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The nucleation theorems relate the temperature and supersaturation dependence of the rate of nucleation of
droplets from a metastable vapor phase to properties of the critical molecular cluster, the size that is approxi-
mately equally likely to grow or decay. They are derived here using a combination of statistical mechanics and
cluster population dynamics, using an arbitrary model cluster definition. The theorems are employed to test the
validity of the classical theory of homogeneous nucleation and its “internally consistent” form. It is found that
the properties of the critical cluster for these models are incorrect, and it emerges that this occurs because the
classical theory employs the free energy of a fixed droplet, rather than one free to take any position in space.
Thus a term representing positional, or mixing, entropy is missing from the cluster free energy. A revised
model is proposed, based on the capillarity approximation but with such a term included, and it is shown that
it is fully consistent with the nucleation theorems. The model increases classical rates by factors of approxi-
mately 10—1C°. Other nucleation models should be tested for internal consistency using the same methods.
Finally, the nucleation theorems are used to extract the excess internal energies of molecular clusters from
experimental data for several substan¢&84.063-651X97)08910-1

PACS numbe(s): 64.60.Qb

[. INTRODUCTION which the likelihood of growth exceeds that of decay, en-
abling them to grow into large droplets. This is droplet
The formation of clouds and fog in the atmosphere isnucleation, and it increases in frequency as the vapor is made
perhaps the most familiar example of the transformation of anore and more metastable with respect to the bulk con-
vapor into liquid droplets. Water vapor in air that cools be-densed phase, since this alters the mean growth and decay
low the so-called dew point becomes thermodynamically untates. For t_he simplest systems, the parameters that control
stable with respect to the liquid phase and droplets aré_he nucleation rate are t_he temp_erature and the supersatura-
formed. The thermodynamics of the phase change are wdlion of the vapor, which is the ratio of the vapor pressure to
understood, but the dynamics are not: no fully successfui® Saturated vapor pressure.

theory of the rate of droplet formation has emerged in spite t.lf dropltgtl nuclﬁaﬂqn takes plag:et(;n ”:e surfﬁce o{han ex-
of seventy years of effort. isting particle, which is common in the atmosphere, the pro-

[ lled heterogen nucleation, but the more funda-
Conceptually, the process of nucleation is simple enough(?eSS s called heterogeneous iucieation, bl.J e more funda
) . . mental homogeneous nucleation process involves only the
Free molecules are continually colliding with one another.

q onallv b ina bound: di dl interactions of the vapor molecules among themselves. The
and occasionally becoming bound. dimers an anjesters latter has received more attention, both theoretically and ex-
of molecules are built up in this way. Clusters can also los

. i L $erimentally.
molecules by occasional evaporation and so individual clus- 1he statistical mechanics of molecular clustering is per-

ters follow a fluctuating history of growth and decay. Whenpapg the most natural theoretical framework for describing
the vapor phase is thermodynamically stable with respect tgcleation. However, progress has been hampered by uncer-
the condensed phase, decay is more likely than growth, andinties in how to represent a physical cluster in statistical
large clusters tend to fall back to smaller sizes, or break apafhechanics. The picture of growth fluctuations of embryonic
completely into free molecules. droplets that has been sketched above requires a cluster to
However, when the bulk condensed phase becomes thefiave a certain stability, so that it can truly be held to exist as
modynamically stable with respect to the vapor phase, occa physical entity on the time scale of molecular collisions.
sional growth excursions by individual clusters into largerHowever, physical clusters cannot be absolutely stable, or
size classes can sometimes lead to continued growth. This @&vaporation would never take place.
because when the condensed phase is stable, growth is moreMayer clusterd1] do not represent physical clusters, for
likely than decay for large clusters. However, such sizes canexample, since there is no limitation on the separation be-
not be reached without the prior formation of small clusterstween molecules: the definition will therefore include con-
(except by very unlikely multimolecular collisiopnand these figurations that are unbound and ephemeral. Most definitions
often remain thermodynamically unstable with respect to thef physical clusters involve the confinement of the molecules
free molecules. Decay continues to win for small clustersfo a small spatial volume in the hope that all such configu-
even when the bulk condensed phase is the thermodynantations will be bound and can serve as model physical clus-
cally stable state. The phase transition is therefore broughérs as required in the kinetic treatment of nucleation, and
about by infrequent fluctuations by individual clustersthat no bound states are excluded. This is a difficult and
through the unstable size range, past the critical size, beyorkerhaps impossible task, and some miscounting seems to be
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inescapable. The cluster definition has an effect upon the These previous derivations studied the probability of oc-
predictions of the model, as we shall see. currencd 15] or the work of formatior{16,17] of the critical

The most common definition used in the literature re-cluster. The nucleation rate is proportional to a Boltzmann
quires each molecule of a cluster to lie within a sphere cenfactor containing the critical cluster work of formation, and
tered on the center of mass of the grd@) and in further the remainder of the expression is often called the kinetic
refinements, for a molecule also to lie on the surface of th@refactor. The kinetic prefactor from classical theory was
sphere[3-5]. This has been proposed since it is possible tgised to complete the derivation of the theorems. In th(_a
enumerate all the configurations of molecules in a systenRr€Sent paper, however, the temperature and supersaturation
that satisfy this cluster definition. This means that the phasdependence of the rate of nucleation is obtained directly,

space integrals can be evaluated and cluster partition fung\_/ithout the need to estimate the kinetic prefactor. Indeed the

tions found. It is assumed that such a construction will in—valldlty of the classical prefactor can be tested using the

lude al e bound iates of the comporent molcuies arfe’® S0, S siamec, Tne ceruaton v St
will include no undesired unbound states. P

Other cluster definitions exist that would appear to bebased on a grand ensemble for a single cluster can be used,

more natural, such as the Stillinger clusfét, where each togethe_r with the theorems, to predit_:'g the sensitivity of the
molecule need only lie in a particular region centered arouncﬁ'ucleat'On r_a_\te_to expef'”.‘e”ta' cond|t|_ons.
any other molecule already in the cluster. However, the enu- The equilibrium statistical mechanics of a subsaturated

meration of molecular configurations satisfying this defini- Yapor are described in Sec. II. The pressure of such a vapor

tion is not easy analytically, nor can the definition exclude's Ides|§ thgn the §at:1hrated é/apor pressurlt_eba}t Wh'f\;] }he \I/apor
unbound transitory states. and liquid are in thermodynamic equilibrium. Molecular

Possibly the best cluster definition of all would require all configurations are classified as collections of clusters of vari-

the molecules in the cluster to have a negative total energ us sizes, a_nd the grand partlfu_on funct!on of the vapor 1S
[7,8]. It would be the intermolecular potential that deter- epresente_d in terms of the partition functl_on .ofasmgle cl_qs—
mined whether a particular molecular configuration should®" accordmg to some chosen clgste_r definition. T_he equilib-
be viewed as a physical cluster. However, this prescriptioﬁ'u.m. system Is then interpreted kinetically to obtain rate co-
would be complicated to realize in practice, and several dif-fo'_if'hents for va{_lgqs grox{vtht_and dehcay lgrr]ocesses._
ficulties exist[8]. In fact the definition is not at all perfect € nonequriibrium situation, where the vapor 1S super-
since it would fail to account for physical clusters Wheresaturated_ an_d undergqmg the nucleation of.condensed phase
individual molecular energies become positive but where Cir_dr_oplets, IS d|sc_usseq in Sec. lll. An expression for th? ngcle-
81I|on rate is derived in terms of the properties of equilibrium

cumstances, such as a collision, prevent the evaporation : S .
such an “unbound” molecule. Furthermore. one would need®YSt€MS and this expression is then used to derive the nucle-
. ' tion theorems in Sec. IV. These are then applied in Sec. V

to calculate kinetic energies with respect to some referencg . . ;
frame, and it is unclear which choice to make. Perhaps thé(.) test the vaI|d|Fy of t,r,]e C"’?‘SS'.Ca' the_ory of nucleation a_md an
internally consistent” derivative of it. Both models fail to

best that can be done is to demand that the molecular poten tisfv the th d'in both tis b th K
tial energy should be less than the equipartitioned moleculal® isty e (heorems, and In both cases 1t 1S ecause“ € wor
kinetic energy. qf formation Qf'a fixed drople;t is employed. The posi-
The uncertainties in the construction of statistical me-t'onal' or _mixing _entropy discussed recently by R_elss
chanical model$2,9], and also the poor state of knowledge et al. [18,_15] IS missing, and the m_odels are therefore Incon-
e Sistent with the statistical mechanics. In the light of this, we

about the intermolecular forces, have made it attractive t del based th larit .
study simpler models instead. The prime example is the cla )ropose a model based on e same capiliarity approxima-
on, but which includes positional entropy and is in accord

ical th which i n the i that clusters can be; : :
sical theory, ch is based on the idea that clusters can b ith the theorems. Finally, the nucleation theorems are used

viewed as tiny droplets with a well-defined surface area an Sec. VI t tract clust fies f ; l
density, characterized by the properties of bulk condenseg‘a ec. 0 extract cluster properties from experimenta

matter[ 10]. A related approach is to use a phenomenological ta, and conclusions follow in Sec. VII.
cluster model, where the difficulties in the status of clusters
are set aside by fitting parameters in the model to experimen- 1l. STATISTICAL MECHANICS OF SUBSATURATED
tal data[11-13. Nevertheless, a well-founded theory of VAPOR
nucleation is more likely to emerge from statistical mechani-
cal considerations. However, in the light of the above discus-
sion, it would be best to try to obtain results that were not The statistical mechanical treatment of an imperfect vapor
dependent on any particular choice of cluster definition. s traditionally developed using a canonical ensemble of sys-
This possibility has been pursued in the present papetems of volume/ containingN molecules that have the abil-
Results regarding the temperature and supersaturation depety to associate into bound clusters due to mutual interac-
dence of the nucleation rate are derived from the statisticaions. The law of mass action that determines the cluster size
mechanics and population dynamics of arbitrarily defineddistribution in terms of cluster partition functions can be de-
clusters. These results are the two nucleation theorems. Thived, but the method is not entirely satisfactory since there
first nucleation theorem was originally a conjecture based ois no external control over the pressure of the cluster mix-
classical nucleation theorjd 4], which was then placed on ture, and hence the supersaturation of the vapor phase. The
firmer ground using statistical mechan[d$] and then ther- vapor pressure depends instead on the internal paraméters
modynamics[16]. The second nucleation theorem was de-andN, which need to be chosen to obtain the desired pres-
rived thermodynamically by the present authdv]. sure.

A. Equilibrium populations
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The development in this paper will take a slightly differ-
ent route by examining a grand canonical ensemble instead.
The system of volum# is considered to be in contact with
a particle reservoir at a chemical potentjal so that the
number of moleculesl in the system fluctuates. These mol-
ecules associate into clusters as before, and by varying the
chemical potential, the mean pressure of the mixture of clus-

=]

ters in the system can be controlled. The reservoir also acts ® ®
as a heat bath at a prescribed temperature

If H(N) is the Hamiltonian of the system whéih mol- ® ® c
ecules are present, afids Boltzmann'’s constant, the grand ...

partition function of the syster& (w,T,V) is then propor-
tional to the integral of e{p-(H(N)—Ng)/KT] over the entire

phase space of molecular positions and momenta, summed g 1. A particular molecular configuration that contributes to

over allN from zero to infinity: the grand partition function of a subsaturated vapor, illustrating how

different cluster definitions can affect the evaluation of cluster

— 3. 43 populations. ClusteA is defined using a spherical shell centered on
E(M’T’V)_ o NI h3Nf H d de Pj the center of mass of a set of closely associated molecules. Cluster

B is defined instead using a criterion that molecules should be
Xexp{—[H(N)—Nw]/kT}, 1) colinear. According to this criterion, only four molecules in cése
can be considered to be a cluster. Clusters defined by the re-
Wherexj and p; are the position and momentum of tj quirement that the molecules are a fixed distance apart. Those mol-

molecule.h is Planck’s constant. anM! corrects for mo- €cules that do not satisfy a chosen cluster definition are considered
lecular inaistinguishability ’ to be monomers: according to definiti@ therefore, none of the

The calculation off can be greatly simplified by consid- molecules in cases andB is clustered.
ering the system to be occupied by populations of molecular
clusters. The grand partition function of the system can thegluster definition. For example, if intermolecular forces were
be constructed from modified canonical partition functionsisotropic, then a definition that favors spherical clusters
for single clusters of molecules(ani-cluste). The defini- Wwould be a better choice than clusters based on a planar
tion of a molecular cluster will be left open, but it could, for criterion. On the other hand, if the intermolecular forces
example, require that all the molecules lie within a sphere ofvere planar in character, then such a definition might not be
a certain volume centered on the center of mass of the whoknsuitable.
set of molecules. Alternatively, it might instead be required These points support the idea that a cluster should be
that the separation between molecules within the cluste@€fined as a collection of molecules that are bound energeti-
should not exceed a maximum distar(tiee Stillinger clus- cally. This should minimize the cluster-cluster contributions
ter). One could use any rule: a cluster could be defined as 0 the total energy: if a nearby molecule had a strong inter-
configuration of molecules lying in a single plane. A snap-aCtion with a cluster, an energy-related definition would be
shot of the molecules in the system would then be classifielikely to include the molecule within the cluster. Cluster-
as a collection of clusters, with the numbers of clusterscluster interactions could be taken into account in the form
present depending on the cluster definition chosen. This igf a virial series[20], but here we shall simply ignore any
illustrated in Fig. 1. Different cluster populations emerge if cluster-cluster interactions in the Hamiltonian.
different cluster definitions are used. However, as has been We now introduce a modified canonical partition function
stressed above, a nucleation theory based on a poor clustér for a cluster containing molecules. This is related to the
definition is unlikely to be very successful, and one shouldntegral of exg—[H(i)—iu]/KT} over the phase space acces-
attempt through the definition to include all physical clusterssible to molecules in the cluster:
and exclude all ephemeral states.

There is a second implication of using an inappropriate
cluster definition, which is the following. The calculation of 30 43
the system grand partition function in terms of cluster parti- Zi= ,|h3|f H d°xd%pjexp —[Hc() —in]/kT}.
tion functions will be accurate only if the interactions be-
tween molecules lying in different clusters are negligible.
The total energy for a particular configuration of the mol- Clearly Z;=Q,exp(u/kT), whereQ; is the canonical parti-
ecules in the system can then be separated into independditn function. The cluster definition introduces constraints on
contributions from each cluster. We wish to write the phase space available to the constituent molecules, which
H(N)~ZX;nH.(i), where n; is the number of clusters can act upon both molecular positions and momenta, and
present in a given system configuratimsing the chosen which is indicated in Eq(2) as a prime on the integration
cluster definition and H(i) is the i-cluster Hamiltonian, symbol. The phase space of molecules that form a cluster is
which depends on the positions and momenta of the molsimply a subset of the total phase space of a collection of free
ecules that make up the cluster. The cluster definition may bmolecules. The subset depends on the cluster definition, and
arbitrary, but clearly the level of approximation in the evalu- the difficulty in actually evaluating the partition function in-
ation of 2 will depend upon it. This will guide the choice of tegrals will of course depend on the definition chosen.
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With a little thought, it is evident that the grand partition Using this approximation, the grand partition function be-
function of the complete system can be expressed in the foeomes
lowing form:

o

e A Z|nle e
::iljlﬁ:emz& n;. (6)

© N
) , ()

— I
- {;,} (|H1 n;!
The pressur@,, exerted by the noninteracting clusters within
where, as indicated, the sum is over all possible cluster sizéie system for a size distributigm?} is given by Dalton’s
distributions {n;}. This grand partition function then con- law
tains, as it should, contributions from all possible configura-
tions of molecules in the system, weighted by the appropriate

o]

_ e
energies if the total Hamiltonian separates into cluster con- pUV—Zl kT, @)
tributions. The factor of;! corrects for overcounting due to
the indistinguishability of clusters. and we see that the vapor pressure is a function ehdT,

Many previous evaluations of a cluster partition functionand thatE = exp(p,V/kT) as required. The grand potential of
have proceeded from this point by defining molecular posithe whole system is-p,V. The grand canonical ensemble
tions with respect to the cluster center of mass, and thetdoes not allow the vapor pressure to be fixed exactly, since
integrating the coordinates of the cluster center of mass ovéfluctuations in cluster populations and therefprecan oc-
the system volume. This makes the modified partition funccur, but these are negligible for a large system, and so to a
tion Z; proportional to the system volumé. However, this  very good approximation, the vapor pressure in the system is
proportionality would result from any criterion that uses thecontrolled by the external parametgrsandT, as we require.
phase space configuration of the constituent molecules tBquation (5) leads to the law of mass actiom®=
determine whether they form a cluster. The fundament (nS1Qy)".
point is that for any configuration of molecules that satisfies  pytting Eq.(5) into Eq. (7) we find
the definition, there will be others that correspond simply to
spatially translated copies of the first. The summation of *
these contributions to the partition function introduces a pro- p,V= sz Z. (8)
portionality toV. The center of mass definition is not exclu- =1

sive, and in order to develop the statistical mechanics it istho sym in Eq(8) will only converge if Z, decreases suit-
. ; : X . i
not necessary to introduce it. We note in passing that sinc bly as a function of. It turns out that this limits the statis-

Ziis dime.nsionless, it _shouk_j also be inversely proportionajjeo| mechanical ensemble to the study of vapors at or below
to ahquannty Wlfth;he‘ldlm?n5|onf of \{f)llume. We shall relUMie saturated vapor pressure. Systems at a higher vapor pres-
to the nature of this “scaling volume” later on. sure will not be globally stable: the true equilibrium state

Th_e g_rand partition functiorE in Eq. (3) is a sum of will be the bulk condensed phase. This constraint translates
contributions over a new phase space of all ¢afs. i.e., all 415 an ypper limit for the chemical potential. Since

possible cluster size c_ilstrlbutlons. The molepular pos't'orheleexp(u/k'D from Eq. (5), we can introduce a reference
and momentum coordinates are subsumed into the cluster . es L

- X - populationn;~, which is the free molecule, or monomer,
partition function Z;. A system containing no molecules,

: et
and a system containing a single cluster filling the entireEOpmat'on for a saturated vapor, and write;
system, are among the configurations taken into account iff Q1€XPs/KT). s is the chemical potential that produces

Eqg. (3). There will be many possible other arrangements,t is reference population. We then deduce that

corresponding to intermediate molecular densities. There is
no restriction in the grand ensemble Byin;, the number of
molecules within the system.

The next step that is traditionally takdivut normally
within a canonical and not a grand canonical ensejribleo
note thatZ in Eq. (3) is dominated by a contribution from
one particular size distributiofin’}. In order to determine
this distribution, we simply extremize the logarithm of the
expression within the sum in E¢3). We require

w=ust+kTInS, C)

where we have introduced the saturation raie ng/n3®,
which so far is limited to values below unity. To a good
approximation, for conditions well below the critical point,
nikT~p,sV, and S~p,/p,s, Where p,s is the saturated
vapor pressure. This confirms that whigedoes not control

the total pressure exactly, it does control the partial pressure
of the monomers, and hence provides a very good external
. _ control over the saturation ratio.

d P Furthermore, the approximation that the Hamiltonian
_z I“( ) =0, (4) should separate into contributions from independent clusters
will also fail as the system becomes denser. No attempt will

which leads, using Stirling’s approximation, to the following be_ made Fo 'descnbe the_ metgstable, or sppersaturated vapor
using statistical mechanics, since none will be needed.

Eﬁggensfrlg? ff(())rr ttrr]]: T:;; E)::)onbdailtl?(l)en, ; rai?jU|I!br|um, size distri- The single cluster modified partition functiof; can be
: 9 s expressed in terms of the single cluster grand potefit{@):

nP=2z;. ©) Z=exd —Q(i)/kT]=exp{—[F(i)—iu]/kT}. (10
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Q(i) and F(i) are the grand potential and Helmholtz free  Vasilev and Reis§22,23 have suggested that E(L5)
energy, respectively, of a singlecluster in an otherwise C€an underestimate the true absorption rate by a factor of up
empty system of volum¥, at a temperaturé and chemical to 2, if the nominal surface ares, is used. This is brought
potential. They depend on the cluster definition. From Eq.about by an attractive interaction between the cluster and a

(5), the equilibrium populations for sizésandj satisfy free molecule, which can alter the trajectories of approaching
molecules. This enhancement will be neglected here, but
n?/nf: exp[—[Q>)—Q()/KT}. (1)  would in any case only alter the nucleation rate by the same

relatively small factor. A more significant implication of the
effect would be to introduce a dependence of growth rate
) o ) ) __upon the carrier gas pressure. The reasoning is that inert gas
We now introduce a kinetic interpretation of this equilib- mojecules, which have been ignored hitherto, but which are
rium situation. We consider that the equilibrium size distri- necessarily present in nucleation experiments, might inter-
bution n is the stationary solution of the following set of fere with the attraction between free molecule and cluster,

B. Kinetic treatment

population dynamics equations: and change the absorption rate. Assuming that the evapora-
tion rate is not affected by the carrier gas in an equivalent

ﬂzz n-W ,_n,z W (12) way, the nucleation rate could then be suppressed. However,
dt 4 Tt g e this would seem to be a large effect only for high carrier gas

. o . pressures, when carrier gas molecules are often likely to be
whereW,_; is the coefficient that determines the mean rat&ound within the attractive range of clusters, and so we will
at which transitions are made that convefteluster into an  peglect it here.

i-cluster. Recall that since the clusters defined in the statis- The situation considered so far is limited to saturation

tical mechanics are supposed to model real physical clustergatios S<1 controlled by the external chemical potential
the rate coefficients in Eq612) will describe such processes At ;= 4. the vapor just becomes saturate8=1 and
as molecular capture and molecular evaporation to and frorg = . The grand potential of thecluster for such con-
embryonic droplets. The connection between rate coeffigitions will be given a subscript and written as

cients and cluster statistical mechanics is then given by

Wi nf o Qi) =F (i) ~ips. (16)
W:EZGXP{—[Q(I)—Q(J)]/W}- (13
1—] i
: The ratio of rate coefficients is then
The kinetic interpretation can be taken a step further by

assuming that the only important transitions are those that

S

are brought about by the addition or loss of single molecules Bi —ext —[O(i+1)—Q(DT/KT 1
to or from the cluster. The only nonvanishing rate coeffi- Yit1 X L[4 1) = QD VKT A
cients are thengB;=W,_,;., for cluster growth, and
7i=Wi_i- for cluster decay. They are related through lll. NUCLEATION RATE IN A SUPERSATURATED

Bi VAPOR

I . .
Yie1 exp~ [+ 1) = QD) /KT (14 The statistical mechanical treatment of a subsaturated va-

- _ N _ por in the previous section provides rate coefficients that can
Transitions such as dimer addition to iaoluster to form an  pe used to study the population dynamics of clusters for a
(i+2)-cluster have been considered elsewH@H and in  supersaturated vapoiSt1). In this way, the process of

most cases they alter the nucleation rate only slightly, unlesgycleation can be modeled. We rewrite Etp) in the form
for some reason the dimer population is unusually large.

The rate of combination of single molecul@sonomery dn;
and i-clusters to form ani( 1)-cluster is proportional to W:,Bi—lnifl_'Yini_,Bini+')’i+1ni+l:‘-]ifl_‘-]ia
ning, so B;«n?. In fact, according to kinetic theory, the (18)

growth rateg; is the molecular flux times the surface akga
of the i-cluster, assuming all collisions stick. The usual ex-yhere J,= gin,— v, ,n; ., is the mean cluster current be-

pression is tween sizes andi+ 1: the excess of growth transitions over
R decay transitions between the two sizes. The populations
_:ﬂzsﬂs (15) here no longer carry the superscrigtwhich denoted equi-
" V(27mkT)H2 " librium in a subsaturated vapor. They are now a general size

distribution determined by the dynamical equati¢b®). The
where 8°=n$kTA /V(27mkT)Y2, wherem is the molecu-  growth rateg; is still given by Eq.(15), but with S>1: we
lar mass. We shall use the growth coefficightin Eq. (15)  now refer toS as the supersaturation rather than the satura-
in the following development, which brings with it a certain tion ratio. This enhanced growth rate is the driving force that
temperature and supersaturation depende@ther growth  causes the nucleation of the new phase.
regimes could be considered, for example, where diffusion Note that we consider nucleation here to be the result of
limits the absorption raje The decay coefficieny;, how-  mean rates of transitions in the population dynamics of clus-
ever, is independent of supersaturation. ters, whereas the picture drawn earlier was one of individual



5620 I.J. FORD 56

clusters growing and decaying stochastically, and occasion- B1in;
ally being driven to large, stable sizes. J= M . (29
The population equations are solved as usual for the fol- 1+ E H (v18;)

lowing boundary conditions. Firstly the monomer concentra-
tion is Stimes greater than that which occurs in the saturated
vapor, i.e.,n;=Sn* (with S>1). Secondly, the population _
at a sizeM+1 is set to zero. It turns out that as long as The product TIj_,y/8; can also be written as
M+1 is large enough, it does not matter which particular(81/8i)11i_,7;/B;-1 and using Eqs(15) and(17) we then
value is chosen. The condition, . ;=0 prevents the system get
from relaxing to the global equilibrium state where the con-
densed phase fills the available volume. The cluster popula- .
tions are therefore held somewhat artificially in a state of i
perpetual nucleation of the phase transition. H /7_ _eXp{[QS(') Q(DVKT=(i—1)InS}.

If we consider the steady-state solution, such that (20)
dn,/dt=0 andJ; is a constand for all i, a process of elimi-
nation within the system of equatiori$8) leads to the fol-
lowing expression for the nucleation rate: Substituting into the rate expression then gives

M -1
J=pB1n, 1+22 B—_lexp[[Qs(i)—Qs(l)]/(kT)—(i —1)InS})

SpsV | L -
kT & p[Q(1) —kTInS]/kT} E —exp{Qs(l)—lkTInS]/kT . (22)
Bi
|
Note that the nucleation rate derived here is the number of Sp,sV _
clusters per second reaching the maximum sie(1) in J=— 7 eXHe(L)/KTIZBixexd — e(i*)/KT], (25

the volumeV. The dimensions are inverse time. Nucleation
rates are more usually defined as the number of parucle\ﬁ,

hereZ is the so-called Zeldovich factor given by
generated per second per unit volume, but we shall consider

the total current and not its density. 1 {2040 112
The usual procedure is now to represent the sum iogsr S <(l ) ) (26)
an integral betweert o, and to expand the argument of the 27kT\ 42 i

exponential about the point where it reaches a maximum,
which defines the critical size*:

A small contribution from the derivative ¢; with respect to
i has been neglected. Note tldas proportional tg8;«, SO an
) —kTInS=0. (22 enhancement of this coefficient according to the ideas of
i=i* Vasil'ev and Reis$22,23 would enhance the nucleation rate
by the same factor.

To see that the critical size is loosely the size that is equally Why is €(i) the cluster work of formation? The cluster

likely to grow or to decay, consider E(L4) for i=i*. we  Work of formation is the change in the grand potential in
have going from an empty system to a system containing an

i-cluster, for constant external conditions @fandT. Since
the grand potential of an empty system is zero, the cluster
B F{ 1 (&Q(i))
~exg — = ——
Yix+1 KT\ di i=

( 9€(i)
di

} 1 23) work of formation is simply (i), and Eq.(24) follows from
. ' Egs.(9), (10), and(16).
' Equation(25) takes the form that is often proposed on the
following heuristic grounds. Since the critical cluster is the
size that is equally likely to evaporate or to grow, the fre-
quency of nucleation should be proportional 8g.n;«, the
_ L rate of attachment of monomers to critical clusters. The
€(i)=Q4(1)—ikTInS, (24)  population of critical clusters is equal to éxpe(i*)/KT].
[Strictly, this latter result is not valid for a supersaturated
then to a good approximation vapor, but is an extrapolation of Eq$5) and (10) for

using Egs(9), (10), (16), and(22).
If we introduce the cluster work of formation
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u>us.] This accounts for the last two terms in E@5). M
However, additional factors such & and expe(1)/KT] Z iP(i)
emerge from the more rigorous approach outlined above. i*=|: (31)
Some of the factors in Eq25) correspond to the kinetic mo M
prefactor referred to earlier. Z P(i)
IV. NUCLEATION THEOREMS The sizei? is equal to the critical siz&* under the same

approximations that were used earlier to derive §) from

Eg. (21), namely, to replacgg; in Eq. (29) by 8, and to
Now we can examine the supersaturation and temperatuigpand the exponent to second order abdugiven by Eq.

dependence of the nucleation rate and derive the nucleatiq22). ThenP(i)~ P(i*)ex — 7Z%(i—i*)?] with Z given by

theorems. Eq. (26). The sums in Eq(31) can then be replaced by
We start with the exact expression fbin Eq. (21) rather  integrals over—~<i< and so

than the less unwieldy but more approximate version in Eq.

(25):

A. First nucleation theorem

fw i exe — wZ2(i—i*)?]
X~ =i*, (32
f exf — 7Z3(i—i*)?]

M

1
ex riﬂs(l)/kT]( > Eexqms(i)

Sp,sV
kT

-1
, (27 The distinction between* and i}, will henceforth be
dropped.
Equation(30) is the nucleation theoreifi4—16. It tells

us that the supersaturation dependence of the nucleation rate
where a factor of B in both numerator and denominator has is related to the critical size. It has been used previously to
been canceled. Taking the derivative with respect 1§ In extracti* from the slope of nucleation rate data plotted
holding T constant, we find against supersaturatigon a log-log scaleat constant tem-
perature. Earlier derivations concentrated on the supersatura-
tion dependence of the critical cluster work of formation
€(i*). The proof given here would appear to be more gen-

—ikT INS)/KT]

M

(i) =J— J ( ) ( 2 P(i)) eral, and the steps taken in reaching it have been carefully set
dInS N LA ~\dInS = out. The proof does not rely on a particular choice of cluster
21 P(i) definition in the statistical mechanics. Some independence of

cluster definition was to be expected, since the earlier deri-

M vations were made using arguments from thermodynamics.
E iP(i) Some approximations have been made, but we believe they

=3 1+ :M , (28) are tenable in most situations. A significant advantage of the

_ present statistical mechanical—kinetic derivation is that Eq.

21 P(@i) (30) is an exact expression of the nucleation theorem, which

takes into account the kinetic prefactor in the rate expression
as well as the exponential term.
There is actually a hidden dependence on the cluster defi-
where the weighting functioR(i) is given by nition in Eq. (30). We have stressed several times that the
cluster definition affects the calculation of the grand poten-
tial, and this means that each cluster definition will produce a
1 different critical size, and therefore a different dependence of
P(i)= —expg{[Q(i)—ikTInS])/KkT}. (29 the model nucleation rate upon supersaturation. However,
B; when we come to use E€30) to analyze experimental data,
we implicitly make the reasonable assumption that a “per-
fect” definition exists for physical clusters, and that the ex-
perimental data are giving us the critical size for that defini-
tion: the actual critical cluster, which is equally likely to
grow or decay.

We therefore find that

alnd ) .
(_) =1+ik, (30 B. Second nucleation theorem

A second nucleation theorem has been derived recently
[17] using the methods of small system thermodynamics
[24]. It concerns the temperature dependence of the nucle-
where the cluster sizg, is defined as the expectation value ation rate at constant supersaturation, and is in a sense the



5622 I.J. FORD 56

conjugate to Eq(30), which we shall now refer to as the first are then neglected. The final result appears in(E8§), and
nucleation theorem. We now prove it within the statisticalthe reader could proceed directly to that point if desired.
mechanical formalism. It is a rather lengthy derivation, with  Taking the derivative of Eq(27) with respect toT, we
particular effort spent in carefully evaluating small terms thatfind

4J a\ SpV VoA
(ﬁ)| s:<ﬁ)|ns KT eXF{QS(l)/kT]<i21 PU))

M
_ QS S_ N . 2 .
Pis 1 Q(D-TOUD ;1 (=B 1B~ [Q4(i)—TQL(I)VKT?P(i) -

Ps T kT2 v
i=Elpm

where a prime indicates a partial derivative with respect to temperature. By expanding the terms in curly brackets inside the
sum aboui* we can write

(amJ) P 1 0(D-TOYY) B?L+Qs(i*)—TQg(i*)

- — _— = 4
T Jis Pos T kT? B kT2

I : :
2kT2(I_I*)2 A= TO(0)] P(i). (34)

i=i*

No linear term appears since with the use of previous approximations, the expectation valué*df Weighted byP(i) is
zero.

The term involvingB; has been taken outside the sum since according tg1B)we can write

1967 p, 1 1A
_ﬁzb__+__" (35)
ST pys 2T A 9T

and if we assume tha; o (iv,)?* for spherical clusters, then the final term in the last equation is simply(3v,) and the
whole expression is independentiof

The remaining expectation value is best dealt with by replacing the sums by integralsvatiefimits +, and using the
approximate form folP(i) used in Eq(32). The last term in Eq(34) can then be written as

: JOC di 1(' i*)2 - [Q(I)—TQ(i)] Unlif L 22 az[Q (1) —TQ ()]
—_ i|=(i—i*)? —=[Qgi) - i exp — = —[Q4(i)— i ,
V2mokT2) = |2 PR e 202 | 2k % 52" =

(36)
where
1 204i)
o2 s
. 2m2°=~ gl — 3 ) . (37)
i=i*
The last term in Eq(34) is therefore
1 [ 2ayi*)\ Y 2 PN R S S Qi) a8
Tl T ?[ () =TQ ()] | == o5+ 5 75N Bk (38)

Note the shorthand denoting the evaluation of the derivatives at the critical size. The partial derivative with reEpechéo
last term is performed holding® constant.(The dimensionality of the argument of the logarithm can be taken care of, if
wished, by the insertion of an arbitrary constamquation(34) then becomes

Tl Ps T k2 B @zt %9

(aan) 2p) 2 Qs(l)—TQg(1)+2v,’+Qs(i*)—m;(i*) 19
InS 07i2

~ aZQS(i*))
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Now,

Qs(i)_T

Qi) IF(i) aMs) 40

aT :H”_Tﬁﬁ__«“fTﬁ?

and since; = exd —F(i)/KT] is proportional to the integral of ekp H.(i)/kT] over the phase space available toitmeolecules
in the cluster(as determined by the cluster definitjpmhereH.(i) is thei-cluster Hamiltonian, we can deduce that

P 710, jjlj[l d3x;d3p;H (i) exd — H(i)/KT]

aT [ —(kT)]

F(i)—T =E(i), (41)

f j1:[1 d3x;d%pjexd —H(i)/kT]

where the integrals over the molecular positions and momenta are restricted by the cluster definitio@i,) dadhe mean
energy of ani-cluster in a canonical ensemble at temperafurdhe bar ovele emphasizes that fluctuations in the cluster
internal energy are likely to be substantial for such a small system.

Now we need the derivative qf, with respect tdrl in Eq. (40). u. is the molecular Gibbs free energy of a bulk vapor phase
at a pressur@,s and we can use the Gibbs-Duhem relation

SldT_Uldva+ d/J’S:O! (42)
wheres, andv, are the entropy and volume per molecule in the bulk liquid phase, to deduce that

&MS dpvs ’ ’
ms—T aT =h—-Tg-T VigT S =h—=Tvp,s=€+vi(Pys— TP,s)s (43

whereh, ande, are the enthalpy and internal energy per molecule in the bulk liquid phase when in equilibrium with the vapor.
Therefore Eq(39) becomes

dlnd 2pls 2 EJ 1) E.(i* ws— TPl 20 14 PO (i*
( ) _ pus___ x( )+ x( )_(i*_l)vl(ps ps)_‘_i_{___n B s( )' (44)
T |1 Pus T kT2 kT2 kT2 v, 24T di?
where
Ex(i)=E(i)—ie, (45)

is the excess internal energy of aeluster. This is the mean energy of the cluster minus the energy timecules would
have, on average, in the bulk liquid phase at the same temperature and pressure of the vapor.

Using the Clausius-Clapeyron equatidp,s/dT=(h,—h))/[(v,—v,)T] andp,s,=KT, the first term on the right-hand
side of Eq.(44) can be shown to be equal thPL+v,/(v,—v,)]/(kT?), whereL=h,— h; is the latent heat per molecule, and
h, andv, are the enthalpy and volume per molecule in the bulk saturated vapor.

SinceE_(l) is the mean energy of a single vapor molecule, we can also write
Ex(1)=E(1)—e=h,—h—p,s(v,~v)=L—KT+p,q; . (46)
Equation(44) then can be written as

Qi)
9i?

+1¢9
30, T2 "

(ﬁan) L<1+ 2v|> 1 pysvr . v|(pvs—TpLs)+Ex(i*) 2v|
kT? kT2  3v,

—] =— —=———(i*-1)
oT ns kT2 v,V

). (47)

Neglecting terms of ordev,/v,, and also the last two Furthermore, it is possible to writk —kT~e,—e=¢,,
logarithmic terms, which in most circumstances will be smallwhich defines the mean excess internal enexgygf the va-
compared to the others, E@7) reduces finally to the second por. The right-hand side of Eq(48) then reduces to

nucleation theorem: [ey+E,(i*)1/KT?.
The derivation of the theorem given here is more rigorous
alnJ 1 than the earlier treatmeijtl7], and includes a number of
(_) :_2[L_kT+ E (i*)]. (48) small terms in Eq(47). However, in the original version of
IT i KT this theorem an additional term_ € kT)/kT? appeared on
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the right-hand side of Eq48). This arose because the ther- Now we calculate the partial derivative ofJip with re-
modynamic treatment focused on the temperature depempect toT:
dence of the cluster work of formation: the exponential fac-

tor in the rate expression. The kinetic prefactor from classical [ dInJg 1 do L 1 . dinv,
nucleation theory was assumed, and this ultimately gave rise |\ 37 | ~25 dT kT2 T —(ignS—1) dT

to the additional term. This suggests that the classical kinetic In$

prefactor is incorrect, and this will be explored in the next 1 do

section. The use of the classical prefactor to complete the + —Z(O'—Td—_l_) Agi% 3. (53
derivation of the theorem meant that the excess internal en- kT

ergies extracted from experimental nucleation data in Ref, L .
[17] are too small by approximately RT. A reanalysis of We must compare this with E¢47). For the classical theory

the data is given in Sec. VI. POL) (oA > s
= P =-— §aAo| s (54)

P2
V. TESTS OF MODELS Jl

A. Classical nucleation theory: The problem Note that the last term on the right-hand side of &q) only

The nucleation theorems can be used to test the intemgpntributes, therefpre, thrqugh the t(_ampe_rature dependence
consistency of the classical theory of homogeneous nucleqf the surface tension and liquid density. It is a small term, as

ation. This model was derived originally from thermody- zug?oe;ﬁgtee?grﬂ’o??rfeﬁi(grl: drﬁtua(;:;z:\ttigiﬂt]ﬁer;rhe%‘ uisvee;hi(ra]
namic arguments. The main assumption is that the equilibézpms) However, we neglect all terms of order/v, gin
rium cluster populations are given by Eq. (47). to obtain
NS g=nsexp—[eq(i) — eq(1)1/kT}, 49 _
icl 1 p{ [ cl() cl( )] } ( ) dlnv|+E§'(|§,)
dT kT2 '
(59

L 1
kT2 T

ot | " 2gdT

&Ian 1 do
where, for large [10], InS

€c|(i)_€C|(1)=0'Ai_ikT|nS. (50)
so the excess internal energy for the critical cluster in the

G_cl(i) is a.function that plays the role of th_e work of forma- model, as determined by the second nucleation theorem, is
tion of ani-cluster. We comment on what it represents later.

The first term is the surface free energy of a spherical droplet_ , . do\ o5  pdInv

with the bulk liquid density and bulk surface tensionThe ~ Ex(ic)=| 0= T g7 |Ad ™ — KT — 7= igInS+ (L —KkT).

surface areaA, is taken to be equal toA,i%® with (56)

Ao=(36mv?)*3. n$ is the monomer population, given ap- o o3 _

proximately bynS=p,V/kT. Equation(49) is strictly valid ~ NOW, SinceigkTInS=(2/3)cA¢ig~", the first two terms are

for S<1. proportional to the surface area of the critical droplet. If
Using Eq.(49) we can go directly to the kinetic derivation these Were.the only terms, the intgrnal energy of thg droplet

of the nucleation rate, starting from E@.3) and proceeding Would be given by a term proportional to the volumie,

to Eq. (25) with €(i) replaced byey(i), or equivalently plus a term proportlonal to the surface a(&ge excess inter-

Q.(i) replaced byoA, . Inserting the classical expression nal _ene_rgy, and thls vv_ould be consistent with the ynderlylng

into Egs.(22), (25), and(26) gives the classical critical size CaPillarity approximation. However, the last term in E§6)

i§,=[20Ao/(3kTInS)]3 and classical nucleation rate spoils th|s_p_|cture. Un_fortungtely, it is not sufﬂment simply
to neglect it in comparison with the other terms. It is a symp-

25\ 12 32p530| aAoi§|2’3 tom of a deeper inconsistency within classical theory that
) p<_ ) (51) needs to be resolved.
3kT The failure to comply with the two nucleation theorems
o ) ~ tell us that the classical theory is incomplete. The violations
We now test the compatibility of the classical rate with grise because E¢50) does not represent the work of forma-
the first nucleation theorem by calculating the derivative oftjgn of a cluster correctly. The right-hand side of E§0) is
InJ,; with respect to I8 We find in fact the work of formation of a classical droplethich
%203 has a fixed position in the systeWve can identifye (i) with
(‘9|”Jcl> 5 } U_AO (—2ig —24i* (52) the work of formation of such a droplet and neglegt1) in
aInS | L 3 kT InS ol comparison. What we really need, however, is the free en-
ergy of a cluster which can appear anywhere in the system.
The classical theory is therefore inconsistent with the firstA symptom of this problem is that ekpey(i)/kT] with
nucleation theorem, given in EGO0). It is well known that  e(i) given by the right-hand side of E¢0) is not propor-
the classical theory and the law of mass action are incompational toV as it should be. The missing term is the positional
ible and the failure to comply with the first nucleation theo- entropy(mixing entropy[18]) arising from the translation of
rem is another reflection of this. Both problems can be corelusters throughout the system volume. Note this is not the
rected by multiplyingJ, by a factor of 18 [25], and there same as introducing the translational kinetic energy of a clus-
have been several attempts to justify this within the classicaler into the excess free energy, which we shall comment on
formalism. shortly.

cl—

am/ T (kT)?
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B. Repairing classical nucleation theory scaled-down properties of a spherical droplet of bulk liquid.

Let us now return to Eq(25) and see how we might be However, we shall continue to pursue this model in the spirit

able to derive the classical rate expression taking into ac2f ving to repair classical theory.
count positional entropy, and therefore repair classical nucle- 1€ Second term in E¢62) is the positional entropy term

ation theory. The ingredient that has to be provided by somdue to th_e contribution to the partition func_tion from trans-
physical model is the cluster work of formation: lated copies of every cluster. It was stated in Sec. Il that the

cluster free energy should be proportional to the volume. The
e(i)=Q4i)—ikTINS=F(i)—ius—ikTInS. (57 so-called scaling volume, appears in Eq(62) in order to
maintain the correct dimensions. It acts as a means of resolv-
Now, sinceus=g;, the Gibbs free energy per molecule in ing and counting translated states in the system. This “quan-
the bulk liquid phase when in equilibrium with the vapor, we tum” of volume has been discussed extensively elsewhere
can write us="f,+p,sv;, wheref, is the molecular Helm- [18,19. It appears in coarse-grained statistical models where
holtz free energy in the liquid phase, so that the position of a mesoscale object is a degree of freedom;
. o . . droplet models are in this class, as are models of microemul-
e(i)=Fx(i) =ip, | —IKTINS~F,(i) =ikTInS, (58)  gjon pehavior. Often the size of the scaling volume can be
obtained intuitively[18]. Otherwise one needs to refer back
to the statistical mechanics of the underlying system, defined
in the full phase space of all the degrees of freedom.
F.()=F(@i)—if,. (59) The work of formation based on the capillarity approxi-
mation is then, to a good approximation,
Again, this excess quantity is the free energy of the cluster
minusi times the free energy per molecule in the condensed
phase. €caf 1) = 0AGi 23— KTInV/v —iKTInS. (63)
We need to calculate(1) for use in Eq(25). We write

where F,(i) is the excess Helmholtz free energy of the
i-cluster, defined by

€(1)=F(1)— us—KTInS, (60)  This form should not be expected to apply for smaland

) ~ when it is used, it will be assumed thais large. The critical
whereF (1) is the Hglmholtz free energy_of a monomer in gjze is found by solving?e®®i*)/ai=0, which yields the
the volumeV, andus is the common chemical potential of & ;|5ssical expressioit =i¥ , if the scaling volumey is in-

vapor and its condensate at equilibrium at a temperakure dependent of.

From elementary statistical mechaniég(1)=—kTIn(Vy) The nucleation rate is now obtained from E(25), (54),
and us=—KkTIn(y/p,s), where we have approximated the and (61):

monomer density in the saturated vapor by the molecular

densityp,s. The factory is equal to (2rmkT)*?/h3, where

h is Planck’s constant. Then 20 \Y25p, 0, V O-AOiZIZB o
=|— —exp — —&%—1-
v, @~ |7m| KT ve° 3kT (64
exd e(1)/kT]= Sp.V =Sy (61
vs
We shall now construct a repaired classical theory, starting o TP I S B
by invoking the capillarity approximation, so that the excess ]
free energy for a spherical droplet with the bulk liquid den- 5 10" " .,
sity and bulk surface tension is é ] .,
FRi)=oA —kTInV/v,. (62 % 1 o oo ST e greTTr
The first term, the classical excess free energy, has bee % 104 °
criticized on the grounds that contributions from cluster o T o0 0
. . . . [} ] _ O 0D0mpm
translational and rotation kinetic energy do not appear, sc £ o vator rovisad mocel) A A
that the free energy does not represent all the degrees ( > | v mimmorossimode)  adnsa 222
freedom available. However, it is thexcesdree energy that 10°] D oy sl
is required, and it seems likely that there is no strong contri- A wpentanol (dassical theory) |
. . . . _ | T T I
bution to F,(i) from molecular kinetic energy. The mol 220 240 260 280

ecules in the cluster probably have a similar mean kinetic
energy to that which they have in the bulk liquid. This point temperature (K)

has been debated for thirty years and has shrouded the appn-

cation of statistical mechanics to nucleation in controversy. gG. 2. The classical nucleation rate predictions divided by the

Perhaps the above argument clarifies the point: it is largelgxperimental ratefl5,29,37 are shown as open symbols for vari-
the molecular potential energy that plays a role in nucleatiorus substances and temperatures. The filled symbols show the same
and not the kinetic energy terms. ratio according to a revised model based on the capillarity approxi-

A second criticism of the capillarity approximation is that mation but satisfying the nucleation theorems. The enhancement
small molecular clusters are most unlikely to possess théactor isv, /(Sv)).



5626 I.J. FORD 56

mental temperature ranges. The open symbols denote the ra-

If v, did depend orni, the critical size of the revised model jﬂio of J4 to experimentally measured nucleation rates. The

would not be the same as in the classical model. To a fir
approximation, however, we could ignore this influence an
simply evaluatev . in Eq. (64) at the classical critical size.

illed symbols denote the same ratio multiplied by the appro-
priate factor ofv,/(Sv,), which takes values between 40

; . and 1@. Unfortunately, the revised model is no more suc-
We now can see that the classical rate expression, E

(51), can be obtained from a more rigorous statistical essful than the classical theory in collapsing all the data

mechanical—kinetic aoproach using the capillarity a roxi-onto a single line, or even in accounting for the experimental
. . PP 9 pifanty app temperature dependence. In several cases the predicted rate
mation, but only if we take the scaling volume in E4) to

i has an improved temperature dependence, but this is not uni-
be the molecular volume in the supersaturated vapor,

= ~ versal, as demonstrated by the datarfdvutanol. Neverthe-
namely,v.=v,/S=KT/(Sp,s).

less, the revised theory is better founded than classical

HOWEVE‘F' the fact that the classwal_ rate ploes not Sat'5f¥ eory, and presumably it is the capillarity approximation
the nucleation theorems warns us against this choice. Rece Mat leads to the poor agreement

work has suggested that the scaling volume for a drople
model based on the capillarity approximation should be of . .
the order of the molecular volume in the condensed phase, C. Internally consistent classical theory

not in the supersaturated vagjds]. Indeed Reiset al.[19] The nucleation theorems allow us also to study the so-

have recently examined the scaling volume for a dropleggjied internally consistent classical thedt¢@CT) [28] for
model based on the capillarity approximation and proposegynich the nucleation rate is

that for sizes relevant to nucleation, it takes the approximate
form vo=v,i%2

We can examine the properties of the scaling volurpe 20\Y2 Sitw, Agi% 22
by requiring that Eq(64) should satisfy the nucleation theo- Jiccr= (_m> \Y, > expl volkT)exp< - 3k—T) )
rems. Repeating the steps of E(g2)—(56) we find that ifv ™ (kT) 5

is independent of botls and T, then both nucleation theo-

rems are satisfied, with the excess cluster internal energy

being given by Eq(56) without the unwanted final term. As ] ) o

forecast, this extra term was a symptom of a major problemVe can derive this expression in two ways. The model was

which is now seen to be either the total neglect of positionapriginally developed by employing E¢49) with the terms in

entropy in the classical cluster free energy, or equivalentlyfh€ exponent given by

the use of an incorrect scaling volume. We conclude that the

classical rate should be corrected by a factow pf(Sv.),

whereu, is a temperature- and supersaturation-independen€iccr(i) — €iccr(1) = (0Agi 2~k T InS) — (eA;—KkTInS).

volume. (66)
Several other nucleation modélsot necessarily based on

the capillarity approximationhave suggested that the classi-

cal rate should be corrected by a factqr/(Sv|) [2,26,27,  This is motivated by a desire for an expression that gives the

together with additional numerical factors and powers*of  correct result at=1 in Eq. (49): this is the internal consis-

We see that this correction factor has a suitable form, apatency that the model is designed to achieve. The critical size

from the minor temperature dependencevpf to ensure in the model is the same as for classical thedfy, and the

compliance with the nucleation theorems. The scaling volsupersaturation dependence of E5) satisfies the first

ume is then indeed proportional to the molecular volume imucleation theorem. However, when we use the second

the liquid. nucleation theorem to extract the excess internal energy, the
We examine the effect of the rate enhancement factosame problem we encountered in the classical theory ap-

v, /(Sv)) in Fig. 2 for various substances over typical experi-pears. We find that

&an,c(;T 1 dO’ L 1 % % 1/3 dInU| 1 d(T % 2/3
(T lns—%ﬁ‘f'z ﬁ—f _[(Icl_lcl )mS—l]W*‘ﬁ O'—Tﬁ AO(lcl -1), (67)
so the excess internal energy for the ICCT is
do dinv
E'XCCT(i:,)=(a—Td—T)AO(i;m—l)—kTZ—dT'(igl—i§|1’3)|ns+(L—kT)
_[1 Tdo 2T dan| A %213 1 L—KT 68
= SdT 3 ot )Pl )+ ( ). (68)
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. . e : (69)
The inconsistency this time is that the excess internal energ o
might be expected to be proportional ¢~ 1), bearing -
in mind the form of Eq.(66), but the last term in E¢(69) E 250
once again spoils matters. ° -
We now derive the ICCT rate expression by a seconc ’§ | m B8 .
route, taking into account positional entropy, and determine < el
the scaling volume, which is implicit in the model. We use £ 545 o
the following cluster work of formation S m O //’
T i 7 A
€l r(i)=0Ag(i?P—1)— (i— 1)KTINS—KTInV/v,. 5 o At

70 £ i A [ E, {n-butanol)

(70) @ 150 :\ -~ ~ E, (n-butanol)
Equation(25) now leads, together with Eq&4) and(61), to S . A E ‘;’v“va;:r))
the following nucleation rate: ® ”

T ] 1 T 1
20\ p,w V oA 2R 20 25 30 35 40 45 50 55 60
= am v kT v_ceXF(UAO/kT)eX o 3kT ) Number of molecules in cluster
(71

. . . . . FIG. 3. Dimensionless excess internal enegykT, for clus-
The ICCT expression in Eq(65) is consistent with the ters ofi molecules of the substances water arbiutanol, extracted

choice of scaling volume.=v,/S in Eq. (71), as before.  from experimental datfl5,29 using the nucleation theorems. The
This is not surprising, since the ICCT result is simply theexcess internal energies according to the capillarity approximation
classical theory expression multiplied by a particular factore,. are also shown as curves. The reference temperature is
chosen to correct a certain apparent inconsistency within thg,=273.15 K.
model. In fact, it is debatable whether the ICCT corrects a
true inconsistency, since the problem only arises if the capevident in the scatter of values in some cases. The deviations
illarity approximation used in Eq50) is forced to apply for  between data points and the capillarity model predictions are
i=1, which is clearly unphysical. Equatidd9) is actually in some cases not too large, but more often they are substan-
consistent by construction. tial. This is simply a reflection of the failure of the capillarity
What we have shown is that the rate expressions for clasapproximation to describe small clusters accurately. Studies
sical theory and the ICCT can be derived from a clusterof molecular cluster structure, using reasonable intermolecu-
model with a scaling volume equal to the volume per mol-lar potentials and a suitable cluster definition, are planned in
ecule in the supersaturated vapor. However, there is evemyrder to try to account for the observed excess internal ener-
indication that the scaling volume for a model based on thejies. Such studies are likely to be more straightforward than
capillarity approximation should be virtually independent of studies of the free energy.
S and T, and perhaps of the order of the volume per mol-
ecule in the liquid state. This emerges since the models fail VII. CONCLUSIONS
to comply with the nucleation theorems.
The first part of this paper gave a derivation of the two
nucleation theorems using a combination of statistical me-
chanics and a kinetic approach. The results confirm previous

VI. DATA ANALYSIS

Finally, the nucleation theorems given in E¢80) and
(48) will be used to extract the excess internal energy of
critical clusters from experimental nucleation data. This pro-
cedure was used in R4fL7] but using the earlier version of

500

B M E, (n-heptane)

. N ... 2 450 - - - E,. {n-heptane)
the second theorem, in which an additional—«(kT)/kT o E, (n-octane)
term appeared on the right-hand side. As we have seen in th T E.. (n-octane)

paper, this was due to the use of a classical kinetic prefactc
in the derivation. The excess internal energies reported i
[17] are therefore too small by approximatelykd0

Data for water[15] and n-butanol[29] have therefore

excess internal energy (units of kT,)

been reanalyzed and the resulting plotskEy{i*) against 300— on ©
critical sizei* are given in Fig. 3. Data fon-heptane and , . * 5
n-octane, anagh-nonane aneh-decang30] are also analyzed 250 *
and the excess internal energies are shown in Figs. 4 and | .
respectively. Data fon-pentanol[31] and dibutylphthalate 200
(DBP) [32] have also been examined, and the excess interni ' R ' T
40 45 50 55 60 65 70

energies are shown in Fig. 6. The curves in the figures shoy
values ofE,(i)=(oc—Tdo/dT)A; based on the capillarity
approximation.

Errors in the data points are small along the size axis, but FIG. 4. Same as Fig. 3, but for the substanndseptane and
are possibly more significant along the energy axis, as is-octane[30].

Number of molecules in cluster
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FIG. 5. Same as Fig. 3, but for the substannasonane and

n-decandg 30].

derivations from continuum and small system thermodynam
ics. These theorems relate the temperature and supersatu
tion dependence of the nucleation rate to properties of th
critical molecular cluster, which is the size that has the maxi-
mum cluster work of formation, and which is loosely the size
equally likely to grow or decay.

The derivation described here yields the temperature an%
supersaturation dependence of the nucleation rate directly.
The approximations that have been made in the derivatio
are not unusual and the results seem to be soundly based.
particular, the results are valid for any choice of cluster def
nition used in the statistical mechanics. On the other han
the suitability of the definition will determine the degree to
which critical cluster properties calculated from models will

choice is crucial to the success of the theory. A good defin
tion must include all molecular configurations in phase spac
that correspond to the relatively long-lived states that tak
part in cluster population dynamics, and exclude all ephem-
eral states. Physical intuition, and ultimately comparison
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FIG. 6. Same as Fig. 3, but for the substanegzentanol[31]
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and dibutylphthalatéDBP) [32].

50

'c'{ge supersaturated vapoy /S. The same conclusion can be

with experimental data, should guide the choice of cluster
definition used in calculations.

The theorems were derived previously by studying only
the properties of the critical cluster work of formation, and a
classical prefactor was assumed. The version of the second
nucleation theorem derived here differs from the earlier ver-
sion and this implies that the classical kinetic prefactor is
incorrect.

To reinforce this point, it has been shown that the classi-
cal nucleation rate, and its so-called internally consistent re-
vision, fail to comply with the nucleation theorems. The ex-
cess internal energy derived from the model nucleation rate
expression does not have the expected form. The reason for
this failure is the following. An approximate calculation of
the grand partition function of a vapor within statistical me-
chanics requires the free energy of a single cluster that is
able to occupy any position within the system. It turns out,
though, that classical theory is based on the properties of a
spherical droplet with its center fixed at one position. The
excess cluster free energy, within the capillarity approxima-
tion, is proportional to the droplet surface: it is independent
of the system volumé&/. However, the enumeration of all
ysitions of a free cluster within the volume must introduce
InV term into the free energy. On dimensional groumls
appears together with a scaling volumg which is in effect
the fundamental cell volume in the positional phase space.
The existence of this positional, or mixing entropy term, is
plicit in the present derivation of the nucleation theorems.
It is possible to derive the classical rate expression from a
Sluster work of formation that includes positional entropy by

oosing the scaling volume to be the molecular volume in

ached for the so-called internally consistent classical
theory. However, compliance with the theorems requires the
scaling volume to be independent of supersaturation and

?temperature, at least to a first approximation, and so this

Justification of the classical formula is not possible. From
ther work[18,19 it would appear that the molecular vol-

me in the condensate, is a natural scaling volume for

models based on the capillarity approximation.

The population ofi-clusters in subsaturated vapors is
given by

ni=njexp{—[e(i)—e(1)]/kT} (72

with e(i)=F (i) —i(ustkTInS for all i. This expression is
mathematically consistent a1 and in agreement with the
law of mass action sinc&=n$ and sonfx(n$)'. The free
energyF (i) contains the term-KkTIn(V/vy) for i#1, with

v. independent oS andT. €(1) is simply —kTIn(SVuv,).
These logarithmic terms reflect the freedom for droplets to
nucleate anywhere in the system.uvlf is given byv,, as
seems likely, then the classical nucleation rate is corrected by
a factorv, /(Sv,). This factor is strongly temperature depen-
dent and of order 16- 10° numerically. It has appeared sev-
eral times before in theories of nucleatifh26,27.

The revised rate may be more acceptable on formal
grounds, but it still relies on the capillarity approximation,
namely, that the cluster density and surface properties are
those of the bulk condensate. For this reason, it should not be
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expected to be an accurate model. However, the reviseprogress towards successful nucleation rate predictions.
theory rests on a much firmer basis in statistical mechanics Finally, the nucleation theorems have been used to plot
than the original classical theory. Disagreement with experi€luster excess internal energies against cluster size for a
ment is likely to be due to the physical assumptions madeumber of substances, using experimental nucleation rate
rather than any mathematical inconsistencies. More realistidata. This information will provide useful points of compari-

models might be used within the same framework to make son with microscopic models of clusters.
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