dito § [We(r0,10)TeG—GToWo(ro.t0))-fodsy. (L0

Since the second term in the integrand on the right-hand side aff2§) vanishes, withG, on the boundary, EqA10)
can be combined with the expression E49) for the first integral in(A8), to yield finally

t+

Cé’t

)(VOG) Nodso+ —J dxodyoG(r,t|rg, OO)VO\IIB(rO —o0)=Wg(r,1). (Al1)

The second term on the left-hand side represents the effects APPENDIX B: THE DEFINITION OF BLOCKING
of conditions at initial timeto=—o. This term vanishes, IN OBSERVED METEOROLOGICAL DATA
sinceG—0 ast—ty—x, due to the dissipative term in Eq.

(24). Equation(A11) is then of the form Blocking is commonly defined in terms of tlggopoten-

tial heightfield Zp(x,y). Formally, at any pair of longitude
and latitude coordinates(y):

1 (p(xy.2)=P
Zp(x,y)Eg—of0 g(x,y,z)dz

wherep(x,y,z) is the pressure at the same location at height

z, g is the local gravitational constant, aigg is the mean

19\ . . surface gravitational constanfsyg s iS thus very nearly

c E)[ngVoG(r,tlro,to)]. the physical height of the 500 mbar isobak, can also be
(A12) thought of as a proxy for surface pressure in a roughly hy-

drostatic atmosphere.

We use the Tibaldi-Molteni diagnostig36] to define
For the configuration depicted in Fig. &P is given by Eq.  blocking. To discount high-frequency transients, filtered
(26). heights are first defined as five-day averages, i.e.,

t
\IfB(r,t)=f dt 3@ dsoWg(ro,to)GP(r,t|rg,to),

where

b(r7t|r01t0): 1+
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Zsoox,y,t)=[1/(5 days] f{* 528 G Zsod .y, 7)d7,  where
the dependence &syX,Y,t) on timet has been indicated
explicitly. We will say that the atmospheric circulation is
blocked at a given locationx(y), if (x,y) is near a local

maximum of Zs in latitude y, with a falloff rate on the
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[Zood X,V + 8) — Zsod X,y + 6— 20°)1/20°>0,

[Zsod X, Y+ 8) — Zgod X,y + 5+ 20°)]/20°> 10 m/deg

poleward side that exceeds a prescribed threshold. Specifire both met either fo6=0°, §=5°, or 6= —5°. In the

cally, the atmosphere is said to be blocked xty] in the
northern hemisphere if and only if the two conditions

southern hemisphere, the right-hand sides of the two in-
equalities are interchanged.
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