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Nonequilibrium positive column
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The dc positive column is modeled with a system of balance equations based on moments of the radially
dependent Boltzmann equation taken after the two-term Legendre expansion of the electron energy distribution
function is made. The importance of the electron energy balance equation, which is frequently ignored in
positive column analysis, is emphasized. A key assumption is that electron transport coefficients and collision
frequencies in the nonequilibrium regime have the same relation to the average energy as in the equilibrium
regime, according to a zero-dimensional Boltzmann solution for a particular value of average energy. Because
of this assumption, the model makes a smooth transition to the traditional equilibrium model with radially
constant average energy at sufficiently high pressure. Model results in the nonequilibrium regime agree closely
with published results of a numerical solution of the one-dimensional Boltzmann equation, including results for
radial heat flow in the electron gas with radially varying average energy. It is shown that three separate
processes account for radial heat flow: convection, conduction, and diffusion. In the example chosen for
illustration of the method, the convection component is small, while the conduction and diffusion components
are large and opposite in direction, nearly canceling each diB&063-651X%97)00311-5

PACS numbd(s): 51.50+v, 52.25.Fi, 52.80-s

[. INTRODUCTION “the electron energy relaxation length is small compared
with the macroscopic length scale, ... .” To put this conclu-
. sion in perspective, consider a neonlike gas with an atomic

The consensus throughout the period 19201970 appeaggass of 20 amu and electron-atom momentum-transfer cross
to be that the electron energy distribution functi&EDF) in sectionQ,, of 2.6 A2. Blank’s condition expressed in math-
the dc positive column is Maxwellian and that the averagésmatical form isP R>0 283/M/mQ. =21 Torr cm, where

. . . . . : ea '

energy of the_ elect_rons is radially invariant. This CONSeNSU$ s the gas pressure in ToR,is the positive column radius
is supported in review articles by Druyvesteyn and Penning, .y M/m is the mass ratio of atoms and electrons, and
[1] and Francig2] in which positive column pedagogy is ¢ s expressed in A It is shown later in the present article
based on M_axwelllan EEDF's, althc_)ugh the_poss_lblhty of that the value ofPR must be in the range 50—100 Torr cm
non-Maxwellian EEDF’s albw currentis recognized in both for the assumption of radially invariant transport coefficients

review artlcles._ Direct consequences of the Maxwelllanand collision frequencies in a neon positive column to be
EEDF assumption are théi) the average energy, transport valid

coefficients, and collision frequencies are radially invariant; . _

(ii) the power input per unit vglume due to Joule r):eating ang Evidently, WhenPR<0'_283VM/eral_’ the local model

the power dissipated per unit volume due to elastic and iniS not valid. It is argued ir{4] that radial effects become
elastic collisions are equal in each volume element of thdmportant at low pressure, causing electron properties such
positive column; andiii ) radial effects such as heat flow are S average energy and axial drift velocity to have significant
negligible. A positive column having these characteristics igadial variation. In this case, transport coefficients and colli-
said to be operating in thiocal regimebecause electron Sion frequencies cannot be parametrized by the axial electric
properties are in equilibrium with the axial electric field in field as in a OD Boltzmann calculation because the axial
each volume element. But what about other EEDF forms? IElectric field is independent of radial position. A positive
transport coefficients and collision frequencies are radiallycolumn having these characteristics is said to be operating in
invariant, then they can be parametrized by the axial electrithe nonlocal regimeRadial terms must be taken into account
field as in a zero-dimensiong0D) Boltzmann calculation, in solving the Boltzmann equation, meaning that a 1D
leading to an improvement over the Maxwellian EEDF as-Boltzmann solution is required in the nonlocal regime. Inci-
sumption. Strictly speaking, when electron-electron colli-dentally, the wordslocal and equilibrium are used inter-
sions can be ignored, then a Maxwellian EEDF results onlychangeably in the present article, as are the wofdocal
when the electron-atom momentum-transfer collision fre-and nonequilibrium

guency is independent of electron energy. Realizing that real In an important series of papers beginning in 1974, Tsen-
gases do not have this kind of collision frequency, BIgBk din [5] extended the positive column work begun by Bern-
asks under what conditions can it be assumed that positivétein and Holstein and elucidated further by Blank. Tsendin
column transport coefficients and collision frequencies arénd followers cite several features of the nonlocal model that
radially invariant, similar to conditions found in a drift tube are different from those of the local modei) The Boltz-
experiment. In agreement with Bernstein and Holsfdih ~ mann relation between the electron dengiifr), space-
Blank concludes that this assumption is valid for an energy<harge potential(r), and electron temperatugeno longer
dependent momentum-transfer collision frequency wherolds, i.e.,n(r)#n(0)exd¢(r)/6]; (ii) there is a significant

A. General remarks
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radial variation in the average energy of electrons, hence iRPoisson’s equation and the ion momentum balance equation
transport coefficients and collision frequenci@s) likewise, are not solved simultaneously with the 1D Boltzmann equa-
there can be a significant difference between the power inputon. Uhrlandt and Winkler find that all electron properties
by Joule heating and the power dissipation due to collisionsary with radial position and on axis there is a large differ-
in a given volume element of the dischardi;) to account ence between Joule heat input per unit volume and collision
for (iii), a significant amount of heat must flow inward in the loss per unit volume. Results of the nonlocal moment
electron gas; an@v) the wall potential relative to axis value method described in the present paper are compared with
is much less. These differences are corroborated by recenthgsults of Uhrlandt and Winkler in Sec. Il, with very good
published numerical solutions of the 1D Boltzmann equatiormgualitative agreement.
[6]. Therefore, it appears that the traditional local model is Finding solutions at several different valuesRiR, Busch
inadequate aPR values on the order of 10 and smaller. and Kortshagen7] find a radial variation in the electron
The purpose of this article is to show that traditional localproperties similar to that found by Uhrlandt and Winkler for
theory of the dc positive column can be extended to thevalues ofPR on the order of unity. FoP R=28 Torr cm and
nonlocal regime. In Sec. Il the traditional local momentabove, however, Busch and Kortshagen find that the average
model with radially invariant average energy is extended tcelectron energy is radially invariant except very near the wall
the nonlocal regime by including the electron energy balancef the positive column, which suggests that the positive col-
equation, which accounts for radially varying average enumn operates in the local regime at this and higher values of
ergy, achieving very good qualitative agreement with Ref.PR. It is shown in Sec. Il of this article that the nonlocal
[6]. The extended formulation is based on moments of thenoment method makes a smooth transition to the local mo-
1D Boltzmann equation taken after the two-term Legendrement method at sufficiently high values BfR, thus estab-
expansion is made. In Sec. Ill the boundary between locdishing the boundary between them.
and nonlocal regimes is established by starting with the tra- The advantage of the nonlocal kinetic method is accurate
ditional model extended as described above, then assumirglculation of the important physical processes taking place
that average energy is radially invariant, and then deriving @n the positive column. A disadvantage is its complexity,
relationship that must be satisfied if this assumption is to bavhich makes it computationally intensive, especially when
valid. In this way, a pressure boundary between local andPoisson’s equation and electron-electron collisions are taken
nonlocal behavior is defined. into account. Perhaps it is for this reason that the method is
just now coming into use.

B. Brief review of 1D Boltzmann methods

. . . 2. Nonlocal kinetic approximation method
Before turning to the subject of the present article, the

nonlocal moment method, it is instructive to review 1D Bolt- ~ The nonlocal kinetic approximation meth¢d,5] is also
zmann methods in use today for analyzing the dc positivdased on the two-term Legendre expansion of the EEDF.
column. Methods that do not start with the 1D BoltzmannHowever, the solution of the 1D Boltzmann equation fgr
equation and the two-term Legendre expansion will not beandf; is avoided by assuming further thi andf; can be
discussed. Those that do can be divided arbitrarily into fouexpanded according to the scheme

categories{i) nonlocal kinetic method, valid at afPR; (ii)

nonlocal kinetic approximation method, valid at |oRR; for.€) =fool€) *Tou(r,e)+---

(iii ) local moment method, valid at highR, but often used
at low PR; and (iv) nonlocal moment method, valid at all
P_R. Thg first three me_thogis are de.scribed. t_>riefly below iNypere the total energy=2mu2—ed(r) andfy, is given by
this section; the fourth is discussed in detail in Sec. Il.

fl(rif):fl()(r15)+f11(r!6)+"' y

the OD Boltzmann equation obtained from the 1D Boltzmann
equation by radially averaging each term, while the radial
component off,(r,€) is taken to be zero. The results are

The nonlocal kinetic method is a first-principles methodsimilar to those of the first-principles method at low values
that is valid at all values oP R for which the 1D Boltzmann of PR, but start diverging ned? R=1. An advantage of this
equation based on the two-term Legendre expansion of thewodel is that it is not as computationally intensive as the
EEDF is valid. The EEDF is denoted Ifyr,v) and the two- first-principles method. A disadvantage is that its validity is
term expansion is restricted to small values d*R.

1. Nonlocal kinetic method

f(rv)="fo(r,v)+v v-fi(r,v). 3. Local moment method

The local moment method includes the classical ambipo-

Measurable properties of the positive column are calculatetar diffusion theory of Schottk{8] and the free-fall theory of
directly from fy andf;. Tonks and Langmuif9]. This method is based not on the

A prime example of this method was published recentlysolution of the 1D Boltzmann equation, but on moments of
by Uhrlandt and Winklef6]. In this reference, the 1D Bolt- it, moments of either the pristine 1D Boltzmann equation or
zmann equation is solved numerically after the two-termthe equations fofy, andf;. A key assumption of this method
Legendre expansion is made. The radial space-charge poteis- that electrons are iequilibrium with the axial electric
tial distribution and axial field taken from measurements in dield, implying that the energy imparted to the electrons by a
neon positive column wittPR=1.3 Torrcm and current  steady, uniform field is exactly balanced by energy lost in
=10 mA are assumed in the calculation. In other wordsglastic and inelastic collisions with heavy particieseach
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TABLE I. Comparison of the local moment method with other methaus.(2/R?) [n(r)r dr; v;
=(2R®) fn(r)v,(r)r dr/n; — ¢, is the wall potential relative to the axis value.

E, bw n(0) Vi
Gas type Method  (V/iem) (V) (10¥cem™3)  (10° sec?) P2 Ref.
Helium Nonloca?
PR=0.045 Torrcm MC
=10 mA CS 48 52 6.0 450 Yes [14]
R=1mm Local 00 39 84 11 400 Yes [13]
Local maX 41 81 11 400 Yes [13]
Argon Nonlocal 12 15 No [16]
PR=0.85 Torr cm MC 12 18 No [15]
n=1x10cm™3 CS 11 17 2.6 1.1 No [17]
R=1cm Local OD 15 52 2.5 2.2 Yes [13]
Local max 1.5 13 2.5 0.55 Yes [13]
Argon Nonlocal 6 16 No [16]
PR=0.28 Torr cm MC 6 17 No [15]
n=1x10"cm™3 CSs 6.3 17 2.2 3 No [17]
R=1cm Local 0D 7.4 53 2.3 3.5 Yes [13]
Argon Nonlocal 1.4 24 No [16]
PR=0.0085 Torrcm MC 1.4 24 No [15]
n=1x10%cm™3 CS 1.4 24 6.7 No [17]
R=1cm Local 0D 0.9 64 2.1 5.1 Yes [13]
Local max 0.5 29 1.9 3.2 Yes [13]
Neon Nonlocal 2.7 41 No [5]
PR=0.1 Torrcm MC
=10 mA CS
R=1cm Local 0D 25 59 0.33 7.9 Yes [13]

@es in this column means that Poisson’s equation is solved self-consistently with equations of motion, etc.,
to give the radial potential distribution. No means that either the radial potential distribution is assumed or the
plasma(ambipolaj approximationn(r)=n;(r) is assumed.

®Nonlocal means the nonlocal kinetic approximation method.

‘Local OD means the local moment method with OD Boltzmann EEDF.

docal max means the local moment method with Maxwellian EEDF.

volume element of the discharglh mathematical terms, One disadvantage is the loss of accuracy due to the ne-
equilibrium implies that spatial and temporal derivatives of cessity of guessing the form of the EEDF used to evaluate
the EEDF can be ignored when solving the Boltzmann equathe moments. In other words, the EEDF must be assumed to
tion. The steady, uniform motion of electrons under thesgyajuate transport coefficients and collision frequencies ap-
conditions is accurately described by transport Coeff'c'e”tﬁearing in individual terms in the moment equations. Ex-

an(_j collision frequenqes, Wh'Ch.' by custom, are paramIamples are théi) one-temperature Maxwellian EEOB,9],
etrized byE, /N, the ratio of the axial electric field to the gas (i) two-temperature Maxwellian EEDEL1] (i) Lyagus-

density[10]. .
Most theoretical treatments of the positive column toda chenko EEDF[12], and (iv) OD Boltzmann EEDF{13].

y L .
can be classified in this category. Furthermore, this is theComputer codes for some applications have swiiches that

method universally chosen for pedagogical purposes in re€nabPle any of the above at the whim of the computer analyst.
view articles and books on the positive column. The first two _ ' n€re is further loss of accuracy when this model is ap-
moments are used in conjunction with ion momentum balPliéd to cases with small values &fR. This happenstance
ance and Poisson’s equation to form a complete set of equii@y be due in part to the difficulty encountered when one
tions to be solved for the radial variation of the electrontries to establish th®R range of validity of this method. As
density, ion density, radial current density, and radial electrictsendin[5] points out, this method is valid at sm&R only
field. The average electron energy is radially invariant bywhen the EEDF is Maxwellian. When the EEDF is other
assumption. The third moment is used solely to deduce ththan Maxwellian, then it should not be used for value® &
value of the axial electric field needed to make the powesmaller than 30, as suggested in R&]. Table | shows what
input (Joule heatper unit volume equal to the power output happens when this admonition is ignored. This table shows a
(collision losg per unit volume. The advantage of this model comparison of measurable quantities for the He, Ar, and Ne
is its computational simplicity in comparison with the two positive columns calculated by several different theoretical
models discussed above. methods, including Monte CarlMC) [15] and convective
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scheme(CS) [14,17] methods, which do not start with the tions for the dc positive column with the electron gas char-
1D Boltzmann equation. In every case, the wall potentialacterized by particle density, particle current density’,
found by the local moment method with a OD EEDF is sig-average energy, and heat current density:

nificantly higher than wall potential found by other means, a

result that can be attributed directly to the assumption of I'=—-V(nD)—uEn, 1)
radially constant average energy. Curiously, the local mo-
ment method with a Maxwellian EEDF gives a wall potential V-I'=wn, 2
closer to that of MC and CS methods, even though the aver-
age energy is radially invariant. The low wall potential in H=-V(nG)—BEn, (©)

this case is due to the low value of average energy needed to

provide sufficient ionization when the EEDF is Maxwellian. VoH=—T-E—| 22 put Vet vV |n, @)

In addition to a low average energy, the axial field is too low M
for the argon examples with the Maxwellian EEDF listed in
Table I. whereD, u, G, and g are transport coefficients defined by

In view of these inaccuracies, it must be concluded tha#llis [9], v, is elastic energy exchange collision frequency,
the local moment method is inadequate for describing the, ; is excitation or ionization frequency, ai ; is the ex-
positive column behavior at oW R. It is shown in the next citation or ionization energyD and u are the well-known
section that these shortcomings are absent from the nonlocebefficients of particle diffusion and mobility, respectively,
moment method obtained by adding electron energy balanoghile Allis [19] calls G and g the coefficients of heat diffu-
with radially varying average energy to the local momentsion and thermoelectricity, respectively. The electric figld
method. has two components: the imposed axial fielg which is

independent of and z, and the radial space charge field
E,(r). The vectord™ andH each have axial and radial com-

Il. NONLOCAL MOMENT METHOD ponents that vary with radial position.
A. General remarks lons with zero temperature, mobility;, massm;, and
) ) ) . densityn; are characterized by the ion momentum balance
This section deals with an extension of the local moment
method, or local model, of the dc positive column to the wi d m,T"2
nonlocal regime where electrons are no longer in equilibrium r=- Tar r( en + wiEni, 5)
1

with the axial field. The extension is accomplished by in-
cluding the energy balance equation obtained by taking th
third moment of the 1D Boltzmann equation after the two-
term Legendre expansion is made. As with the local momen
method, the EEDF must be assumed in order to evaluaté
transport coefficients and collision frequencies appearing in 1d(rg,) e

the moment equations. A key assumption of the nonlocal - =—(nj—n), (6)
moment method is that transport coefficients and collision rodr €
frequencies bear the same relation to the average ener _ _
which is a function of the radial position in the nonequilib-%Chere e=1.6x10
rium positive column, as they do in the local moment model,
according to a 0D Boltzmann solution. This assumption is
tantamount to assuming a form for the EEDF that depends .
on the electron density, average velocity, and average ener lents, etc. Exter_15|on of the IOC"’.‘I. model fo the nonlocal
in a particular way that ensures correct values of transport gime |s]caccr?mpllj§h:aﬂ by tfr|1e a<_jd|t;]0n cif E(®.and(4) Foh
guantities when electrons are in equilibrium with the electric"".ccﬁ)Llnt or the radial heat flow in the electron gas with ra-
field [18]. This method differs from the local moment dially varying average energy.

method in that the average energy, transport coefficients, and Zzeaggje:t't\ée tr?:; tg;sosecgg_? ': ;[;%|a£ﬂy-r:h§sfq:$émgs
collision frequencies can vary across the positive columnd" v posttiv u Investig y

even though the axial field does not. This method has sever&|hrlandt and Winkle{6], who applied the nonlocal kinetic

advantages over the local moment method, not the least ethod to a 0.75-Torr neon discharge in a tube of 1.7 cm

which is validity over the entire range &R, just as with the rgdlus with a current of 10 mA, They_ showed that such a
discharge operates in the nonlocal regime because the power

first-principles nonlocal kinetic method. Because the nonlo- soended in collisions is not equal to the power aenerated b
cal moment method makes a transition naturally to the loc h(f external field in each voluqme elemer?t of th% dischar ey
moment method at high values BR, it is straightforward to . ; ge.
: - On axis, for example, they found that Joule heating amounts
establish thePR range of validity of the local moment 0 . : -
method. This is done in Sec. III. to 6.4 mW/cm, while the power .expgndgd in coII.|S|ons
amounts to 16 mW/cf To maintain this discharge in the
steady state, a significant amount of energy flow from the
outer region of the discharge to the inner region is required.
Formulation of this problem is based on moments of the To reach this objective, the approach taken here is to as-
Boltzmann equation taken after the two-term Legendre exsume a form for the EEDF that depends on the electron den-
pansion is made. This procedure leads to the following equasity, average velocity, and average energy in a particular way

Where it is assumed thdt, =T, , reflecting the assumption
f a steady state. Finally, Poisson’s equation relating the ra-
ial space-charge field to the space-charge density is

9C is the electronic charge and
=8.85< 10 14 C/V/cm is the permittivity.
Equations(1), (2), (5), and(6) form the basis of the local
odel with radially invariant average energy, transport coef-

B. Equations
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that ensures correct values of transport quantities when elec-
trons are in equilibrium with the electric field. In other
words, transport coefficients are assumed to be functions of
the radially varying average energy, not of the radially con-gepending on whether the ion motion is limited by ion mo-
stantE,/N. Still another way of saying this is to say that pjjity or by ion inertia. In the mobility-limited case, for ex-
transport coefficients are parametrized by the average e%fmme,FrEr:MiniErz, which is small compared WithnEi,
ergy, not byE, /N [20]. The parametrization is carried out by except, perhaps, very near the wall.

solving the OD Boltzmann equation and constructing a table g, clarity, the equation system is repeated here. There
of transport coefficients and collision frequencies versus the,q gix equations to be solved for the six quantitigs),

average energy ar_1d then s_o_lving E@b—(6) for the radial u(r), ni(r), T,(r), H,(r), andE,(r). The six equations are
variation of the six quantitieqi(r), n;(r), u(r), T, (r),

d(r)=— JO E:(p)dp,

H,(r), andE,(r). . o dn g (G\]Y 104G 1 D
To splve Eqs_.(l_)—(6) by a Runge-Kutta technique, it is ar - D u'\D “Dau it D u H,

convenient to eliminat& from Eq. (3) by means of Eq(1)
to give B ID IG\ u

+(;E—m) D NEr|: 9

H= A r i V(nD)-V(nG
= '+ V(nD)=V(nG), du 0 [G\]"YGT, H, (B G
# . —=|D — | = —— —— | — <|uE
dr Ju \D Dn n \u D KE
so that (10
B . (B G|_dn [iG B 4D\ du dy _(mI7) 7 (1 2myn)o1mdy
Hi==T+|——<|D ——n| —————] —. (7) dr | er? "wi e nm) roen TP
o) u D dr du um du/ dr i Mi i i
11

The first term on the right-hand side represents an energy 1d(rT))
flow due to convection. The second term on the right-hand- - ©=un, (12
side represents an energy flow due to diffusion, which can be rodr
directed either inward or outward, depending on the relative 1 d(rH.) m
magnitudes of3/u andG/D. When the EEDF is Maxwell- Z ! =,unE§—(2— v U+ vV, + ViVi>nu (13
ian, due to electron-electron collisions, for example, then rodr M
Blu—G/D=0, resulting in little or no energy flow due to
diffusion or conduction. However, in the case of neon when 1d(rE,) e (n—n) (14)
electron-electron collisions are ignored, it will be seen that roodr ! '

the quantityB/u— G/D is positive, so that the energy flow
due to diffusion is directed inward, accounting for the appar-
ent nonlocal behavior of the low-current neon dischg&je.

The third term on the right-hand side represents energy flow SiX boundary conditions are needed to specify a unique
due to thermal conduction. The quantity solution to this set of six first-order equations. By symmetry,

C. Boundary conditions

r,(0)=0, H,(0)=0, E,(0)=0. (15
These conditions ensure that radial gradients
n’(0)=u’(0)=0. However, because the right-hand side of

is nothing but the thermal conductivity of the electron gas;Ed: (11) appears to have a singularity e&0, conditions

this quantity is positive so that energy flow due to thermal(15) alone do not ensure thak'(0)=0. It is necessary to

conduction is directed outward in the neon discharge. apply I'Hopital’s rule to the right-hand side of E¢L1) and
The energy balance equatiof) becomes impose the condition that the numerator of the resulting

guantity be zero at=0 to ensure a zero ion density gradient

1d(rH,) on axis[22]. Following this procedure gives

r dr

MnEg_rrEr_

vu+ v, Vet 1V ) n,
(€S)

2m

M Vio (
— ng| 1+
Mi

e (Nip—Ng)Njp=0, (16

3 Vio no) e
when the relatiol”,= — unE, is used to eliminaté’,. The  where subscript 0 means evaluated @0 and v
second term on the right-hand side of this equation repre=e/mu; is the ion-neutral momentum-transfer collision fre-
sents a cooling effect due to the radial electron current denquency.

sity flowing against the radial space-charge field. This term The remaining two boundary conditions are conditions on
is neglected in the present treatment because it generally i, and H, that must be satisfied at the wall locatedrat

small compared with the termnE2. T', lies betweenu;n;E,

andn;—2e¢/m;, where the space-charge potentigl) is
related toE, by

=R, whereR is the discharge tube radius. These two condi-
tions follow from the assumption that the wall emits neither
electrons nor electron energy back into the discharge. The
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two conditions are derived from the Legendre expansion for TABLE Il. 0D Inelastic rates.
the EEDF as follows. The total current of electrons going in
the —r direction at the wall is u (V) Vgx (cmP/sec) Vgi (cnP/sec)
1 e 6.0 4.0<10 1 3.0x10 22
F,(R)zzqrf f wo f(R,u,v)v?do du, (17 7.0 5.0<10 %2 7.0x10° Y7
o Jo 8.0 4.5¢10™ 1.2x10 12
9.0 1.310° % 1.1x1071

where u is not the electron mobility, but the cosine of the
angle betweewn and the direction perpendicular to the wall.
If no electrons are emitted by the wall, then the total particle
current directed inward at the wall must be zero. This con-12-0
dition is expressed mathematically by the equation

10.0 2.6<10°10 4.4x<10° 1
11.0 4.5¢10°10 1.0x 10710
7.3<10°10 1.8x10°10

1 (e is not equal to the desired value, then the entire process is
F,(R)=21-rf f wolfo(Rv)+ ufy(Rv)]vldy du repeated with a new value af(0). In the present work,
o Jo relatively simple expressions for the transport coefficignts
-0. (18) D, B, andG as functions ofu are found from a OD Boltz-
mann solution for the EEDF, as described below.

Likewise, if no electron energy is emitted by the wall, then
the total heat current directed inward at the wall must be E. Parametrization of transport coefficients

zero. This condition is expressed mathematically by the ranghort coefficients and inelastic collision frequencies

equation are parametrized by the average energy according to OD
~1 e Boltzmann calculationf23]. Because the total cross section
H_(R)zzwf f (mv?/2e) for momentum transfer between electrons and neon atoms
o Jo varies approximately as the 0.2 power of electron energy in
the range 1-20 eV, the 0D Boltzmann transport coefficients
can be represented approximately by the simple expressions
(19  uN=1.48<10%u %" v lcmlsec?, DN=1.20x10%%°%3
_ _ ~ cmlsec!, BN=2.20x10"%u’3cmlsec?!, and GN
Whenf, is Maxwellian, for example, then these conditions —1 34«1 023,13 v cmLsec?, in this energy range. These
become values are obtained when the O is substituted in the
1 — 1 _ recipes for transport coefficients given by Allis9]. Similar
I'-(R)=2n(Rju(R)=2I'(R)=0 expressions for neon transport coefficients with slightly dif-
ferent exponents of average energy are proposed il REf.
The corresponding inelastic collision frequencies are
H_(R)=in(R)u(R)u(R)—iH, (R)=0, shown in Table Il. The first six expitgd levels ofetomic neon
are lumped together to get excitation frequengy,. The

respectively, wherev(R)=+16eu(R)/37m is the mean density of the lumped excited state is treated in the same way

speed. Wherf, is not Maxwellian, then the numerical fac- @S in Ref.[6]. The ionization cross section of the lumped
tors %, &, and 16/3r are different. excited state is assumed to be that of Vrighs].

X uo[fo(Rv)+ uf(Rv)Jv?dv du=0.

and

D. Method of solution F. Results and discussion

The set of first-order ordinary differential equatiof®— 1. Comparison with first-principles nonlocal kinetic method
(14) is solved by a Runge-Kutta technique, subject to the set To illustrate, the neon positive column described by Uhr-
of boundary condition$15), (16), (18), and(19). Therefore, |andt and Winkler(6] is simulated in the present work. Re-
starting values for all six dependent variables must be sesults corresponding to results shown in their Figs. 1, 4, 5a,
lected to find a particular solution. Because boundary condiand 5b are shown in Figs. 1, 2, 3, and 4, respectively. Figure
tions (18) and (19) are specified at the wall where=R, 1 shows remarkably good agreement between the calculated
values ofu(0) and @H, /dr),_, must be iterated to find the space-charge potentiai(r) and the measure@(r), which
solution that satisfies them. The latter quantity is changed bjs assumed as input in Reff6]. Figure 2 shows a radial
iterating E, . Therefore, the solution procedure can be sumvariation of the electron-ion density, average energy, radial
marized as follows:(i) Set initial valuesI',(0)=H,(0) particle current density, and radial heat current density.
=E;(0)=0; (ii) guess values ofi(0), u(0), andE,; and These curves are qualitatively similar to those of Uhrlandt
(ii ) solve Egs.(9)—(14) out tor=R. If Egs. (18) and(19) and Winkler, but there are quantitative differences. For ex-
are not satisfied, then the procedure is repeated with neample, the inward radial heat current dendity peaks at
values ofu(0) andE,. Finally, if discharge current, de-  about 20< 10" V/cm?/sec, whereas the peak value calcu-

fined by the equation lated by Uhrlandt and Winkler is aboutd10'® V/cm?/sec.
& Figure 3 shows the radial variation of the ionization source,
I=27ref [w(r)n(r) + wn(r)]E,r dr, which includes stepwise as well as direct ionization. The
0 total ionization source on axis is about 9
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FIG. 1. Radial space-charge potentiatp(r). The upper curve
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FIG. 3. Radial variation of the ionization rates: one step,

is the measured potential assumed by Uhrlandt and Winkler, whilezgi(r)n(r); two steps,v,(r)n(r); total, vg(r)n(r)+v,(r)n(r).
the lower curve is the calculated output of the present work. Thevy; is based on the ionization from the 16.62-eV lumped state with

positive column conditions are 0.75-Torr nedr; 10 mA, andR
=1.7cm.

the parabolic spatial distribution giving the average density equal to
105 times the ground-state density, similar to R], and with

the ionization cross section recommended by Vriens in Rif].

x 10" cm 3 sec’?, whereas Uhrlandt and Winkler found a
value of about & 10* cm 3sec . Figure 4 shows the ra-
dial variation of the power output per unit volumgr),

consisting of elastic and inelastic collision losses, and théhree components are defined as

power input per unit volum@(r), consisting of Joule heat-
ing. Nonlocal behavior is evident in that these two quantities
are not equal in each volume element of the discharge, even
though their volume integrals are equal. As in previous com-
parisons, Fig. 4 shows different peak values of Joule heating
and collision loss compared with those in Rgd]. The dif-
ferences between all of these results and corresponding re-
sults of Ref.[6] can possibly be made smaller by using the
same cross sections used in Réfl.

According to Eq(7), the radial heat current density; is
the sum of three componentd;y,,, Hgir, andHqong. The

12
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u (V)

n, n; (10°cm?)

0 } t ; }
0.34 0.68 02 1.36 117
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.
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FIG. 2. Radial variation of the electron properties: electron den-
sity n(r), average energy(r), radial current density’,, and ra-
dial heat current densiti, . Compare with Fig. 4 of Ref6]. The
positive column conditions are 0.75-Torr neds; 10 mA, andR
=1.7 cm.
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Compare with Fig. 5a of Ref6]. The positive column conditions
are 0.75-Torr neon,=10 mA, andR=1.7 cm.

B
HconvE;Frv
Har=| 2 2|p 2" 20
a=| " 5P dar (20
oo dG B dD\du
cond= "M 50 Sudr
20
18 T \CoLLISION LOSS L(r)
16 4
14 4
12 4
10 4
8--
6__
4__
JOULE HEAT P(r)
2_-
0 : : ; :
0 034 068 102 136 17
r {cm)

FIG. 4. Radial variation of the power input due to Joule heating
and the power output due to collisional losses for the nonlocal mo-
ment method. Compare with Fig. 5b of Rg8]. The positive col-
umn conditions are 0.75-Torr neons 10 mA, andR=1.7 cm.



56 NONEQUILIBRIUM POSITIVE COLUMN 5939

o o

S o

}
N
o

Hcond 1 .\‘
- 18 " NONLOCAL L(r)

F-3
o
}
-
(-]
}
T

H
:\ 20 1 conv A14 1 .\
o - "
g 0 . : : = 812 1 "
e 20 O 4 102 136 7 T ] s
s H, S
° -40 T ¢ 8- LOCAL L(r) = P(r)
< 604 Tel
80 1 44 .
100 + Haie o hont onal 5 e
-120 .
0 : 1 T T
r(cm) 0 034 068 102 136 1.7
r (cm)

FIG. 5. Radial variation of the individual components of heat
flow. The net heat flowH, is equal to the sumH o+ Hcong
+Hgs . The magnitude of the convective contribution to heat flow
is on the order of 1% of the conductive and diffusive contributions.
The positive column conditions are 0.75-Torr neba,10 mA, and
R=1.7 cm.

FIG. 6. Radial variation of the power input due to Joule heating
and the power output due to collisional losses for the local moment
method. Dashed curves are the same as in Fig. 4. The positive
column conditions are 0.75-Torr nedrns10 mA, andR=1.7 cm.

and solving this equation simultaneously with Ed§1),

Figure 5 shows the three componentdbfplotted versus. (12), and (14) while assuming radially invariant transport
Note that the convective component is small compared to theoefficients and collision frequencies. This table shows that
other two components, which nearly cancel each other. Idersalculated measurable quantities from the nonlocal moment
tification of radial heat flow as being composed of threemethod agree fairly well with those of the nonlocal kinetic
components is not done in R¢6], so a comparison of these Method, while those of the other two methods do not agree
quantities cannot be made here. as well. In particular, the axial electric field is almost twice

Generally speaking, good qualitative agreement betweeflS large for thellocal moment method and the wall potential
results of the nonlocal moment method presented here arfd @Pout three times larger as a consequence of average en-
the results of the first-principles nonlocal kinetic method of€r9y U=8.2'V being constant across the positive column. As

Uhrlandt and Winkler is demonstrated. Proof is given inmentioned above, it is possible_that ,closer agreement be-
Table 11, in which a comparison of measurable quantities i fween results of Uhrlandt and Winkler's 1D Boltzmann SO
made fo’r the four methods listed in Sec. | B: method 1 thzl;mon and those of the present nonlocal moment solution can
first-principles nonlocal kinetic method; method 2, the non- e.?ﬁ;a'cr;?ﬁsikg] uks)gs?_g?)e :ré:crjniocljrl?asisae;?ro)nsvszfc%\u;fé

local kinetic approximation method; method 3, the local mo- | for the local moment method. ar mpared with th
ment method; and method 4, the nonlocal moment methO(f.qua or the focal mome ethod, aré compare 0se

Entries in the second row of Table Il are the results of °" the nonlocal moment method in Fig. 6. The half-width of

Bailey and Benneti24]. Entries in the third row of Table II the local moment(r) is significantly larger than that of the

are obtained by solving the local moment model constructe onloca_\l_momenL(r_) becausai=8.2 V is constant across
from the nonlocal moment model by settidg/dr =0 in Eq. e positive column in the local moment calculation, whereas

(10), solving the resulting equation fat, , substituting this uhv\?vi:lei?] Ir:aildlazlly in the nonlocal moment calculation as
H, in Eq. (9) to give the familiar equation sho 9. <
2. Other comparisons

N [t nE 21) In the preceding subsection, the nonlocal moment method
- r T . . . . . . .
presented in this article is shown to be in good qualitative

TABLE Ill. Comparison of calculated measurable quantit€sand¢(r) are inputs to the 1D Boltzmann
solution, but are calculated outputs in other methaus;(2/R?)fn(r)r dr; —¢,, is the wall potential
measured relative to the positive column axlg;, is the ion current density measured at walR

=1.3Torrcm.

n(0) n u(o) L(0) E, bw Jw
Method  (cm9) (cm™3) ) (Vem3sec?) (Vlem) (V) (uAlcm?  Source
1 58<10° 2.7x10° 7.4 1.0< 10V 2.17 20.0 9.1 [6]
2 45x10° 19x10° 7.5 1.2<10Y 2.53 22.1 7.2 [24]
3 4.4x10° 1.3x10° 8.2 1.0< 10V 425  58.9 14.6 present
4 56<10° 2.0x10° 85 2.0< 10" 2.24 19.9 9.2 present
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agreement with the first-principles nonlocal kinetic method. g [G\]7!
Similarities between the nonlocal moment method formula- =D — —)
- . ou\D/| _
tion and that of other approximate methods have already r=0
been cited[18,20,2]. The procedure of parameterizing B G\ dE
transport coefficients and collision frequencies by the aver- —(—— 5)’“ W}
age energy instead of big,/N in order to apply moment K r=0

gquations to nonequilibrium problems in gaseous electronica/hen the first derivatives appearing in this expression are
is widely used. An early example applying this procedure to

a case of spatial nonequilibrium [21]. Subsequent ex- eliminated by means of Eq¢12)—(14) and (16) and when

amples include studies of spatial nonequilibrium in the cath”” Ivim=<1, then this equation becomes

G dI, 1dH,
Dn dr n dr

ode fall[20], temporal nonequilibrium in pulsed fluorescent d2u 1 9 (G\1"Y( m
lamps[25], nonequilibrium motion in time-of-flight experi- ar? =5 [D o (5) (ZM vu+ vy Vy
ments [26], and spatial nonequilibrium near absorbing M=o u r=0

boundarie$18,27). In [21], spatial nonequilibrium in a neon

positive column withPR=1.4 Torr cm is studied with a for- + v —MEg] .
mulation that includes moment equations similar to Eg5. r=0

and (10) and simplifying assumptions of charge neutrality ) ) i o )

n=n; and f(€)xexg —(e/6)?. It is suggested in21] that The rlght-hand side of thls equation is domlnz_ited by th_e_term
sometimes a good approximation is obtained by setting botRroportional to the ratio of electron and ion mobilities,
T, andH, given by Eqs.(1) and(3), respectively, equal to ml wi , which is on the order of 100 for He/Hg and 1000 for

zero and then eliminating, from the resulting equations to A/Hg. Therefore, the right-hand side is negative because
get Blu—G/D>0 for both gas mixtures. The reader is re-

minded that the expression for'(0) given above is exact
when the exact expression f&(r,€), like the one obtained
1d(Gn) 1 d(Dn) in Ref.[6], for example, is used to calculate transport coef-
E ar ; ar ficients. It is possible that the result found[i28] is due to
the approximate way in which radial effects are included in
the Boltzmann equation.

This can be a useful approximation when the momentum-
transfer collision frequency,(€) is expressible as/(¢€)
x e 12 pecause transport coefficients D, 8, andG are The prevalent speculation about the mechanism respon-
then proportional tau!, wherej=—(1+1)/2, (1-1)/2, (1  sible for radial nonequilibrium resulting in excess ionization
—1)/2, and (3-1)/2, respectively, allowing analytic integra- on axis in lowPR plasmas focuses on the qualitative argu-
tion of the equation above to giw€uy=(n/ny)?, where the ment that the radial space-charge field accelerates inward-
constanté is given by bound electrons sufficiently to cause higher rates of inelastic
collisions than encountered in radially uniform plasmas at
ol %2

G
Vit 5=

B G) un
mo D) pin

3. Mechanism causing radial nonequilibrium

the same value d&,/N. If this speculative mechanism is the
correct one, then it should occur whég is Maxwellian
[vm(€) independent o&] or sub-Maxwelliar{ v,,,(€) decreas-

ing with increasinge| as well as when it is super-Maxwellian
[vm(€) increasing with increasing]. However, the average
The 0D transport coefficients given above in Sec. Il E corre€energy is radially invariant, or nearly so, whég is Max-
spond tol =0.4 andé=0.4. The relatioru/uy=(n/ny)®*is  wellian and increases with increasimgwhen f, is sub-
satisfied approximately by the nonlocal moment method soMaxwellian, according to the analysis of Bernstein and Hol-
lutions forn(r) andu(r) shown in Fig. 2, even though the stein [4]. Therefore, it appears that the speculation is
approximationH, =0 is not satisfied as well as the approxi- incorrect. Instead, the mechanism responsible for excess ion-

-1

mation I',=0, as pointed out in Ref6]. In contrast,5= ization on axis in a lowPR plasma with super-Maxwellian
—2 whenl=—2, consistent with the conclusion reached in f, appears to be the inward-bound heat diffusion current
Sec. Il F 3 namely, thati increases with increasingwhen  densityHgyy, defined in Eq.(20), which carries heat from
l<—1. the outer region of the positive column where Joule heat

In addition to these similarities, there are some interestind®(r) is larger than the collision lods(r) to the inner region
differences. For example, it was found [i28] that average where P(r)<<L(r), thus augmenting the Joule heat gener-
energyu(r) increases with increasingin He/Hg and Ar/Hg ated on axis by the external field. Whefh, is sub-
plasmas withPR~1 Torr cm. This result implies that the Maxwellian, therH 4> 0, the average energy increases with
second derivative ofi with respect ta is greater than 0 on increasingr, and there is an ionization deficit on axis, in
axis. However, Eq(10) predicts the opposite for all plasmas contradiction to the speculative mechanism mentioned
with a momentum-transfer collision frequeney(e¢) thatin-  above.
creases with increasing electron eneegg the energy range The direction of Hy depends on the quantityd/u
of interest, which category includes He/Hg and Ar/Hg mix- —G/D. For a momentum-transfer collision frequengy( €)
tures. By differentiating Eq.10) with respect ta and evalu- independent of electron energyMaxwellian f,), this quan-
ating the result at =0, the following expression is found: tity is zero. Forv,(€) increasing with increasing, this
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guantity is positive, causing inward heat diffusion and a TABLE IV. Ratio (25).
negative gradient in the average energy. bgte) decreas- :
ing with increasinge, it is negative, causing outward heat U (V) Ratio PR (Torr cm)
diffusion and a positive gradient in the average energy. Eac 0033 95
coefficient in this expression is determined primarily by the." '

A . 1. 0.081 60
behavior of bulk electrons, not that of tail electrons. Inward 0.190 39

heat flow, for example, causes additional heating over angi'8
above Joule heating, increasing the average energy in the
central region of the positive column over and above the

corresponding equilibrium value. The shapefgfchanges E ,,in+(é_ E) Ei r ﬂ

accordingly; there are fewer bulk electrons and more tail e u D) rdr dr

electrons, causing excess ionization over and above the cor- m

responding equilibrium valug29]. It does not take much =,unE§—(2— vou+ Vet mVi|n. (23
additional heating to give significantly more ionization. In M

the nonequilibrium neon positive column discussed at the L
beginning of this sectiorE, /N is 8.4 Td andu(0)=8.5 V, The essence of the local model, embodied in the assump-

whereasu=7.4V in equilibrium atE/N=8.4 Td. The cor- tion that average energy is radially invariant, is the condi-
responding difference in the one-step ionization frequency i§°n that the quantity on the left-hand side of Hg3) be

a factor of about 350 and the difference in excitation fre-SMall compared with either term on the right-hand side. Sim-
quency is a factor of about 5 for these two values of averagQI'f!Cat'on is obtained by !nvokm.g the amplpo]ar limit, in
energy. Of course, this argument is qualitative because it i&/Nich case Eq(21), combined with the radial ion current
based on the 0D Boltzmann solution fés. However, the 9€NSityl'r=uinE; gives the well-known Schottky equation
same general result can be expected when the éxaxt[6]

is used to calculate transport coefficients and collision fre-
guencies.

1d dn+ Vi —0 o4
Tadr r ar D_a n=u, (24)
where D, is the classical ambipolar diffusion coefficient.
lll. TRANSITION FROM NONEQUILIBRIUM TO Upon elimination of the derivative term from E@3) by
EQUILIBRIUM AS PR INCREASES means of Eq(24), the following condition is derived:

The objective of this section is to derive a criterion that 1

defines a range of pressure for which it can be assumed that 5 (é_ E) b_&B <2E',j U+ +7:V, | <1
. . . . . u XvYX v ’

average energy is radially invariant, i.e., a range of pres- Da n M
sure for which the local moment method, or local model, can (29
be applied. This means that the power expended in collisions - ) ) ) )
must be equal to the power generated by the externalifield Wherev;=wv;/N, with N being the gas density. Note that this
each volume element of the dischargbe approach taken to 'atio does not depend explicitly on the gas density; it de-
reach this objective is to assume thais constant and then P€nds primarily on the isotropic part of the EEDF, denoted
to derive a parametric relationship from the energy balanc®Y fo- It can be assumed that the local model is valid when-
(13), which must be obeyed if this assumption is to be valid.ver this inequality is satisfied. Note also from E2@) that

Whenu is constant Eq(7) becomes satisfaction of inequality25) implies
) m
Hrzérr+(é—§) @1 MEZZZM v u+ vV, + Vi,
u n D dr

which, in turn, impliesf, and its moments, such as the av-

whence erage energy and characteristic energy,, are radially

invariant, consistent with the definition of thecal model.
When f, is Maxwellian, due to a high electron density
1d(rH G\Dd d 0 ' . '

- (rHy) _ B v, (é_ _) — _n. (220  for example, the term proportional /D ,=u/u; on the

rodr D/ rdr dr left-hand side of Eq(25) is identically zero becausg/ u

=G/D. In this case, the rati(25) is small for most labora-
The first term on the right-hand side@/w) v;n, represents tory discharge conditions, implying that the local model is
the energy needed to speed up newly created electrons to thkielid wheneverf is Maxwellian.
average energy of the electron gas, so it could conceivably When f, is not Maxwellian, then3/u+# G/D and ratio
be considered part of the total energy expended in collisiong25) is not small for conditions normally found in low-
The second term on the right-hand side is not so easy tpressure dc positive columns due to the magnitude of the
interpret; it represents a flow of energy due to diffusion,factor D/D, in the numerator. This conclusion can be illus-
which can be directed either inward or outward, dependindrated by consideration of a dc positive column discharge in
on the relative magnitudes @/ x andG/D. After elimina-  neon similar to that discussed in Sec. Il. The variation of
tion of H, from Eq. (13) by means of Eq(22), the energy ratio (25) with average energy is shown in Table IV for neon,
balance equation reads along with corresponding values BfR.
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FIG. 7. Radial variation of the electron properties: electron den- (em)
r{m

sity n(r), average energu(r), radial current density’,, and ra-
dial heat current densitil, . The positive column conditions are ) o ) )
50-Torr neon) =10 mA, andR=1.7 cm. Note that some scales are FIG. 8. Radial variation of the power input due to Joule heating
different from those in Fig. 2. and the power output due to collisional losses for the nonlocal mo-
ment method. The quantity?(0)/L(0)—1 is a measure of the de-

According to this table, the average energy must be belogarture from equilibrium. The positive column conditions are 50-
1.7 V for the local model to be valid. The value BR at 1o neonl=10mA, andR=1.7 cm.
u=1.7 Vis found as follows. The Schottky condition is

Torr discussed above. Therefore, it is reasonable to assume
~Da piug charge neutrality all the way to the wall, avoiding the neces-
TAZ A sity of solving Poisson’s equation. In addition, ion inertia

terms can be neglected, avoiding the necessity of solving the
where A=R/2.4 is the characteristic diffusion length for a ion momentum balance equation. Instead, the relatipn
cylinder of radiusR. In terms of PR, this equation is = u;nE, can be used. These simplifications reduce the set of
six ordinary differential equations to a set of four ordinary
differential equations: Eq49), (10), (12), and(13).

The solution of these equations for the macroscopic prop-
erties is shown in Fig. 7 for 50-Torr neon pressure. Note that
where Ny=3.53x 10 cm 2 is the gas density at 1 Torr the scales for the electron density and electron current den-
pressure andu;=uiN=1.13x10°°V - tcmtsec?! is the sity are different from those in Fig. 2. Note also that the
reduced mobility of N& in Ne [30]. At u=1.7 eV, the total electron heat current density peaks at a value that is about an
ionization ratevg;+7,;=2.1x10 '® cm¥/sec and the value order of magnitude lower than that in Fig. 2. Finally, note
of u, is 1.44 V. Substituting these values into the right-handthat the average energy is practically constant over most of
side of Eq.(26) gives PR=60 Torr cm. For comparison, the positive column cross section. The corresponding solu-
Busch and KortshagelY] found from a numerical solution tions for the collision losd.(r) and Joule heating(r) are
of the 1D Boltzmann equation that a gas density of 1shown in Fig. 8. Note that they are almost equal at each
X 10*® cm~3, equivalent to 28 Torr, is necessary to ensureradial position, indicating that the 50-Torr neon positive col-
that average energy in an argon positive column of 1 cnumn can be described adequately by the local model. Note
radius is radially invariant over most of the discharge crossilso that the value of the quantiB(0)/L(0)— 1, which is a
section. measure of departure from locality, 150.08.

The qualitative discussion given above can be made more A comparison of measurable quantities for the local mo-
quantitative by solving Eq99)—(14) at higher pressure. A ment method and the nonlocal moment method at 50 Torr is
pressure of 50 Torr is chosen for illustration. At this pres-shown in Table V. This table shows that poor agreement is
sure, the electron density needed to give a current of 10 mAbtained for wall potentiad,, even at 50 Torr, while there is
is an order of magnitude higher than at the pressure of 0.7hitle difference in other measurable quantities.

Vi

1/2

Milg , 26)

Vi

24

PR=3o

TABLE V. Comparison of calculated measurable quantities.(2/R?)fn(r)r dr; —¢,, is the wall
potential measured relative to the positive column a¥jsis the ion current density measured at w&lR

=85 Torrcm.

n(0) n u(0) L(0) E. bw Jw
Method (cm™3) (cm™3) V) (Vem3secl (Viem) (V)  (uAlcnd)
local moment 5510 2.0x10° 1.4 1.0< 10" 5.4 14.1 0.4

nonlocal moment 60101° 21x101° 14 1.2x10Y 5.3 5.1 0.3
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TABLE VI. PR (in units of Torr cm range of validity.

Method PR<1 1<PR<10 10<PR<100 106<PR
first-principles nonlocal kinetic yes yes yes yes
nonlocal kinetic approximation yes ? no no
local moment no no ? yes
nonlocal moment yes yes yes yes

A word of caution is necessary: At 50 Torr pressure, mosponents are large and opposite in sign, nearly canceling each
of the collision loss is due to elastic collisions, so there mayother.
be some gas heating. The rig&, in gas temperaturé in The parametrization of transport coefficients and collision
the case of 50 Torr can be estimated from the formula frequencies by the average energy insteacEgfis a key
ST L 2 assumption of the method described in this paper. While this
79 _ (0)A assumption ensures accuracy of the method for high values
Ty KTy ' of PR where equilibrium conditions prevail, accuracy at low
] values of PR where nonequilibrium conditions prevail can
whereL(0)=1.2x10" V cm ®sec '=19.2 mW/cni is the  he questioned. It is the opinion of this author, however, that
collision loss on aX|SA:R/24 is the characteristic diffu- the accuracy Of the method for IOW Values ‘R iS Very
sion length for a cylinder of radiuR, and x=4.55<  good provided that OD transport coefficients and collision
10~* W/cm/deg is the thermal conductivity of nedB1].  frequencies are expressible as single-valued functions of av-
For R=1.7 cm andTg=273 K, this equation giveﬁTg erage energy.
=21 K. For higher pressuregTy/Ty will be correspond-
ingly higher if the current is held fixed at 10 mA because

L(0) will be higher. V. CONCLUSIONS

IV. SUMMARY It_ is concluded from this work that positive column be-
havior at any pressure can be described adequately by mo-

In this work a moment theory of electron transport in ament equations when radial heat flow in the electron gas is
strong electric field is applied to the stationary nonequilib-taken into account and when electron transport coefficients
rium positive column. The theory uses equations describingind relevant collision frequencies are assumed to be related
the conservation of electron density, momentum, and energyo the radially varying average energy according to 0D Bolt-
The importance of the electron energy balance, which is frezmann calculations. It is also concluded that the formulation
quently ignored in positive column analysis, is emphasizedpresented here predicts a pressure boundary above which the
The balance equations are derived by taking moments of thiecal model is valid. For the neon positive column with 1.7
Boltzmann equatiomafter the two-term Legendre expansion ¢m radius studied in this paper, this pressure boundary is
of the EEDF is made, a procedure that is not generally folestimated to be in the neighborhood of 35 Torr, BR
lowed, but is necessary for consistency and accuracy whea 60 Torr cm. The solution of the nonlocal moment formu-
dealing with real gases. lation at a pressure of 50 Torr, whelP&R= 85 Torr cm, sup-

Theoretical justification of the method is given in previ- ports this estimate, showing that average energy is constant
ous work[18], where two important features of the method within 7% over the central 80% of the positive column.
are emphasized: (i) The method gives exact results for the  The PR range of validity of the four theoretical methods
momentum and energy of electrons under equilibrium condiscussed in this article is given in Table VI. The limits of
ditions in a strong electric field, unlike theories that assumehe four ranges ofPR are arbitrary. The question marks
that the EEDF has a simple form, such as a Maxwellian, anghean that the method can be used in this particular range of
(i) the method provides an accurate description of electrop R, but it must be recognized that results are inaccurate to
flow when there are significant temporal and spatial deparsome degree or another. FBR>100, the radial variation in
tures from equilibrium, also unlike theories that assume thagas temperature should be taken into account.
the EEDF has a simple form, such as a Maxwellian.

The moment equations of this method contain transport
coefficients and collision frequencies that are parametrized ACKNOWLEDGMENTS
by the average energy according to numerical solutions of
the OD Boltzmann equation for different values Bf. Special thanks are due Lev Tsendin for leading the author
Model results in the nonequilibrium regime agree closelystep by step through the derivation of the second term in the
with published results of a numerical solution of the 1D expansion offo(r,e)=foq(€) + foi(r,€)+--- , which is the
Boltzmann equation, including results for radial heat flow inbasis of the nonlocal kinetic approximation, which he has
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