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Interference effects on the coupling impedance of many holes in a coaxial beam pipe

S. De Santis, A. Mostacci, and L. Palumbo*
Dipartimento di Energetica, Universita` di Roma ‘‘La Sapienza,’’ Rome, Italy

and INFN, Laboratori Nazionali di Frascati, Casella Postale 13-00044, Frascati, Italy
~Received 12 June 1997!

The problem of many holes in a coaxial beam pipe is studied by means of the modified Bethe theory. The
electromagnetic fields propagating in the coaxial region couple the equivalent dipole moments of the holes.
The effect of the coupling on the longitudinal impedance and on the loss factor is investigated, showing that the
interference phenomena are significant for such geometries.@S1063-651X~97!08110-5#

PACS number~s!: 41.75.2i, 41.20.2q
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I. INTRODUCTION

In this paper we study the coupling impedance and
loss factor of coaxial structures with multiple pumping hole

The analytical solution of a many-hole problem has be
given in the case of a circular beam pipe with thick walls@1#,
the method being based on Bethe’s diffraction theory. T
longitudinal impedance is calculated from the coherent s
of the fields generated by each hole.

The impedance of a single hole in a coaxial structure
been calculated numerically@2# and analytically applying
Bethe’s modified theory@3# and by variational methods@4#.
The results obtained with these different procedures sho
good agreement.

In this paper we extend Bethe’s modified theory to t
general case ofN holes in an infinitely long perfectly con
ducting coaxial pipe~Fig. 1!. The reaction fields have to b
considered in order to fulfill the energy conservation la
We evaluate the effect of the interference of the fields g
erated by the equivalent dipoles taking into account also
coupling among the dipoles. The self-consistent solut
shows that the coupling between holes can affect sign
cantly the radiated energy spectrum and the coupling imp
ance. The reaction fields introduce in fact a coupling
tween the equivalent dipole moments of different holes.

In Sec. II we outline Bethe’s modified theory applied
the calculation of the longitudinal impedance. Impedan
and loss factor are treated in Sec. III. Finally, in Sec. IV,
compare our results to those obtained with theMAFIA simu-
lation code.

II. GENERAL THEORY

The general theory adopted in our calculation is descri
in @3,5#. For the sake of convenience, we summarize its
portant features at frequencies below the beam pipe cu
considering only scattered TEM-type fields.

Bethe’s diffraction theory states that each hole is equi
lent to an electric and a magnetic dipole whose moments
given by
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Mw~zi !5am@H0w~zi !2Hsw~zi !#,

Pr~zi !5«ae@E0r~zi !2Esr~zi !#, ~1!

wheream and ae are the hole polarizabilities andHsw and
Esr are the scattered fields calculated at the hole center.
primary magnetic and electric fields, generated by a po
chargeq, traveling with velocityc along the axis of a per-
fectly conducting pipe, are

H0w~zi !5H0w~0!e2 jk0zi, E0r~zi !5E0r~0!e2 jk0zi, ~2!

with

E0r~0!5Z0H0w~0!5Z0

q

2pb
. ~3!

In general the scattered fields can be expressed as a
perposition of modes. The coefficients of the modal exp
sion are determined through the Lorentz reciprocity princi
@5#; they are linear functions of the equivalent dipole m
ments of the apertures which can be obtained solving aN
32N sized linear system.

Once the equivalent dipole moments have been de
mined, using the definition of the longitudinal impedance@6#

Z~v!52
1

q E
2`

1`

Ez~r 50!ejk0zdz, ~4!

it is straightforward to derive a general expression of
longitudinal impedance forN holes centered inz5zi ,

Z~v!5 j
vZ0

2pqb (
i 51

N F1

c
Mw~zi !1Pr~zi !Gejk0zi. ~5!

FIG. 1. Relevant geometry.
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III. HOLES IN A COAXIAL PIPE

Each dipole moment radiates a forward and a backw
wave along the coaxial pipe. While the waves produced
the electric and magnetic dipole have the same phase a
the beam direction, they are in phase opposition along
other ~Fig. 2!.

Using the expressions of the fields generated by the
poles~Appendix!, we can therefore write Eqs.~1! as

Mw~zi !5amFH0w~zi !2 j
v

2
mh0w

2 (
h51

N

Mw~zh!e2 jk0uzh2zi u

1 j
v

2
h0we0r (

h51

N

Pr~zh!sgn~h2 i !e2 jk0uzh2zi uG ,

~6!

Pr~zi !5«aeFE0r~zi !2 j
v

2
e0r

2 (
h51

N

Pr~zh!e2 jk0uzh2zi u

1 j
v

2
mh0we0r (

h51

N

Mw~zh!sgn~h2 i !e2 jk0uzh2zi uG ,

~7!

having indicated withe0r and h0w the normalized moda
function for the TEM mode.

Equations~6! and ~7! can be summarized as

S aih ambih

ae

c2 bih cih
D S Mw~zi !

Pr~zi !
D5S amH0w~zi !

«aeE0r~zi !
D

~ i ,h51,2, . . . ,N!, ~8!

where H0w5„H0w(z1), . . . ,H0w(zN)…, E0r5„E0r(z1), . . . ,
E0r(zN)…, similarly for Mw andPr , and

FIG. 2. ~a! TEM field generated by an equivalent magnetic
pole momentMw . ~b! TEM field generated by an equivalent ele
tric dipole momentPr .
rd
y
ng
e

i-

aih5 j
v

2
ammh0w

2 e2 jk0uzi2zhu1d ih ,

bih5sgn~ i 2h! j
v

2
h0we0re

2 jk0uzi2zhu,

cih5 j
v

2
ae«e0r

2 e2 jk0uzi2zhu1d ih , ~9!

d ih being the Kronecker symbol.
System~8! can be solved directly by inversion of the co

efficients’ matrix or by some iterative procedure. Since
are interested in the low frequency behavior of the imp
ance below the cutoff of the TE1,1 mode, we can limit our-
selves to the first step of the iterative procedure, that is,
placing the electric and magnetic dipole moments in
right-hand side of Eqs.~6! and ~7! with their approximated
values

Mw~z!5amH0w~z! and Pr~z!5«aeE0r~z! ~10!

from which we derive the low frequency approximation f
the longitudinal impedance

Z~v!5 jZ0

k0

4p2b2 FN~am1ae!2
k0

4pb2ln~d/b!

3~am2ae!
2 (

h51

N21

(
w51

N2h

sinS 2k0(
t51

w

l h1tD G
1Z0

k0
2

16p3b4ln~d/b! FN2

2
~am1ae!

2

1
N

2
~am2ae!

21~am2ae!
2 (

h51

N21

(
w51

N2h

3cosS 2k0(
t51

w

l h1tD G , ~11!

with l h5zh2zh21 .
For N equally spaced holes Eq.~11! yields

ZRe~v!5Z0

k0
2

32p3b4ln~d/b! H N2~am1ae!
2

1~am2ae!
2Fsin2~Nk0l !

sin2~k0l ! G J ~12!

and

ZIm~v!'Z0

Nk0

4p2b2 ~am1ae! ~13!

having neglected the frequency higher order term in
imaginary impedance. It is worth noting that the imagina
impedance ofN holes is, in first approximation, independe
of the holes’ position, equal toN times the impedance of a
single hole. The real part oscillates between
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N2 and
~am1ae!

2

2~am
2 1ae

2!
N2 ~14!

times the impedance of a single hole. It is worth noting t
the real impedance ofN holes around the pipe at the samez
is N2 times the impedance of a single hole.

From Eq. ~11! the loss factor for a Gaussian bunch
lengthsz is

k~sz!5
Z0cAp

128p4b4 ln~d/b!sz
3 FN2~am1ae!

21N~am2ae!
2

22~am2ae!
2 (

h51

N21

~N2h!e2~ l 2/sz
2
!h2

3S 2
l 2

sz
2 h221D G . ~15!

The above expression is valid for bunch lengthss.(b
1d)/2. For shorter bunches, higher order modes have to
included in the theory.

A. Single hole

For a single hole, choosing the hole center as the origin
the longitudinal axis, system~8! becomes
t
at

0
ec
t

e

of

S 11 j
v

2
ammh0w

2 0

0 11 j
v

2
ae«e0r

2
D S Mw~0!

Pr~0! D

5S amH0w~0!

«aeE0r~0! D . ~16!

The real part of the longitudinal impedance is

ZRe5
Z0k0

2

16p3b4 ln~d/b!
~am

2 1ae
2!. ~17!

Replacing in Eq.~16! the polarizability for a round hole
one finds an impedance value five times larger than that
viously presented in@3# which was affected by an oversigh
in the calculations. More recent results obtained by differ
methods@4# agree with Eq.~17!.

From Eq.~15! the loss factor is

k~sz!5
Z0cAp

64p4b4ln~d/b!sz
3 ~am

2 1ae
2!. ~18!

B. Two holes

Here we discuss the case of two holes, to better und
stand the interference and coupling effects. Choosingz150
andz25 l , the linear system for two holes becomes
S 11 j
v

2
ammh0w

2 j
v

2
ammh0w

2 e2 jk0l 0 2 j
v

2
amh0we0re

2 jk0l

j
v

2
ammh0w

2 e2 jk0l 11 j
v

2
ammh0w

2 j
v

2
amh0we0re

2 jk0l 0

0 2 j
k0ae

2c
h0we0re

2 jk0l 11 j
v

2
ae«e0r

2 j
v

2
ae«e0r

2 e2 jk0l

j
k0ae

2c
h0we0re

2 jk0l 0 j
v

2
ae«e0r

2 e2 jk0l 11 j
v

2
ae«e0r

2

D S Mw~0!

Mw~ l !
Pr~0!

Pr~ l !
D

5S amH0w~0!

amH0w~ l !
«aeE0r~0!

«aeE0r~ l !
D . ~19!
and
nce

he
for
The real impedance, due to the interference between
propagating reaction fields, has the following approxim
expression:

ZRe5
Z0k0

2

16p3b4ln~d/b!
$2~am1ae!

2

1~am2ae!
2@11cos~2k0l !#%. ~20!

In Fig. 3~a! we show a typical plot ofZRe for circular
holes, as a function of the frequency. According to Eq.~14!,
the real part of the impedance oscillates between 4 and
times the single-hole value. Because of interference eff
he
e

.4
ts

between the scattered fields in the coaxial pipe, maxima
minima occur at frequencies depending on the hole dista
@Fig. 3~b!#.

The loss factor, applying Eq.~15!, is

k~sz!5
Z0cAp

64p4b4ln~d/b!sz
3 F2~am1ae!

21~am2ae!
2

2~am2ae!
2e2~ l 2/sz

2
!S 2

l 2

sz
221D G . ~21!

In Fig. 4 ~solid line! we show the loss factor for as55
cm Gaussian bunch, for the same geometry of Fig. 3. T
behavior of the loss factor is quite general, as we will see



ri
Fo
s
d

nd
.

e

d-
le.

rns

itu-

rs

ged

er-

to
k-
s an

er

e
r-
n
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the case ofN holes. It reaches a minimum value whenl
's, while it saturates forl .3s. The minimum is caused by
the destructive interference between fields, which surp
ingly occurs only for one distance between the holes.
larger distances, the impedance has more maxima peak
der the bunch spectrum, however, since their amplitude
creases, the total area covered by the power spectrum
mains almost constant.

FIG. 3. ~a! ZRe for two round holes~b520 mm, d524 mm, R
56 mm, l 5300 mm!. ~b! ZRe for two round holes at differentl ,
Gaussian bunch spectrum fors550 mm.

FIG. 4. Two-hole loss factor~b520 mm, d524 mm, R
56 mm, s550 mm!.
s-
r

un-
e-
re-

C. Randomly spaced holes

It is interesting to compare the coupling impedance a
the loss factor ofN holes uniformly and randomly spaced
To calculate the impedance ofN randomly spaced holes, w
can assume in Eq.~11! l h5 l 1dh , wheredh is a random
variable. Again the imaginary part of the longitudinal impe
ance isN times the imaginary impedance of a single ho
The real part is

ZRe~v!5
Z0k0

2

16p3b4ln~d/b! H N2

2
~am1ae!

21
N

2
~am2ae!

2

1 ~am2ae!
2 (

h51

N21

(
w51

N2h

3cosF2k0S wl1(
t51

w

dh1tD G . ~22!

Consequently we can calculate the loss factor, which tu
out to be

k~sz!5
Z0cAp

128p4b4ln~d/b!sz
3 H N2~am1ae!

21N~am2ae!
2

22~am2ae!
2 (

h51

N21

(
w51

h

e2~wl1«N2h,w!2/sz
2

3F2
~wl1«N2h,w!2

sz
2 21G J , ~23!

where we have defined

«N2h,w5 (
t5N2h11

N2h1w

d t . ~24!

As an example, we compare the real part of the long
dinal impedance for 15 round holes withl 530 cm anddk
uniformly distributed between60.2l . We notice that the in-
troduction of the positioning randomization clearly lowe
the peak values~Fig. 5!, while it does not affect the minima
level. The loss factor, nevertheless, is almost unchan
~Fig. 6!.

IV. COMPARISON OF ANALYTICAL
AND NUMERICAL RESULTS

To check the validity of the expressions found, we p
formed simulations with the numerical codeMAFIA @7# in the
case of two holes@3#. To this end, it has been necessary
slightly modify the equations to account for the wall thic
ness which changes the problem geometry and introduce
attenuation for the fields in the holes.

Calling b1 and b2 , respectively, the inner and the out
radius of the beam pipe, one can see that the factorb4 in the
denominator of Eqs.~12! and~15! has to be replaced by th
productb1

2b2
2. Furthermore, the polarizabilities must be co

rected; for a round hole of radiusR we use the expressions i
Ref. @8#,
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ãe5ae

3.3

4
e2j0,1W/R,

ãm5am

21

25
e2j1,18 W/R, ~25!

FIG. 5. ~a! ZRe for 15 round holes~b520 mm, d524 mm, R
56 mm, l 5300 mm!. ~b! ZRe for 15 round holes randomly space
with uniform distribution 20.2l<dk<0.2l ~b520 mm, d
524 mm, R56 mm, l 5300 mm!.

FIG. 6. Loss factor for 15 round holes randomly spaced w
uniform distribution20.2l<dk<0.2l ~b520 mm, d524 mm, R
56 mm, l 5300 mm!.
whereW is the wall thickness~in our caseW5b22b1) and
j0,1 andj1,18 are the zeros of the Bessel functionJ0 andJ18 ,
respectively.

We can thus rewrite Eq.~20! as

ZRe5
Z0k0

2

16p3b1
2b2

2ln~d/b2!

3$2~ ãm1ãe!
21~ ãm2ãe!

2@11cos~2k0l !#%.

~26!

As a result, the loss factor becomes

k~sz!5
Z0cAp

64p4b1
2b2

2ln~d/b2!sz
3 F2~ ãm1ãe!

21~ ãm2ãe!
2

2~ ãm2ãe!
2e2~ l 2/sz

2
!S 2

l 2

sz
221D G . ~27!

In Fig. 4 the dependence of the loss factor on the h
distancel is presented for as55 cm Gaussian bunch. Th
numerical results~black diamonds! are in good agreemen
with the analytical expression~solid line!. The difference
between theory and simulations tends to become larger
very short hole distances, when the coupling effect of
evanescent modes begins to be non-negligible.

V. CONCLUSIONS

The effect of the coupling between the equivalent dipo
seems to be important for a correct evaluation of the c
pling impedance and the loss factor ofN holes in a coaxial
structure.

At low frequency, the real part of the longitudinal impe
ance grows asv2, as in the case of a single hole, bein
related to the TEM mode propagating in the coaxial regi
Moreover, because of interference effects between the s
tered fields, the real impedance and the loss factor are
portional toN2.

A randomization in the hole position can lower signi
cantly the peak value of the impedance while the minima a
the loss factor are almost unchanged.
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APPENDIX

A TEM field radiated by a hole centered inz5zi can be
written as

Er~z,zi !5c0ie0re
2 jk0~z2zi !u~z2zi !

1d0ie0re
jk0~z2zi !u~2z1zi !,

Hw~z,zi !5c0ih0we2 jk0~z2zi !u~z2zi !

2d0ih0wejk0~z2zi !u~2z1zi !, ~A1!

wherek05v/c, u(z) is the Heaviside function, and
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e0r5S Z0

2p D 1/2 1

Aln~d/b!

1

r
, h0w5

1

Z0
e0r ~A2!

are the normalized modal function for a TEM wave.
The coefficientsc0i andd0i are given by

c0i5
j v

2
@mh0wMw~zi !1e0r Pr~zi !#,

d0i52
j v

2
@mh0wMw~zi !2e0r Pr~zi !#. ~A3!

When there areN holes radiating, the scattered fields on
generic hole center appearing in Eq.~1! are thus
s.
Esr~zi !5e0rF (
k51

i 21

c0ke
2 jk0~zi2zk!1

c0i1d0i

2

1 (
k5 i 11

N

d0ke
jk0~zi2zk!G ,

Hsw~zi !5h0wF (
k51

i 21

c0ke
2 jk0~zi2zk!1

c0i2d0i

2

2 (
k5 i 11

N

d0ke
jk0~zi2zk!G . ~A4!

Replacing Eq.~A3! in Eq. ~A4! one obtains Eqs.~6! and
~7!.
.
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