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Pseudomolecular models for nematic liquid crystals
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The limits of the pseudomolecular approach to evaluate the elastic properties of nematic liquid crystals are
critically analyzed. We discuss the importance of the uniformly convergent series entering into this description.
If these series are not uniformly convergent, the elastic constants evaluated in this manner are meaningless. A
special kind of mixing of Maier-Saupe and Nehring-Saupe interaction laws is analyzed. We show that the
splay-bend elastic constant has a nonmonotonic behavior with respect to the mixing factor. This result indicates
that the subsurface deformations, if any, are not only due to the splay-bend term.@S1063-651X~97!07111-0#

PACS number~s!: 61.30.Gd, 61.30.Cz
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It is well known that, in the harmonic approximation, th
elastic free-energy density of a nematic liquid crystal~NLC!
is given by the Frank expression@1#. The bulk elastic prop-
erties are described by theK11, K22, K33, and K24 elastic
constants. They are phenomenological parameters, in
duced by taking into account of the symmetry of the nema
phase@2#. The manner to introduce these elastic constant
to expand the elastic energy densityf in terms of the first
spatial derivatives of the nematic directorni , j5]ni /]xj .
Hence, starting fromf 5 f (ni ,ni , j ) in second order one ob
tains

f 5 f 01Li j ni , j1
1
2 Ki jkl ni , jnk,l , ~1!

where f 0 is the elastic energy density of the undeform
state. The elastic tensors of elementsLi j and Ki jkl are de-
composed in terms of the elements of symmetry of the n
atic phase@2#.

The first attempts to connect the elastic constant to
intermolecular interaction responsible for the nematic ph
have been done by Nehring and Saupe@3# by means of a
simple phenomenological model, and the basic simplify
hipotheses are presented in the following.

Let e(aW ,aW 8;rW) be the intermolecular interaction betwee
the molecules whose orientations areaW andaW 8, placed inRW

and in RW 85RW 1rW. The interaction energy is supposed to
different from zero forRi<r<Ro , where the lower cutoff
Ri is of the order of the molecular dimensions, and the up
cutoff Ro can be chosen by comparinge(aW ,aW 8,Ro) with the
thermal agitation energykBT, where kB is the Boltzmann
constant andT the absolute temperature. However,Ro is of
the order of a few molecular dimensions, and the mode
expected to be rather insensible toRo . Thus, at the end o
the calculation, the limitRo→` can be performed. Nehring
and Saupe assume furthermore perfect nematic order. H
aW coincides withnW . In this framework the interaction energ
between two small volume elementsdt anddt8 in RW andRW 8
is
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d2U~nW ,nW 8;rW !5e~nW ,nW 8;rW !dN dN8. ~2!

In Eq. ~2!, dN5r(RW )dt anddN85r(RW 8)dt8 are the num-
ber of molecules contained indt anddt8, respectively and
e(nW ,nW 8;rW) the molecular interaction energy introduce
above, in the perfect nematic order approximation. By s
posing a constant density, i.e.,r(RW )5r(RW 8)5r, Eq. ~2! is
reduced to

d2U~nW ,nW 8;rW !5g~nW ,nW 8;rW !dt dt8, ~3!

whereg(nW ,nW 8;rW)5r2e(nW ,nW 8,rW).
In the elastic approximation,nW changes slowly withr .

This means that in Eq.~3!, unW 82nW u5udnW u!1 over the inter-
action range of the molecular forces. Hen
g(nW ,nW 8;rW)5g(nW ,nW 1dnW ;rW) can be expanded in a power s
ries of dnW . At the second order indni we obtain

g~nW ,nW 8;rW !5g~nW ,nW ;rW !1qidni1
1
2 qi j dnidnj1••• , ~4!

where

qi5S ]g

]ni8
D

nW 85nW

and qi j 5S ]2g

]ni8nj8
D

nW 85nW

~5!

are defined in terms of the intermolecular interaction. T
derivatives appearing in Eq.~5! are evaluated on the unde
formed state. In Eq.~4!, g(nW ,nW ;rW) is the interaction charac
terizing the homogeneous state, wherenW is position indepen-
dent.

In order to obtain the elastic energy density, it is th
necessary to expanddni5dni(RW ,rW) in power series ofxi ,
the Cartesian components of the vector representing the
tive position ofnW 8 with respect tonW . We have, at the secon
order inxi ,

dni5ni , j xj1
1
2 ni , jkxjxk1••• , ~6!

where the derivatives are evaluated inRW . By substituting Eq.
~6! into Eq. ~4!, and rearranging the terms, we obtain, at t
second order inxi ,
,
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g~nW ,nW 8;rW !5g~nW ,nW ;rW !1qini ,kxk

1 1
2 ~qini ,kl1qi j ni ,knj ,l !xkxl . ~7!

In the mean-field approximation the total energy of t
NLC is given by@4#

F 5 1
2 E E E

t
E E E

t8
g~nW ,nW 8;rW !dt dt8. ~8!

The elastic energy density is then, as follows from Eq.~8!,

f 5 1
2 E E E

t8
g~nW ,nW 8;rW !dt8. ~9!

Substitution of expansion~7! into Eq. ~9! yields

f 5 f 01Likni ,k1Liknni ,kn1Li jknni ,knj ,n , ~10!

where

f 05 1
2 E E E

t8
g~nW ,nW ;rW !dt8 ~11!

is the elastic energy density of the undeformed state, whe
the elastic tensors of elementsLik , Likn, andLi jkn are given
by

Lik5 1
2 E E E

t8
qiukr dt8,

Likn5 1
4 E E E

t8
qiukumr 2dt8,

Li jkn5
1

4E E E
t8

qi j ukumr 2dt8, ~12!

with uW 5rW/r , and hencexk5ukr . The term linear in the de
formation tensorni , j is expected to vanish in the bulk, whe
the ground state is the undeformed one. Only for cholest
liquid crystals in the bulk does this tensor exist. Howev
for nematic liquid crystals a term of this kind may exist ne
the boundaries, where the symmetry is lower than in
bulk. Hence, according to the approach presented above
possible, at least in principle, to evaluate the elastic ten
of elementsLik , Likn, andLi jkn when the interparticle inter
action is known.

However, even if everything seems to be done in a cor
manner, it is necessary to pay attention to the obtained
sults, and in what manner they have been deduced. Firs
all, as it has been already stressed, whenf is given by Eq.
~10! there are mathematical problems to find the vecto
field nW 5nW (RW ) minimizing the total elastic energy@5#. In this
case, in some situations, the average nematic orientation
present a sharp variation near the limiting walls@6#. Hence,
in this case expression~4! does not work very well, and
probably the second-order expansion is not enough. M
over, wheneverg(nW ,nW 8,rW) is a power law inr , according to
which the intermolecular interaction decreases as 1/r m, ex-
pansion~7! diverges. In fact, in this special cases, as it f
lows from Eq.~5!, qi and qi j decrease like 1/r m. Hence in
expansion~7! the terms after themth increase withr . Fi-
as

ic
,
r
e
is
rs

ct
e-
of

l

ay

e-

-

nally, we observe that the elastic tensors of elementsLik ,
Likn , andLi jkn are obtained by integrating term to term th
power series~7!. But, as is well known@7#, this operation
may be done only if the series is uniformly convergent. No
the first expansion givingg(nW ,nW 8,rW) in terms ofdni is sup-
posed to be uniformly convergent. After that, expansion~6!
is also assumed to be of the same kind. However, the su
tution of Eq.~6! into Eq. ~4! can give rise to a power serie
which is not uniformly convergent. Consequently, the fin
series~7! could be convergent in a nonuniform way. Hen
only if one is able to demonstrate that it is uniformly co
vergent, the elastic tensors of elementsLik , Likn , andLi jkn
are meaningful.

In the following we shall suppose that the approach p
sented above works well. In this framework we shall co
sider some classical intermolecular laws presented in the
to study the nematic liquid crystal. However, we are aw
that the simple quasimicroscopic approach has several lim
Hence only the main results will be discussed.

A generic two-body interactiong(nW ,nW 8,rW) depends only
on the three invariants (nW •nW 8), (nW •uW ), and (nW 8•uW ), and on
the modulusr of rW. Therefore@8#,

g5g@~nW • uW !,~nW 8 • uW !,~nW • nW 8!,r #, ~13!

which can be expanded in Taylor’s series as follows:

g52 (
a b c

Ja,b,c~r !~nW • uW !a~nW 8 • uW !b~nW • nW 8!c, ~14!

whereJa,b,c(r ).0 and limr→`Ja,b,c(r )50, because the in-
termolecular forces are assumed attractive and short rang
a5b50, g does not depend onuW , but only on the relative
orientation of nW with respect tonW 8. We call this kind of
molecular interaction of the first kind. In the opposite case
which g depends also onuW , the intermolecular forces are o
second kind. Wheng is of the first kind, its minimum value
is reached fornW inW 8. In the other case, the minimum energ
of two interacting molecules depends on the relative po
tion. In this second case, only in the bulk is the ground st
the undeformed one@which corresponds to the minimum o
f 0, given by Eq.~11!#.

Following the approach proposed by Vertogen@9#, and
supposing the interaction volume of spherical shape, one
tains

K115
1
2 (

a,b,c

J~a,b,c!

~a1b11!~a1b13!F 3ab

a1b21
1cG ,

K225
1
2 (

a,b,c

J~a,b,c!

~a1b11!~a1b13!F ab

a1b21
1cG

~15!

K335
1
2 (

a,b,c

J~a,b,c!

a1b13F ab

a1b11
1cG ,

K2452 1
4 (

a,b,c

J~a,b,c!~b1c!

~a1b11!~a1b13!
,

for the bulk elastic constants, and
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K1352
1

2 (
a,b,c

J~a,b,c! b

~a1b11!~a1b13!
, ~16!

for the splay-bend elastic constant@8#. In Eq. ~16!,
J(a,b,c)54p*Ri

RoJa,b,c(r )r 4dr. As discussed elsewhere,

the interaction energy is of the first kind,K1350, and f 0

does not depend on thenW orientation even in a surface laye
comparable with the range of the intermolecular forces.
the opposite case, where the interaction energy is of the
ond kind, K13 can be different from zero. In this case,f 0
gives rise to a kind of anisotropic surface energy@8#. In fact,
special attention has been devoted to the influence of theK13
elastic term on the nematic orientation in the framework
the continuum approach@10–16#. The same problem ha
been anlyzed by means of a pseudomolecular model@6,17#,
by considering an intermolecular interaction which is a
perposition of the Maier-SaupegMS52C/r 6(nW •nW 8)2 and
Nehring-SaupegNS52C/r 6@nW •nW 823(nW •uW )(nW 8•uW )#2 inter-
actions of the kind

g5ngMS1~12n!gNS. ~17!

Very recently, Zumer@18#, in a hexagonal lattice approxi
mation studied the existence of subsurface deformation
the case in whichg is of the kind

g~e!52J~r !@~nW •nW 8!23e~nW •uW !~nW 8•uW !#2, ~18!

where

J~r !5
C

r 6
e2r /l. ~19!

In the above expressions,C.0. The exponential decreasin
has been introduced in order to avoid problems with
uniform convergence of series~7!. It describes a short-rang
interaction between the molecules. As is well known@2#,
only in this case is an elastic description, in whichf is a local
property, possible. Hencel is supposed to be of a few mo
lecular dimensions. Notice that expression~18!, for what
concerns the angular part, reduces togMS for e50 and to
gNS when e51. Then, the parametere plays the role of a
mixing parameter. In this framework, in Ref.@18#, the am-
plitude of the subsurface deformation vse is analyzed.

Here we want to notice that in the range 0<e<1, K13 is
not a monotonic function ofe. In fact, from Eq.~18! one sees
that the coupling constants are

Ja,b,c~r !5J~r !@da 0db 0dc 226eda 1db 1dc 1
n
c-

f

-

in

e

19e2da 2db 2dc 0#, ~20!

where d i j is Kronecker’s delta. Consequently, the elas
constants given by Eqs.~15! and ~16! result to be

K115K335
1
3 J@12 12

5 e1 54
35 e2#,

K225
1
3 J@12 6

5 e1 18
35 e2#, ~21!

K2452 1
6 J@12 6

5 e1 27
35 e2#, K1352J

e

5
@211 9

7 e#,

where

J54pCE
Ri

`e2r /l

r 2
dr54pCF 1

Ri
e2Ri /l1

1

l
EiS 2

Ri

l D G .
~22!

In Eq. ~22!, Ei(Ri) is the exponential integral@7#, and we
have performed the limitRo→`, because the exponential
converging rapidly to zero.

From the relations reported above we deduce the follo
ing: ~i! K11 is equal toK33 for all e values. This result is
expected since, forg5gMS or g5gNS, the splay and bend
elastic constants are always equal, in the framework o
pseudomolecular approach when the interaction volume
supposed to be of spherical shape.~ii ! The bulk elastic con-
stants are positive for 0<e<1. No exotic effects, as the one
analyzed some years ago@19,20# are expected.~iii ! The
splay-bend elastic constantK13 vanishes fore50 because
the interaction reduces to one of the first kind. It also va

ishes for e5 7
9'0.78, which is a unexpected result. Th

means that fore'0.78 the subsurface deformation, if any,
connected with the homogeneous part of the elastic ene
but not to theK13 term @21#.

In conclusion, we have shown that the pseudomolecu
model has to be applied taking care of the convergence of
power series appearing in this approach. This follows fr
the fundamental hypothesis of the elastic theory, in wh
the molecular forces are assumed as being of ‘‘contact’’@2#.
The Maier-Saupe and Nehring-Saupe interaction laws ar
this kind only if an appropriate cutoff is introduced. We al
discussed the splay-bend elastic constant relevant to an i
molecular interaction represented by a mixing of the abo
mentioned interactions. We found thatK13 is not a mono-
tonic function of the mixing factore.
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