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Theory for the reorientational dynamics in glass-forming liquids

T. Franosch, M. Fuchs, W. Go¨tze, M. R. Mayr, and A. P. Singh
Physik Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 19 May 1997!

The mode-coupling theory for ideal liquid-glass transitions is extended so that the structural relaxation for
the reorientational degrees of freedom of a linear molecule, which is immersed in a system of spherical
particles, can be described. Closed equations of motion for the correlation functions formed with tensor density
fluctuations are derived, which deal with the molecule’s translational and reorientational motion. From these
equations the nonergodicity parameters of a hard dumbbell molecule are calculated, which quantify its arrest in
a hard-sphere glass. For top-down symmetric molecules it is shown that the odd-angular-momentum variables
can exhibit an ergodic-to-nonergodic transition, characterized by a continuous increase of the Edwards-
Anderson parameters near the critical points.@S1063-651X~97!03011-0#

PACS number~s!: 64.70.Pf, 61.20.Lc
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I. INTRODUCTION

Glass-forming liquids exhibit structural-relaxation d
namics if they are cooled or compressed. There are two
standing features of this glass-transition precursor@1#. The
first is the strong sensitivity on temperatureT or densityn of
the characteristic time scalet for the slowest process, calle
thea relaxation. The second is the stretching of decay cur
or susceptibility spectra over large windows of timet or
frequencyv, respectively. The classical experimental stu
ies, which have been carried out for more than a cent
now, deal with structural relaxation on time scales of ord
1028 s or larger. This work did not lead to a coherent phy
cal picture, let alone a theory, of these fascinating dynam
phenomena in condensed disordered matter.

The time scale for normal liquid dynamics is abo
10213 s. On this scale neither liquids nor glasses exh
structural relaxation as is known from, for example, Ram
spectroscopy or neutron scattering and molecular-dynam
simulation work @2–4#. Consequently, structural relaxatio
has to evolve within the gigahertz or picosecond bands,
one can expect that studies of these dynamical windows
veal the secrets of the indicated phenomena. Great ef
and progress have been made towards this goal during
past ten years. We only mention some very recent achie
ments: measurements of the depolarized-light-scatte
spectra of orthoterphenyl~OTP! over a four-decade fre
quency window @5#, light-scattering @6# and neutron-
scattering @7# spectroscopy for glycerol, impulsive
stimulated-light-scattering work for supercooled Salol@8,9#,
and 0.4Ca~NO3!20.6KNO3 ~CKN! @10#, transient hole burn-
ing for propylene carbonate@11#, dielectric-loss spectroscop
within the full gigahertz band for glycerol@12# and CKN
@13#, and molecular-dynamics simulations of Ni80P20 @14,15#,
water @16#, and OTP@17#. Citations of the earlier work can
be found in Refs.@5–17#. A series of properties of structura
relaxation has been discovered, which has not been obse
in the classical glass-transition research. Some of them
be directly identified by a look at the raw data: the appe
ance of two fractal power laws for the spectra@6,7,18,19# or
for the equivalent decay curves@14–16#, unconventional
scaling laws for the dynamics in a window between the c
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ter of thea process and the short-time normal liquid dyna
ics @11–13,20#, and a square-root anomaly for thea-peak
intensity @8–10,21#. The mentioned modern studies suppo
an old conjecture by Goldstein@22# concerning the signifi-
cance of a characteristic temperatureTc located in the super-
cooled region above the calorimetric glass-transition te
peratureTg . For T.Tc , or for n smaller than an analogou
characteristic densitync , transport phenomena are connect
with the rattling of particles in self-consistently maintaine
cages and with the cooperative motion as manifested by
building of backflow patterns. ForT,Tc or n.nc , on the
other hand, the particles are almost arrested in a spont
ously frozen effective-free-energy landscape and transpo
triggered by thermally activated hopping of the particles o
saddle points.

Of particular relevance for establishing the mention
picture are the structural-relaxation studies for dense co
dal suspensions@23–26#. Within the accessible dynamica
window of up to eight orders of magnitude, a sharp transit
from an ergodic liquid forn,nc to a nonergodic glass fo
n.nc is observed. The static structure varies smoothly w
changes of density forn nearnc , and it reflects nothing bu
intermediate-range order due to random packing. Forn.nc
no hopping effects have been observed. The detailed m
surements of the decay curves for density fluctuations exh
the same time fractals, scaling laws, and square-root ano
lies as mentioned above for conventional systems.

The above cited experiments@5–26# are compatible with
the conclusion that structural relaxation is a dynamical p
nomenon connected with a glass-transition singularity. T
singularity is specified by critical values of control param
eters like Tc and nc , which separate ergodic liquid from
nonergodic glass states. The reality differs from the speci
idealization; due to hopping processes the singularity
avoided. The escape of the system from one of the m
free-energy valleys to a new one appears as an instabilit
the nonergodic state. This causes thea process forTg,T
,Tc , which deals with the decay of the otherwise expec
spontaneously arrested glass structure. The properties o
idealizedTc transition scenario remain valid for times sho
compared tot.

Let us consider a system ofN identical particles whose
5659 © 1997 The American Physical Society
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center-of-mass positions are denoted byrWk, k51, . . . ,N.
The simplest variables dealing with structure are the den
fluctuations as a function of wave vectorqW :%(qW )
5Skexp(iqW •rWk). The structure factorS(q)5^u%(qW )u2&/N
provides the simplest information on the particle distributio
Here and in the followinĝ & denotes canonical averagin
and q5uqW u indicates a vector modulus. The simplest fun
tions dealing statistically with structure dynamics are
density correlatorsFq(t)5^%(qW ,t)* %(qW )&/^u%(qW )u2&. They
are measured, for example, in the cited colloid experime
@23–25#. Within the Zwanzig-Mori formalism one can deriv
the equation of motion@2–4#

] t
2Fq~ t !1Vq

2Fq~ t !1E
0

t

Mq~ t2 t̄ !] t̄ Fq~ t̄ !dt̄50. ~1a!

HereVq5qv/AS(q), with v denoting the thermal velocity
is the well-known characteristic frequency, quantifying t
initial decay of density correlations:Fq(t)512Vq

2t2/2
1O(t3). The kernelMq(t) describes correlations of fluctu
ating forces. If one is interested in a theory of structu
relaxation, it is suggestive to split the kernel in a regular p
Mq

reg(t), dealing with the transient dynamics, and a rema
der Vq

2mq(t),

Mq~ t !5Mq
reg~ t !1Vq

2mq~ t !. ~1b!

The latter is supposed to deal with the slowly fluctuati
parts of the forces, which are caused by the slowly relax
structure. Extending the original theories of the cage effec
simple liquids@2–4# one can motivate formq(t) a represen-
tation as mode-coupling functional,

mq~ t !5Fq„Fk~ t !…. ~1c!

HereFq is a quadratic polynomial

Fq~ f̃ k!5 (
kW1pW 5qW

V~qW ;kW ,pW ! f̃ k f̃ p , ~1d!

where the verticesV(qW ;kW ,pW ) are specified in terms of th
structure factor@27#. The latter can be evaluated for simp
liquids with some standard approximations@3#. Thereby the
vertices enter the theory as coupling constants; they
known smooth functions ofT and n. For Mq

reg(t) some es-
tablished model can be used; in a most simple approxima
it may be ignored altogether; a more reasonable approxi
tion is the replacement of*0

t Mq
reg(t2t8)] t8Fq(t8)dt8 by a

friction term nq] tFq(t). As a result one gets a closed set
regular nonlinear equations of motion for the evaluation
the correlators. These Eqs.~1! are the basis of the mode
coupling theory~MCT! of structural relaxation@28#. The
original derivation of the MCT is reviewed in Ref.@29# and
a critical reconsideration of the underlying approximatio
was given recently@30# within a perturbation-theoretical for
malism.

The MCT equations of motion exhibit a bifurcation fo
the long-time limits

Fq~ t→`!5 f q . ~2!
ty
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If a control parameter, sayn, is smaller than a critical value
nc , the correlators relax towards the equilibrium valuef q

50, as expected for an ergodic liquid. However, forn>nc

density fluctuations arrest in a disordered solid, quantified
a Debye-Waller factorf q.0, also called nonergodicity pa
rameter or glass form factor. Edwards and Anderson h
pointed out in connection with a discussion of spin glas
@31# that the appearance of nonzero long-time limits likef q

is the signature of ideal glass states. Therefore these li
are also called Edwards-Anderson parameters. At the crit
point nc the long-time limits jump from zero to a nonzer
critical value f q

c.0. The f q are to be evaluated from th
mode-coupling functionalF via the equationsf q /(12 f q)
5Fq( f k) @28#. Thus,nc and f q are determined by the equ
librium structure factorsS(q); they are independent of th
transient dynamics as specified byVq and Mq

reg(t). The bi-
furcation implies a dynamical scenario that is strikingly sim
lar to what is discussed in many recent experiments, for
ample, in Refs.@5–26#. The qualitative features of the
transition scenario can be understood by solving Eqs.~1!
analytically by asymptotic expansions near the transit
point. This mathematical work is explained comprehensiv
and illustrated in detail for a hard-sphere-liquid model
Ref. @32#, where also the earlier theoretical papers are cit
The asymptotic solutions establish universality features
the MCT scenario for the evolution of structural relaxati
@29#. These general results are important outcomes for
assessment of the MCT. The first comparisons of MCT
sults and experiments are reviewed in Refs.@33,34#. The
theory based on Eqs.~1! overemphasizes the cage effect.
liquids there are phonons, which kick particles out of th
self-trapping. If the couplings of fluctuating forces
phonons are incorporated, one gets the extended M
where the sharp transition atTc or nc is replaced by a smooth
crossover@35–37#. One finds ana process also forT,Tc or
n.nc , wheref q specifies the intensity of this low-frequenc
part of the relaxation spectrum.

All results for the evolution of structural relaxation of th
hard-sphere system, as they had been obtained by lead
order asymptotic solutions of the corresponding MCT eq
tions, have been compared by van Megen and Underw
with their measurements ofFq(t). The theory accounts fo
their data on a 15% accuracy level@23,24,38,39#. Conse-
quently, the hard-sphere colloidal suspensions provide an
ample for which structural relaxation and the glass transit
are understood quantitatively within a microscopic theo
The asymptotic solutions@32# provide an understanding o
all the qualitative features of the evolution of structural r
laxation identified so far for this system. MCT has been g
eralized to the treatment of mixtures of spherical molecu
and the calculated results for the functions that characte
the glass structure account well for the corresponding qu
tities obtained from molecular-dynamics simulations@40#.

Tests of the MCT by data obtained for liquids of no
spherical molecules depend on the assumption that the
periments can be described by the universal features@29#.
These are quantified here, as in other singularity theories
a well-defined set of parameters likenc or Tc and by ampli-
tudes likef q

c . These quantities enter the data analysis as
parameters. The first complete test of the leading-or
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asymptotic results for the evolution of structural relaxati
was done for depolarized-light-scattering spectra of CKN
Li et al. @20#. Also the extended MCT predicts univers
scaling formulas@36,37#, which complete the interpretatio
of the structural relaxation in, for example, CKN, Salol@41#,
or OTP@5#. There are a considerable number of further qu
titative tests of the MCT that are reported and to a la
extent cited in Refs.@5–26#.

The indicated experimental findings provide an obvio
motivation for an extension of the MCT to systems of no
spherical molecules. A more subtle motivation is given
the fact that the range of validity of the universal asympto
results, like scaling laws or power laws for the spectra,
pends on the probing variable. Consider, for example,
von Schweidler fractal decay for the hard-sphere system
holds for a much larger dynamical window for those dens
fluctuations whose wave vectorq is located near the
structure-factor-peak position than forq near the structure
factor minimum@32#. It is plausible that the MCT scaling
laws hold for a different temperature interval or frequen
range for depolarized-light-scattering spectra than for, s
dielectric-loss data. To decide upon these issues one h
study the amplitudes that quantify the leading corrections
the leading asymptotic laws@32#. An understanding of reori-
entational relaxation, which goes beyond the justification
universality features, therefore requires an explicit formu
tion of the MCT for these processes, in particular, a qua
fication of the mode-coupling functionals.

In this paper, the simplest facet of the problems connec
with glassy reorientational dynamics shall be analyzed.
will develop the MCT for the motion of a single rigid non
spherical molecule, which exhibits an axis of rotational sy
metry eW . This molecule shall be immersed in a system
spherical particles. The most important functions describ
reorientational motion are@3#

C~ j !~ t !5^Pj„eW~ t !•eW…&, ~3!

where Pj denotes the Legendre polynomial of degreej
51,2. . . . .Beginning with Debye’s theory of dipole relax
ation in liquids, these functions have been discussed ex
sively, and we refer the reader to the monograph by Ev
et al. @42# for a review. If one considers a dilute solution
polar molecules in a dielectrically inert environment, the s
tem’s dielectric-loss spectrum is proportional tovC(1)9(v).
HereC( j )9(v) denotes the Fourier cosine transform for fr
quencyv of C( j )(t). Similarly, the cross section for depola
ized light scattering for the solution is proportional
C(2)9(v). Thus the functionsC( j ) are of direct interest for
the interpretation of experiments. The observed puzz
time dependence ofC( j )(t) is due to the coupling of the five
degrees of freedom of the test molecule to the ones of
molecules of the surrounding system. The surroundi
cause forces, which lead to librations and to relaxation p
nomena. The molecule’s motion reflects the surroundin
dynamics. The approximation schemes forC( j )(t), which
have been discussed in the past, did not lead to an accep
description of the measured structural relaxation phenom
@42#, since no adequate theories for the dynamics of
glassy environment had been available. MCT offers a w
out of this problem, since the solutions of Eqs.~1! can be
y

-
e

s
-
y
c
-
e
It

y

y,
to

to

f
-
i-

d
e

-
f
g

n-
s

-

g

e
s

e-
s’

ble
na
e
y

used as input information. Polarized light scattering and n
tron scattering experiments probe a combination of tran
tional and reorientational motion of the molecules. MCT pr
vides a formalism defining how the structure relaxation
the various degrees of freedom are related, in particular, h
they enter the measured spectra.

In a normal liquid theC( j )(t) relax to zero for long times
@42#. But within an ideal glass environment, one expe
spontaneous arrest for reorientational motion, i.e., posi
long-time limits f j in analogy to Eq.~2!;

C~ j !~ t→`!5 f j . ~4!

The f j correspond to the Edwards-Anderson parameters,
troduced in the theory of spin glasses@31#. Within spin-glass
theories one usually introduces quenched disorder in anad
hoc manner and then studies the most favorable states c
patible with the spin-spin interactions. In our approach
frozen disorder is calculated with Eqs.~1! and then the mo-
tion of the test molecule in the cages, formed by its neig
bors, will be studied.

The scope of the intended broadening of the mo
coupling approach towards handling nonsimple liquids is
narrow to lead to a complete theory of systems like the ci
Salol or glycerol. The molecules in those systems do
have an axis of rotational symmetryeW . It will be obvious,
however, that our work can be extended to a treatmen
general rigid molecules with three rotational degrees of fr
dom. The functions that will be constructed in the followin
with spherical harmonics have to be extended to the Wig
functions@43,44#. The serious problem for a complete MC
of molecular liquids is the need to derive matrix generaliz
tions of the Eqs.~1! so that coherent fluctuations of reorie
tations can be handled. Such work has been done recent
Schilling and Scheidsteger@45#. The form factors shown in
their work describe the interplay of hard-sphere repulsio
with long-range dipole interactions. The numerical resu
that we are going to discuss for the glass form factors d
with the dynamics of reorientations as it is dominated
steric hindrance.

The present work is arranged as follows. In Sec. II t
irreducible tensor densities and the corresponding curr
are introduced, which will be needed for the description
the molecule’s dynamics. The exact equations of motion w
be formulated for the density correlation functions, where
interaction effects enter via fluctuating-force correlation k
nels. Then~Sec. III! the equations will be closed by a mod
coupling approximation. As a result, a nonlinear-dynam
model for the molecule’s motion will be obtained, describi
structural relaxation. In particular, equations for t
Edwards-Anderson parameters will be derived. In Sec.
quantitative results for the glass form factors will be pr
sented and discussed for a hard dumbbell molecule
mersed in a hard-sphere glass.

II. BASIC CONCEPTS AND EQUATIONS

A. Density and momentum density fluctuations

In this section we define the variables that will be used
the description of the molecule’s dynamics. Using the co
ventional terminology@46#, variableA, B, etc. are consid-
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ered as vectors in the state space with a scalar pro
(AuB)5^A* B&. The time evolution is generated by the He
mitian Liouvillian L: A(t)5exp(iLt). Hence ] tA5 iLA
5$H,A%, whereH is the Hamiltonian and$ , % denotes the
Poisson brackets. The Hamiltonian is the sum of the Ham
tonian for the surroundingsHS , that for the molecule-
surroundings interaction potentialH int , and that for the rigid
molecule’s kinetic energyH0 . The latter is the sum of trans

lational and rotational parts:H05HT1HR. If rW denotes the

center of mass andpW the momentum,HT5p2/(2I T) and pW

5I TrẆ, where the inertia parameterI T for translations is the

molecule’s mass. IfF(rW) is a function of position only, one

finds iLF(rW)I T5pW •]F/]rW. The molecule’s orientation sha
be specified by the solid angleV5(f,u), 2p<f,p; 0

<u<p for the axis of rotational symmetryeW . Instead ofu

one can also use the projection ofeW on the z axis: h
5cosu. If I R denotes the molecule’s moment of inertia, o
getsHR5$@pf

2 /(12h2)#1@ph
2(12h2)#%/(2I R), wherepf ,

ph are the canonical momenta forf andh, respectively. If

G(eW ) denotes a function of the orientation only, one calc

lates iLG(eW )I R5@pf /(12h2)#]G/]f1@ph(12h2)#]G/
]h. The momenta have a Gaussian distribution quantified
the thermal velocitiesva5AT/I a for translation,a5T, and
rotation, a5R, respectively: ^(pi /I T)2&05vT

2,
^(pf /I R)2&0 /(12h2)5^(ph /I R)2&0(12h2)5vR

2. Here^ &0

denotes averaging for fixed orientations, and temperat
are measured in units ofkB .

A complete set of variables, specifying the molecule
position in its five-dimensional configuration space, are t

sor density fluctuations for wave vectorqW and degreej :

% j
n~qW !5Rj

nexp~ iqW •rW !. ~5!

The orientational partRj
n is chosen proportional to th

spherical harmonicsYj
n : Rj

n5 i jA4pYj
n(eW ), j 50,1, . . . , n

52 j ,2 j 11, . . . j . The conventions follow Ref.@47# so that

% j
n(qW )* 5(21)n1 j% j

2n(2qW ). The variables % j
n(qW ) have

even parity under time inversion. The time derivatives of
densities split naturally into translational and reorientatio
parts:

L% j
n~qW !5sTj

n ~qW !/I T1sRj
n ~qW !/I R. ~6!

The momentum density fluctuations,sa j
n (qW ), can be written

similar to Eq.~5!:

sa j
n ~qW !5Sa j

n exp~ iqW •rW !, a5T,R. ~7!

Here STj
n 5qW •pW Rj

n and SRj
n 5I RLRj

n can be easily evaluate

as a function ofeW with the formulas noted in the precedin

paragraph. The new variables obeysa j
n (qW )*

52(21)n1 jsa j
2n(2qW ), and they are odd under time inve

sion.
Because of translational invariance, the specified fluct

tions are pairwise orthogonal, unless the wave vectors
ct

l-

-

y

es

-

e
l

a-
re

equal. A similar statement holds with respect to the ten
indices because of rotational symmetry. The density fluct
tions are normalized:

„% i
m~pW !u% j

n~kW !…5d i j d
mndpW kW . ~8!

The momentum densities are orthogonal to the dens
since they have opposite time-inversion symmetry. The

maining averages can be reduced to^(qW pW )2&5(qvTI T)2 and
to ^(12h2)ph

2(]Ri
0/]h)(]Rj

0/]h)&5I R
2vR

2 j ( j 11)d i j . As a
result one finds

„sa i
m ~pW !usb j

n ~kW !…5dabd i j d
mndpW kWI a

2Va j
2 ~p!. ~9!

Here theVa j (q) are given by the characteristic frequenci
for the free particle dynamics@3,42#.

VTj~q!5Vq
s5vTq, VRj~q!5V j5vRAj ~ j 11!.

~10!

B. The molecule-surroundings-interaction functions

The interactions between the molecule and the surrou
ing spherical particles will enter our theory via direct corr
lation functionscJ(q). These real functions are defined by

nS~q!cJ~q!5^%~qW 0!* %J
0~qW 0!&. ~11!

Here and in the followingqW 05(0,0,q) denotes a vector o

length q directed parallel to thez axis. %(qW ) denotes the
surroundings’ density fluctuation andS(q) is the surround-
ings’ structure factor, introduced in Sec. I. The right-ha
side ~rhs! of Eq. ~11! is the static solute-solvent structur
factor SJ(q)5nS(q)cJ(q). In the limit of weak interaction

potentials one findsncJ(q)52nvJ
0(qW 0)/T, wherevJ

0(qW 0) is
the coefficient of the decomposition in spherical harmon
of the molecule-surroundings-interaction-potential Four
transform. Hence,2ncJ(q) plays the role of an effective

interaction potential. The fluctuations%(qW ) are irreducible
tensor density fluctuations of degreeJ50. Thus one derives
from translational and rotational invariance the formula

the overlap of%(qW ) with the density fluctuations of the mol
ecule

^%~pW !* %J
M~qW !&5dpW qW†4p/~2J11!‡1/2YJ

M~pW !nS~p!cJ~p!.
~12!

The effective potentials also determine the overlaps

%(qW ) with three kinds of molecule pair modes, which will b
needed in the following. These are denoted byp~a!,
a5O,T,R

p j l
mk~qW ,kW ,a!5H % j

m~qW !% l
k~kW !

2 i$sa j
m ~qW !,% l

k~kW !%

if a5O
if a5T,R. ~13!

These pair modes can be written as a linear combina

of fluctuations%J
M(qW 1kW ) if one expresses tensor products
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linear combinations of irreducible tensors, with 3-j symbols
and reduced averages determining the coefficients@47#. With
Eq. ~12! one obtains

^%~pW !* p j l
mk~qW ,kW ,a!&5dpW ,qW 1kW i j 1 l@4p~2 j 11!~2l 11!#1/2

3(
JM

YJ
M~pW !* nS~p!cJ~p!

3S j
m

l
k

J
M D

3S j
0

l
0

J
0D i2JCa~ j lJ ;qW •kW !,~14a!

CO51, CT5qW •kW , CR5@J~J11!2 j ~ j 11!2 l ~ l 11!#/2.
~14b!

Because of reflection symmetry, tensor degrees are cou
so thatj 1 l 1J is even. If a top-down symmetric molecule
considered there is a further symmetry of the system w

respect to inversions of the axiseW . The functionscJ vanish
for odd J in this case, and the overlaps in Eq.~14a! are
nonzero only ifj 1 l is even.

C. The density correlators for the molecule

A statistical description of the molecule’s motion in co
figuration space is given by the correlato

^% i
m(pW ,t)* % j

n(qW )&. Because of translational invariance th

overlaps forpW ÞqW vanish so that one can write

„% i
m~pW ,t !u% j

n~qW !…5dpW qWF i j
mn~qW ,t !. ~15!

LetD(qW ) be a rotation of vectorqW 05(00q) into vectorqW and

let Dnk
j (qW ) denote the Wigner functions for the correspon

ing irreducible representation ofD(qW ) of degreej . If ~f,u,c!
denote the three Euler angles, we writeDnk

j (f,u,c)
5exp(inf1 ikc)dnk

j (u), where the real quantitiesdnk
j (u)

are the reduced Wigner functions@47#. Rotational invariance
implies a representation of general density correlators

combination of those forqW 0 :

F i j
mn~qW ,t !5(

k
Dmk

i ~qW !* Dnk
j ~qW !F i j ~qk,t !, ~16a!

F i j ~qk,t !5„% i~qk,t !u% j~qk!…, % i~qk!5% i
k~qW 0!.

~16b!

The goal of every theory for the dynamics of a linear t
molecule moving in a homogeneous isotropic environmen
the evaluation of the infinite matrixF i j (qk,t); i , j
50,1, . . . ; k50,61, . . . ,6min(i,j). The matrix elements
are the correlation functions for tensor density fluctuations
wave-vector modulusq, degreesi and j , and helicity k.
Correlations between variables of different helicities do
enter, since rotational invariance implies„% i(qmt)u% j (qn)…
50 for mÞn.
led

h

-

s

t
is

f

t

Equation~16a! holds for all directions ofqW , if the limit

q→0 is considered for the correlators. ThereforeF i j
mn(0W ,t)

5d i j d
mnSkF j j

kk(0W ,t)/(2 j 11). Using the addition theorem
for spherical harmonics the rhs is given by the functio
defined in Eq. ~3!. The C( j )(t) are obtained as long
wavelength limits

F i j ~q→0m,t !5d i j C
~ j !~ t ! if umu< j . ~17!

The cross section for the scattering of a test particle can
written as Fourier cosine transform of an intermediate sc
tering functionF(t)5^X(t)* X&, with X denoting the cou-
pling variable @46#. For example, the incoherent neutro
scattering in a simple liquid is given by the self-correlati

functionFq
s(t)5^exp@2iqW •rW(t)#exp@iqW •rW#& @2–4#. The cou-

pling variable for a neutron scattering process from

linear molecule for a momentum transferqW can be
expressed in terms of form factorsbj (q) as X

5exp(iqW •rW)S j nbj (q)A4p/(2 j 11)Yj
n(qW )* Rj

n(eW ). If the
molecule consists ofs atoms with scattering lengthsf l that

are placed at rW1dleW , l51, . . . ,s, one gets bl(q)
5Sl f lA2l 11 j l(qdl), where j l denotes the spherica
Bessel function. From Eq.~16a! one obtains

F~ t !5(
i j

bi~q!* F i j ~q0,t !bj~q!. ~18!

In order to calculate the scattering properties translationa
well as rotational degrees of freedom have to be taken
account. Only for very smallq can one restrict the sum to th
i 5 j 50 term and reduce the problem to a discussion
Fq

s(t).
The coefficients of a Taylor expansion with respect tot in

Eq. ~16b! are given by matrix elements of the LiouvillianL.
Equations~6!, ~8!, and~9! lead to

F i j ~qm,t !5d i j @12~Vq
s21V j

2!t2/2#1O~ t3!. ~19!

The correlators are normalized fort50. The leading contri-
bution to the transient does not introduce off-diagonal ter
and it is given—independently of any interaction effects—
the two characteristic frequencies from Eq.~10!. Because of
reflection symmetry, the correlatorsF i j (qm,t) do not de-
pend on the sign ofm. Exploiting (AuB)5(B* uA* ) as well
as time-inversion symmetry one can show the following:
F i j (qm,t) are real, even int, and symmetric under inter
changes ofi and j . For top-down symmetric molecules th
correlators vanish ifi 1 j is odd.

D. Equations of motion

In this section two coupled equations of motion shall
derived. The first one relates the time derivative of the ma
F(t) of density correlators to the matrixK(t) of momentum
density correlations. The second one connects the time
rivative of K(t) with a matrixM (t) of fluctuating-force cor-
relations.

The Zwanzig-Mori formalism provides a procedure
formulate equations of motion for a set of distinguished va
ables. The coupling of these variables to the other variab
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of the systems is hidden in memory kernels, so that the eq
tions of motion get the form of integrodifferential equatio
of the Volterra type@2–4,42,46#. Let us start by choosing a
set of distinguished variables the density fluctuations% i(qm)
from Eq.~16b!. Since„% i(qm)uL% j (qm)…50, the first equa-
tion of motion reads

] tF i j ~qm,t !1(
ı̄
E

0

t

d t̄C i ı̄ ~qm,t2 t̄ !F ı̄ j~qm, t̄ !50,

~20!

which has to be solved with the initial conditionF i j (qm,0)
5d i j .

Let P85S j u% j (qm)…„% j (qm)u denote the projector on th
space of density fluctuations of wave vectorq and helicitym,
and letQ8512P8 abbreviate the orthogonal complemen
SinceP8LP850, one getsQ8L% j (qm)5L% j (qm). The re-
duction ofL onto the perpendicular space shall be deno
by L85Q8LQ8. The evolution withL8 shall be indicated by
a prime:A(t8)5exp(iL8t)A. Then the memory kernel in Eq
~20! is C i j (qm,t)5„L% i(qm,t8)uL% j (qm)…. The density
derivatives can be expressed as a sum of the two momen

density fluctuationssa j (qn)5sa j
n (qW 0), a5T,R, according

to Eq. ~6!. ThusC i j can be written as a sum of four correl
tors of fluctuating momentum densities

C i j ~qm,t !5(
ab

Va i~q!Ka ib j~qm,t !Vb j~q!, ~21!

where the matrixK denotes

Ka ib j~qm,t !

5@Va i~q!I a#21
„sa i~qm,t8!usb j~qm!…@Vb j~q!I b

~22!

The pairs (a i ), (b j ) serve as matrix indices. Fori 50, only
the possibilitya5T occurs in the pair (a i ). Factors are split
off in Eqs. ~21! and ~22! so, that Eqs.~9! and ~10! imply

Ka ib j~qm,t50!5dabd i j . ~23!

The procedure shall be repeated using the momen
density fluctuations as variables. Sin
„sa i(qm)uL8sb j (qm)…50, one gets the second equation
motion,

] tKa ib j~qm,t !1(
ı̄ ā

E
0

t

d t̄Ma i ā ı̄ ~qm,t2 t̄ !K ā ı̄ b j~qm, t̄ !50,

~24!

which has to be solved with the initial condition~23!.
Because of Eq.~9!, the projector on the second releva

subspace readsP95Sa i usa i(qm)…@Va i(q)I a#22
„sa i(qm)u.

The complement shall be denoted byQ9512P9. Since
P9P850 one getsQ5Q8Q9512P82P9. The fluctuations
f a i(qm)5L8sa i(qm)5Q8Lsa i(qm) have even time-
inversion parity and therefore are orthogonal to t
sb j (qm): P9L8P950,Q9L8sa i(qm)5 f a i(qm). Let us de-
note the new reduced Liouvillian byL95Q9L8Q95QLQ
and indicate the corresponding time evolution by a dou
prime: A(t9)5exp(iL9t)A. Thus the memory kernelM can
a-

.

d

m

1.

m

f

e

be written as the correlator of the fluctuating forc
Fb j (qm)5 f b j (qm)/@Vb j

2 (q)I b#:

Ma ib j~qm,t !5Va i~q!„Fa i~qm,t9!uFb j~qm!…Vb j~q!,
~25!

Fb j~qm!5@Vb j
2 ~q!I b#21Lsb j

m ~qW 0!2% j
m~qW 0!. ~26!

The pair of equations~20!, ~24! is our generalization of
the starting equation~1a! of the MCT for simple liquids. A
new subtlety is the splitting of the current kernelC into four
terms in Eq.~21!. This splitting formalizes the idea that den
sity fluctuations forj Þ0 decay via parallel relaxation ove
two channels: decay due to translational and due to reor
tational motion. The preceding equations are an exact re
mulation of the problem; all difficulties are hidden in th
kernel M . For top-down symmetric moleculesC i j (qm,t),
Ka ib j (qm,t), andMa ib j (qm,t) vanish if i 1 j is odd. In this
case the equations of motion consist of two uncoupled s
One set deals with the matrices where both indicesi and j
are even, the other one deals with the matrices where boi
and j are odd.

III. A MODE-COUPLING THEORY

If one performs a Markovian approximation for the rela
ation kernel,M (t)5nd(t), the equations of motion in Sec
II D reduce to master equations. Their solutions for the d
sity correlatorF(t) are sums of damped-oscillator function
Such an approach would not deal properly with structur
relaxation phenomena since stretching of relaxation is
obtained. The same holds if other elementary functions
used forM (t) as, e.g., exponential decays@42#. Glassy re-
laxation ofF is caused by that of the force correlationsM .
Nontrivial contributions to the forcesF are due to interac-
tions of the molecule with atoms of the surroundings. Hen
structural-relaxation features ofM are connected with the
slow relaxation of the molecule-atom separations. There
self-consistency problem: the densities fluctuate slowly
cause the forces exhibit slow relaxation, and the forces re
sluggishly since the particle positions relax sluggishly. T
theoretical problem is to express the force correlatorsM (t)
in terms of the density correlatorsF(t) so that glassy relax-
ation of the latter implies that of the former. In particular, t
appearance of nonvanishing nonergodicity parameters for
density correlators must imply nonzero nonergodicity para
eters for the force correlators@48–50#. In this section the
preceding work on simple systems will be extended by
proximating the kernelM as a polynomial of the correlators
As a result closed equations of motion will be obtained
the functionsF i j (qmt), which contain the density correla
tors Fq(t) of the surroundings as input. A model for th
molecule dynamics will be derived, whose subtleties are
lated to the appearance of nonlinearities and retardation

A. MCT equations of motion

We restrict the discussion to the surroundings ofN iden-
tical spherical particles; generalizations to mixtures would

straightforward. Letw(rW,eW ,rWS) denote the variable for find

ing the molecule at positionrW with orientationeW and simul-



t
e

na
t

ie
e

tic
le

, a
Th
les

o
a

b
m
no
o
in

E
r-

u

ri-

t
de

b

as
ls
it

in

d

ry

s

tor
e-

d
-
o-
sis
he
e

m-
re
ov

are

eal
ule
am-
al,

m-

c-
ti-
e
o-

ack
ss

-

56 5665THEORY FOR THE REORIENTATIONAL DYNAMICS IN . . .
taneously an atom of the surroundings at positionrWS . Fourier

transformation ofw with respect torW and rWS and expansion

of theeW dependence in spherical harmonics yieldw as linear
combination of

Al
k~kWpW !5% l

k~kW !%~pW !/ANS~p!. ~27!

These pair modes are the simplest variables dealing with
molecule-atom pair configurations, and are expected to
hibit structural-relaxation dynamics. There are additio
variables that can also contribute to the forces, such as

triple modes% l
k(kW )%(pW )%(qW ). The incorporation of these

and more complicated modes would cause great difficult
For example, it would be necessary to orthogonalize th

complicated modes with respect to theAl
k(kWpW ). To start such

a procedure one would need three-particle and four-par
averages, about which not much information is availab
Therefore, as a first step of our approximation procedure
modes except the specified pair modes shall be ignored.
step is motivated by the intention to analyze the simp
version of a theory.

The second step is the factorization of averages of pr
ucts into products of averages. This factorization approxim
tion was introduced by Kawasaki@51,52# in some different
context. One can justify this approximation for several pro
lems such as the determination of hydrodynamic long-ti
tails @30#. In the present context, unfortunately, one does
know the essence of the errors of the approximation, nor h
to construct improvements. Making use of translational
variance, the approximation reads

„Al 8
k8~kW8pW 8,t9!uAl

k~kWpW !…5dkW8kWdpW 8pWF l 8 l
k8k

~kW ,t !Fp~ t !.
~28!

Here the tensor density fluctuation correlator entered via
~15!, and Fq(t) denotes the density correlator of the su
rounding simple system, discussed in Sec. I. Equation~28!
for t50 implies the orthonormality of the pair modes.

Let X andY denote two variables, which are perpendic
lar to the density and momentum density fluctuations:QX
5X, QY5Y. Let us consider the correlator of these va
ables, where the reduced dynamics, as generated byL9, is
anticipated. We introduce the mode-coupling contribution
this correlator as the part in the subspace of the pair mo

„X~ t9!uY…

MC5(
kWpW

(
l 8 l

(
k8k

„XuAl 8
k8~kWpW !…F l 8 l

k8k
~kW t !Fp~ t !

3„Al
k~kWpW !uY…. ~29a!

The entire remainder of the correlators shall be denoted
„X(t9)uY…

reg:

„X~ t9!uY…5„X~ t9!uY…

MC1„X~ t9!uY…

reg. ~29b!

The third and last step of our derivation consists of the
sumption that„X(t9)uY…

reg is regular in the sense that it dea
with transient effects only. In particular, it is assumed that
long-time limit vanishes.
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The preceding formulas shall be used withX5Fa i(qm),
Y5Fb j (qm) in order to treat the fluctuating-force kernel
Eq. ~25!:

Ma ib j~qm,t !5Va i~q!@ma ib j~qm,t !

1ma ib j
reg ~qm,t !#Vb j~q!. ~30a!

The mode-coupling contributionm(t) is a functional of the
two correlators entering Eq.~29a!

ma ib j~qm,t !5Fa ib jqm„F l 8 l~kn,t !;Fp~ t !…. ~30b!

The mode-coupling functionalF is a polynomial of its vari-
ables

Fa ib jqm„ f̃ l 8 l~kn!; f̃ p…5 (
kpl8 ln

Vqmkpl8 ln
a ib j f̃ l 8 l~kn! f̃ p .

~30c!

Remembering Eqs.~16a! and ~26! it is obvious that the co-
efficientsV are given by products of Wigner functions an
overlaps of the pair modes from Eq.~27! with Ls and %.
Because of Eqs.~14! the latter are determined by geomet
factors and byS(p)cJ(p). Therefore, theV are known func-
tions depending smoothly on control parameters such an
andT; details are noted in the Appendix.

The regular contribution to the fluctuating-force correla
mreg(t) is quite nontrivial. Imagine that there is no molecul
atom interaction at all, so that theF i j (qm,t) describe free-
rotator motion. The resulting functionsC( j )(t), Eq. ~17!, are
quite complicated@42#, and thus produced by complicate
expressions formreg(t). Furthermore, within the normal liq
uid state there will be a coupling of the reorientational m
tion to the liquid’s shear modes. This coupling was the ba
of Debye’s theory relating reorientational relaxation to t
viscosity @42#. Such coupling also leads to some long-tim
power-law decay ofC( j )(t) @53#, yet another subtlety hidden
in mreg(t). However, these and other normal liquid pheno
ena are irrelevant within that dynamical window, whe
structural relaxation dominates. In this window a Mark
approximation formreg(t) is sufficient.

The equations of motion~20!–~24! together with the
mode-coupling-approximation results~30! are the desired
closed set of equations for the molecule dynamics. These
the analog of the mode-coupling equations~1! for simple
liquids. The approximations are constructed so that they d
with the translation and reorientation of the linear molec
in a regime, where glassy dynamics dominates. The dyn
ics of the surroundings enters the mode-coupling function
Eq. ~30b!, via the density correlatorFq(t). Let us emphasize
two features of our theory. Firstly, neither the inertia para
eters of the molecule nor the temperatureT occur in the
mode-coupling functional explicitly. Secondly, the intera
tion potential enters only indirectly via the structural quan
ties ncJ(p) and S(p). Therefore our theory can handle th
strong repulsive forces that dominate the structure of m
lecular liquids.

The derived equations formalize the essential feedb
mechanism of the MCT, which can lead to an ideal gla
transition @48–50#. A white-noise approximation for the
spectrum of the force kernelM implies exponentially decay
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ing contributions to the correlatorF, as mentioned above
Substituting this into Eqs.~30!, one gets a low-frequenc
peak in the spectrum of the kernel. A white-noise appro
mation for the spectrum ofM is therefore inadequate; rathe
the low-frequency force spectrum is enhanced since the z

frequency spectrum of the pair modesAl
k(kWpW ) is enhanced.

Such a peak in the kernel spectrum produces a correspon
peak in the correlator spectrum via the equations of mo
~20!–~24! as first discussed by Mountain within Maxwell
theory of viscoelasticity@54#. Substituting this back into Eqs
~30!, the quasielastic peak in the force spectrum gets
hanced further and this leads to a further enhancement o
corresponding quasielastic spectrum for the density fluc
tions, etc. There are two possibilities for a stabilization
this feedback mechanism. Either there appear n
Lorentzian quasielastic spectra for the kernel and the
relator, and this is the essence of the MCT for thea relax-
ation within the liquid, or the width of the Mountain pea
collapses to zero, and this is the essence of the MCT for
ideal glass state. The area of the degenerate Mountain pe
the nonergodicity parameter of the correlator under disc
sion.

Mode coupling is achieved via the overlaps from E
~14a!. For top-down symmetric molecules, variables of d
ferent parity do not couple. In this case, the complete M
problem splits into two independent ones. The mo
coupling expressions~30! do not introduce coupling betwee
the two sets specified at the end of Sec. II D.

B. The glass form factors

Let us denote the long-time limits of the density corre
tors by

f i j ~qm!5 lim
t→`

F i j ~qm,t !. ~31a!

These nonergodicity parameters or glass form factors
they are nonzero—quantify the spontaneous arrest of
molecule in its environment. They are the Lamb-Mo¨ssbauer
factors that determine via~18! the intensity of the strictly
elastic scattering of test particles, like neutrons, from
molecule. The Edwards-Anderson parametersf j , which
were defined in Eq.~4!, are obtained via Eq.~17! as long-
wavelength limits

f i j ~q→0,m!5d i j f j , umu<min~ i , j !. ~31b!

The mode-coupling formulas~30! establish a representatio
of the nonergodicity parameter of the fluctuating forces,
be quantified by ga ib j (qm) via Ma ib j (qm,t→`)
5Va i(q)ga ib j (qm)Vb j (q), in terms of those for the mol
ecule and for the surroundings, Eqs.~2!, ~31a!,

ga ib j~qm!5Fa ib jqm„f l 8 l~kn!; f p…. ~32!

To proceed one has to derive a further relation betweeg
and f via the equations of motion from Sec. II D. This
done most efficiently@48–50# using Laplace transformations
for which we apply the convention F(z)
5 i*0

`F(t)exp(izt)dt, Imz>0. A nonzero long-time limit,
F(t→`)5F` , is equivalent to the existence of a nonergo
i-
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icity pole at zero frequency:2zF(z)→F` for z→0. The
first Zwanzig-Mori equation~20! together with its initial
condition is equivalent to

2(
ı̄

@zd i ı̄ 1C i ı̄ ~qm,z!#F ı̄ j~qm,z!5d i j , ~33a!

and the second one, Eq.~24!, reads

2(
ā ı̄

@zd i ı̄ daā1Ma i ā ı̄ ~qm,z!#K ā ı̄ b j~qm,z!5d i j dab .

~33b!

The zero-frequency limit of Eq.~33a! yields

(
ı̄

@d i ı̄ 1Ji ı̄ ~qm!# f ı̄ j~qm!5d i j . ~34a!

This formula relates the glass form factors with the limit
the current correlators: Ji j (qm)5 limz→0C i j (qm,z)/z.
Because of Eq. ~33b!, the Ji j are combinations of
the corresponding asymptotic value
limz→0Va i(q)Ka ib j (qm,z)Vb j (q)/z5I a ib j (qm),

Ji j ~qm!5(
ab

I a ib j~qm!. ~34b!

The zero-frequency limit of Eq.~33b! together with Eq.
~30a! identifies the matrixI as the inverse of the matrixg:

(
ā ı̄

ga i ā ı̄ ~qm!I ā ı̄ b j~qm!5dabd i j . ~34c!

The formulas~32! and ~34! are the desired equations fo
the form factors. These coupled nonlinear equations hav
be complemented by the equation for thef q , cited in Sec. I,
since these functions enter Eq.~32! as input. It is known
from the earlier literature that implicit equations of the kin
formulated above can exhibit two generic types of ergod
to-nonergodic transitions at a critical valuexc of some con-
trol parameterx, such asn or 1/T. The form factors may rise
continuously proportional to (x2xc) @48–50,55–57# ~type-A
transitions!, or they may jump to nonzero valuesf c @28,58#
~type-B transitions!. Below it will be demonstrated that bot
types of transitions can occur in our theory.

C. Further approximations

The appearance of matrix correlators instead of autoc
relation functions implies a considerable increase in the
forts to solve the derived equations. Matrix generalizatio
of the original MCT equations have been derived and sol
before for the studies of mixtures of spherical molecu
@40,59,60#. It turned out that the generalizations mere
caused technical problems, which did not lead to new qu
tative features. Therefore we suggest to start studies of
lecular liquids with the additional approximation, which ig
nores off-diagonal force correlators: Ma ib j (qm,t)
.dabd i j Ma(q jm,t). This approximation implies diagonal
ity for the current and density correlators:Ka ib j (qm,t)
5dabd i j Ka(q jm,t), F i j (qm,t)5d i j F(q jm,t). Within this
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diagonal approximation, also indexj enters the theory as
parameter likeq andm. The equations of motion of Sec. II D
simplify to

] tF~q jm,t !1E
0

t

d t̄ C~q jm,t2 t̄ !F~q jm, t̄ !50, ~35a!

C~q jm,t !5Vq
s2KT~q jm,t !1V j

2KR~q jm,t !, ~35b!

] tKa~q jm,t !1E
0

t

d t̄ Ma~q jm,t2 t̄ !Ka~q jm, t̄ !50.

~35c!

The mode-coupling formulas closing these equations fol
from Eqs.~30!:

Ma~q jm,t !5Va j~q!2@ma~q jm,t !1ma
reg~q jm,t !#,

~36a!

ma~q jm,t !5Faq jm„F~kln,t !;Fp~ t !…, ~36b!

Faq jm„ f̃ ~kln!; f̃ p…5 (
kpln

Vaq jm~kpln! f̃ ~kln! f̃ p . ~36c!

The Vaq jm(kpln)5Vqmkplln
a j a j are non-negative numbers, an

therefore our mode-coupling functional has the same gen
properties as the one for the simple-liquid theory. The eq
tions for the form factorsf (q jm)5F(q jm,t→`) are ob-
tained from Sec. III B

f ~q jm!5
1

11gT~q jm!211gR~q jm!21 ,

ga~q jm!5Faq jm„f ~kln!; f p…. ~37!

For j 50, the density correlator specializes to the se
correlation function of the molecule density:F(q00,t)
5Fq

s(t). In this case Eq.~35b! simplifies to C(q00,t)
5(qvT)2KT(q00,t) so that the equations of motion can b
combined to

] t
2Fq

s~ t !1~qvT!2Fq
s~ t !1E

0

t

d t̄ Mq
s~ t2 t̄ !] t̄ Fq

s~ t̄ !50.

~38!

This result is the analog of Eq.~1a! and has been considere
before for simple liquids@28#; but here a coupling to the
rotational degrees of freedom is hidden in the formula
Mq

s(t)5(qvT)2@mq
s(t)1mq

s,reg(t)# via the kernel mq
s(t)

5mT(q00,t), Eqs.~36!.
For q50 and j Þ0, the density correlators specialize

the rotator functions because of Eq.~17!. In this case Eq.
~35b! simplifies toC(0 j m,t)5vR

2 j ( j 11)KR(0 j 0,t). Let us
note the result in the frequency domain

Cj~z!521/$z2vR
2 j ~ j 11!/@z1M j~z!#%. ~39!

This equation reproduces the representation ofF j (z) as a
two-step continued fraction@42#. The subtleties of the dy
namics, in particular the couplings to the translation, are h
den in the kernelM j (z)5vR

2 j ( j 11)@mj
R(z)1mj

R,reg(z)# via
mj

R(t)5mR(0 j 0,t), Eqs.~36!.
ral
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There is no experimental evidence indicating a connec
between structural relaxation and appearance of long-ra
spatial correlations. The available experimental evide
suggests that there is no singular small-q behavior of the
structural quantitiesncJ(q),S(q); the relaxation kernelsM
are expected to vary regularly in leading order for smallq. If
regular structure factors are used as input, our mo
coupling formulas forM reproduce such regularity for th
leading-order small-q variations. Long-wavelength correla
tions can therefore in leading order be handled correctly
ignoring theq dependence of the kernels. This suggest
generalized hydrodynamic approximation as a further sim
fication of our results:Ma(q jm,t).Ma(0 j m,t). The ap-
proximation implies independence of the correlators of
helicity m, because of rotational symmetry. Equations~35!
for F jq(t)5F(q jm,t) simplify to

F jq~z!521Y Fz2
vT

2q2

z1M j T~z!
2

vR
2 j ~ j 11!

z1M j R~z!
G , ~40!

whereM j a(z) is theq→0 limit of the Ma(q jm,z) from Eq.
~36a!. The glass form factors are specified by length para
etersr j and by constantssj :

f jq51/@11~qr j !
21sj

2#. ~41!

Here 1/r j
2 and 1/sj

2 areq50 limits of q2FTq jm( f lkn ; f p) and
FRq jm( f lkn ; f p), respectively.

IV. RESULTS AND DISCUSSIONS

A. Glass form factors for a hard dumbbell
in a hard-sphere glass

In this section some specific implications of our theo
shall be considered and quantitative results shall be
sented for a molecule in a system of hard spheres with
ameterd. The equilibrium structure of the surroundings
specified by a single control parameter, say the packing f
tion w5pd3n/6. The structure factorS(q) is calculated
within the Percus-Yevick theory@3#. From Eqs.~1! one gets
the form factorsf q of the hard-sphere glass and finds
liquid-glass transition at the critical packing fractionwc
50.516 @28#. If w decreases towc , the glass form factor
decreases to its critical valuef q

c.0:

f q5 f q
c1hqg~s!1Oq~s!, w>wc . ~42!

Here hq.0 denotes the critical amplitude, andg(s)
5As/(12l) contains the square-root singularity charact
istic for a fold bifurcation. The numberl50.735 is called
the exponent parameter ands'1.5(w2wc)/wc denotes the
separation parameter. A detailed discussion of Eq.~42! and
representative figures forS(q), f q

c , andhq , andOq can be
found in Ref.@32#. The numerical work is done for dumbbe
molecules consisting of two fused hard spheres with dia
eters d1 and d2 . The distance between the centerszd is
specified by the elongation parameterz. The unit of length
shall be chosen so thatd51. For symmetric dumbbellsd1
5d2 , there is the additional top-down symmetry. The co
pling functionsncJ(q) are also calculated within the Percu
Yevick theory@61#.
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Figure 1 exhibits a representative set of effective pot
tials ncJ(q) for w nearwc . The strong short-range repulsio
between dumbbell and the neighboring hard spheres ca
cJ(q) to be negative forqd!2p. The rapid variation of the
potential as a function of distance leads to rapid variati
for the pair correlation as a function of angle and distan
This yields oscillations ofcJ(q) that extend up to rathe
large values of the wave vectorq. The effective potential is
a smooth function except for some isolated lines@61#, and
therefore the coefficients of expansions in spherical harm
ics decrease with increasingJ. The relevant coupling coef
ficients of our theory,ncJ(q), become small ifJ becomes
large, in particularncJ(q)5O(qJ) for q→0. With increas-
ing w the uncJ(q)u increase smoothly.

If the surroundings are a liquid, i.e., iff q50, the long-
time limits ga ib j (qm) of the fluctuating-force correlator
Eqs. ~30c! and ~32!, vanish, and therefore the glass for
factorsf i j (qm) are zero as well. In this case the cage arou
the molecule has a finite lifetime and arrest is not possi
Let us therefore restrict the discussion to the glass statw
>wc , concentrate on molecules withd15d25d, and use the
diagonal approximation. Equation~37! is solved by the itera-
tion f (n11)(q jm)51/@11gT

(n)(q jm)211gR
(n)(q jm)21#,

ga
(n)(q jm)5Faq jm„f (n)(kln); f p…, f (0)(q jm)51, n

50,1, . . . . Figure 2 exhibits the resulting form factors
the critical point,w5wc , for helicity m50 and three repre
sentative values for the elongation parameterz. Figure 3
shows analogous results for all helicities forz50.6. Forq
50 there is no dependence onm, Eq. ~31b!, and for largeq
the nonlinear mode-coupling effects force the functions

FIG. 1. Effective interaction potentialsncJ(q) as defined by Eq.
~11! for a dumbbell withd15d25d and elongation parameterz
50.4 for J50, 2 and 4. The packing fractions of the hard-sph
surroundings arew50.49 ~dashed!, w50.52 ~solid!, and w50.55
~dotted!. The arrows indicate theq values 3.4~a!, 7.0 ~b!, 10.6~c!,
14.2 ~d!, and 17.4~e!. Notice that the vertical scale of successi
panels differs by a factor 20.
-

es

s
.

n-

d
e.

o

approach zero roughly at the same wave vector. There
there is only a weakm dependence of the form factors. Fo
the tagged-particle motion, particle-number conservation
plies f (q50,00)51. There is no analogous conservation la
for the other valuesj Þ0, and thereforef (q50,j m)5 f j,1.
The f (q jm) can be approximated well by Gaussiansf c(q j0)
}exp2(qaj)

2, as demonstrated in Fig. 4. This was notic

e

FIG. 2. Glass form factorsf c(q j0) at the critical packing frac-
tion wc50.516 ford15d25d and the three values for the elong
tion parametersz. The labels at the curves indicate the value oj
50, . . . ,6. Thethin lines show the critical form factorf q

c of the
hard-sphere system.

FIG. 3. Critical glass form factorsf j m5 f c(q jm) for d15d2

5d andz50.6.
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before for the localization of a hard sphere in a hard-sph
glass@28#. The description off c(q j0) by the generalized
hydrodynamics formula~41! works reasonably well for wave
vectors up to the position of the structure-factor peak n
q;7, but it leads to a severe overestimate of the form fac
for q>10.

The functionf (q00)5 f q
s describes the localization of th

molecule’s center in the glass matrix. This function exhib
only a very weak variation withz as shown in the uppe
panel of Fig. 5. Forz50 the dumbbell degenerates to
sphere, and in this casef (q jm)50 for j Þ0. The largerz the
more the molecules differ from a spherical one and thus
j Þ0 form factors increase appreciably with increasingz, as
shown in Figs. 2 and 5.

Arrest is less pronounced for strongly wiggled angu
distributions than for smooth ones, since the neighbor

spheres cannot resolve the variations ofYj
n(eW ) if j is too

large. Therefore one expects that the form factorsf (q jm)
decrease with increasingj , as demonstrated in Figs. 2 and
for z>0.4. However, for top-down symmetric molecules
can happen that allf i j (qm)50 for odd i , j , while the form
factors for eveni , j are nonzero. This is shown forz50.2 in
Fig. 2. There is a critical valuezc so thatf i j

c (qm)50 for odd
i , j and z<zc . The odd-j form factors are nonzero forz
.zc and they approach zero continuously ifz decreases to
wardszc as shown in Fig. 5. For a model withd15d25d,
one findszc50.296 forw5wc . Thus, for sufficiently small
positive z2zc it can happen that, e.g.,f c(q,20). f c(q,10)
.0.

Formulas~32! and ~34! define a set of implicit equation
for the f i j (qm), which has the solutionf i j

c (qm) for w5wc

FIG. 4. Critical glass form factorsf c(q j0)5 f jq for d15d25d
andz50.6 for j 50, 1, and 2~full lines!. The dotted lines show the
approximation by the generalized hydrodynamics resultf jq51/@1
1(qr j )

21sj
2# with r j andsj adjusted to match the small-q behav-

ior. The dashed lines are fits by Gaussiansf jq5exp@2(qaj)
2#/

@11sj
2#, aj

25r j
2/@11sj

2#.
re

r
rs

s

e

r
g

and f q5 f q
c . The equations depend smoothly onw. But there

appears a singularAw2wc dependence via Eq.~42! for the
Debye-Waller factorsf q . Hence, one concludes from th
implicit-function theorem for generic choices ofd1 , d2 , z,

f i j ~qm!5 f i j
c ~qm!1hi j ~qm!g~s!1Oi jq~s!, w>wc .

~43!

One concludes that the nonergodicity parameters for
molecule exhibit the sameAw2wc singularity as the Debye
Waller factors. This is demonstrated in Figs. 6 and 7 for t
values of z; notice that forz,zc the critical amplitudes
h(q j0) vanish for oddj . Figure 8 exhibits representativ
results forh versusq curves. For large wave vectors th
hi j (qm) have to approach zero sincef i j (qm) vanishes in the
limit q→`. Sincef 00(q→0,0)51 for all w>wc , the ampli-
tude h00(q0) has to vanish in the long-wavelength limi
Hence,h00(q0) is bell shaped and it exhibits a maximum f
a wave vector that is about twice the position of theS(q)
maximum, as was found before for a spherical molec
@62#. From Eq.~31b! one gets the result for the square-ro
anomaly of the Edwards-Anderson parametersf j5 f j

c

1hjg(s)1O(s). For example, one finds forz50.4: f 1
c

'0.61, f 2
c'0.39, h1'0.98, h2'0.57. This means thatf 1

increases more strongly withw2wc than f 2 as demonstrated
in Fig. 6. The findingsf 1

c. f 2
c andh1.h2 for z50.4 are in

qualitative agreement with molecular dynamics results
OTP @17,63#.

B. The factorization theorem

The essential point in the derivation of the asympto
laws for the MCT bifurcation dynamics is the following ob
servation: for smalluw2wcu, there appears an intermediat

FIG. 5. Critical glass form factorsf c(q jm) for helicity m50
and j 50, . . . ,3 as afunction of the elongation parameterz for d1

5d25d andq53.4 ~a!, 7.0~b!, 10.6~c!, 14.2~d!, and 17.4~e!. The
arrows mark the critical valuezc50.296 for a type-A transition.
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time window, referred to as theb-relaxation region, where
the correlatorsFq(t) are close to the critical valuef q

c of the
nonergodicity parameter. The equations of motion can
simplified by usingdFq(t)5Fq(t)2 f q

c as a small quantity
for expansions. In leading order one obtains the factoriza
theorem

FIG. 6. Form factorsf (q j0) for j 50, . . . ,4 andq510.6 as a
function of the packing fractionw for z50.4 andd15d25d. The
labels at the curves denote the valuej . The arrow indicates the
glass transition pointwc50.516. The dotted lines are the asym
totesf (q j0)5 f c(q j0)1h(q j0)As/(12l) for j 50, 1, and 2. The
diamonds mark forj 50,2 the values ofw where f (q j0) differs
from the asymptote by 10% off (q j0)2 f c(q j0).

FIG. 7. Similar results as in Fig. 6 but forz50.2. The dashed
arrow marks the valuew50.53 for a type-A transition point.
e

n

Fq~ t !2 f q
c5hqG~ t !. ~44a!

The deviationdFq(t) of the correlator from the plateauf q
c

factorizes into the critical amplitudehq from Eq. ~42! and
into a functionG(t), which is called theb correlator. The
latter exhibits the complete time dependence and also
sensitive dependence on control parameters via the sep
tion parameters: G(t)5g(t/t0 ,s). Here t0 is some time
scale determined by the transient dynamics. The functiog
of the two variablest/t0 and s is completely fixed by the
exponent parameterl. The functionG(t) quantifies a scaling
law; in particular, it deals with the crossover between tw
fractal power-law decays. Equation~42! is a special implica-
tion of Eq. ~44a!, since for s.0 one getsG(t→`)
5g(s). All universality features of the MCT scenario fo
the evolution of structural relaxation are based on Eq.~44a!
and the well-understood properties ofG(t) @33#. A detailed
demonstration of the result~44a! and a discussion of its lead
ing corrections can be found in Ref.@32#.

The proof of Eq.~44a! can be extended to a treatment
other correlators such as the tagged-particle-correlation fu
tion Fq

s(t), the mean square displacements, or transver
shear correlations@64#. For our case one can adopt th
known proofs to derive the generalization of Eq.~43! to the
leading-orderb-relaxation formula

F i j ~qm,t !2 f i j
c ~qm!5hi j ~qm!G~ t !. ~44b!

The molecule probes with amplitudehi j (qm) the b-
relaxation dynamics of the surroundings as described by
function G(t).

The identification of universality features for structur
relaxation via the functionG(t) is an important outcome o
MCT and therefore some digression might be in order.
Qi , i 51,2, . . . , denote a complete set of single-partic

FIG. 8. Critical amplitudesh(q j0) for helicity zero as function
of wave vectorq for d15d25d and three values of the elongatio
z. The labels at the curves denote the value ofj .
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variables. For the model studied in this paper, these are

molecule density variables% j
n(qW ) and the density fluctua

tions of the molecule’s surroundings%(kW ); the index i is

meant to abbreviate the set of (kW ,qW , j n). Let (Qi 1
•••Qi L

),

L51,2, . . . , denoteL-particle variables, i.e., the set of o
thonormalized products ofL factorsQi @30#. These variables
can exhibit structural arrest. Therefore, one writes for
correlatorFXY(t)5^X(t)* Y& of two variablesX andY

FXY~ t !5FXY
reg~ t !1FXY

MC~ t !. ~45a!

HereFXY
reg(t) denotes the contribution due to all those mod

which cannot arrest. It does not exhibit leading-ord
structural-relaxation effects. The second contribution rea

SLS i j ^X* ~Qi 1
•••Qi L

!&^~Qi 1
•••Qi L

!~ t !* ~Qj 1
•••Qj L

!&

3^~Qj 1
•••Qj L

!* Y&.

It is approximated by products of correlators and yie
the mode-coupling term

FXY
MC~ t !5FXY„F i j ~ t !…. ~45b!

The functional FXY is a polynomial in the correlator
F i j (t)5^Qi(t)* Qj&:

FXY~ f̃ i j !5(
L

(
i j

^X* ~Qi 1
•••Qi L

!& f̃ i 1 j 1
••• f̃ i L j L

3^~Qj 1
•••Qj L

!* Y&. ~45c!

If one uses the factorization theorem for the leading-or
treatment of the b-relaxation window, F i j (t)5 f i j

c

1hi j G(t), one gets the corresponding result for theX-Y
correlator

FXY~ t !5 f XY
c 1hXYG~ t !. ~46!

Here the critical nonergodicity parameter is given by t
functional at the critical point,f XY

c 5FXY( f i j
c ), and the criti-

cal amplitude is given by the functional’s derivative:hXY

5S i j @]FXY( f i j
c )/] f i j #hi j . Higher-order powers inG(t) con-

tribute to the corrections to the leading-orderb-relaxation
result.

According to Eq. ~46! it is obvious within MCT
that all correlators of variablesX and Y that couple to
densities, i.e., for which not all products of overla
^X* (Qi 1

•••Qi L
)& ^(Qj 1

•••Qj L
)* Y& vanish, exhibit the uni-
he

e

,
r

s

r

versal features for structural relaxation. For example, if o
analyzes the depolarized-light-scattering cross sect
within the leading-order MCT formulas@5,19,20#, one can
use the known expressions forG(t), provided one treats
hXY , t0 , s, andl—and only these numbers—as fit param
eters. It is irrelevant in that context whether the scattering
caused primarily by reorientational contributions or n
Similarly, it is legitimate to analyze dielectric spectra wi
the MCT scaling-law results@12,13#, independent of whethe
the response arises from ion displacements, from reorie
tions of dipole moments, or from a combination of both co
tributions. The formulas hold for the dielectric function a
well as for the dielectric modulus. Our paper provides a fir
principles theory for the amplitudesf i j

c (qm), hi j (qm) in Eq.
~44b!.

The transient dynamics for reorientational motion de
with hindered rotation, libration, and orientational diffusio
The crossover from transient to structural relaxation can
be handled by Eqs.~45! and~46!. To attack this problem one
needs a formalism that accounts reasonably for the trans
motion of the molecule as well as for its structural relaxatio
To deal with the transient, we have used the continu
fraction representations of the correlators in Sec. II D and
account for the structural relaxation, the MCT feedback id
have been formulated for the relaxation kernels in Sec. III
To handle both mentioned aspects of the molecule’s dyn
ics, the mode-coupling ideas have not been applied dire
for the reorientational correlators as suggested by Eqs.~45!.
Rather the factorization approximation has been introdu
for the memory kernels determining these functions.

One can use the recently developed procedures to ev
ate from the mode-coupling functionals the leading corr
tions to Eqs.~43! and~44b!, which are specified by two set
of amplitudesKi j (qn), K̄ i j (qn) @32#. These corrections ex
tend the range of validity of the mentioned leading-ord
results and determine their range of validity. It is obviou
for example, that the range of validity for the dielectric lo
spectrum may be different from that for the modulus. Wo
is in progress to determine the indicated results for
model and to compare theses findings with numerical so
tions for the correlators and spectra.

C. Type-A transitions

Let us imagine that for fixedw>wc the dumbbell size
shrinks as described by a decrease ofd1 , d2 , and z. For
properly chosen smalld1 ,d2 , there will obviously appear a
critical value ofz, say ẑc(w), so that the molecule can n
longer be localized forz, ẑc(w). There will be a percolation
transition forz crossingẑc(w). Thez-w parameter plane will
split into three regions. Forw,wc there is an ergodic liquid
with a diffusing molecule. Forw>wc andz.z# c(w) there is
a glass with a localized molecule, and forz, ẑc(w) there is
a glass with a delocalized molecule. MCT brings out a typ

A transition forz crossing a percolation thresholdẑc(w) as
demonstrated before for the Lorentz system@55,56#. The to-
pology of the phase diagram is that discussed by Sjo¨gren
@65# for a schematic MCT model. At the percolation thres
old the particle localization length diverges. The approxim
tions underlying the MCT cannot exactly handle the per
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lation transition, whose universal dynamics is connec
with a divergent length scale. Indeed, the asymptotic M
results@55,56# are those of a mean-field approach.

Type-A transitions for rotational degrees of freedom ha
been studied by Michel for crystals containing nonspher
molecules as impurities@66#. His assumed frozen random
array of impurity positions is the analog of our glass en
ronment. His general equations of motion are similar to ou
but his problem is more complicated due to the impuri
impurity interactions. Generically, interacting systems c
not exhibit a type-A transition. Such transitions are possib
only if there is some symmetry in the problem, renderi
whole blocks of mode-coupling vertices zero, or if the blo
structure is due to some peculiarity of the model@57#. The
latter is the case for the percolation problem: the frozen s
roundings govern the dynamics of the molecule but
single molecule cannot influence the ergodicity properties
the surroundings. In Ref.@66# it is anticipated that the
impurity-impurity mode-coupling interactions are so sm
that the expected jump of the nonergodicity parameter at
transition can be ignored, and thereby a type-B transition is
approximated by a type-A one.

If one considers a top-down symmetric molecule with
our theory, a type-A transition for odd-j correlators is pos-
sible even though the even-j correlators are arrested. Th
glass state for a localized molecule with arrested even-j dy-
namics splits into two pieces, separated by azc(w) transition
line. For z,zc(w), there is a glass with ergodic odd-j dy-
namics of the molecule and forz.zc(w) all rotational vari-
ables are arrested. Figure 5 exhibits the continuous decr
of the odd-j nonergodicity parameters forz approachingzc
5zc(wc) from above. With increasingw the trend to arres
increases, and thereforezc(w) for w.wc is smaller thanz ċ ,
as is demonstrated in Fig. 7. Let us emphasize that the
scribed odd-j transition is not connected with a diverge
length scale. One finds that the nonergodicity parameters
crease linearly with increasing separation parame
f (q jm)5h̃(q jm)(z2zc)1O„(z2zc)

2
… for z>zc . This lin-

ear variation is demonstrated in Fig. 5 and, on a magni
abscissa, in Fig. 9. If the symmetry is slightly broken, t
transition is eliminated in favor of a rapid crossover fro
very small nonergodicity parameters forz!zc to such of
order unity forz@zc @57#, as is also shown in Fig. 9. Th
crossover dynamics can be described by a formula suc
Eq. ~46!, which specifies universality features.
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APPENDIX: THE MODE-COUPLING FUNCTIONAL

In this appendix, the details of the mode-coupling fun
tionalF in Eq. ~30c! shall be specified. From Eqs.~16a! and
d
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~29a! one gets as a starting formula

Fa ib jqm„ f̃ l 8 l~kn!; f̃ p…5 (
kWpW l 8 ln

@NS~p!#21Al 8~kWpW n;a iqm!*

3 f̃ l 8 l~kn! f̃ pAl~kWpW n;b jqm!, ~A1!

with

Al~kWpW n;b jqm!5(
k

Dkn
l ~kW !„Al

k~kWpW !uFb j~qm!…ANS~p!.

~A2!

There are two contributions to the overlap of fluctuati
forcesF and pair modesA. One is due to the last term in Eq
~26!, which yields with abbreviation~13!

^% l
k~kW !* %~pW !* % j

m~qW 0!&

5^%~pW !* p j l
m 2k~qW 0 ,2kW ,O!&~21! l 1k.

The other one is due to the first term on the rhs of Eq.~26!.
It can be reformulated in a similar manner if one uses Kub

identity ^A*LB&5 iT^$B,A* %&:^% l
k(kW )* %(pW )*Lsb j m(qW 0)&

52T^%(pW )* p j l
m 2k(qW 0 ,2kW ,b)&(21)l 1k. The remaining

averages have been specified in Eqs.~14! and hence

FIG. 9. Critical glass form factorsf c(q j0) for helicity zero as a
function ofz for q53.4 ~a!, 7.0 ~b!, 10.6~c!, 14.2~d!, and 17.4~e!;
j 51 andj 53. The dashed heavy lines refer to top-down symme
dumbbellsd15d25d; the arrows indicate the positionzc50.296
for a type-A transition. The full light lines are the results for
molecule with (d12d2)/d50.02,d25d.
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Al~kWpW n;b jqm!5dpW 1kW ,qW 0
@4p~2 j 11!~2l 11!#1/2(

kJM
i j 1 l 2J~21! l 1k11YJ

M~pW !* nS~p!cJ~p!S j
m

l
2k

J
M D

3S j
0

l
0

J
0DDkn

l ~kW !@Cb„j lJ ;qW 0•~2kW !…vb
2/Vb j~q!21CO#. ~A3!

The kW2pW sum in Eq.~A1! reduces to an integration overkW , since pW 5qW 02kW . This is done best in bipolar coordinate

@(2p)3/N#(kWpWdpW 1kW ,qW 0
•••51/(nq)*dw*kdk*pdp••• . Here (w,qk) denotes the solid angle ofkW , so that cosqk5(k22p2

1q2)/(2kq). The solid angle ofpW is (2w,qp) with cosqp5(p22k21q2)/(2pq). The integration overw yields

2E YJ8
M8~pW !Dk8n

l 8 ~kW !* YJ
M~pW !* Dkn

l ~kW !dw5dM82M ,k2k8A~2J811!~2J11!dM80
J8 ~qp!dM0

J ~qp!dk8n
l 8 ~qk!dkn

l ~qk!. ~A4!

The Kronecker symbol and the 3-j symbols together implyM 85M andk85k. Finally, the integrals are replaced by Riema
sums ofNq wave-vector moduli, equally spaced with distanceh: k/h, p/h51/2,3/2, . . . , (Nq21/2). This yields the expres
sion for the coefficients in Eq.~30c!, where the sum overp is restricted touq2ku<p<uq1ku:

Vqmkpl8 ln
a ib j

5
1

~4p!2

h2kp

q
A~2i 11!~2 j 11!~2l 811!~2l 11!

3(
J8J

nS~p!cJ8~p!cJ~p!A~2J811!~2J11!S i
0

l 8
0

J8
0 D S j

0
l
0

J
0D ~21!~ i 2 l 82J8!/2

3~21!~ j 2 l 2J!/2Da~ i l 8J8,qkp!Db~ j lJ ,qkp!(
k

dk2m 0
J8 ~qp!dk2m 0

J ~qp!dkn
l 8 ~qk!dkn

l ~qk!S i
m

l 8
2k

J8
k2m D

3S j
m

l
2k

J
k2m D , ~A5!

with the abbreviation

Db~ j lJ ,qkp!5 H ~p21q22k2!/q2

@J~J11!1 j ~ j 11!2 l ~ l 11!#/@ j ~ j 11!#

if b5T
if b5R. ~A6!

The angular momentum indicesj are taken into account up to and including a cutoff numberj max. The results as shown in
Figs. 2, 6, 7, 8 were calculated withNq5100, j max56, and the wave-vector spacing is chosen ash50.4. Restricting the work
to j max54 changes the results on a 5% level forj 50,1,2 and on a 10% level forj 53,4. Usingj max52 one obtains results with
a 20% error. Figures 3, 4, 5, and 9 are calculated withj max54. Refining the discretization fromNq5100 toNq5200 with the
same large-wave-vector cutoff does not change the results on a 0.5% level, except for smallq. Figures 3 and 4 are evaluate
with Nq5200. UsingNq580 instead ofNq5100 with identical spacingh influences the results by less than 0.5%, except
wave-vector moduli near the large-wave-vector cutoff, where results change on a 5% level. Figures 5 and 9 are evalu
Nq580.
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@65# L. Sjögren, Phys. Rev. A33, 1254~1986!.
@66# K. H. Michel, Z. Phys. B68, 259 ~1987!.


