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Pseudomolecular models for nematic liquid crystals
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The limits of the pseudomolecular approach to evaluate the elastic properties of nematic liquid crystals are
critically analyzed. We discuss the importance of the uniformly convergent series entering into this description.
If these series are not uniformly convergent, the elastic constants evaluated in this manner are meaningless. A
special kind of mixing of Maier-Saupe and Nehring-Saupe interaction laws is analyzed. We show that the
splay-bend elastic constant has a nonmonotonic behavior with respect to the mixing factor. This result indicates
that the subsurface deformations, if any, are not only due to the splay-bend $4063-651X97)07111-0
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It is well known that, in the harmonic approximation, the d2U(n,n’:r)=e(n,n’":r)dN dN'. 2)
elastic free-energy density of a nematic liquid cry$NiLC) Y Y
is given by the Frank expressi¢t]. The bulk elastic prop- |, Eq. (2), dN=p(R)dr anddN’ = p(R’)d+’ are the num-

erties are described by the;;, Kz, Kss, andKy, elastic  per of molecules contained i andd+', respectively and
constants. They are phenomenological parameters, intro- - -, - th lecular int i introduced
duced by taking into account of the symmetry of the nematiceg"n ,r_) h € me etcu ar ,'[.n ere:jc lon energy t'm roB uce

phas€[2]. The manner to introduce these elastic constants j@POoVe, In the periect nematic order approximation. by sup-

to expand the elastic energy densftyn terms of the first POSing a constant density, i.¢(R)=p(R')=p, Eq. (2) is

spatial derivatives of the nematic directay;=an;/dx;. reduced to
Hence, starting fronf=f(n;,n; ;) in second order one ob- o, 2y IR
tains d“U(n,n";r)=g(n,n";r)d7 d7’, )

whereg(n,n’;r)=p2e(n,n’,r).
In the elastic approximationﬁ changes slowly withr.

here f- is the elast density of the undeformed IS means that in Eq3), [n’ —n|=|on|<1 over the inter-
Where T, 1S the elastic energy density of the undelormed,qtion  range  of the molecular forces. Hence

state. The elastic tensors of elemehts and Kj;,, are de- SR =aln R+ S F b ded i
composed in terms of the elements of symmetry of the nemg(n'n :1)=g(n,n+4n;r) can be expanded in a power se-

f=fo+Linij+ 2 KijaNi jMir ()

atic phasd2]. ries of sn. At the second order idn; we obtain
The first attempts to connect the elastic constant to the .o .o L
intermolecular interaction responsible for the nematic phase ~ 9(n,n’;r)=g(n,n;r)+q;on;+ 3 g;;on;én;+---, (4)

have been done by Nehring and Saypé by means of a
simple phenomenological model, and the basic simplifyinghhere
hipotheses are presented in the following. )
Let e(a,a’;r) be the intermolecular interaction between qi:<‘9_g) and g, :(a_g) )
the molecules whose orientations arenda’, placed inR i/ _- aninj /-, _-

and inR’=R+r. The interaction energy is supposed to be . ) ) . .
different from zero forR.<r<R,, where the lower cutoff are defined in terms of the intermolecular interaction. The

R, is of the order of the molecular dimensions, and the uppef€rivatives appearing in ES) are evalgated on the unde-
cutoff R, can be chosen by comparirmyé,ﬁ’,Ro) with the  formed state. In Eq(), g(n,n;r) is trle interaction charac-
thermal agitation energikgT, wherekg is the Boltzmann terizing the homogeneous state, wheris position indepen-
constant and the absolute temperature. HowevBy, is of ~ dent.

the order of a few molecular dimensions, and the model is In order to obtain the elastic energy density, it is then
expected to be rather insensibleRg. Thus, at the end of necessary to expanén;= 5ni(F§,F) in power series ok; ,

the calculation, the limiR,— can be performed. Nehring the Cartesian components of the vector representing the rela-
qnd Saupe assume furthermore perfect nematic order. Hengge position ofn’ with respect tan. We have, at the second

a coincides withn. In this framework the interaction energy order inx;,

between two small volume elements andd+’ in R andR’ .
iS (Sni:ni’ij‘F Eni’ijij‘l‘"' y (6)

where the derivatives are evaluatedfinBy substituting Eq.
*Permanent address: Dipartimento di Fisica del Politecnico(6) into Eq.(4), and rearranging the terms, we obtain, at the
Corso Duca degli Abruzzi 24, 10129 Turin, Italy. second order irx;,
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g(ﬁ,ﬁ';F)=9(ﬁ,ﬁif)+Qini,ka nally, we observe that _the elas_,tlc tensors of eleménts
Likn,» andL;j., are obtained by integrating term to term the
+ 3 (N g+ 4NN DX - (7)  power seried7). But, as is well knowr{7], this operation

may be done only if the series is uniformly convergent. Now,
In the mean-field approximation the total energy of thethe first expansion giving(n,n’,r) in terms of n; is sup-

NLC is given by[4] posed to be uniformly convergent. After that, expangien
is also assumed to be of the same kind. However, the substi-
T= %j J f f J J g(n,n";r)ydr dr'. (8  tution of Eq.(6) into Eq.(4) can give rise to a power series
B 7 which is not uniformly convergent. Consequently, the final

series(7) could be convergent in a nonuniform way. Hence
only if one is able to demonstrate that it is uniformly con-
vergent, the elastic tensors of elemebfs, L, andLjx,
f= %f f f g(n,n’;rd7’. (9)  are meaningful.

7’ In the following we shall suppose that the approach pre-
sented above works well. In this framework we shall con-
sider some classical intermolecular laws presented in the past

The elastic energy density is then, as follows from &),

Substitution of expansiof¥) into Eq. (9) yields

f=fo+ L s+ LikaMknt LijinNi kN s (10)  to study the nematic liquid crystal. However, we are aware
that the simple quasimicroscopic approach has several limits.
where Hence only the main results will be discussed.
A generic two-body interactiog(ﬁ,ﬁ’f) depends only
foz%f f f,g(ﬁ,ﬁ;F)dr’ (11)  on the three invariantsn¢n’), (n-u), and @'-u), and on

the modulus of r. Therefore[8],
is the elastic energy density of the undeformed state, whereas

the elastic tensors of elemeritg,, Lix,, andL;j., are given g=g[(n - u),(n" - u),(n - n"),r], (13
by which can be expanded in Taylor's series as follows:
1 ! N N N . N N
Lik—?f f Lqi”kr dr’, 9== 2 Japc((N - WA - 1N - N5 (14
abc
Likn:%J f f/qiukuerdTl; whereJ, , ((r)>0 and lim _..J, (r)=0, because the in-

termolecular forces are assumed attractive and short range. If
1 a=b=0, g does not depend o, but only on the relative
Lien=- iUt 2d 7, 12 . ) S . L
Ijkn 4f f qu” kEmtET (12 orientation ofn with respect ton’. We call this kind of
molecular interaction of the first kind. In the opposite case in

with u=r/r, and hencex,=uyr. The term linear in the de- \hich g depends also on, the intermolecular forces are of

formation tenson; ; is expected to vanish in the bulk, where second kind. Whem is of the first kind, its minimum value
the ground state is the undeformed one. Only for cholestenfs reached foﬁ||ﬁ’ In the other case, the minimum energy

?qwd crytstall_s |ndthe tzullk d(t)es thlfsﬂgt_anipr deX'St' H(_)v;/ever,of two interacting molecules depends on the relative posi-
or nematic iquid crystals a term ot this Kind may eXISt neéar;,, |, tyis second case, only in the bulk is the ground state

the boundaries, wh_ere the symmetry is lower than in thefhe undeformed onpwhich corresponds to the minimum of
bulk. Hence, according to the approach presented above, it I given by Eq.(11)]
possible, at least in principle, to evaluate the elastic tensorSO,Following thé app;roach proposed by Vertog@l, and

of elementsL;c, Likn, andLijm when the interparticle inter- supposing the interaction volume of spherical shape, one ob-
action is known. ains

However, even if everything seems to be done in a correc
manner, it is necessary to pay attention to the obtained re- ) J(a,b,c) [ 3ab
sults, and in what manner they have been deduced. First of Kji1=3 —
all, as it has been already stressed, whea given by Eq. dbe (atb+1)(atb+3)atb-1
(10) there are mathematical problems to find the vectorial

+C

J(a,b,c) [ ab

field n=n(R) minimizing the total elastic enerdi]. In this Kyo=12 +c

case, in some situations, the average nematic orientation may ” za%‘? (atb+1)(atb+3)atb-1 (15)
present a sharp variation near the limiting wbs. Hence,

in this case expressiofd) does not work very well, and Kooz L J(a,b,c)f ab ‘e

probably the second-order expansion is not enough. More- ¥ 24 c.a+b+3latb+1 ’

over, wheneveg(n,n’,r) is a power law inr, according to

which the intermolecular interaction decreases a&',1éx- Kpe— 2 S J(a,b,c)(b+c)
pansion(7) diverges. In fact, in this special cases, as it fol- 247 44 (a+tb+1)(atb+3)’
lows from Eq.(5), g; andq;; decrease like i/". Hence in

expansion(7) the terms after thenth increase withr. Fi-  for the bulk elastic constants, and
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1 J(a,b,c) b +9€28, 265 26 0, 20
Kis=—5 2 (a+b(+1)(a)+b+3)’ (16 w2%hztec) 20
a,b.c where §;; is Kronecker's delta. Consequently, the elastic
for the splay-bend elastic constafg]. In Eg. (16, constants given by Eq¢lS) and(16) result to be

J(a,b,c)=47-rf§_°Ja,b,C(r)r4dr. As discussed elsewhere, if
the interaction energy is of the first kin&,3=0, and f,

does not depend on threorientation even in a surface layer
comparable with the range of the intermolecular forces. In
the opposite case, where the interaction energy is of the sec-
ond kind, K3 can be different from zero. In this cask,
gives rise to a kind of anisotropic surface enefg¥ In fact,
special attention has been devoted to the influence dkige Where
elastic term on the nematic orientation in the framework of
the continuum approachl0O—-16. The same problem has
been anlyzed by means of a pseudomolecular m@gj&r],

by considering an intermolecular interaction which is a su-

perposition of the Maier-Saupgys=—C/r®(n-n’)? and
Nehring-Saupegys= — C/ré[n-n’—3(n-u)(n’-u)]? inter-
actions of the kind

K1=Kgz=3J[1— Z e+ 52 €7,

Koz=33[1- Eet 2 2], (21)

€
Ko= = §[1- S et He?l, Kig=—Jg[~1+Fel,

1 1 R
e RNy Tl -
R.e +)\E|( ”

. r/N
J=477Cf dr=4=C X
|
(22)

R 12

In Eq. (22), Ei(R;) is the exponential integrdl7], and we
have performed the limiR,—, because the exponential is
converging rapidly to zero.

From the relations reported above we deduce the follow-
ing: (i) Kq; is equal toKs3 for all € values. This result is

Very recently, Zumef18], in a hexagonal lattice approxi- expected since, fog=gys or g=gns, the splay and bend
mation studied the existence of subsurface deformations islastic constants are always equal, in the framework of a
the case in whiclyg is of the kind pseudomolecular approach when the interaction volume is
supposed to be of spherical shafig. The bulk elastic con-

g=vg9ust (1—7v)0ns- (17)

g(e)=—J(n[(n-n")—3e(n-u)(n'-u)]%, (18 stants are positive for@e<1. No exotic effects, as the ones
analyzed some years add9,2q are expected(iii) The
where splay-bend elastic constakt;; vanishes fore=0 because
c the interaction reduces to one of the first kind. It also van-
J(r)=—6e‘”>\_ (19  ishes for e={~0.78, which is a unexpected result. This
r

means that foe~0.78 the subsurface deformation, if any, is

. . . connected with the homogeneous part of the elastic energy,
In the above expression§€>0. The exponential decreasing but not to theK ;5 term [21].

has been introduced in order to avoid problems with the In conclusion. we have shown that the pseudomolecular

o Convergence of Sere. 1 descries & HOMAN9S ol as 0 b appld aingcare of e comergerc o e
only in this case is an elastic descrip.tion in whicis a Iocél POWET Series appearing |n.th|s approach.. This foIIo_ws frpm
property, possible. Hende is supposed t’o be of a few mo- the fundamental hypothesis of the elaspc thegry, in v§/’h|ch
lecular dimensions. Notice that expressiti8), for what the molecular forces are assumed as being of “cont@2i.

' The Maier-Saupe and Nehring-Saupe interaction laws are of
concems the angular part, reducesgigs for e=0 and to this kind only if an appropriate cutoff is introduced. We also
gns When e=1. Then, the parameter plays the role of a discussed the splay-bend elastic constant relevant to an inter-

mixing parameter. In this framewqu, n RlL8], the am- molecular interaction represented by a mixing of the above-
plitude of the subsurface deformation ¥ds analyzed. mentioned interactions. We found thids is not a mono-

Here we want to notice that in the range=@<1, K3 is tonic function of the mixing factok.
not a monotonic function of. In fact, from Eq.(18) one sees
that the coupling constants are Many thanks are due to P. Galatdleurin) for enlighten-

ing discussions. Financial support from CNPBrazil) is

Ja,b,c(r) :J(r)[ﬁa 00 09c 2~ 6€6, 16, 10¢ 1
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