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Theory for the reorientational dynamics in glass-forming liquids
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The mode-coupling theory for ideal liquid-glass transitions is extended so that the structural relaxation for
the reorientational degrees of freedom of a linear molecule, which is immersed in a system of spherical
particles, can be described. Closed equations of motion for the correlation functions formed with tensor density
fluctuations are derived, which deal with the molecule’s translational and reorientational motion. From these
equations the nonergodicity parameters of a hard dumbbell molecule are calculated, which quantify its arrest in
a hard-sphere glass. For top-down symmetric molecules it is shown that the odd-angular-momentum variables
can exhibit an ergodic-to-nonergodic transition, characterized by a continuous increase of the Edwards-
Anderson parameters near the critical poif®&1063-651X97)03011-0

PACS numbd(s): 64.70.Pf, 61.20.Lc

[. INTRODUCTION ter of thea process and the short-time normal liquid dynam-
ics [11-13,20, and a square-root anomaly for thepeak

Glass-forming liquids exhibit structural-relaxation dy- intensity[8—10,2]. The mentioned modern studies support
namics if they are cooled or compressed. There are two oun old conjecture by Goldstei{i22] concerning the signifi-
standing features of this glass-transition precufddgr The  cance of a characteristic temperatiigelocated in the super-
first is the strong sensitivity on temperat(fer densityn of ~ cooled region above the calorimetric glass-transition tem-
the characteristic time scatefor the slowest process, called peratureTy. ForT>T., or for n smaller than an analogous
the a relaxation. The second is the stretching of decay curvesharacteristic density, , transport phenomena are connected
or susceptibility spectra over large windows of tiheor ~ Wwith the rattling of particles in self-consistently maintained
frequencyw, respectively. The classical experimental stud-cages and with the cooperative motion as manifested by the
ies, which have been carried out for more than a centurpuilding of backflow patterns. FOF <T. or n>n., on the
now, deal with structural relaxation on time scales of orderother hand, the particles are almost arrested in a spontane-
10 8 s or larger. This work did not lead to a coherent physi-ously frozen effective-free-energy landscape and transport is
cal picture, let alone a theory, of these fascinating dynamicalriggered by thermally activated hopping of the particles over
phenomena in condensed disordered matter. saddle points.

The time scale for normal liquid dynamics is about Of particular relevance for establishing the mentioned
10 ¥ s. On this scale neither liquids nor glasses exhibitpicture are the structural-relaxation studies for dense colloi-
structural relaxation as is known from, for example, Ramarfal suspension§23-2¢. Within the accessible dynamical
spectroscopy or neutron scattering and molecular-dynamicgvindow of up to eight orders of magnitude, a sharp transition
simulation work[2—4]. Consequently, structural relaxation from an ergodic liquid fom<n. to a nonergodic glass for
has to evolve within the gigahertz or picosecond bands, and>n. is observed. The static structure varies smoothly with
one can expect that studies of these dynamical windows reshanges of density fan nearn;, and it reflects nothing but
veal the secrets of the indicated phenomena. Great efforigtermediate-range order due to random packing.rFen,
and progress have been made towards this goal during th hopping effects have been observed. The detailed mea-
past ten years. We only mention some very recent achievesurements of the decay curves for density fluctuations exhibit
ments: measurements of the depolarized-light-scatterinthe same time fractals, scaling laws, and square-root anoma-
spectra of orthoterphenylOTP) over a four-decade fre- lies as mentioned above for conventional systems.
guency window [5], light-scattering [6] and neutron- The above cited experimenft§—26] are compatible with
scattering [7] spectroscopy for glycerol, impulsive- the conclusion that structural relaxation is a dynamical phe-
stimulated-light-scattering work for supercooled Sg®P],  nomenon connected with a glass-transition singularity. The
and 0.4Cé&N03),0.6KNO; (CKN) [10], transient hole burn- singularity is specified by critical values of control param-
ing for propylene carbonafd 1], dielectric-loss spectroscopy eters like T, and n., which separate ergodic liquid from
within the full gigahertz band for glycerdil2] and CKN  nonergodic glass states. The reality differs from the specified
[13], and molecular-dynamics simulations ofgjf,, 14,15, idealization; due to hopping processes the singularity is
water[16], and OTP[17]. Citations of the earlier work can avoided. The escape of the system from one of the many
be found in Refs[5—17]. A series of properties of structural free-energy valleys to a new one appears as an instability of
relaxation has been discovered, which has not been observéte nonergodic state. This causes the@rocess forT,<T
in the classical glass-transition research. Some of them can T, which deals with the decay of the otherwise expected
be directly identified by a look at the raw data: the appearspontaneously arrested glass structure. The properties of the
ance of two fractal power laws for the speci6a7,18,19 or  idealizedT, transition scenario remain valid for times short
for the equivalent decay curvgd4-16¢, unconventional compared tor.
scaling laws for the dynamics in a window between the cen- Let us consider a system &f identical particles whose
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center-of-mass positions are denoted ify x=1,... N. If a control parameter, say, is smaller than a critical value
The simplest variables dealing with structure are the density,,, the correlators relax towards the equilibrium valye
fluctuations as a function of wave vectog:g(q) =0, as expected for an ergodic liquid. However, foen,

=3,exp(ig-7). The structure factorS(q)=(|e(d)|?)/N  density fluctuations arrest in a disordered solid, quantified by
prOVideS the Simplest information on the partiCle diStribUtion.a Debye-Wa”er facto[fq> 0, also called nonergodicity pa-
Here ang in the following() denotes canonical averaging rameter or glass form factor. Edwards and Anderson have
and g=|q| indicates a vector modulus. The simplest func-pointed out in connection with a discussion of spin glasses
tlons_ dealing statistically Wltb siructyre dynf:m;lcs are the[31] that the appearance of nonzero long-time limits Ifige
density correlatorsbq(t)=(e(q,t)* ¢(d))/([e(G)|*). They  ig the signature of ideal glass states. Therefore these limits

azrg rgeaw_rtiq, Iﬁr t;xamplle,l\;ln t.hf C'te? colloid eXp%”memﬁre also called Edwards-Anderson parameters. At the critical
[23-23. Within the Zwanzig-Mori formalism one can derive point n. the long-time limits jump from zero to a nonzero

the equation of motiof2—4] critical valuefg>0. The f, are to be evaluated from the
t o o mode-coupling functionalF via the equationd,/(1—f,)
&f¢q(t)+95<bq(t)+f Mg(t—t)dy®q(t)dt=0. (1@  =F(f,) [28]. Thus,n; andf, are determined by the equi-

0 librium structure factorsS(q); they are independent of the
transient dynamics as specified By, and M t). The bi-
furcation implies a dynamical scenario that is strikingly simi-
lar to what is discussed in many recent experiments, for ex-

+0(t%). The kernelM () describes correlations of fluctu- ample, in Refs.[5-26. The qualitative features of the
ating forces. If one is interested in a theory of structuraltf@nsition scenario can be understood by solving E#s.
relaxation, it is suggestive to split the kernel in a regular par@nalytically by asymptotic expansions near the transition

M'™4t), dealing with the transient dynamics, and a remainP0int. This mathematical work is explained comprehensively

q i) 1 . . . . . .

der Q2my,(t) and illustrated in detail for a hard-sphere-liquid model in
g g\t

Ref.[32], where also the earlier theoretical papers are cited.
_pre 2 The asymptotic solutions establish universality features of
Mq(t ng(t)+quq(t). (1b) the MCT scenario for the evolution of structural relaxation
[29]. These general results are important outcomes for an
ssessment of the MCT. The first comparisons of MCT re-
ults and experiments are reviewed in Rdf33,34. The
theory based on Eq$l) overemphasizes the cage effect. In
liquids there are phonons, which kick particles out of their
self-trapping. If the couplings of fluctuating forces to
_ phonons are incorporated, one gets the extended MCT,
Mq(1) = Fo(Pu(V)). (19 where the sharp transition & or n, is replaced by a smooth
crossovef35-37. One finds any process also fof <T, or
n>n., wheref, specifies the intensity of this low-frequency
_ o part of the relaxation spectrum.
Fo(f)= 2 V(q;k,ﬁ)fkfp, (1d) All results for the evolution of structural relaxation of the
k+p=g hard-sphere system, as they had been obtained by leading-
. order asymptotic solutions of the corresponding MCT equa-
where the verticed/(q;k,p) are specified in terms of the tions, have been compared by van Megen and Underwood
structure factof27]. The latter can be evaluated for simple with their measurements @b(t). The theory accounts for
liguids with some standard approximatiof®. Thereby the their data on a 15% accuracy levigd3,24,38,39 Conse-
vertices enter the theory as coupling constants; they arguently, the hard-sphere colloidal suspensions provide an ex-
known smooth functions of andn. For M[fg(t) some es- ample for which structural relaxation and the glass transition
tablished model can be used; in a most simple approximatioare understood quantitatively within a microscopic theory.
it may be ignored altogether; a more reasonable approximaFhe asymptotic solutiong32] provide an understanding of
tion is the replacement ofE,M[fg(t—t’)at,qu(t’)dt’ by a all the qualitative features of the evolution of structural re-
friction term v4d,®@4(t). As a result one gets a closed set of laxation identified so far for this system. MCT has been gen-
regular nonlinear equations of motion for the evaluation oferalized to the treatment of mixtures of spherical molecules,
the correlators. These Eqél) are the basis of the mode- and the calculated results for the functions that characterize
coupling theory(MCT) of structural relaxatior[28]. The the glass structure account well for the corresponding quan-
original derivation of the MCT is reviewed in RgR9] and tities obtained from molecular-dynamics simulatigag)].
a critical reconsideration of the underlying approximations Tests of the MCT by data obtained for liquids of non-
was given recently30] within a perturbation-theoretical for- Spherical molecules depend on the assumption that the ex-

Here Qq=quv/yS(q), with v denoting the thermal velocity,
is the well-known characteristic frequency, quantifying the
initial decay of density correlationscbq(t)=1—Q§t2/2

The latter is supposed to deal with the slowly fluctuating
parts of the forces, which are caused by the slowly relaxin
structure. Extending the original theories of the cage effect i
simple liquids[2—4] one can motivate fom,(t) a represen-
tation as mode-coupling functional,

Here 7 is a quadratic polynomial

malism. periments can be described by the universal feat[26§
The MCT equations of motion exhibit a bifurcation for These are quantified here, as in other singularity theories, by
the long-time limits a well-defined set of parameters like or T, and by ampli-

tudes Iikefg. These quantities enter the data analysis as fit
Dy (t—oe)="f,. (2) parameters. The first complete test of the leading-order
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asymptotic results for the evolution of structural relaxationused as input information. Polarized light scattering and neu-
was done for depolarized-light-scattering spectra of CKN bytron scattering experiments probe a combination of transla-
Li etal. [20]. Also the extended MCT predicts universal tional and reorientational motion of the molecules. MCT pro-
scaling formulagd36,37], which complete the interpretation vides a formalism defining how the structure relaxation of
of the structural relaxation in, for example, CKN, Sdlél],  the various degrees of freedom are related, in particular, how
or OTP[5]. There are a considerable number of further quanthey enter the measured spectra.
titative tests of the MCT that are reported and to a large In a normal liquid theC!(t) relax to zero for long times
extent cited in Refg5-26]. [42]. But within an ideal glass environment, one expects
The indicated experimental findings provide an obviousspontaneous arrest for reorientational motion, i.e., positive
motivation for an extension of the MCT to systems of non-long-time limits f; in analogy to Eq(2);
spherical molecules. A more subtle motivation is given by
the fact that the range of validity of the universal asymptotic CO(t—ow)= f;. (4)
results, like scaling laws or power laws for the spectra, de-
pends on the probing variable. Consider, for example, th@he f; correspond to the Edwards-Anderson parameters, in-
von Schweidler fractal decay for the hard-sphere system. liroduced in the theory of spin glasd@d]. Within spin-glass
holds for a much larger dynamical window for those densitytheories one usually introduces quenched disorder iacn
fluctuations whose wave vectogq is located near the hocmanner and then studies the most favorable states com-
structure-factor-peak position than fgqrnear the structure- patible with the spin-spin interactions. In our approach the
factor minimum([32]. It is plausible that the MCT scaling frozen disorder is calculated with Eq4) and then the mo-
laws hold for a different temperature interval or frequencytion of the test molecule in the cages, formed by its neigh-
range for depolarized-light-scattering spectra than for, sayhors, will be studied.
dielectric-loss data. To decide upon these issues one has to The scope of the intended broadening of the mode-
study the amplitudes that quantify the leading corrections t@oupling approach towards handling nonsimple liquids is too
the leading asymptotic lawi82]. An understanding of reori- narrow to lead to a complete theory of systems like the cited
entational relaxation, which goes beyond the justification ofSalol or glycerol. The molecules in those systems do not
universality features, therefore requires an explicit formula-have an axis of rotational symmeté; It will be obvious,
tion of the MCT for these processes, in particular, a quantihowever, that our work can be extended to a treatment of
fication of the mode-coupling functionals. general rigid molecules with three rotational degrees of free-
In this paper, the simplest facet of the problems connectedom. The functions that will be constructed in the following
with glassy reorientational dynamics shall be analyzed. Wavith spherical harmonics have to be extended to the Wigner
will develop the MCT for the motion of a single rigid non- functions[43,44]. The serious problem for a complete MCT
spherical molecule, which exhibits an axis of rotational sym-of molecular liquids is the need to derive matrix generaliza-
metry €. This molecule shall be immersed in a system oftions of the Egs(1) so that coherent fluctuations of reorien-
spherical particles. The most important functions describindations can be handled. Such work has been done recently by

reorientational motion arf3] Schilling and Scheidsteg¢d5]. The form factors shown in
. their work describe the interplay of hard-sphere repulsions
C(t)=(P;(&(t)-8)), (3)  with long-range dipole interactions. The numerical results

that we are going to discuss for the glass form factors deal
where P; denotes the Legendre polynomial of degrge with the dynamics of reorientations as it is dominated by
=1,2.... .Beginning with Debye’s theory of dipole relax- steric hindrance.
ation in liquids, these functions have been discussed exten- The present work is arranged as follows. In Sec. Il the
sively, and we refer the reader to the monograph by Evanireducible tensor densities and the corresponding currents
et al.[42] for a review. If one considers a dilute solution of are introduced, which will be needed for the description of
polar molecules in a dielectrically inert environment, the sysihe molecule’s dynamics. The exact equations of motion will
tem’s dielectric-loss spectrum is proportionald€ ™ (w). be formulated for the density correlation functions, where the
Here C/)"(w) denotes the Fourier cosine transform for fre-interaction effects enter via fluctuating-force correlation ker-
quencyw of Cl)(t). Similarly, the cross section for depolar- Nels. ThenSec. ll) the equations will be closed by a mode-
ized light scattering for the solution is proportional to coupling approximation. As a result, a nonlinear-dynamics
C@"(w). Thus the function€® are of direct interest for model for the moIe_cuIe’s motlon_W|II be obtam_ed, describing
the interpretation of experiments. The observed puzzlingtructural relaxation. In particular, equations for the
time dependence &)(t) is due to the coupling of the five dwa_rds.-Anderson parameters will be derived. _In Sec. IV
degrees of freedom of the test molecule to the ones of thguantitative results for the glass form factors will be pre-
molecules of the surrounding system. The surroundingSented and discussed for a hard dumbbell molecule im-
cause forces, which lead to librations and to relaxation pheM€rsed in a hard-sphere glass.
nomena. The molecule’s motion reflects the surroundings’
dynamics. The approximation schemes ©)(t), which Il. BASIC CONCEPTS AND EQUATIONS
have been discussed in the past, did not lead to an acceptable
description of the measured structural relaxation phenomena
[42], since no adequate theories for the dynamics of the In this section we define the variables that will be used for
glassy environment had been available. MCT offers a waghe description of the molecule’s dynamics. Using the con-
out of this problem, since the solutions of E@$) can be ventional terminology{46], variableA, B, etc. are consid-

A. Density and momentum density fluctuations
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ered as vectors in the state space with a scalar produegual. A similar statement holds with respect to the tensor
(A|B)=(A*B). The time evolution is generated by the Her- indices because of rotational symmetry. The density fluctua-
mitian Liouvillian £: A(t)=exp(it). Hence dA=iLA  tions are normalized:

={H,A}, whereH is the Hamiltonian and, } denotes the

Poisson brackets. The Hamiltonian is the sum of the Hamil- (QfL(F;)|QjV(|Z)): 50" 851 (8
tonian for the surrounding$#g, that for the molecule-

surroundings interaction potentill,,, and that for the rigid  The momentum densities are orthogonal to the densities
molecule’s kinetic energily. The latter is the sum of trans-  gjnce they have opposite time-inversion symmetry. The re-

lational and rotatiorlal part$do=Hy+Hg. If r denotes the  maining averages can be reduced tqp)?) = (qul7)2 and
center of mass ang the momentumir=p*/(2l7) andp  to ((1— 7*)p’(aRY dn)(dR/am))=1ZvRi (i +1)5; . As a
=1,r, where the inertia parameter for translations is the result one finds
molecule’s mass. IF(F) is a function of position only, one

finds iLF(F)ITzﬁ-&F/aF. The molecule’s orientation shall

be specified by the solid ang =(4,6), —7<¢<m 0 o0 theQ,;(q) are given by the characteristic frequencies
< =< for the axis of rotational symmetrg. Instead of¢  for the free particle dynamids,42].

one can also use the projection ef on the z axis: 7
=cod. If | g denotes the molecule’s moment of inertia, one QTj(q)=Q§=qu, Qri(q)=Qj=vrVj(j+1).

(02(P)| 05 (K))= 8,p 8 547551202, (p).  (9)

getsHr={[p3/(1~ 7*)]+[p (1~ 7*)1}/(2Ir), wherep,, (10)

p, are the canonical momenta fgrand », respectively. If

G(e) denotes a function of the orientation only, one calcu- B. The molecule-surroundings-interaction functions

lates  i£G(e)Ir=[py/(1—7*)]19G/d¢+[p, (1~ n*)]3G/ The interactions between the molecule and the surround-

d7. The momenta have a Gaussian distribution quantified byhg spherical particles will enter our theory via direct corre-
the thermal velocities ,= JT/I,, for translation,@=T, and  lation functionsc,(q). These real functions are defined by
rotation, a=R, respectively:  ((p;/171)%)o=0v3,

((Ps/1R)Ho /(1= 1A =((p,/1R*)o(1— n?)=vi. Here( )o nS(Q)CJ(CI):<Q(ao)*98(ao)>- (11
denotes averaging for fixed orientations, and temperatures
are measured in units &G . Here and in the followingj,=(0,0g) denotes a vector of

A complete set of variables, specifying the molecule’s . . >
P var pecifying N length g directed parallel to the axis. o(q) denotes the

osition in its five-dimensional configuration space, are ten- . . . :
P g P surroundings’ density fluctuation ar{q) is the surround-

sor density fluctuations for wave vectqrand degreg: ings’ structure factor, introduced in Sec. I. The right-hand
L= , - - side (rhg) of Eqg. (11) is the static solute-solvent structure
ej(a)=Ryexplig-r). 4 factor Sy(q)=n(q)c,(q). In the limit of weak interaction

The orientational partR;’ is chosen proportional to the potennal; one findac,(q) = —nvg(qo){T, wher'eug(qo) IS

A - the coefficient of the decomposition in spherical harmonics
spherical harmonicy}: R'=ilV4wY{(e), j=01,....v  of the molecule-surroundings-interaction-potential Fourier
=—j,—i+1,...j. The conventions follow Refd7] so that  transform. Hence;~nc,(q) plays the role of an effective
e/(@)*=(-1)""o;"(—q). The variablesg{(q) have interaction potential. The fluctuations(q) are irreducible
even parity under time inversion. The time derivatives of thetensor density fluctuations of degré@e 0. Thus one derives
densities split naturally into translational and reorientationatrom translational and rotational invariance the formula for

parts: the overlap ofg(ﬁ) with the density fluctuations of the mol-

- - - ecule
Lo{(q)=oar(q)/ 11+ ogi(a)/Ig. (6)
, , - , (e(p)* el (@)= 854/ (23+1)1"2YY (p)nS(p)cs(p).
The momentum density fluctuations,,;(q), can be written (12)
similar to Eq.(5):
The effective potentials also determine the overlaps of
o,(Q)=S;expliq-r), a=TR. (7)  p(q) with three kinds of molecule pair modes, which will be
needed in the following. These are denoted byw),
Here Syj=q-pR;’ and Sg;=1rLR;" can be easily evaluated a=0,T,R
as a function of with the formulas noted in the preceding N )
- e o e (@)ei(k) if a=0
paragraph. ~The new variables obeyo,;(q) 7l (q.k,a)= A . i
. > — M K o
=—(-1)"*lo,"(—q), and they are odd under time inver- {ogi(a),e1(k)}
sion. . ) ) o
Because of translational invariance, the specified fluctua- 1heSe pair modes can be written as a linear combination

tions are pairwise orthogonal, unless the wave vectors aref fluctuationsgg"(q+ k) if one expresses tensor products as
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linear combinations of irreducible tensors, withj 3ymbols Equation(16a holds for all directions oﬁ, if the limit
and reduced averages determining the coefficights With

Eq. (12) one obtains g—0 is considered for the correlators. Therefdrﬁ”(ﬁ,t)

=6”6””2K<Dﬁ"(5,t)/(2j+1). Using the addition theorem
S\K K *'Q’ =8« o i A (21 +1)(2] +1)]Y2 for spherical harmonics the rhs is given by the functions
(P mi"(Qk a)) =35 gk 1 T4m(2] + 1)( )] defined in Eq.(3). The CU)(t) are obtained as long-

- wavelength limits
X2, Y3'(p)*nS(p)cy(p) - .
®jj(g—0u,t)=5;CV(t) if |u|<]. 17)

x( o ) The cross section for the scattering of a test particle can be
written as Fourier cosine transform of an intermediate scat-
[T N A tering functionF(t) =(X(t)* X), with X denoting the cou-
X(O 0 0)' C.(jlJ;9-k)(148  pling variable [46]. For example, the incoherent neutron
scattering in a simple liquid is given by the self-correlation
function ®3(t) = (exd —iq-r(t)]exdiq-r]) [2—-4]. The cou-
pling variable for a neutron scattering process from a
linear molecule for a momentum transfey can be
Because of reflection symmetry, tensor degrees are coupl&xpressed in terms of form factord(q) as X
so thatj +1+J is even. If a top-down symmetric molecule is =exp(ig-r)2,b;(q) V4w/(2] + 1)Y](a)*Ri(e). If the
considered there is a further symmetry of the system witfmolecule consists af atoms with scattering lengtHs that
respect to inversions of the axés The functionsc; vanish  are placed atr+d,e, A=1,...s, one gets b(q)
for odd J in this case, and the overlaps in Eq4a are =3, f,21+1j,(q5,), where j, denotes the spherical
nonzero only ifj +1 is even. Bessel function. From Eq168 one obtains

Co=1, Cr=q-k, Cr=[JJ+1)—j(j+1)—1(1+1)]/2.
(14b)

C. The density correlators for the molecule F(t)= 2 bi(q)*<bij(q0t)bj(q)- (18)
A statistical description of the molecule’s motion in con- L

figuration ~ space is given by the corelators , oqer to calculate the scattering properties translational as
(ef(p,t)*0{(q)). Because of translational invariance the well as rotational degrees of freedom have to be taken into
overlaps forﬁ#& vanish so that one can write account. Only for very smaff can one restrict the sum to the
) ) A i=j=0 term and reduce the problem to a discussion of
(el(p.b)le] (@)= 85" (a,1). (15 @)
The coefficients of a Taylor expansion with respect o
Eq. (16b) are given by matrix elements of the Liouvilliaty

Let D(q) be a rotation of vectog,= (00q) into vectorq and Equations(6), (8), and (9) lead to

let DJVK(a) denote the Wigner functions for the correspond-
ing irreducible representation @#(q) of degregj. If (¢,6,1) Dij(qu.t) = &;[1-(QF+ Q)22+ 0(t%). (19
denote the three Euler angles, we wri@! (¢,0,)
=exp(ivgp+ixy)d (), where the real quantitied! (6)
are the reduced Wigner functiof$7]. Rotational invariance
implies a representation of general density correlators

The correlators are normalized for 0. The leading contri-

bution to the transient does not introduce off-diagonal terms

and it is given—independently of any interaction effects—by
- 8the two characteristic frequencies from Efj0). Because of
combination of those fogy: reflection symmetry, the correlator;;(qu,t) do not de-
pend on the sign oft. Exploiting (A|B)=(B*|A*) as well
as time-inversion symmetry one can show the following: the
®j;(qu,t) are real, even irt, and symmetric under inter-
changes of andj. For top-down symmetric molecules the
correlators vanish if+j is odd.

@ﬁ«a,t):g DL (@)* DL (@) ®;;(qr,t), (168

@ (gr,t)=(ei(gk,t)]ej(gx)), ei(ar)=e{(qo)-
(16b . .
D. Equations of motion

The goal of every theory for the dynamics of a linear test In this section two coupled equations of motion shall be
molecule moving in a homogeneous isotropic environment islerived. The first one relates the time derivative of the matrix
the evaluation of the infinite matrix®;;(q«,t); i, d(t) of density correlators to the matrik(t) of momentum
=0,1,...; k=0,£1,...,£min(,j). The matrix elements density correlations. The second one connects the time de-
are the correlation functions for tensor density fluctuations ofivative of K(t) with a matrixM (t) of fluctuating-force cor-
wave-vector modulus), degreesi and j, and helicity «. relations.
Correlations between variables of different helicities do not The Zwanzig-Mori formalism provides a procedure to
enter, since rotational invariance impli(a@i(q,ut)|Qj(QV)) formulate equations of motion for a set of distinguished vari-
=0 for uw#v. ables. The coupling of these variables to the other variables
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of the systems is hidden in memory kernels, so that the equdbe written as the correlator of the fluctuating forces
tions of motion get the form of integrodifferential equations Fﬁj(q,u)=fﬁj(q,u)/[(2§j(q)lﬁ]:

of the Volterra typd2—-4,42,48. Let us start by choosing as

set of distinguished variables the density fluctuatiof(s|.) M i gi (A, ) = Qi () (F i (que, t")[F gi(qu))Qgi(q),

from Eq.(16b). Since(ei(qu)|Le;(qu))=0, the first equa- (29
tion of motion reads

Fpi(am)=[Q5(a) 5] *Lati(do)—0[(do).  (26)

t
0t<13”(q,u,t)+2T fodtq’.ﬁq,u,t t)®j(qu,t)=0, The pair of equation$20), (24) is our generalization of
(200  the starting equatiofla) of the MCT for simple liquids. A

_ ) o N new subtlety is the splitting of the current kernklinto four
which has to be solved with the initial conditiohy;(qu.0)  terms in Eq(21). This splitting formalizes the idea that den-
=Jjj - ) sity fluctuations forj #0 decay via parallel relaxation over
Let 7' =3;]e;(au))(e;(qu)| denote the projector on the wo channels: decay due to translational and due to reorien-
space of density fluctuations of wave veaoand helicitys,  tational motion. The preceding equations are an exact refor-
and letQ'=1—P" abbreviate the orthogonal complement. mylation of the problem; all difficulties are hidden in the
SinceP’ LP'=0, one getL’ Lo;(qu)=Le;(qu). The re-  kernel M. For top-down symmetric molecule®;(qu,t),
duction of £ onto the perpendicular space shall be denoteckaim(q,u,t), andM i 5 (qu,t) vanish ifi+j is odd. In this
by £'=Q'LQ". The evolution withZ" shall be indicated by  case the equations of motion consist of two uncoupled sets.
a prime:A(t") =exp(iL"t)A. Then the memory kernel in Eq. One set deals with the matrices where both indicesd j
(20) is Wij(qu.t)=(Lei(qu,t")|Lej(au)). The density are even, the other one deals with the matrices whereiboth
derivatives can be expressed as a sum of the two momentugpg j are odd.
density quctuationsraj(qv)zaZj(ﬁo), a=T,R, according
to Eq.(6). Thus¥;; can be written as a sum of four correla- IIl. A MODE-COUPLING THEORY

tors of fluctuating momentum densities ] o
If one performs a Markovian approximation for the relax-

ation kernel,M(t)=w»4(t), the equations of motion in Sec.

‘I’ij(QM,t):% Qai(DKaig (A, Qpi(A), (21 |1 b reduce to master equations. Their solutions for the den-
sity correlator® (t) are sums of damped-oscillator functions.
where the matrixk denotes Such an approach would not deal properly with structural-
relaxation phenomena since stretching of relaxation is not
Kaigj(qu,t) obtained. The same holds if other elementary functions are

_ , _ysed forM(t) as, e.g., exponential decaj42]. Glassy re-
=[Qai(@la] " owi(ap ) og(Qu) Qg ()1 6] :iaxation of @ is caused by that of the force correlatiokis
(220  Nontrivial contributions to the forceE are due to interac-
tions of the molecule with atoms of the surroundings. Hence,
The pairs @i), (B]) serve as matrix indices. For=0, only  stryctural-relaxation features ®fl are connected with the
the possibilitya=T occurs in the pair4i). Factors are split  sjow relaxation of the molecule-atom separations. There is a

off in Egs. (21) and(22) so, that Eqgs(9) and (10) imply self-consistency problem: the densities fluctuate slowly be-
K (—0)= 5. .8 23 cause the forces exhibit slow relaxation, and the forces relax
aipi (A 1=0)= 30 8j; - (23 sluggishly since the particle positions relax sluggishly. The

The procedure shall be repeated using the momenturweoretical problem ?S to express the force correlald(s)
density fluctuations as variables Since N terms of the density correlato®(t) so that glassy relax-

(02i(q)| £’ 75;(q1))=0, one gets the second equation of ation of the latter implit_es t_hat of the formgr. In particular, the
mgtion ! appearance of nonvanishing nonergodicity parameters for the
' density correlators must imply honzero nonergodicity param-
t_ _ _ eters for the force correlatofgl8—50. In this section the
é’tKaiﬁj(qut)_"Zf dtM o rtau, t—t)Ko5(du,t)=0,  preceding work on simple systems will be extended by ap-
ta /0 proximating the kerneM as a polynomial of the correlators.

(24) As a result closed equations of motion will be obtained for
which has to be solved with the initial conditid@3). the functions®;;(qut), which contain the density correla-
Because of Eq(9), the projector on the second relevant tors ®4(t) of the surroundings as input. A model for the
subspace readB’ =3 i| i (Qu))[Q () ] (o 4i(qu)]. molecule dynamics will be derived, whose subtleties are re-

The complement shall be denoted I§/'=1—7". Since lated to the appearance of nonlinearities and retardations.
P"P'=0 one get= Q' 9"=1—"P'—P". The fluctuations
fai(Qu)=L'0,(qu)=Q' Lo,(qu) have even time- A. MCT equations of motion

inversion parity and therefore are orthogonal to the We restrict the discussion to the surroundingsNoiden-
75(Qu): P'LP'=0, Q"L'0,i(qu) =f 4i(que). Let us de- J

) v tical spherical particles; generalizations to mixtures would be
note the new reduced Liouvillian bf"=Q"L'Q"=0LQ P P 9

and indicate the corresponding time evolution by a doublétraightforward. Lew(r,e,rs) denote the variable for find-
prime: A(t") =exp(i£"t)A. Thus the memory kernd¥l can  ing the molecule at position with orientatione and simul-
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taneously an atom of the surroundings at positignFourier The preceding formulas shall be used witk F ,i(qu),
. . > > . Y=Fg(qu) in order to treat the fluctuating-force kernel in
transformation ofwv with respect tar andrg and expansion Eq (Zé)'
of thee dependence in spherical harmonics yields linear '
combination of M i (A, t) = Qi (Q) [ Myi g (e, t)
A(kp) = ef(k)e(p)/ VNS(p). (27)  Maigy (A D1 0(q). (309

h‘ghe mode-coupling contributiom(t) is a functional of the

Th irm re the simplest variabl ling with .
ese pair modes are the simplest variables dealing wit t)gyvo correlators entering Eq299

molecule-atom pair configurations, and are expected to e
hibit structural-relaxation dynamics. There are additional .

. . My i 1) =Foigigu(@(kv,t);®(1)). (30b
variables that can also contribute to the forces, such as the aipi (G20 = Faigigu(Prri(ky, 1) p(1). - (30D

triple modesgf(ﬁ)g(ﬁ)g(ﬁ). The incorporation of these The mode-coupling functionaf is a polynomial of its vari-
and more complicated modes would cause great difficultiesables
For example, it would be necessary to orthogonalize these

complicated modes with respect to th(kp). To start such faiﬁjqﬂ(?l,l(kv);?p): > Vgi,ijpvw?l’l(kv)?p-
a procedure one would need three-particle and four-particle kpl'l
averages, about which not much information is available. (309

Therefore, as a first step of our approximation procedure, all . . .

modes except the specified pair modes shall be ignored. Th@e_membermg Eqs(16a) and(26) it is obylous that Fhe co-
step is motivated by the intention to analyze the simplesEMICIENtSV are given by products of Wigner functions and
version of a theory. overlaps of the pair modes from EQ7) with Lo and p.

The second step is the factorization of averages of prodBecause of Eqs(14) the latter are determined by geometry

ucts into products of averages. This factorization approximatactors and byS(p)c,(p). Therefore, thé/ are known func-

tion was introduced by Kawasaks1,59 in some different tons depending smoothly on control parameters such as

context. One can justify this approximation for several prob-2ndT; details are noted in the Appendix.

lems such as the determination of hydrodynamic long-time The regular contribution to the fluctuating-force correlator
ey o o : .

tails [30]. In the present context, unfortunately, one does not" {t) is quite nontrivial. Imagine that there is no molecule-

know the essence of the errors of the approximation, nor hotom interaction at all, so that the;;(qu,t) describe free-

to construct improvements. Making use of translational in-otator motion. The resulting functior®)(t), Eq.(17), are
variance, the approximation reads quite complicated42], and thus produced by complicated

expressions fom™Yt). Furthermore, within the normal lig-
uid state there will be a coupling of the reorientational mo-
tion to the liquid’s shear modes. This coupling was the basis
of Debye’s theory relating reorientational relaxation to the
viscosity [42]. Such coupling also leads to some long-time

ower-law decay o€1)(t) [53], yet another subtlety hidden
in m™Yt). However, these and other normal liquid phenom-
ena are irrelevant within that dynamical window, where
structural relaxation dominates. In this window a Markov
approximation fom"9(t) is sufficient.

The equations of motior(20)—(24) together with the

(AS (K'p’ 1) AK(K))= Sirc 85 5@, (KD D (1),
(29)

Here the tensor density fluctuation correlator entered via E
(15), and ®4(t) denotes the density correlator of the sur-
rounding simple system, discussed in Sec. |. Equai&8)
for t=0 implies the orthonormality of the pair modes.

Let X andY denote two variables, which are perpendicu-
lar to the density and momentum density fluctuatio@x

:b>l(’ QYh:Y' tl_het usdconglc(jjer the correlator of iggfg.va”' mode-coupling-approximation result80) are the desired

ables, wnhere the reduced dynamics, as generatetvbys = o556 get of equations for the molecule dynamics. These are

anticipated. We introduce the mode-coupling contribution tOhe analog of the mode-coupling equatiofds for simple

this correlator as the part in the subspace of the pair mOdeﬁquids. The approximations are constructed so that they deal
with the translation and reorientation of the linear molecule

XAHMe=> > > (XIA,K,'(IZB))CD,K,]"(IZt)CI)p(t) in a regime, where glassy dynamics dominates. The dynam-
kp 'l k'k ics of the surroundings enters the mode-coupling functional,
s Eq. (30b), via the density correlatabq(t). Let us emphasize
X (A (kp)]Y). (298  two features of our theory. Firstly, neither the inertia param-

eters of the molecule nor the temperatdreoccur in the
The entire remainder of the correlators shall be denoted bynode-coupling functional explicitly. Secondly, the interac-
X(t")|Y)ree. tion potential enters only indirectly via the structural quanti-

ties ncy(p) and S(p). Therefore our theory can handle the

XM]Y) = (X" [YIME+ (X(t")| )4, (290  strong repulsive forces that dominate the structure of mo-

lecular liquids.
The third and last step of our derivation consists of the as- The derived equations formalize the essential feedback
sumption thatX(t")|Y)™?is regular in the sense that it deals mechanism of the MCT, which can lead to an ideal glass
with transient effects only. In particular, it is assumed that itstransition [48—-50. A white-noise approximation for the
long-time limit vanishes. spectrum of the force kern®l implies exponentially decay-
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ing contributions to the correlatob, as mentioned above. icity pole at zero frequency-zF(z)—F. for z—0. The
Substituting this into Eqs(30), one gets a low-frequency first Zwanzig-Mori equation(20) together with its initial
peak in the spectrum of the kernel. A white-noise approxi-condition is equivalent to

mation for the spectrum d¥l is therefore inadequate; rather
the low-frequency force spectrum is enhanced since the zero-

frequency spectrum of the pair modAS(lzf)) is enhanced.

Such a peak in the kernel spectrum produces a corresponding

peak in the correlator spectrum via the equations of motiorand the second one, E(R4), reads

(20)—(24) as first discussed by Mountain within Maxwell's

theory of viscoelasticity54]. Substituting this back into Eqs.  _ e . . _ s

(30), the quasielastic peak in the force spectrum gets en- DZZV.[ZB" Ouat Maiaitape,2) IKapi(Au,2) = 61 S

hanced further and this leads to a further enhancement of the (33b

corresponding quasielastic spectrum for the density fluctua- o .

tions, etc. There are two possibilities for a stabilization of The zero-frequency limit of Eq333 yields

this feedback mechanism. Either there appear non-

Lorentzian quasielastic spectra for the kernel and the cor- 1] — =5

relator, and this is the essence of the MCT for theelax- 2."* Lo+ ditam(am) =y (343

ation within the liquid, or the width of the Mountain peak

collapses to zero, and this is the essence of the MCT for théhis formula relates the glass form factors with the limit of

ideal glass state. The area of the degenerate Mountain peakife current correlators: J;;(qu) =lim,_ oWV (qu,2)/z.

the nonergodicity parameter of the correlator under discusBecause of Eq.(33b), the J; are combinations of

sion. the corresponding asymptotic values

Mode coupling is achieved via the overlaps from Eq.lim,_0Qi(Q)Kig(Qu,2) Qgi(q)/2=1 4igj(Au),

(149. For top-down symmetric molecules, variables of dif-

ferent parity do not couple. In this case, the complete MCT

problem splits into two independent ones. The mode-

coupling expression@0) do not introduce coupling between

the two sets specified at the end of Sec. Il D. The zero-frequency limit of Eq(33b) together with Eq.
(309 identifies the matriX as the inverse of the matrix

—; [267+ Vi 7tqu,2)]P(qu,2)=6;, (333

Jij(qM)ZEB I aigj(Qae). (34b)

B. The glass form factors

Let us denote the long-time limits of the density correla- Zgaiﬁqu)lmj(q,u): Saplij - (340
tors by al

fij(qu)=lim__ ®j(qu,t). (319 The formulas(32) and (34) are the Qesired eqqations for
the form factors. These coupled nonlinear equations have to

These nonergodicity parameters or glass form factors iEe complemented by the equation for g cited in Sec. I,
9 y P 9 "~ Since these functions enter ER2) as input. It is known

they are nonzero—quantily the spontaneous arrest of th1‘?om the earlier literature that implicit equations of the kind

gg{gfglteh; Iésetzrr]r\girr?gT/?ér{[s')-l—tuiyir?trgntsr:f Loa:‘n:k?:ﬁst:ﬁgt?r formulated above can exhibit two generic types of ergodic-
y y to-nonergodic transitions at a critical valxg of some con-

elastic scattering of test particles, like neutrons, from the[r0| parametek, such as or 1/T. The form factors may rise
wglgcgtlaiiln;jh?n Ed\?z’;{rd;eAgggisnoend \F/)izraé&it%[ Saswlglr?h- continuously proportional tox—x.) [48—50,55-57 (typeA
wavelenath limits ), ‘ 9 transitions, or they may jump to nonzero valué$ [28,5§

9 (typeB transitions. Below it will be demonstrated that both

AP types of transitions can occur in our theory.
fi(a—0m)=af;, |ul<minij). @y P y

The mode-coupling formulag30) establish a representation C. Further approximations

of the nonergodicity parameter of the fluctuating forces, to  The appearance of matrix correlators instead of autocor-
be quantified by guigi(du) Vvia Mgig(du,t—*)  relation functions implies a considerable increase in the ef-
=0,i(4)9aigi(au)Qgi(a), in terms of those for the mol- forts to solve the derived equations. Matrix generalizations

ecule and for the surroundings, Egg8), (314, of the original MCT equations have been derived and solved
before for the studies of mixtures of spherical molecules
Jai gj (AR) = Fuipiqu(frn(kv);fp). (32 [40,59,6Q. It turned out that the generalizations merely

caused technical problems, which did not lead to new quali-
To proceed one has to derive a further relation between tative features. Therefore we suggest to start studies of mo-
and f via the equations of motion from Sec. Il D. This is lecular liquids with the additional approximation, which ig-
done most efficiently48—-50 using Laplace transformations, nores off-diagonal force correlators: M ig(du,t)
for which we apply the convention F(2) =8,50jMo(qju,t). This approximation implies diagonal-
=ifoF(t)exp(zt)dt, Imz=0. A nonzero long-time limit, ity for the current and density correlators ;g (qu,t)
F(t—=)=F., is equivalent to the existence of a nonergod-=6,46;;K,(qju,t), ®;j(qu,t)=&;P(qju,t). Within this
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diagonal approximation, also indgxenters the theory as a There is no experimental evidence indicating a connection
parameter likeg and . The equations of motion of Sec. Il D between structural relaxation and appearance of long-range
simplify to spatial correlations. The available experimental evidence
suggests that there is no singular sneplbehavior of the
structural quantitiesc;(q),S(q); the relaxation kernel#
are expected to vary regularly in leading order for smallf
regular structure factors are used as input, our mode-
W (qju,t)=QPK(dju,t)+ Q?Kg(gju,t), (350  coupling formulas forM reproduce such regularity for the
leading-order smally variations. Long-wavelength correla-
_ t_ _ — L — tions can therefore in leading order be handled correctly by
atKa(qJ“'tHJOdt Ma(Qju,t=1)Ku(ajp,t )=0. ignoring theq dependence of the kernels. This suggests a
(350 generalized hydrodynamic approximation as a further simpli-
fication of our resultsM ,(qju,t)=M ,(0Oju,t). The ap-
The mode-coupling formulas closing these equations followproximation implies independence of the correlators of the
from Eqgs.(30): helicity u, because of rotational symmetry. EquatidB$)
for @4 () =d(qju,t) simplify to

(363
. q)jq(Z):—l/
Mo (0] 14,8) = Faqjpu (P (KIw, 1) D (1)), (36b)

t _ -
atd><qm,t>+fodt V(Qjpt-T)D(Qjut)=0, (353

M o (ajae,t) = Q (D) ma(aju,t) +miYqjum.t)],
_vi? R+
z+Mj(2) z+Mr(2)]|’

z (40)

_ _ _ _ whereM;,(2) is theq—0 limit of the M ,(qju,2) from Eq.
Faqiun(F(KID);Tp)= 2 Vaqgix(kpIn)f(kIv)f,. (360 (36a. The glass form factors are specified by length param-
kplv etersr; and by constants; :

The V oq;,.(kplv) = Vg, are non-negative numbers, and fiq= 101+ (qr))2+2]. (41)

therefore our mode-coupling functional has the same general
properties as the one for the simple-liquid theory. The equagere 1,‘]_2 and 11;]_2 areq=0 limits of g?Frq;,(fi,:f,) and

tions for the form factord(qju)=®(qju,t—=) are ob- = (¢  -f ) respectively.
tained from Sec. Il B Raju(fics:Tp), resp y

. 1 IV. RESULTS AND DISCUSSIONS
f@ju)= 1+g(qju) t+or@ju) A. Glass form factors for a hard dumbbell
. in a hard-sphere glass
Jaldjp) = Faqju(f(klv);fp). (37)

In this section some specific implications of our theory
For j=0, the density correlator specializes to the self-Shall be considered and quantitative results shall be pre-
correlation function of the molecule densityp(qoot)  Sented for a molecule in a system of hard spheres with di-
:¢3(t)- In this case Eq.35b simplifies to ¥(q00}) amet_e.rd. The e_qumbrlum structure of the surround|_ngs is
= (qu1)2K(q00}) so that the equations of motion can be specified by a single control parameter, say the packing frac-

tion ¢=md3n/6. The structure factoiS(q) is calculated

combined to
! within the Percus-Yevick theory8]. From Eqgs.(1) one gets
s b s t_ s— the form factorsf, of the hard-sphere glass and finds a
I Py(t) +(qur) ¢q(t)+f0dt Mg(t=t)drPq(t )=0. liquid-glass transition at the critical packing fractiap,

(39) =0.516[28]. If ¢ decreases t@., the glass form factor
decreases to its critical valu‘(§>0:
This result is the analog of Ela) and has been considered
before for simple liquidg28]; but here a coupling to the fq=fgtheg(0)+0y(a), ¢=¢c. (42
rotational degrees of freedom is hidden in the formula for

MS(t) = (qu)m(t) +mS™®4t)] via the kernel mi(t) Here hy>0 denotes the critical amplitude, and(o)
=?nT(q00,t)T, Eqsﬁ(gﬁ)_ K 4 =o/(1—\) contains the square-root singularity character-

For =0 andj#0, the density correlators specialize to iStic for a fold bifurcation. The numbex=0.735 is called
the rotator functions because of E@.7). In this case Eq. the exponent parameter amd=1.5(¢— ¢c)/¢. denotes the
(35b) simplifies toW (0j u,t)=v3j(j + 1)Kr(0jOt). Letus ~ Separation parameter. A detailed discussion of (Bg) and

note the result in the frequency domain representative figures f@&(q), fS, and hq, andQ, can be
_ found in Ref.[32]. The numerical work is done for dumbbell
Cl(z)=—1fz—v3j(j+1)/[z+ M;(2)]}. (399 molecules consisting of two fused hard spheres with diam-

etersd; and d,. The distance between the cent€is is
This equation reproduces the representationbpfz) as a  specified by the elongation parameterThe unit of length
two-step continued fractiof42]. The subtleties of the dy- shall be chosen so that=1. For symmetric dumbbelld,
namics, in particular the couplings to the translation, are hid=d,, there is the additional top-down symmetry. The cou-
den in the kerneM;(2) =v3j(j +1)[m(z) + m*"*{z)] via  pling functionsnc,(q) are also calculated within the Percus-
mf(t)=mg(0j0t), Egs.(36). Yevick theory[61].



5668 FRANOSCH, FUCHS, GOZE, MAYR, AND SINGH 56

q

. ) ) i FIG. 2. Glass form factor§®(qj0) at the critical packing frac-
FIG. 1. Effective interaction potentiafec;(q) as defined by Eq.  igp ©.=0.516 ford; =d,=d and the three values for the elonga-

(1D for a dumbbell withd; =d,=d and elongation parametdr (i, narameterg. The labels at the curves indicate the valugj of
=0.4 for J=0, 2 and 4. The packing fractions of the hard-sphere_ 5 Thethin lines show the critical form factof§, of the

surroundings areo=0.49 (dasheg, ¢=0.52 (solid), and ¢=0.55
(dotted. The arrows indicate the values 3.4(@), 7.0 (b), 10.6(c),

14.2 (d), and 17.4(e). Notice that the vertical scale of successive
panels differs by a factor 20. approach zero roughly at the same wave vector. Therefore

there is only a wealu dependence of the form factors. For

Figure 1 exhibits a representative set of effective potenthe tagged-particle motion, particle-number conservation im-
tials nc,(q) for ¢ nearg,. The strong short-range repulsion Pliesf(q=0,00)=1. There is no analogous conservation law
between dumbbell and the neighboring hard spheres caust the other value$+ 0, and thereford (q=0,ju)=f;<1.
c,(q) to be negative fogd<2. The rapid variation of the Thef(gju) can be approximated well by Gaussidfigqj0)
potential as a function of distance leads to rapid variationg €Xp—(0a)?, as demonstrated in Fig. 4. This was noticed
for the pair correlation as a function of angle and distance.
This yields oscillations ofc;(q) that extend up to rather
large values of the wave vectqr The effective potential is
a smooth function except for some isolated liné4], and
therefore the coefficients of expansions in spherical harmon-
ics decrease with increasiny The relevant coupling coef-
ficients of our theorync;(q), become small ifJ becomes
large, in particulamc,(q)=0(q’) for g—0. With increas-
ing ¢ the|nc,(q)| increase smoothly.

If the surroundings are a liquid, i.e., ff;=0, the long-
time limits g,ig(qu) of the fluctuating-force correlator,
Egs. (300 and (32), vanish, and therefore the glass form
factorsf;(qu) are zero as well. In this case the cage around
the molecule has a finite lifetime and arrest is not possible.
Let us therefore restrict the discussion to the glass state
= ., concentrate on molecules with=d,=d, and use the
diagonal approximation. EquatidB7) is solved by the itera-

tion  fI(Qju)=101+9{(qju) T+ o (aju) 71,
0(Qj ) = Fagqiu (M (kIv); T, fOgju)=1, n

hard-sphere system.

=0,1,... .Figure 2 exhibits the resulting form factors at ) ) )

the critical point,o= ¢, for helicity w=0 and three repre- 5 15 25

sentative values for the elongation parameferFigure 3 q

shows analogous results for all helicities %+ 0.6. Forq

=0 there is no dependence on Eq. (31b), and for largeq FIG. 3. Critical glass form factors;,=f°(qju) for d;=d,

the nonlinear mode-coupling effects force the functions to=d and¢=0.6.
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j=0 f°<qj0>'
1.0 [~0 o . ] 10t

£(qjo)
{=0.6

05|

o 60 o

05

q

FIG. 4. Critical glass form factor§°(qj0)=f;, for d;=d,=d
and?=0.6 forj=0, 1, and Zfull lines). The dotted lines show the
approximation by the generalized hydrodynamics regjji= 111
+(qrj)2+sjz] with r; ands; adjusted to match the smajlbehav-
ior. The dashed lines are fits by Gaussiaig= exp[—(qaj)z]/
[1+s7], af=rf/[1+s]].

FIG. 5. Critical glass form factor§®(qju) for helicity =0
andj=0,...,3 as dunction of the elongation parametérfor d
=d,=d andq=3.4(a), 7.0(b), 10.6(c), 14.2(d), and 17.4(e). The
arrows mark the critical valug.=0.296 for a typeA transition.

andf,= fg. The equations depend smoothly @nBut there
o ) appears a singulayo— ¢. dependence via Eq42) for the
before for the localization of a hard sphere in a hard-sphergepye-waller factorsf,. Hence, one concludes from the
glass[28]. The description off°(qj0) by the generalized- jmplicit-function theorem for generic choices df, d,, ¢,
hydrodynamics formulé41) works reasonably well for wave

vectors up to the position of the structure-factor peak near f;,—(q,u)=ficj(q,u)+hij(q,u)g(cr)+0i,-q(cr), =0 .
g~7, but it leads to a severe overestimate of the form factors (43
for g=10.

The functionf(gq00)= fg describes the localization of the
molecule’s center in the glass matrix. This function exhibits
only a very weak variation withi as shown in the upper
panel of Fig. 5. For{=0 the dumbbell degenerates to a
sphere, and in this caséqju) =0 for j #0. The larger the
more the molecules differ from a spherical one and thus th
j# 0 form factors increase appreciably with increasih@s
shown in Figs. 2 and 5.

One concludes that the nonergodicity parameters for the
molecule exhibit the samge — ¢ singularity as the Debye-
Waller factors. This is demonstrated in Figs. 6 and 7 for two
values of {; notice that for{<({. the critical amplitudes
h(gj0) vanish for oddj. Figure 8 exhibits representative
esults forh versusq curves. For large wave vectors the
ij(qu) have to approach zero sinég(qu) vanishes in the
limit g—oe. Sincefyy(q—0,0)=1 for all o= ¢, the ampli-

Arrest is less pronounced for strongly wiggled angulartud€ Noo(d0) has to vanish in the long-wavelength limit.
distributions than for smooth ones, since the neighboring€"c€Noo(d0) is bell shaped and it exhibits a maximum for
- T a wave vector that is about twice the position of Be)
spheres cannot resolve the variationsYdfe) if j is too

. maximum, as was found before for a spherical molecule
large. Therefore one expects that the form fact®jx)  [62]. From Eq.(31b one gets the result for the square-root
decrease with increasirjg as demonstrated in Figs. 2 and 3

; > anomaly of the Edwards-Anderson paramete‘erfjC
for {=0.4. However, for top-down symmetric molecules it

+hg(o)+ . i =0.4: f]
can happen that aflj;(qu)=0 for oddi,j, while the form hjg(e) +O(0). For example, one finds fof=0.4: f;

o o . ~0.61, f5~0.39, h;~0.98, h,~0.57. This means that,
factors for everni,j are nonzero. This is shown fgrk=0.2 in increases more strongly with— ¢. thanf,, as demonstrated
Fig. 2. There is a critical valuég, so thatficj (qu)=0 for odd gy Pe 2

i, j and{=<{.. The odd} form factors are nonzero fof n F|g. 6 The f|nd|ngs“i>_f§ andh, > h, for §2_0'4 are in

: . qualitative agreement with molecular dynamics results for
> (. and they approach zero continuouslyitlecreases to- OTP[17.63
wards . as shown in Fig. 5. For a model with, =d,=d, T
one finds{.=0.296 foro=¢.. Thus, for sufficiently small
positive /— ¢, it can happen that, e.gf’(q,20)>f°(q,10)
>0. The essential point in the derivation of the asymptotic

Formulas(32) and(34) define a set of implicit equations laws for the MCT bifurcation dynamics is the following ob-

for the f;;(qu), which has the squtiorﬁfj(q,u) for p=¢.  servation: for small¢— ¢.|, there appears an intermediate-

B. The factorization theorem
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FIG. 6. Form factord(qj0) for j=0, ...,4 andq=10.6 as a FIG. 8. Critical amplitude$(qj0) for helicity zero as function

function of the packing fractiorp for {=0.4 andd;=d,=d. The  of wave vectorg for d,=d,=d and three values of the elongation
labels at the curves denote the valueThe arrow indicates the (. The labels at the curves denote the valug.of
glass transition pointp.=0.516. The dotted lines are the asymp-

totesf(qj0)=1¢(qj0)+h(qjo)Va/(1—N\) for j=0, 1, and 2. The q)q(t)— f°=th(t). (443
diamonds mark forj=0,2 the values ofp where f(qj0) differs a
from the asymptote by 10% df(qj0)—f(qj0). The deviationd®(t) of the correlator from the plateaf,

factorizes into the critical amplitude, from Eg. (42) and

into a functionG(t), which is called theB correlator. The

. . | latter exhibits the complete time dependence and also the
”F’”eFQOd'C'tV pgrameter. The equactlons of motion can b%ensitive dependence on control parameters via the separa-
simplified by usingd®(t) =®(t) —fq as a small quantity - on parameters: G(t)=g(t/t,,o). Heret, is some time

for expansions. In leading order one obtains the factorizatioQ.,je determined by the transient dynamics. The funajion
theorem of the two variableg/t, and o is completely fixed by the
exponent parametear. The functionG(t) quantifies a scaling
law; in particular, it deals with the crossover between two
fractal power-law decays. Equatié#?) is a special implica-
tion of Eg. (449, since for >0 one getsG(t—x)
=g(o). All universality features of the MCT scenario for
the evolution of structural relaxation are based on @423

and the well-understood properties &{t) [33]. A detailed
demonstration of the resu#4a and a discussion of its lead-
ing corrections can be found in R¢B2].

The proof of Eq.(44a can be extended to a treatment of
other correlators such as the tagged-particle-correlation func-
tion ¢§(t), the mean square displacements, or transversal-
shear correlationg64]. For our case one can adopt the
known proofs to derive the generalization of E43) to the
leading-orderg-relaxation formula

®ij (qu,t) = fij(au) = hij(qu) G(1). (44b)

The molecule probes with amplitudé;;(qu) the g-
relaxation dynamics of the surroundings as described by the
function G(t).
¢ The identification of universality features for structural
relaxation via the functioits(t) is an important outcome of
FIG. 7. Similar results as in Fig. 6 but f@g=0.2. The dashed MCT and therefore some digression might be in order. Let
arrow marks the value=0.53 for a typeA transition point. Q;i, i=1,2,..., denote a complete set of single-particle

time window, referred to as thg-relaxation region, where
the correlatorsb ,(t) are close to the critical valuﬁ; of the

1.0

0.8

06 |

04 |

02|
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variables. For the model studied in this paper, these are theersal features for structural relaxation. For example, if one
molecule density variableng(ﬁ) and the density fluctua- analyzes the depolarized-light-scattering cross sections
. , . - . . within the leading-order MCT formulak5,19,20, one can
tions of the molecule’s surrouzldlng_s(k), the indexi is use the known expressions f@(t), provided one treats
meant to abbreviate the set df,q,jv). Let (Qi --*Qi ),  hyy, ty, o, andA—and only these numbers—as fit param-
L=1,2,...,denoteL-particle variables, i.e., the set of or- eters. It is irrelevant in that context whether the scattering is
thonormalized products df factorsQ; [30]. These variables caused primarily by reorientational contributions or not.
can exhibit structural arrest. Therefore, one writes for theSimilarly, it is legitimate to analyze dielectric spectra with
correlator®yy(t) = (X(t)*Y) of two variablesX andY the MCT scaling-law resulisl 2,13, independent of whether
the response arises from ion displacements, from reorienta-
tions of dipole moments, or from a combination of both con-
tributions. The formulas hold for the dielectric function as
CDXY(t)=<I>;f$(t)+CI>>"{'$(t). (458  well as for the dielectric modulus. Our paper provides a first-
principles theory for the amplitudéﬁ(qﬂ), hij(qu) in Eq.
Hered{{(t) denotes the contribution due to all those modes(44b.
which cannot arrest. It does not exhibit leading-order The transient dynamics for reorientational motion deals
structural-relaxation effects. The second contribution readswith hindered rotation, libration, and orientational diffusion.
The crossover from transient to structural relaxation cannot
be handled by Eq$45) and(46). To attack this problem one

S E(X Qi QipDN(Qi - Qi DM *(Qy, - Q) needs a formalism that accounts reasonably for the transient
. motion of the molecule as well as for its structural relaxation.
X<(Qil'”QiL) Y). To deal with the transient, we have used the continued-

fraction representations of the correlators in Sec. Il D and to

It is approximated by products of correlators and yie'dSaCCOUnt for the structural relaxation, the MCT feedback ideas

the mode-coupling term have been formulated for the relaxation kernels in Sec. lll A.
To handle both mentioned aspects of the molecule’s dynam-
ics, the mode-coupling ideas have not been applied directly

q>)'\é'$(t): Fur(@j(1)). (45b) for the reorientational correlators as suggested by Es.

Rather the factorization approximation has been introduced

for the memory kernels determining these functions.

One can use the recently developed procedures to evalu-
ate from the mode-coupling functionals the leading correc-
tions to Eqs(43) and(44b), which are specified by two sets
- - - of amplitudesK;;(qv), Kj;(qv) [32]. These corrections ex-
Fr(Fip) =20 2 (X Qi Qi i, Fig, tend the range of validity of the mentioned leading-order

Lo results and determine their range of validity. It is obvious,
for example, that the range of validity for the dielectric loss

X{(Qj, Qj)*Y). (450  spectrum may be different from that for the modulus. Work
is in progress to determine the indicated results for our
model and to compare theses findings with numerical solu-
tions for the correlators and spectra.

The functional Fxy is a polynomial in the correlators

D (1) =(Qi(1)* Q;):

If one uses the factorization theorem for the leading-order

treatment of the pB-relaxation window, @ij(t):fﬁ- C. Type-A transitions
:orr];jeclsa(ttczr’ one gets the corresponding result for theY Let us imagine that for fixedp= ¢. the dumbbell size

shrinks as described by a decreasedef d,, and {. For
properly chosen smad,,d,, there will obviously appear a
critical value of¢, say {.(¢), so that the molecule can no
Dyy(t) =Ry +hyyG(1). (46)  longer be localized fof < .(¢). There will be a percolation
transition for{ crossing.(¢). The {-¢ parameter plane will

Here the critical nonergodicity parameter is given by theSPIt into three regions. Fop< ¢ there is an ergodic liquid
functional at the critical pointf%, = Fxy(fS), and the criti- ~ With a diffusing molecule. Fop=¢¢ and{>{(¢) there is
cal amplitude is given by the functional’s derivatiieyy @ glass with a localized molecule, and ¥ {;(¢) there is
=§ij[(9]:XY(fiCj)/afij]hij . Higher-order powers iG(t) con- @ glass with a delocalized molecule. MCT br|ng§ out a type-
tribute to the corrections to the leading-orde@relaxation A transition for crossing a percolation threshotd(¢) as
result. demonstrated before for the Lorentz systdi,56. The to-
According to Eq. (46) it is obvious within MCT pology of the phase diagram is that discussed bygigjo
that all correlators of variableX and Y that couple to [65] for a schematic MCT model. At the percolation thresh-
densities, i.e., for which not all products of overlapsold the particle localization length diverges. The approxima-
<X*(Qi1"'QiL)> <(Q]-1~~QJ-L)*Y> vanish, exhibit the uni- tions underlying the MCT cannot exactly handle the perco-
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lation transition, whose universal dynamics is connected
with a divergent length scale. Indeed, the asymptotic MCT
results[55,56 are those of a mean-field approach.

Type-A transitions for rotational degrees of freedom have 0.40 1
been studied by Michel for crystals containing nonspherical
molecules as impuritie§66]. His assumed frozen random

0.60

array of impurity positions is the analog of our glass envi- 0.20 ¢
ronment. His general equations of motion are similar to ours;

but his problem is more complicated due to the impurity- ot
impurity interactions. Generically, interacting systems can-

not exhibit a typeA transition. Such transitions are possible 0.15 |
only if there is some symmetry in the problem, rendering

whole blocks of mode-coupling vertices zero, or if the block 0.10

structure is due to some peculiarity of the moffel]. The
latter is the case for the percolation problem: the frozen sur-
roundings govern the dynamics of the molecule but the 0.05 |
single molecule cannot influence the ergodicity properties of
the surroundings. In Ref[66] it is anticipated that the

impurity-impurity mode-coupling interactions are so small Of ‘ . ‘ ‘ .
that the expected jump of the nonergodicity parameter at the 022 026 030 034 038
transition can be ignored, and thereby a typéransition is ¢

approximated by a typé-one.

If one considers a top-down symmetric molecule within  gg, g, critical glass form factor&(qj0) for helicity zero as a
our theory, a typeéA transition for odd} correlators is pos-  function of ¢ for q=3.4(a), 7.0(b), 10.6(c), 14.2(d), and 17.4(e);
sible even though the evgneorrelators are arrested. The j=1 andj=3. The dashed heavy lines refer to top-down symmetric
glass state for a localized molecule with arrested gveg-  dumbbellsd,=d,=d; the arrows indicate the positiaf,=0.296
namics splits into two pieces, separated h.@p) transition  for a typeA transition. The full light lines are the results for a
line. For {<{.(¢), there is a glass with ergodic odddy- molecule with ¢, —d,)/d=0.02,d,=d.
namics of the molecule and f@r>{.(¢) all rotational vari-
ables are arrested. Figure 5 exhibits the continuous decrease
of the oddj nonergodicity parameters fdrapproaching;, (293 one gets as a starting formula
={:(¢.) from above. With increasing the trend to arrest
increases, and therefolg(y) for o> ¢, is smaller thary;, _ 1 *
as is demonstrated in Fig. 7. Let us emphasize that the de- “'ﬁ’q“(f"'(kv) fp) 2 [NS(p)]” A (kpviaiqu)
scribed odd- transition is not connected with a divergent
length scale. One finds that the nonergodicity parameters in- ~ ~ .
crease linearly with increasing separation parameter: Xfn(kv) fpAi(kpw; Bigu),  (AL)
f(qim)=h(dju)({— L) +O(({—¢c)?) for {=¢. This lin- _
ear variation is demonstrated in Fig. 5 and, on a magnifiedvith
abscissa, in Fig. 9. If the symmetry is slightly broken, the
transition is eliminated in favor of a rapid crossover from
very small nonergodicity parameters fgr<{. to such of PGP _ I (DNCAR L ) NS
order unity for{>¢. [57)], as is also shown in Fig. 9. The A|(kpv,ﬂjq,u)—2 DK AT (kp)IF 5;(a)) VN S(p).
crossover dynamics can be described by a formula such as (A2)
Eq. (46), which specifies universality features.

kpl' 1w

There are two contributions to the overlap of fluctuating
forcesF and pair mode#. One is due to the last term in Eq.
ACKNOWLEDGMENTS (26), which yields with abbreviatioif13)
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R. Schilling for discussions, comments on our manuscript,

and information on his studies of molecular liquids. Our =(e(p)* Wﬁ—K(qo,_k’o)>(_l)|+K.
work was supported by Verbundprojekt BMBF 03-

GO4TUM.

The other one is due to the first term on the rhs of &6).
It can be reformulated in a similar manner if one uses Kubo’s

APPENDIX: THE MODE-COUPLING FUNCTIONAL identity (A*CB)=iT({8, A*})-(gf(E)* 0(P)* Lo 4 ,.(Go))

In this appendix, the details of the mode-coupling func-= —T(Q(p)*rr” _"(qo, K, B))(—1)'""*. The remaining
tional Fin Eq. (300 shall be specified. From Eq&l6g and  averages have been specified in Hd4) and hence
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. ) - j | J
AKpY: Biap) = 8. kg [4m(2] + 1)(21+ D] il“*(—1>'+K+1Y3”<p>*ns<p>c3<p)(L . M)

o1 - - -
o o 0)D'Ky<k>[cg<ju;qoo<—k>)vz/nm<q)2+co]. (A3)

X

The IZ—E sum in Eqg.(Al) reduces to an integration ov&r sincef):&(,—lz. This is done best in bipolar coordinates:
[(27)*IN1Z(5854 k.6, - =1/(ng) [de[kdk[pdp--- . Here (p,9,) denotes the solid angle ¢, so that cosy=(k*—p’
+0P)/(2kq). The solid angle op is (— @, ) with cosd,=(p*—k2+q?)/(2pq). The integration over yields

2 J Y ()DL, (K* YY(9)* D! (K= 8 - V(237 + 1)(23+ 1)y o D)o Fp) e (0l (D). (Ad)

The Kronecker symbol and thej3symbols together impliM’'=M and«’ = k. Finally, the integrals are replaced by Riemann
sums ofN, wave-vector moduli, equally spaced with distatticek/h, p/h=1/2,3/2 ..., (N,—1/2). This yields the expres-
sion for the coefficients in E¢30¢), where the sum ovep is restricted tdq—k|<p=<|q+Kk|:

Veifl 1 h%kp

ko 1= (22 V(2i+1)(2j+1)(2' +1)(21+1)

[ I’ Jr H I J - , ,
X nS(p)CJ/(p)CJ(p)\/(23’+1)(2J+1)L(|) 0 o)(é) 0 0>(_1)<.| ~3)12
J'J

. , , , , i
(D113 KD AL kDS 62 o0, oD, (20 | )

X

i J
Mmoo Tk K—M>’ (A5)

with the abbreviation

. (PP+a*—k3)Ig? if B=T
AB(II‘J’qkp):[[J(J+1)+j(j+1)—I(I+1)]/[j(j+l)] if B=R. (A6)

The angular momentum indicgsare taken into account up to and including a cutoff numhbgg. The results as shown in

Figs. 2, 6, 7, 8 were calculated wilt,= 100, j =6, and the wave-vector spacing is chosemag.4. Restricting the work

to j max=4 changes the results on a 5% level fer0,1,2 and on a 10% level fgr=3,4. Usingj na=2 One obtains results with

a 20% error. Figures 3, 4, 5, and 9 are calculated yyjth=4. Refining the discretization from,= 100 toN,= 200 with the

same large-wave-vector cutoff does not change the results on a 0.5% level, except far. dhnglires 3 and 4 are evaluated

with Ng=200. UsingN,= 80 instead oN,= 100 with identical spacing influences the results by less than 0.5%, except for
wave-vector moduli near the large-wave-vector cutoff, where results change on a 5% level. Figures 5 and 9 are evaluated with
Ng=80.
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