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Nonequilibrium positive column

J. H. Ingold
One Bratenahl Place, Suite 610, Cleveland, Ohio 44108

~Received 19 May 1997!

The dc positive column is modeled with a system of balance equations based on moments of the radially
dependent Boltzmann equation taken after the two-term Legendre expansion of the electron energy distribution
function is made. The importance of the electron energy balance equation, which is frequently ignored in
positive column analysis, is emphasized. A key assumption is that electron transport coefficients and collision
frequencies in the nonequilibrium regime have the same relation to the average energy as in the equilibrium
regime, according to a zero-dimensional Boltzmann solution for a particular value of average energy. Because
of this assumption, the model makes a smooth transition to the traditional equilibrium model with radially
constant average energy at sufficiently high pressure. Model results in the nonequilibrium regime agree closely
with published results of a numerical solution of the one-dimensional Boltzmann equation, including results for
radial heat flow in the electron gas with radially varying average energy. It is shown that three separate
processes account for radial heat flow: convection, conduction, and diffusion. In the example chosen for
illustration of the method, the convection component is small, while the conduction and diffusion components
are large and opposite in direction, nearly canceling each other.@S1063-651X~97!00311-5#

PACS number~s!: 51.50.1v, 52.25.Fi, 52.80.2s
e

g
su
in
s
o

ia
rt
n
n
in

th
re

i

in
?
al
tr

s
lli
n
re
re

iti
ar
e

gy
e

ed
lu-
mic
ross
-

nd
e
m
ts
be

uch
ant
lli-

ctric
ial
e
g in
nt
D

ci-

en-
n-
din
hat
I. INTRODUCTION

A. General remarks

The consensus throughout the period 1920–1970 app
to be that the electron energy distribution function~EEDF! in
the dc positive column is Maxwellian and that the avera
energy of the electrons is radially invariant. This consen
is supported in review articles by Druyvesteyn and Penn
@1# and Francis@2# in which positive column pedagogy i
based on Maxwellian EEDF’s, although the possibility
non-Maxwellian EEDF’s atlow currentis recognized in both
review articles. Direct consequences of the Maxwell
EEDF assumption are that~i! the average energy, transpo
coefficients, and collision frequencies are radially invaria
~ii ! the power input per unit volume due to Joule heating a
the power dissipated per unit volume due to elastic and
elastic collisions are equal in each volume element of
positive column; and~iii ! radial effects such as heat flow a
negligible. A positive column having these characteristics
said to be operating in thelocal regime because electron
properties are in equilibrium with the axial electric field
each volume element. But what about other EEDF forms
transport coefficients and collision frequencies are radi
invariant, then they can be parametrized by the axial elec
field as in a zero-dimensional~0D! Boltzmann calculation,
leading to an improvement over the Maxwellian EEDF a
sumption. Strictly speaking, when electron-electron co
sions can be ignored, then a Maxwellian EEDF results o
when the electron-atom momentum-transfer collision f
quency is independent of electron energy. Realizing that
gases do not have this kind of collision frequency, Blank@3#
asks under what conditions can it be assumed that pos
column transport coefficients and collision frequencies
radially invariant, similar to conditions found in a drift tub
experiment. In agreement with Bernstein and Holstein@4#,
Blank concludes that this assumption is valid for an ener
dependent momentum-transfer collision frequency wh
561063-651X/97/56~5!/5932~13!/$10.00
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‘‘the electron energy relaxation length is small compar
with the macroscopic length scale, ... .’’ To put this conc
sion in perspective, consider a neonlike gas with an ato
mass of 20 amu and electron-atom momentum-transfer c
sectionQea of 2.6 Å2. Blank’s condition expressed in math
ematical form isPR@0.283AM /mQea

21521 Torr cm, where
P is the gas pressure in Torr,R is the positive column radius
in cm, M /m is the mass ratio of atoms and electrons, a
Qea is expressed in Å2. It is shown later in the present articl
that the value ofPR must be in the range 50–100 Torr c
for the assumption of radially invariant transport coefficien
and collision frequencies in a neon positive column to
valid.

Evidently, whenPR,0.283AM /mQea
21, the local model

is not valid. It is argued in@4# that radial effects become
important at low pressure, causing electron properties s
as average energy and axial drift velocity to have signific
radial variation. In this case, transport coefficients and co
sion frequencies cannot be parametrized by the axial ele
field as in a 0D Boltzmann calculation because the ax
electric field is independent of radial position. A positiv
column having these characteristics is said to be operatin
thenonlocal regime. Radial terms must be taken into accou
in solving the Boltzmann equation, meaning that a 1
Boltzmann solution is required in the nonlocal regime. In
dentally, the wordslocal and equilibrium are used inter-
changeably in the present article, as are the wordsnonlocal
andnonequilibrium.

In an important series of papers beginning in 1974, Ts
din @5# extended the positive column work begun by Ber
stein and Holstein and elucidated further by Blank. Tsen
and followers cite several features of the nonlocal model t
are different from those of the local model:~i! The Boltz-
mann relation between the electron densityn(r ), space-
charge potentialf(r ), and electron temperatureu no longer
holds, i.e.,n(r )Þn(0)exp@f(r)/u#; ~ii ! there is a significant
5932 © 1997 The American Physical Society
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56 5933NONEQUILIBRIUM POSITIVE COLUMN
radial variation in the average energy of electrons, henc
transport coefficients and collision frequencies;~iii ! likewise,
there can be a significant difference between the power in
by Joule heating and the power dissipation due to collisi
in a given volume element of the discharge;~iv! to account
for ~iii !, a significant amount of heat must flow inward in th
electron gas; and~v! the wall potential relative to axis valu
is much less. These differences are corroborated by rece
published numerical solutions of the 1D Boltzmann equat
@6#. Therefore, it appears that the traditional local mode
inadequate atPR values on the order of 10 and smaller.

The purpose of this article is to show that traditional loc
theory of the dc positive column can be extended to
nonlocal regime. In Sec. II the traditional local mome
model with radially invariant average energy is extended
the nonlocal regime by including the electron energy bala
equation, which accounts for radially varying average
ergy, achieving very good qualitative agreement with R
@6#. The extended formulation is based on moments of
1D Boltzmann equation taken after the two-term Legen
expansion is made. In Sec. III the boundary between lo
and nonlocal regimes is established by starting with the
ditional model extended as described above, then assum
that average energy is radially invariant, and then derivin
relationship that must be satisfied if this assumption is to
valid. In this way, a pressure boundary between local
nonlocal behavior is defined.

B. Brief review of 1D Boltzmann methods

Before turning to the subject of the present article,
nonlocal moment method, it is instructive to review 1D Bo
zmann methods in use today for analyzing the dc posi
column. Methods that do not start with the 1D Boltzma
equation and the two-term Legendre expansion will not
discussed. Those that do can be divided arbitrarily into f
categories:~i! nonlocal kinetic method, valid at allPR; ~ii !
nonlocal kinetic approximation method, valid at lowPR;
~iii ! local moment method, valid at highPR, but often used
at low PR; and ~iv! nonlocal moment method, valid at a
PR. The first three methods are described briefly below
this section; the fourth is discussed in detail in Sec. II.

1. Nonlocal kinetic method

The nonlocal kinetic method is a first-principles meth
that is valid at all values ofPR for which the 1D Boltzmann
equation based on the two-term Legendre expansion of
EEDF is valid. The EEDF is denoted byf (r ,v) and the two-
term expansion is

f ~r,v !5 f 0~r ,v !1v21v•f1~r ,v !.

Measurable properties of the positive column are calcula
directly from f 0 and f 1 .

A prime example of this method was published recen
by Uhrlandt and Winkler@6#. In this reference, the 1D Bolt
zmann equation is solved numerically after the two-te
Legendre expansion is made. The radial space-charge p
tial distribution and axial field taken from measurements i
neon positive column withPR51.3 Torr cm and currentI
510 mA are assumed in the calculation. In other wor
in
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Poisson’s equation and the ion momentum balance equa
are not solved simultaneously with the 1D Boltzmann eq
tion. Uhrlandt and Winkler find that all electron propertie
vary with radial position and on axis there is a large diffe
ence between Joule heat input per unit volume and collis
loss per unit volume. Results of the nonlocal mome
method described in the present paper are compared
results of Uhrlandt and Winkler in Sec. II, with very goo
qualitative agreement.

Finding solutions at several different values ofPR, Busch
and Kortshagen@7# find a radial variation in the electron
properties similar to that found by Uhrlandt and Winkler f
values ofPR on the order of unity. ForPR528 Torr cm and
above, however, Busch and Kortshagen find that the ave
electron energy is radially invariant except very near the w
of the positive column, which suggests that the positive c
umn operates in the local regime at this and higher value
PR. It is shown in Sec. III of this article that the nonloc
moment method makes a smooth transition to the local m
ment method at sufficiently high values ofPR, thus estab-
lishing the boundary between them.

The advantage of the nonlocal kinetic method is accur
calculation of the important physical processes taking pl
in the positive column. A disadvantage is its complexi
which makes it computationally intensive, especially wh
Poisson’s equation and electron-electron collisions are ta
into account. Perhaps it is for this reason that the metho
just now coming into use.

2. Nonlocal kinetic approximation method

The nonlocal kinetic approximation method@4,5# is also
based on the two-term Legendre expansion of the EE
However, the solution of the 1D Boltzmann equation forf 0
and f1 is avoided by assuming further thatf 0 and f1 can be
expanded according to the scheme

f 0~r ,e!5 f 00~e!1 f 01~r ,e!1••• ,

f1~r ,e!5f10~r ,e!1f11~r ,e!1••• ,

where the total energye5 1
2 mv22ef(r ) and f 00 is given by

the 0D Boltzmann equation obtained from the 1D Boltzma
equation by radially averaging each term, while the rad
component off10(r ,e) is taken to be zero. The results a
similar to those of the first-principles method at low valu
of PR, but start diverging nearPR51. An advantage of this
model is that it is not as computationally intensive as
first-principles method. A disadvantage is that its validity
restricted to small values ofPR.

3. Local moment method

The local moment method includes the classical ambi
lar diffusion theory of Schottky@8# and the free-fall theory of
Tonks and Langmuir@9#. This method is based not on th
solution of the 1D Boltzmann equation, but on moments
it, moments of either the pristine 1D Boltzmann equation
the equations forf 0 andf1 . A key assumption of this method
is that electrons are inequilibrium with the axial electric
field, implying that the energy imparted to the electrons b
steady, uniform field is exactly balanced by energy lost
elastic and inelastic collisions with heavy particlesin each
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TABLE I. Comparison of the local moment method with other methods.n̄5(2/R2)*n(r )r dr ; n̄ i

5(2/R2)*n(r )n i(r )r dr /n̄; 2fw is the wall potential relative to the axis value.

Gas type Method
Ez

~V/cm!
fw

~V!
n(0)

(1010 cm23)
n̄ i

(105 sec21) Pa Ref.

Helium Nonlocalb

PR50.045 Torr cm MC
I 510 mA CS 48 52 6.0 450 Yes @14#

R51 mm Local 0Dc 39 84 11 400 Yes @13#

Local maxd 41 81 11 400 Yes @13#

Argon Nonlocal 12 15 No @16#

PR50.85 Torr cm MC 12 18 No @15#

n̄5131010 cm23 CS 11 17 2.6 1.1 No @17#

R51 cm Local 0D 15 52 2.5 2.2 Yes @13#

Local max 1.5 13 2.5 0.55 Yes @13#

Argon Nonlocal 6 16 No @16#

PR50.28 Torr cm MC 6 17 No @15#

n̄5131010 cm23 CS 6.3 17 2.2 3 No @17#

R51 cm Local 0D 7.4 53 2.3 3.5 Yes @13#

Argon Nonlocal 1.4 24 No @16#

PR50.0085 Torr cm MC 1.4 24 No @15#

n̄5131010 cm23 CS 1.4 24 6.7 No @17#

R51 cm Local 0D 0.9 64 2.1 5.1 Yes @13#

Local max 0.5 29 1.9 3.2 Yes @13#

Neon Nonlocal 2.7 41 No @5#

PR50.1 Torr cm MC
I 510 mA CS
R51 cm Local 0D 2.5 59 0.33 7.9 Yes @13#

aYes in this column means that Poisson’s equation is solved self-consistently with equations of motio
to give the radial potential distribution. No means that either the radial potential distribution is assumed
plasma~ambipolar! approximationn(r )5ni(r ) is assumed.
bNonlocal means the nonlocal kinetic approximation method.
cLocal 0D means the local moment method with 0D Boltzmann EEDF.
dLocal max means the local moment method with Maxwellian EEDF.
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volume element of the discharge. In mathematical terms
equilibrium implies that spatial and temporal derivatives
the EEDF can be ignored when solving the Boltzmann eq
tion. The steady, uniform motion of electrons under the
conditions is accurately described by transport coefficie
and collision frequencies, which, by custom, are para
etrized byEz /N, the ratio of the axial electric field to the ga
density@10#.

Most theoretical treatments of the positive column tod
can be classified in this category. Furthermore, this is
method universally chosen for pedagogical purposes in
view articles and books on the positive column. The first t
moments are used in conjunction with ion momentum b
ance and Poisson’s equation to form a complete set of e
tions to be solved for the radial variation of the electr
density, ion density, radial current density, and radial elec
field. The average electron energy is radially invariant
assumption. The third moment is used solely to deduce
value of the axial electric field needed to make the pow
input ~Joule heat! per unit volume equal to the power outp
~collision loss! per unit volume. The advantage of this mod
is its computational simplicity in comparison with the tw
models discussed above.
a-
e
ts
-

y
e
e-
o
l-
a-

ic
y
e
r

l

One disadvantage is the loss of accuracy due to the
cessity of guessing the form of the EEDF used to evalu
the moments. In other words, the EEDF must be assume
evaluate transport coefficients and collision frequencies
pearing in individual terms in the moment equations. E
amples are the~i! one-temperature Maxwellian EEDF@8,9#,
~ii ! two-temperature Maxwellian EEDF@11# ~iii ! Lyagus-
chenko EEDF@12#, and ~iv! 0D Boltzmann EEDF@13#.
Computer codes for some applications have switches
enable any of the above at the whim of the computer anal

There is further loss of accuracy when this model is a
plied to cases with small values ofPR. This happenstance
may be due in part to the difficulty encountered when o
tries to establish thePR range of validity of this method. As
Tsendin@5# points out, this method is valid at smallPR only
when the EEDF is Maxwellian. When the EEDF is oth
than Maxwellian, then it should not be used for values ofPR
smaller than 30, as suggested in Ref.@7#. Table I shows what
happens when this admonition is ignored. This table show
comparison of measurable quantities for the He, Ar, and
positive columns calculated by several different theoreti
methods, including Monte Carlo~MC! @15# and convective
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56 5935NONEQUILIBRIUM POSITIVE COLUMN
scheme~CS! @14,17# methods, which do not start with th
1D Boltzmann equation. In every case, the wall poten
found by the local moment method with a 0D EEDF is s
nificantly higher than wall potential found by other means
result that can be attributed directly to the assumption
radially constant average energy. Curiously, the local m
ment method with a Maxwellian EEDF gives a wall potent
closer to that of MC and CS methods, even though the a
age energy is radially invariant. The low wall potential
this case is due to the low value of average energy neede
provide sufficient ionization when the EEDF is Maxwellia
In addition to a low average energy, the axial field is too lo
for the argon examples with the Maxwellian EEDF listed
Table I.

In view of these inaccuracies, it must be concluded t
the local moment method is inadequate for describing
positive column behavior at lowPR. It is shown in the next
section that these shortcomings are absent from the non
moment method obtained by adding electron energy bala
with radially varying average energy to the local mome
method.

II. NONLOCAL MOMENT METHOD

A. General remarks

This section deals with an extension of the local mom
method, or local model, of the dc positive column to t
nonlocal regime where electrons are no longer in equilibri
with the axial field. The extension is accomplished by
cluding the energy balance equation obtained by taking
third moment of the 1D Boltzmann equation after the tw
term Legendre expansion is made. As with the local mom
method, the EEDF must be assumed in order to evalu
transport coefficients and collision frequencies appearing
the moment equations. A key assumption of the nonlo
moment method is that transport coefficients and collis
frequencies bear the same relation to the average ene
which is a function of the radial position in the nonequili
rium positive column, as they do in the local moment mod
according to a 0D Boltzmann solution. This assumption
tantamount to assuming a form for the EEDF that depe
on the electron density, average velocity, and average en
in a particular way that ensures correct values of trans
quantities when electrons are in equilibrium with the elec
field @18#. This method differs from the local momen
method in that the average energy, transport coefficients,
collision frequencies can vary across the positive colum
even though the axial field does not. This method has sev
advantages over the local moment method, not the leas
which is validity over the entire range ofPR, just as with the
first-principles nonlocal kinetic method. Because the non
cal moment method makes a transition naturally to the lo
moment method at high values ofPR, it is straightforward to
establish thePR range of validity of the local momen
method. This is done in Sec. III.

B. Equations

Formulation of this problem is based on moments of
Boltzmann equation taken after the two-term Legendre
pansion is made. This procedure leads to the following eq
l
-
a
f
-

l
r-

to

t
e

cal
ce
t

t

-
e

-
nt
te
in
al
n
gy,

l,
s
s
gy
rt

c

nd
,

ral
of

-
al

e
-

a-

tions for the dc positive column with the electron gas ch
acterized by particle densityn, particle current densityG,
average energyu, and heat current densityH:

G52“~nD!2mEn, ~1!

“•G5n in, ~2!

H52“~nG!2bEn, ~3!

“•H52G•E2S 2
m

M
nuu1nxVx1n iVi Dn, ~4!

whereD, m, G, andb are transport coefficients defined b
Allis @9#, nu is elastic energy exchange collision frequenc
nx,i is excitation or ionization frequency, andVx,i is the ex-
citation or ionization energy.D and m are the well-known
coefficients of particle diffusion and mobility, respectivel
while Allis @19# calls G andb the coefficients of heat diffu-
sion and thermoelectricity, respectively. The electric fieldE
has two components: the imposed axial fieldEz , which is
independent ofr and z, and the radial space charge fie
Er(r ). The vectorsG andH each have axial and radial com
ponents that vary with radial position.

Ions with zero temperature, mobilitym i , massmi , and
densityni are characterized by the ion momentum balanc

G r52
m i

r

d

dr F r S miG r
2

eni
D G1m iErni , ~5!

where it is assumed thatG ir 5G r , reflecting the assumption
of a steady state. Finally, Poisson’s equation relating the
dial space-charge field to the space-charge density is

1

r

d~rEr !

dr
5

e

e
~ni2n!, ~6!

where e51.6310219 C is the electronic charge ande
58.85310214 C/V/cm is the permittivity.

Equations~1!, ~2!, ~5!, and~6! form the basis of the loca
model with radially invariant average energy, transport co
ficients, etc. Extension of the local model to the nonlo
regime is accomplished by the addition of Eqs.~3! and~4! to
account for the radial heat flow in the electron gas with
dially varying average energy.

The objective of this section is to apply the equatio
given above to the neon positive column investigated
Uhrlandt and Winkler@6#, who applied the nonlocal kinetic
method to a 0.75-Torr neon discharge in a tube of 1.7
radius with a current of 10 mA. They showed that such
discharge operates in the nonlocal regime because the p
expended in collisions is not equal to the power generated
the external field in each volume element of the dischar
On axis, for example, they found that Joule heating amou
to 6.4 mW/cm3, while the power expended in collision
amounts to 16 mW/cm3. To maintain this discharge in th
steady state, a significant amount of energy flow from
outer region of the discharge to the inner region is requir

To reach this objective, the approach taken here is to
sume a form for the EEDF that depends on the electron d
sity, average velocity, and average energy in a particular w
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that ensures correct values of transport quantities when e
trons are in equilibrium with the electric field. In othe
words, transport coefficients are assumed to be function
the radially varying average energy, not of the radially co
stant Ez /N. Still another way of saying this is to say th
transport coefficients are parametrized by the average
ergy, not byEz /N @20#. The parametrization is carried out b
solving the 0D Boltzmann equation and constructing a ta
of transport coefficients and collision frequencies versus
average energy and then solving Eqs.~1!–~6! for the radial
variation of the six quantitiesn(r ), ni(r ), u(r ), G r(r ),
Hr(r ), andEr(r ).

To solve Eqs.~1!–~6! by a Runge-Kutta technique, it i
convenient to eliminateE from Eq. ~3! by means of Eq.~1!
to give

H5
b

m
G1

b

m
“~nD!2“~nG!,

so that

Hr5
b

m
G r1S b

m
2

G

D DD
dn

dr
2nS ]G

]u
2

b

m

]D

]u D du

dr
. ~7!

The first term on the right-hand side represents an ene
flow due to convection. The second term on the right-ha
side represents an energy flow due to diffusion, which can
directed either inward or outward, depending on the rela
magnitudes ofb/m andG/D. When the EEDF is Maxwell-
ian, due to electron-electron collisions, for example, th
b/m2G/D50, resulting in little or no energy flow due t
diffusion or conduction. However, in the case of neon wh
electron-electron collisions are ignored, it will be seen t
the quantityb/m2G/D is positive, so that the energy flow
due to diffusion is directed inward, accounting for the app
ent nonlocal behavior of the low-current neon discharge@21#.
The third term on the right-hand side represents energy fl
due to thermal conduction. The quantity

nS ]G

]u
2

b

m

]D

]u D
is nothing but the thermal conductivity of the electron g
this quantity is positive so that energy flow due to therm
conduction is directed outward in the neon discharge.

The energy balance equation~4! becomes

1

r

d~rH r !

dr
5mnEz

22G rEr2S 2
m

M
nuu1nxVx1n iVi Dn,

~8!

when the relationGz52mnEz is used to eliminateGz . The
second term on the right-hand side of this equation rep
sents a cooling effect due to the radial electron current d
sity flowing against the radial space-charge field. This te
is neglected in the present treatment because it genera
small compared with the termmnEz

2. G r lies betweenm iniEr

andniA22ef/mi , where the space-charge potentialf(r ) is
related toEr by
c-

of
-

n-
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f~r !52E
0

r

Er~r!dr,

depending on whether the ion motion is limited by ion m
bility or by ion inertia. In the mobility-limited case, for ex
ample,G rEr5m iniEr

2, which is small compared withmnEz
2,

except, perhaps, very near the wall.
For clarity, the equation system is repeated here. Th

are six equations to be solved for the six quantitiesn(r ),
u(r ), ni(r ), G r(r ), Hr(r ), andEr(r ). The six equations are

dn

dr
5FD

]

]u S G

D D G21F2
1

D

]G

]u
G r1

1

D

]D

]u
Hr

1S b

m

]D

]u
2

]G

]u D m

D
nEr G , ~9!

du

dr
5FD

]

]u S G

D D G21FG

D

G r

n
2

Hr

n
2S b

m
2

G

D DmEr G ,
~10!

dni

dr
5S miG r

2

eni
2 D 21FG r S 1

m i
1

2min i

e

n

ni
D2

1

r

miG r
2

eni
2niEr G ,

~11!

1

r

d~rG r !

dr
5n in, ~12!

1

r

d~rH r !

dr
5mnEz

22S 2
m

M
nuu1nxVx1n iVi Dn, ~13!

1

r

d~rEr !

dr
5

e

e
~ni2n!. ~14!

C. Boundary conditions

Six boundary conditions are needed to specify a uniq
solution to this set of six first-order equations. By symmet

G r~0!50, Hr~0!50, Er~0!50. ~15!

These conditions ensure that radial gradie
n8(0)5u8(0)50. However, because the right-hand side
Eq. ~11! appears to have a singularity atr 50, conditions
~15! alone do not ensure thatni8(0)50. It is necessary to
apply l’Hôpital’s rule to the right-hand side of Eq.~11! and
impose the condition that the numerator of the result
quantity be zero atr 50 to ensure a zero ion density gradie
on axis@22#. Following this procedure gives

n i0

m i
n0S 11

3

2

n i0

n im

n0

ni0
D2

e

e
~ni02n0!ni050, ~16!

where subscript 0 means evaluated atr 50 and n im
5e/mim i is the ion-neutral momentum-transfer collision fr
quency.

The remaining two boundary conditions are conditions
G r and Hr that must be satisfied at the wall located atr
5R, whereR is the discharge tube radius. These two con
tions follow from the assumption that the wall emits neith
electrons nor electron energy back into the discharge.
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two conditions are derived from the Legendre expansion
the EEDF as follows. The total current of electrons going
the 2r direction at the wall is

G2~R!52pE
0

21E
0

`

mv f ~R,m,v !v2dv dm, ~17!

wherem is not the electron mobility, but the cosine of th
angle betweenv and the direction perpendicular to the wa
If no electrons are emitted by the wall, then the total parti
current directed inward at the wall must be zero. This c
dition is expressed mathematically by the equation

G2~R!52pE
0

21E
0

`

mv@ f 0~R,v !1m f 1r~R,v !#v2dv dm

50. ~18!

Likewise, if no electron energy is emitted by the wall, th
the total heat current directed inward at the wall must
zero. This condition is expressed mathematically by
equation

H2~R!52pE
0

21E
0

`

~mv2/2e!

3mv@ f 0~R,v !1m f 1r~R,v !#v2dv dm50.

~19!

When f 0 is Maxwellian, for example, then these conditio
become

G2~R!5 1
4 n~R!v̄~R!2 1

2 G r~R!50

and

H2~R!5 1
3 n~R!v̄~R!u~R!2 1

2 Hr~R!50,

respectively, wherev̄(R)[A16eu(R)/3pm is the mean
speed. Whenf 0 is not Maxwellian, then the numerical fac
tors 1

4 , 1
3 , and 16/3p are different.

D. Method of solution

The set of first-order ordinary differential equations~9!–
~14! is solved by a Runge-Kutta technique, subject to the
of boundary conditions~15!, ~16!, ~18!, and~19!. Therefore,
starting values for all six dependent variables must be
lected to find a particular solution. Because boundary con
tions ~18! and ~19! are specified at the wall wherer 5R,
values ofu(0) and (dHr /dr) r 50 must be iterated to find the
solution that satisfies them. The latter quantity is changed
iteratingEz . Therefore, the solution procedure can be su
marized as follows:~i! Set initial valuesG r(0)5Hr(0)
5Er(0)50; ~ii ! guess values ofn(0), u(0), andEz ; and
~iii ! solve Eqs.~9!–~14! out to r 5R. If Eqs. ~18! and ~19!
are not satisfied, then the procedure is repeated with
values ofu(0) andEz . Finally, if discharge currentI , de-
fined by the equation

I 52peE
0

R

@m~r !n~r !1m ini~r !#Ezr dr ,
r

e
-

e
e

et

e-
i-

y
-

w

is not equal to the desired value, then the entire proces
repeated with a new value ofn(0). In the present work,
relatively simple expressions for the transport coefficientsm,
D, b, andG as functions ofu are found from a 0D Boltz-
mann solution for the EEDF, as described below.

E. Parametrization of transport coefficients

Transport coefficients and inelastic collision frequenc
are parametrized by the average energy according to
Boltzmann calculations@23#. Because the total cross sectio
for momentum transfer between electrons and neon at
varies approximately as the 0.2 power of electron energy
the range 1–20 eV, the 0D Boltzmann transport coefficie
can be represented approximately by the simple express
mN51.4831023u20.7 V21 cm21 sec21, DN51.2031023u0.3

cm21 sec21, bN52.2031023u0.3 cm21 sec21, and GN
51.3431023u1.3 V cm21 sec21, in this energy range. Thes
values are obtained when the 0Df 0 is substituted in the
recipes for transport coefficients given by Allis@19#. Similar
expressions for neon transport coefficients with slightly d
ferent exponents of average energy are proposed in Ref.@21#.

The corresponding inelastic collision frequencies a
shown in Table II. The first six excited levels of atomic ne
are lumped together to get excitation frequencyñgx . The
density of the lumped excited state is treated in the same
as in Ref.@6#. The ionization cross section of the lumpe
excited state is assumed to be that of Vriens@11#.

F. Results and discussion

1. Comparison with first-principles nonlocal kinetic method

To illustrate, the neon positive column described by U
landt and Winkler@6# is simulated in the present work. Re
sults corresponding to results shown in their Figs. 1, 4,
and 5b are shown in Figs. 1, 2, 3, and 4, respectively. Fig
1 shows remarkably good agreement between the calcul
space-charge potentialf(r ) and the measuredf(r ), which
is assumed as input in Ref.@6#. Figure 2 shows a radia
variation of the electron-ion density, average energy, ra
particle current density, and radial heat current dens
These curves are qualitatively similar to those of Uhrlan
and Winkler, but there are quantitative differences. For
ample, the inward radial heat current densityHr peaks at
about 2031015 V/cm2/sec, whereas the peak value calc
lated by Uhrlandt and Winkler is about 931015 V/cm2/sec.
Figure 3 shows the radial variation of the ionization sour
which includes stepwise as well as direct ionization. T
total ionization source on axis is about

TABLE II. 0D Inelastic rates.

u ~V! ñgx (cm3/sec) ñgi (cm3/sec)

6.0 4.0310214 3.0310222

7.0 5.0310212 7.0310217

8.0 4.5310211 1.2310212

9.0 1.3310210 1.1310211

10.0 2.6310210 4.4310211

11.0 4.5310210 1.0310210

12.0 7.3310210 1.8310210
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31014 cm23 sec21, whereas Uhrlandt and Winkler found
value of about 431014 cm23 sec21. Figure 4 shows the ra
dial variation of the power output per unit volumeL(r ),
consisting of elastic and inelastic collision losses, and
power input per unit volumeP(r ), consisting of Joule heat
ing. Nonlocal behavior is evident in that these two quantit
are not equal in each volume element of the discharge, e
though their volume integrals are equal. As in previous co
parisons, Fig. 4 shows different peak values of Joule hea
and collision loss compared with those in Ref.@6#. The dif-
ferences between all of these results and corresponding
sults of Ref.@6# can possibly be made smaller by using t
same cross sections used in Ref.@6#.

According to Eq.~7!, the radial heat current densityHr is
the sum of three components:Hconv, Hdiff , andHcond. The

FIG. 1. Radial space-charge potential2f(r ). The upper curve
is the measured potential assumed by Uhrlandt and Winkler, w
the lower curve is the calculated output of the present work. T
positive column conditions are 0.75-Torr neon,I 510 mA, andR
51.7 cm.

FIG. 2. Radial variation of the electron properties: electron d
sity n(r ), average energyu(r ), radial current densityG r , and ra-
dial heat current densityHr . Compare with Fig. 4 of Ref.@6#. The
positive column conditions are 0.75-Torr neon,I 510 mA, andR
51.7 cm.
e

s
en
-
g

re-

three components are defined as

Hconv[
b

m
G r ,

Hdiff[S b

m
2

G

D DD
dn

dr
, ~20!

Hcond[2nS ]G

]u
2

b

m

]D

]u Ddu

dr
.

le
e

-

FIG. 3. Radial variation of the ionization rates: one ste
ngi(r )n(r ); two steps,nxi(r )n(r ); total, ngi(r )n(r )1nxi(r )n(r ).
nxi is based on the ionization from the 16.62-eV lumped state w
the parabolic spatial distribution giving the average density equa
1025 times the ground-state density, similar to Ref.@6#, and with
the ionization cross section recommended by Vriens in Ref.@11#.
Compare with Fig. 5a of Ref.@6#. The positive column conditions
are 0.75-Torr neon,I 510 mA, andR51.7 cm.

FIG. 4. Radial variation of the power input due to Joule heat
and the power output due to collisional losses for the nonlocal m
ment method. Compare with Fig. 5b of Ref.@6#. The positive col-
umn conditions are 0.75-Torr neon,I 510 mA, andR51.7 cm.
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56 5939NONEQUILIBRIUM POSITIVE COLUMN
Figure 5 shows the three components ofHr plotted versusr .
Note that the convective component is small compared to
other two components, which nearly cancel each other. Id
tification of radial heat flow as being composed of thr
components is not done in Ref.@6#, so a comparison of thes
quantities cannot be made here.

Generally speaking, good qualitative agreement betw
results of the nonlocal moment method presented here
the results of the first-principles nonlocal kinetic method
Uhrlandt and Winkler is demonstrated. Proof is given
Table III, in which a comparison of measurable quantities
made for the four methods listed in Sec. I B: method 1,
first-principles nonlocal kinetic method; method 2, the no
local kinetic approximation method; method 3, the local m
ment method; and method 4, the nonlocal moment meth
Entries in the second row of Table III are the results
Bailey and Bennett@24#. Entries in the third row of Table III
are obtained by solving the local moment model construc
from the nonlocal moment model by settingdu/dr50 in Eq.
~10!, solving the resulting equation forHr , substituting this
Hr in Eq. ~9! to give the familiar equation

dn

dr
52

1

D
G r2

m

D
nEr , ~21!

FIG. 5. Radial variation of the individual components of he
flow. The net heat flowHr is equal to the sumHconv1Hcond

1Hdiff . The magnitude of the convective contribution to heat flo
is on the order of 1% of the conductive and diffusive contributio
The positive column conditions are 0.75-Torr neon,I 510 mA, and
R51.7 cm.
e
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d

and solving this equation simultaneously with Eqs.~11!,
~12!, and ~14! while assuming radially invariant transpo
coefficients and collision frequencies. This table shows t
calculated measurable quantities from the nonlocal mom
method agree fairly well with those of the nonlocal kine
method, while those of the other two methods do not ag
as well. In particular, the axial electric field is almost twic
as large for the local moment method and the wall poten
is about three times larger as a consequence of average
ergyu58.2 V being constant across the positive column.
mentioned above, it is possible that closer agreement
tween results of Uhrlandt and Winkler’s 1D Boltzmann s
lution and those of the present nonlocal moment solution
be obtained by using the same cross sections they use.

The collision lossL(r ) and Joule heatP(r ), which are
equal for the local moment method, are compared with th
for the nonlocal moment method in Fig. 6. The half-width
the local momentL(r ) is significantly larger than that of the
nonlocal momentL(r ) becauseu58.2 V is constant across
the positive column in the local moment calculation, where
u varies radially in the nonlocal moment calculation
shown in Fig. 2.

2. Other comparisons

In the preceding subsection, the nonlocal moment met
presented in this article is shown to be in good qualitat

t

.

FIG. 6. Radial variation of the power input due to Joule heat
and the power output due to collisional losses for the local mom
method. Dashed curves are the same as in Fig. 4. The pos
column conditions are 0.75-Torr neon,I 510 mA, andR51.7 cm.
t
t

TABLE III. Comparison of calculated measurable quantities.Ez andf(r ) are inputs to the 1D Boltzmann
solution, but are calculated outputs in other methods;n̄5(2/R2)*n(r )r dr ; 2fw is the wall potential
measured relative to the positive column axis;Jw is the ion current density measured at wall;PR
51.3 Torr cm.

Method
n(0)

(cm23)
n̄

(cm23)
u(0)
~V!

L(0)
(V cm23 sec21)

Ez

~V/cm!
fw

~V!
Jw

(mA/cm2) Source

1 5.83109 2.73109 7.4 1.031017 2.17 20.0 9.1 @6#

2 4.53109 1.93109 7.5 1.231017 2.53 22.1 7.2 @24#

3 4.43109 1.33109 8.2 1.031017 4.25 58.9 14.6 presen
4 5.63109 2.03109 8.5 2.031017 2.24 19.9 9.2 presen
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5940 56J. H. INGOLD
agreement with the first-principles nonlocal kinetic metho
Similarities between the nonlocal moment method formu
tion and that of other approximate methods have alre
been cited @18,20,21#. The procedure of parameterizin
transport coefficients and collision frequencies by the av
age energy instead of byEz /N in order to apply momen
equations to nonequilibrium problems in gaseous electro
is widely used. An early example applying this procedure
a case of spatial nonequilibrium is@21#. Subsequent ex
amples include studies of spatial nonequilibrium in the ca
ode fall @20#, temporal nonequilibrium in pulsed fluoresce
lamps @25#, nonequilibrium motion in time-of-flight experi
ments @26#, and spatial nonequilibrium near absorbin
boundaries@18,27#. In @21#, spatial nonequilibrium in a neon
positive column withPR51.4 Torr cm is studied with a for-
mulation that includes moment equations similar to Eqs.~9!
and ~10! and simplifying assumptions of charge neutral
n5ni and f 0(e)}exp@2(e/u)2#. It is suggested in@21# that
sometimes a good approximation is obtained by setting b
G r andHr given by Eqs.~1! and ~3!, respectively, equal to
zero and then eliminatingEr from the resulting equations t
get

1

b

d~Gn!

dr
5

1

m

d~Dn!

dr
.

This can be a useful approximation when the momentu
transfer collision frequencynm(e) is expressible asnm(e)
}e ( l 11)/2 because transport coefficientsm, D, b, andG are
then proportional touj , where j 52( l 11)/2, (12 l )/2, (1
2 l )/2, and (32 l )/2, respectively, allowing analytic integra
tion of the equation above to giveu/u05(n/n0)d, where the
constantd is given by

d5DS b

m
2

G

D D FuS ]G

]u
2

b

m

]D

]u D G21

.

The 0D transport coefficients given above in Sec. II E cor
spond tol 50.4 andd50.4. The relationu/u05(n/n0)0.4 is
satisfied approximately by the nonlocal moment method
lutions for n(r ) andu(r ) shown in Fig. 2, even though th
approximationHr50 is not satisfied as well as the approx
mation G r50, as pointed out in Ref.@6#. In contrast,d5
22 whenl 52 3

2 , consistent with the conclusion reached
Sec. II F 3 namely, thatu increases with increasingr when
l ,21.

In addition to these similarities, there are some interes
differences. For example, it was found in@28# that average
energyu(r ) increases with increasingr in He/Hg and Ar/Hg
plasmas withPR'1 Torr cm. This result implies that th
second derivative ofu with respect tor is greater than 0 on
axis. However, Eq.~10! predicts the opposite for all plasma
with a momentum-transfer collision frequencynm(e) that in-
creases with increasing electron energye in the energy range
of interest, which category includes He/Hg and Ar/Hg m
tures. By differentiating Eq.~10! with respect tor and evalu-
ating the result atr 50, the following expression is found:
.
-
y

r-

cs
o

-

th

-

-

-

g

Fd2u

dr2G
r 50

5FD
]

]u S G

D D G
r 50

21 F G

Dn

dG r

dr
2

1

n

dHr

dr

2S b

m
2

G

D Dm
dEr

dr G
r 50

.

When the first derivatives appearing in this expression
eliminated by means of Eqs.~12!–~14! and ~16! and when
n i /n im!1, then this equation becomes

Fd2u

dr2G
r 50

5
1

2 FD
]

]u S G

D D G
r 50

21 H 2
m

M
nuu1nxVx

1n iFVi1
G

D
2S b

m
2

G

D D mn

m ini
G2mEz

2J
r 50

.

The right-hand side of this equation is dominated by the te
proportional to the ratio of electron and ion mobilitie
m/m i , which is on the order of 100 for He/Hg and 1000 f
Ar/Hg. Therefore, the right-hand side is negative beca
b/m2G/D.0 for both gas mixtures. The reader is r
minded that the expression foru9(0) given above is exac
when the exact expression forf 0(r ,e), like the one obtained
in Ref. @6#, for example, is used to calculate transport co
ficients. It is possible that the result found in@28# is due to
the approximate way in which radial effects are included
the Boltzmann equation.

3. Mechanism causing radial nonequilibrium

The prevalent speculation about the mechanism resp
sible for radial nonequilibrium resulting in excess ionizati
on axis in lowPR plasmas focuses on the qualitative arg
ment that the radial space-charge field accelerates inw
bound electrons sufficiently to cause higher rates of inela
collisions than encountered in radially uniform plasmas
the same value ofEz /N. If this speculative mechanism is th
correct one, then it should occur whenf 0 is Maxwellian
@nm(e) independent ofe# or sub-Maxwellian@nm(e) decreas-
ing with increasinge# as well as when it is super-Maxwellia
@nm(e) increasing with increasinge#. However, the average
energy is radially invariant, or nearly so, whenf 0 is Max-
wellian and increases with increasingr when f 0 is sub-
Maxwellian, according to the analysis of Bernstein and H
stein @4#. Therefore, it appears that the speculation
incorrect. Instead, the mechanism responsible for excess
ization on axis in a lowPR plasma with super-Maxwellian
f 0 appears to be the inward-bound heat diffusion curr
densityHdiff , defined in Eq.~20!, which carries heat from
the outer region of the positive column where Joule h
P(r ) is larger than the collision lossL(r ) to the inner region
where P(r ),L(r ), thus augmenting the Joule heat gen
ated on axis by the external field. Whenf 0 is sub-
Maxwellian, thenHdiff.0, the average energy increases w
increasingr , and there is an ionization deficit on axis,
contradiction to the speculative mechanism mention
above.

The direction of Hdiff depends on the quantityb/m
2G/D. For a momentum-transfer collision frequencynm(e)
independent of electron energye ~Maxwellian f 0!, this quan-
tity is zero. For nm(e) increasing with increasinge, this
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quantity is positive, causing inward heat diffusion and
negative gradient in the average energy. Fornm(e) decreas-
ing with increasinge, it is negative, causing outward he
diffusion and a positive gradient in the average energy. E
coefficient in this expression is determined primarily by t
behavior of bulk electrons, not that of tail electrons. Inwa
heat flow, for example, causes additional heating over
above Joule heating, increasing the average energy in
central region of the positive column over and above
corresponding equilibrium value. The shape off 0 changes
accordingly; there are fewer bulk electrons and more
electrons, causing excess ionization over and above the
responding equilibrium value@29#. It does not take much
additional heating to give significantly more ionization.
the nonequilibrium neon positive column discussed at
beginning of this section,Ez /N is 8.4 Td andu(0)58.5 V,
whereasu57.4 V in equilibrium atE/N58.4 Td. The cor-
responding difference in the one-step ionization frequenc
a factor of about 350 and the difference in excitation f
quency is a factor of about 5 for these two values of aver
energy. Of course, this argument is qualitative because
based on the 0D Boltzmann solution forf 0 . However, the
same general result can be expected when the exactf 0 of @6#
is used to calculate transport coefficients and collision
quencies.

III. TRANSITION FROM NONEQUILIBRIUM TO
EQUILIBRIUM AS PR INCREASES

The objective of this section is to derive a criterion th
defines a range of pressure for which it can be assumed
average energyu is radially invariant, i.e., a range of pres
sure for which the local moment method, or local model, c
be applied. This means that the power expended in collis
must be equal to the power generated by the external fiein
each volume element of the discharge. The approach taken to
reach this objective is to assume thatu is constant and then
to derive a parametric relationship from the energy bala
~13!, which must be obeyed if this assumption is to be va

Whenu is constant Eq.~7! becomes

Hr5
b

m
G r1S b

m
2

G

D DD
dn

dr
,

whence

1

r

d~rH r !

dr
5

b

m
n in1S b

m
2

G

D D D

r

d

dr
r

dn

dr
. ~22!

The first term on the right-hand side, (b/m)n in, represents
the energy needed to speed up newly created electrons t
average energy of the electron gas, so it could conceiva
be considered part of the total energy expended in collisio
The second term on the right-hand side is not so eas
interpret; it represents a flow of energy due to diffusio
which can be directed either inward or outward, depend
on the relative magnitudes ofb/m andG/D. After elimina-
tion of Hr from Eq. ~13! by means of Eq.~22!, the energy
balance equation reads
h

d
he
e

il
or-

e

is
-
e
is

-

t
at

n
ns

e
.

the
ly
s.
to
,
g

b

m
n in1S b

m
2

G

D D D

r

d

dr
r

dn

dr

5mnEz
22S 2

m

M
nuu1nxVx1n iVi Dn. ~23!

The essence of the local model, embodied in the assu
tion that average energyu is radially invariant, is the condi-
tion that the quantity on the left-hand side of Eq.~23! be
small compared with either term on the right-hand side. S
plification is obtained by invoking the ambipolar limit, i
which case Eq.~21!, combined with the radial ion curren
densityG r5m inEr gives the well-known Schottky equatio

1

r

d

dr
r

dn

dr
1

n i

Da
n50, ~24!

where Da is the classical ambipolar diffusion coefficien
Upon elimination of the derivative term from Eq.~23! by
means of Eq.~24!, the following condition is derived:

ñ iF S b

m
2

G

D D D

Da
2

b

mG S 2
m

M
ñuu1 ñxVx1 ñ iVi D 21

!1,

~25!

whereñ j[n j /N, with N being the gas density. Note that th
ratio does not depend explicitly on the gas density; it d
pends primarily on the isotropic part of the EEDF, denot
by f 0 . It can be assumed that the local model is valid whe
ever this inequality is satisfied. Note also from Eq.~23! that
satisfaction of inequality~25! implies

mEz
252

m

M
nuu1nxVx1n iVi ,

which, in turn, impliesf 0 and its moments, such as the a
erage energyu and characteristic energyuk , are radially
invariant, consistent with the definition of thelocal model.

When f 0 is Maxwellian, due to a high electron densit
for example, the term proportional toD/Da5m/m i on the
left-hand side of Eq.~25! is identically zero becauseb/m
5G/D. In this case, the ratio~25! is small for most labora-
tory discharge conditions, implying that the local model
valid wheneverf 0 is Maxwellian.

When f 0 is not Maxwellian, thenb/mÞG/D and ratio
~25! is not small for conditions normally found in low
pressure dc positive columns due to the magnitude of
factor D/Da in the numerator. This conclusion can be illu
trated by consideration of a dc positive column discharge
neon similar to that discussed in Sec. II. The variation
ratio ~25! with average energy is shown in Table IV for neo
along with corresponding values ofPR.

TABLE IV. Ratio ~25!.

u ~V! Ratio PR ~Torr cm!

1.6 0.033 95
1.7 0.081 60
1.8 0.190 39
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According to this table, the average energy must be be
1.7 V for the local model to be valid. The value ofPR at
u51.7 V is found as follows. The Schottky condition is

n i5
Da

L2 5
m iuk

L2 ,

whereL5R/2.4 is the characteristic diffusion length for
cylinder of radiusR. In terms ofPR, this equation is

PR5
2.4

N0
F m̃ iuk

ñ i
G1/2

, ~26!

where N053.5331016 cm23 is the gas density at 1 Tor
pressure andm̃ i[m iN51.1331020 V21 cm21 sec21 is the
reduced mobility of Ne1 in Ne @30#. At u51.7 eV, the total
ionization rateñgi1ñxi52.1310216 cm3/sec and the value
of uk is 1.44 V. Substituting these values into the right-ha
side of Eq. ~26! gives PR560 Torr cm. For comparison
Busch and Kortshagen@7# found from a numerical solution
of the 1D Boltzmann equation that a gas density of
31018 cm23, equivalent to 28 Torr, is necessary to ensu
that average energy in an argon positive column of 1
radius is radially invariant over most of the discharge cr
section.

The qualitative discussion given above can be made m
quantitative by solving Eqs.~9!–~14! at higher pressure. A
pressure of 50 Torr is chosen for illustration. At this pre
sure, the electron density needed to give a current of 10
is an order of magnitude higher than at the pressure of 0

FIG. 7. Radial variation of the electron properties: electron d
sity n(r ), average energyu(r ), radial current densityG r , and ra-
dial heat current densityHr . The positive column conditions ar
50-Torr neon,I 510 mA, andR51.7 cm. Note that some scales a
different from those in Fig. 2.
w

d

e

s

re

-
A
5

Torr discussed above. Therefore, it is reasonable to ass
charge neutrality all the way to the wall, avoiding the nec
sity of solving Poisson’s equation. In addition, ion inert
terms can be neglected, avoiding the necessity of solving
ion momentum balance equation. Instead, the relationG r
5m inEr can be used. These simplifications reduce the se
six ordinary differential equations to a set of four ordina
differential equations: Eqs.~9!, ~10!, ~12!, and~13!.

The solution of these equations for the macroscopic pr
erties is shown in Fig. 7 for 50-Torr neon pressure. Note t
the scales for the electron density and electron current d
sity are different from those in Fig. 2. Note also that t
electron heat current density peaks at a value that is abou
order of magnitude lower than that in Fig. 2. Finally, no
that the average energy is practically constant over mos
the positive column cross section. The corresponding s
tions for the collision lossL(r ) and Joule heatingP(r ) are
shown in Fig. 8. Note that they are almost equal at e
radial position, indicating that the 50-Torr neon positive c
umn can be described adequately by the local model. N
also that the value of the quantityP(0)/L(0)21, which is a
measure of departure from locality, is20.08.

A comparison of measurable quantities for the local m
ment method and the nonlocal moment method at 50 Tor
shown in Table V. This table shows that poor agreemen
obtained for wall potentialfw even at 50 Torr, while there is
little difference in other measurable quantities.

-

FIG. 8. Radial variation of the power input due to Joule heat
and the power output due to collisional losses for the nonlocal m
ment method. The quantityP(0)/L(0)21 is a measure of the de
parture from equilibrium. The positive column conditions are 5
Torr neon,I 510 mA, andR51.7 cm.
TABLE V. Comparison of calculated measurable quantities.n̄5(2/R2)*n(r )r dr ; 2fw is the wall
potential measured relative to the positive column axis;Jw is the ion current density measured at wall;PR
585 Torr cm.

Method
n(0)

(cm23)
n̄

(cm23)
u(0)
~V!

L(0)
(V cm23 sec21)

Ez

~V/cm!
fw

~V!
Jw

(mA/cm2)

local moment 5.531010 2.031010 1.4 1.031017 5.4 14.1 0.4
nonlocal moment 6.031010 2.131010 1.4 1.231017 5.3 5.1 0.3
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TABLE VI. PR ~in units of Torr cm! range of validity.

Method PR,1 1,PR,10 10,PR,100 100,PR

first-principles nonlocal kinetic yes yes yes yes
nonlocal kinetic approximation yes ? no no
local moment no no ? yes
nonlocal moment yes yes yes yes
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A word of caution is necessary: At 50 Torr pressure, m
of the collision loss is due to elastic collisions, so there m
be some gas heating. The risedTg in gas temperatureTg in
the case of 50 Torr can be estimated from the formula

dTg

Tg
5

L~0!L2

kTg
,

whereL(0)51.231017 V cm23 sec21519.2 mW/cm3 is the
collision loss on axis,L5R/2.4 is the characteristic diffu
sion length for a cylinder of radiusR, and k54.553
1024 W/cm/deg is the thermal conductivity of neon@31#.
For R51.7 cm andTg5273 K, this equation givesdTg
521 K. For higher pressure,dTg /Tg will be correspond-
ingly higher if the currentI is held fixed at 10 mA becaus
L(0) will be higher.

IV. SUMMARY

In this work a moment theory of electron transport in
strong electric field is applied to the stationary nonequil
rium positive column. The theory uses equations describ
the conservation of electron density, momentum, and ene
The importance of the electron energy balance, which is
quently ignored in positive column analysis, is emphasiz
The balance equations are derived by taking moments of
Boltzmann equationafter the two-term Legendre expansio
of the EEDF is made, a procedure that is not generally
lowed, but is necessary for consistency and accuracy w
dealing with real gases.

Theoretical justification of the method is given in prev
ous work@18#, where two important features of the metho
are emphasized: ~i! The method gives exact results for th
momentum and energy of electrons under equilibrium c
ditions in a strong electric field, unlike theories that assu
that the EEDF has a simple form, such as a Maxwellian,
~ii ! the method provides an accurate description of elec
flow when there are significant temporal and spatial dep
tures from equilibrium, also unlike theories that assume t
the EEDF has a simple form, such as a Maxwellian.

The moment equations of this method contain transp
coefficients and collision frequencies that are parametri
by the average energy according to numerical solutions
the 0D Boltzmann equation for different values ofEz .
Model results in the nonequilibrium regime agree clos
with published results of a numerical solution of the 1
Boltzmann equation, including results for radial heat flow
the electron gas with radially varying average energy. I
shown that three separate processes account for radial
flow: convection, conduction, and diffusion. In the e
ample chosen for illustration of the method, the convect
component is small, while the conduction and diffusion co
t
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ponents are large and opposite in sign, nearly canceling e
other.

The parametrization of transport coefficients and collis
frequencies by the average energy instead ofEz is a key
assumption of the method described in this paper. While
assumption ensures accuracy of the method for high va
of PR where equilibrium conditions prevail, accuracy at lo
values ofPR where nonequilibrium conditions prevail ca
be questioned. It is the opinion of this author, however, t
the accuracy of the method for low values ofPR is very
good provided that 0D transport coefficients and collisi
frequencies are expressible as single-valued functions of
erage energy.

V. CONCLUSIONS

It is concluded from this work that positive column b
havior at any pressure can be described adequately by
ment equations when radial heat flow in the electron ga
taken into account and when electron transport coefficie
and relevant collision frequencies are assumed to be rel
to the radially varying average energy according to 0D Bo
zmann calculations. It is also concluded that the formulat
presented here predicts a pressure boundary above whic
local model is valid. For the neon positive column with 1
cm radius studied in this paper, this pressure boundar
estimated to be in the neighborhood of 35 Torr, orPR
560 Torr cm. The solution of the nonlocal moment form
lation at a pressure of 50 Torr, wherePR585 Torr cm, sup-
ports this estimate, showing that average energy is cons
within 7% over the central 80% of the positive column.

The PR range of validity of the four theoretical method
discussed in this article is given in Table VI. The limits
the four ranges ofPR are arbitrary. The question mark
mean that the method can be used in this particular rang
PR, but it must be recognized that results are inaccurate
some degree or another. ForPR.100, the radial variation in
gas temperature should be taken into account.
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