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Entropy-driven demixing in binary hard-core mixtures:
From hard spherocylinders towards hard spheres
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We present a computer simulation study of a binary mixture of hard spherocylinders with different diameters
(D1,D2) and the same lengths (L15L25L). We first study a mixture of spherocylinders with lengthsL
515D2 andD150, which can be regarded as a mixture of rodlike colloids and ideal needles. We find clearly
an entropy-driven isotropic-isotropic (I -I ) demixing transition in this mixture. In addition, we study a mixture
of spherocylinders with diameter ratioD1 /D250.1 and we investigated theI -I demixing transition as a
function of the lengthL of the particles. We observe a stableI -I demixing for all values ofL in the range of
3<L/D2<15, but we could not reach the limitL50, i.e., the hard-sphere mixture with diameter ratio of 0.1.
Striking agreement is found forL/D2515 with the results that follow from the second virial theory for
infinitely elongated rods. ForL/D252, we did not find a demixing transition till a total packing fraction of
h50.581, which is higher than the packing fraction at which freezing occurs for a pure system of thick rods.
Thus this result and the extrapolation of our finite-L data toL50 gives us a fingerprint that the fluid-fluid
demixing transition in the binary hard-sphere mixture with a diameter ratio of 0.1 is metastable with respect to
freezing or does not exist at all at densities below close packing.@S1063-651X~97!07310-8#

PACS number~s!: 64.70.Md, 64.75.1g, 61.20.Ja
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I. INTRODUCTION

One of the most intriguing aspects of mixtures is the p
sibility of a spontaneous transition from a mixed to a d
mixed state. Such demixing transitions have been obse
in binary alloys and also in complex fluids, as, e.g., in o
water mixtures. Traditionally, such transitions have been
plained on the basis of relatively unfavorable interaction
ergies between unlike particles, as, e.g., described by
Bragg-Williams theory for solutions and the Flory-Huggi
theory for polymers. However, an interesting and longsta
ing question is whether a demixing transition can also
observed in a mixture in which potential energy does
play a role. In a hard-core mixture, for instance, the to
potential energy of the system vanishes, as only nonover
ping configurations contribute to the configurational integr
In that case only entropic contributions are left to the fr
energy, and phase separation can only occur in such an a
mal fluid if demixing results in an increase of the entrop
The main contribution to the entropy of mixing of a bina
mixture comes from the entropy of mixing of an ideal mi
ture, given bySid(x)52NkB@x lnx1(12x)ln(12x)#, where
x denotes the number fraction of one component andN the
number of particles. It follows from the convexity of th
function that phase separation always results in a decrea
Sid(x). This would imply that one would never observe
demixing transition in a hard-core mixture. Also the intuitiv
notion that entropy is related to the disorder of the syst
suggests that a mixed system should have a higher ent
than a demixed one at the same density and energy.

The simplest example of a well-studied mixture is t
binary hard-sphere mixture. The Ornstein-Zernike~OZ!
561063-651X/97/56~5!/5594~9!/$10.00
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equations of this system were theoretically analyzed in 1
by Lebowitz and Rowlinson, who concluded that the hom
geneous fluid phase is stable with respect to demixing,
gardless of the diameter ratio, composition, or pressure@1#.
These conclusions, which are based on the Percus-Ye
~PY! closure of the OZ equations, were supported by ot
theoretical studies@2# and by computer simulations@3–7#,
and do agree with our intuitive notion of entropy. Howeve
in the early 1990s Biben and Hansen provided evidence f
spinodal instability if the diameter ratio is more extreme th
1:5 @8#. Their conclusion is based on the Rogers-Young c
sure of the OZ equations, which is supposed to be m
accurate than the PY closure. They identified thedepletion
effect—known from colloid-polymer mixtures@10,11#—as
the demixing mechanism. Essentially the same instab
was also reported by Lekkerkerker and Stroobants@9#. The
depletion mechanism in a binary hard-sphere fluid is ba
on the gain of free volume for the small spheres due to c
tering of the larger spheres. To be more precise, in the c
that two large spheres are far apart from each other the s
spheres are excluded from a depletion layer with thickn
s1/2 around the large spheres, wheres1 is the diameter of
the small spheres. When the two large spheres are bro
into contact, the depletion zones overlap and the volume
cessible to the small particles increases. The resulting ga
entropy of the small particles is the driving force that mak
the large particles cluster. Apart from this entropic picture
depletion effect, there is also the kinetic picture in which t
‘‘sea’’ of small particles generates an effective attractive
teraction between two large spheres, if the latter are so c
together that no small particle fits in between. This unb
anced osmotic attraction is then responsible for the liqu
vapor like demixing into a phase rich in large spheres a
5594 © 1997 The American Physical Society



n
w
be

p
en
id
la
in
un
a

ns
es
th
p

al
en
se

o
ra
ice
a
f
o

ul
ca
r t
la
hu

e
ca
-

ds
at

wi

o
m

w

e

th

in

ical
n-

l

tly

tio

g
of

our
d
eta-

wo
ble

ng
may
or-

al
or-
in

the
in a
al-
er

ves
ias

and
er
ro-
an
ith

and
ero-
n-
b-
of
ils,
we

ne

on-

e
al

me
re is

56 5595ENTROPY-DRIVEN DEMIXING IN BINARY HARD-CORE . . .
one rich in small spheres@9#. For completeness, we mentio
that the effective potential or depletion force between t
large spheres due to a solvent of small spheres has
calculated theoretically by Maoet al. @12#, and computed in
a simulation by Bibenet al. @13#. Using this effective pair
potential in a Monte Carlo study a tendency for phase se
ration is found. However, this phase separation is differ
from that found in simple liquids, since it results in a rap
growth of huge clusters and subsequently a very slow re
ation of the clusters. We finally also note that the demix
transition in the binary hard-sphere fluid has also been fo
by Rosenfeld, within a self-consistent density function
theory @14#.

Experiments, however, suggest that the demixing tra
tion in sufficiently asymmetric binary hard-sphere mixtur
is strongly coupled to the freezing transition, and that
actual coexistence is that between a crystalline phase of
marily big spheres and a fluid phase with primarily sm
spheres@17,18#. These results are supported by recent d
sity functional calculations, which show a fluid-solid pha
separation in binary hard-sphere mixtures@15,16#. Whether
or not there is a~metastable! fluid-fluid spinodal in binary
hard-sphere mixtures remains an open question.

Computer simulation of phase separation in a mixture
very dissimilar spheres is difficult because of slow equilib
tion. The numerical difficulties are less severe for latt
models. Indeed, a purely entropic demixing transition h
been shown by computer simulation of a lattice model o
binary mixture of hard parallel cubes, if the diameter ratio
the cubes is sufficiently large@19,20#. Recent density func-
tional calculations on this system have shown similar res
@21#. Thus these results show that a demixing transition
be driven by entropic effects alone. It is, however, unclea
what extent this demixing transition is enhanced by the
tice and by the discrete orientations of the cubes. It is t
desirable and interesting to consider an off-lattice system
hard-core particles.

An example of such an off-lattice mixture that has be
studied by computer simulation is the mixture of spheri
colloids and rodlike polymers@22#. The colloids are repre
sented by hard spheres with a diameters, and the rodlike
particles by infinitesimally thin needles of lengthL. A de-
mixing transition was found forL/s.0.3. Also, in computer
simulations of a colloid-polymer mixture, where the colloi
are modeled as hard spheres and the polymers as ideal l
chains, a demixing transition was found@23#. However, in
both cases the polymers are ideal and do not interact
each other.

In this paper we present a computer simulation study
binary mixtures of hard spherocylinders with different dia
eters (D1,D2) and the same lengths (L15L25L). Within
the Onsager theory for hard rods, Sear and Jackson sho
for D150 and L/D2→` that isotropic-isotropic (I -I ) de-
mixing can preempt the isotropic-nematic (I -N) transition
@24#. Our simulations of a system ofL/D2515 andD150
clearly show anI -I demixing transition and thus confirm th
results of Sear and Jackson. For a finite diameterD1 , van
Roij and Mulder estimated recently that thisI -I demixing in
thick-thin mixtures of hard rods is stable with respect to
I -N transition, as long asD1 /D2.0.2 @25#. Again in these
cases, the depletion effect is identified as the demix
o
en
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mechanism. It is important to realize that these theoret
results only apply to hard rods in the limit of extreme elo
gation. In the present simulation study we consider theI -I
demixing transition as a function of the lengthL of the par-
ticles, for a diameter ratioD1 /D250.1. Since the theoretica
results are supposed to be exact forL/D2→`, we expect to
reproduce the theoretical results closely for sufficien
large—but finite—values ofL/D2 . For L50 the system re-
duces to the binary hard-sphere mixture with diameter ra
D1 /D250.1. Although we could not reach the limitL50
~with D1 /D250.1!, we did find stableI -I demixing for all
values ofL considered, ranging from 3<L/D2<15. To our
knowledge, this is the first evidence of a fluid-fluid demixin
transition driven by entropy alone in an off-lattice system
nonideal hard-core particles. Moreover, extrapolating
finite-L data toL50 gives us a fingerprint that the fluid-flui
demixing spinodal in the binary hard-sphere system is m
stable with respect to freezing.

II. COMPUTER SIMULATIONS

In order to determine the coexistence curve of the t
demixed phases directly, we carried out Gibbs ensem
Monte Carlo simulations. In this method, the two coexisti
phases are simulated in separate simulation boxes which
exchange volume and particles at a given temperature in
der to fulfill the phase equilibrium requirements of equ
pressures and chemical potentials. During the simulation
dinary Monte Carlo steps are performed in both phases
order to equilibrate both systems internally. However,
acceptance ratio for exchanging a large particle is small
dense system of small particles, as a large particle will
most always overlap with one of the small particles. In ord
to speed up equilibration, we used collective particle mo
that employed a generalization of the configurational-b
Monte Carlo scheme of Refs.@26, 27#. In this approach, we
first choose randomly a large spherocylinder in one box
try to insert this particle at a random position in the oth
box. When the particle overlaps with another large sphe
cylinder the trial move is immediately rejected. If no such
overlap is found, the small spherocylinders overlapping w
the large spherocylinder in its new position are removed
are then moved to the volume vacated by the large sph
cylinder in the first box using a generalization of the Rose
bluth sampling. The trial move is then accepted with a pro
ability determined by the ratio of the Rosenbluth weights
the new and old configurations. For more technical deta
we refer the reader to the Appendix. In our simulations,
performed four types of trial moves.

~1! Random displacement and rotation of a particle in o
of the boxes.

~2! Small particle exchange between the boxes.
~3! Large particle exchange between the boxes using c

figurational bias Monte Carlo method.
~4! Volume exchange between the boxes.
In each simulation, we measure the number fractionx of

the thick spherocylinders in both boxes, given byx5N/(N
1M ), whereN and M are, respectively, the number of th
thick and thin particles in that box. In addition, the numeric
value of the pressure was determined by virtual volu
changes. This method is based on the fact that the pressu
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5596 56MARJOLEIN DIJKSTRA AND RENÉvan ROIJ
minus the volume derivative of the Helmholtz free energ
which can be related to the acceptance ratio of virtual v
ume changes as described in Ref.@28#.

Most runs consisted of 1042105 cycles per particle pe
thermodynamic state point. In each cycle, we attempt a
placement and rotation of a particle in one of the boxes,
we try to exchange volume and a particle between the bo
For the particle exchange we select with equal probab
the box where a particle is removed and the species of
particle that will be transferred. The system size varies fr
about 100 to 200 thick spherocylinders with 400–800 t
spherocylinders.

III. RESULTS

A. L 515D2 , D1 /D250 and 0.1

The first set of Gibbs ensemble Monte Carlo simulatio
was performed on a binary mixture of hard spherocylind
of lengthsL15L25L515D2 with D150. Here, and in the
sequel of this paper, we useD2 as unit length. In Fig. 1, we
show the resulting dimensionless pressurebPbd of the co-
existing phases as a function of the number fractionx. Here
b5pL1

2D1/4, d5D2 /D1 , and b51/kBT with kB Boltz-
mann’s constant andT the temperature. We observe clearly
demixing transition in the isotropic phase for pressu
bPbd.7. Phase coexistence is found between an isotro
phase of primarily thin spherocylinders (x.0) and an iso-
tropic phase with a mixture of thick and thin spherocylinde
(0.1<x<0.8). From Table I, we see that the critical point
estimated from the simulation agrees very well with the o
that followed from the second virial theory for infinitel
elongated rods of Ref.@25#. This good agreement is mainl
due to the fact thatx'0.11 corresponds to only a sma
fraction of particles with a finite aspect ratio, while most
the particles have diameterD150 and hence satisfy
L/D1→`. Another reason for this good agreement is th
this transition occurs at low densities, so that the high

FIG. 1. The reduced pressurebPbd versus the number fraction
x for a mixture of hard spherocylinders with lengthsL15L2

515D2 and diameterD150. The open squares denote theI -I de-
mixing, the full circles and the stars theI -N demixing. The full
lines are the theoretical binodals taken from Ref.@29#.
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order virial coefficients of the thicker rods are not that im
portant. In the same figure we also plotted the theoret
binodals obtained from Ref.@29#, which is based on previou
work. The deviation of the theoretical binodal and the sim
lated coexistence data at higher pressures atx.0.2 can be
attributed to the third- and higher-order virial coefficients
the thicker rods, which are neglected in the theory.

In order to investigate if thisI -I demixing transition is
stable with respect to the isotropic-nematic transition,
also performed Gibbs ensemble simulations starting from
box in which the particles are aligned and a box with
isotropic configuration. We traced theI -N coexistence curve
starting from the pure thick system (x51) and gradually
adding more and more thin rods. For a pure system of th
spherocylinders, theI -N coexistence is found to be at a pre
sure ofbPbd516.15, which is slightly lower than the valu
of bPbd517.141 in Ref.@22# obtained by integration of the
Gibbs-Duhem equation that describes theL/D dependence
~instead of the temperature dependence! of the pressure a
which the two phases coexist. The addition of small partic
to this pure system of thick spherocylinders leads to anI -N
phase separation at higher pressures. Phase coexisten
found between an isotropic phase and a nematic phase w
slight tendency of the large particles to be in the nema
phase and a slight tendency of the small particles to be in
isotropic phase. However, the phase coexistence regio
narrow. At higher pressures, we find that thisI -N transition
intervenes in theI -I demixing transition, giving rise to an
I -I -N triple point, at which two isotropic phases~one with
primarily thin rods and the other with a mixture of thick an
thin! coexist with a nematic phase of primarily thick rods. A
even higher pressures, we find a wide phase coexistenc
gion between an isotropic and a nematic phase.

The simulation results of Ref.@22# show that a first-order
phase transition occurs from a nematic to a smectic phase
a pure system of thick rods (x51) with L/D515 at a den-
sity of about r* 50.5, wherer* 5r/rCP and rCP52/(&
1)L/D). We only performed simulations up to a densi
of r* 50.4484 for a system consisting of thick rods (x
51), which corresponds with a pressurebPbd530.16, so
we did not consider the smectic phase in any detail.

Next we performed simulations of a spherocylinder m
ture with both diameters finite. We setD1 /D250.1 and kept
L/D2515. In Fig. 2, we plot again the resulting coexisten
pressure versus the number fraction. From Table I, we
that we find again good agreement between the critical p
estimated in the simulations and calculated in the theory
Ref. @25#. We again investigated if thisI -I demixing transi-
tion is stable with respect to theI -N transition. Starting from
a pure system of thick spherocylinders, we find a broa

TABLE I. The reduced pressurebPbd and the number fraction
of the thick particlesx of the critical points predicted by theor
~Ref. @25#! and estimated from the simulations for different diam
eter ratiosd5D2 /D1 and lengthL515D2 .

Theory Simulation
d bPbd x bPbd x

` 6.75 0.1111 7.1 0.11
10 14.6854 0.1873 15.96 0.1953
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56 5597ENTROPY-DRIVEN DEMIXING IN BINARY HARD-CORE . . .
I -N demixing region at higher pressures, when we add t
spherocylinders. Again, we found a triple point at which tw
isotropic phases coexist with a nematic phase, and a w
I -N coexistence region for even higher pressures.

B. Towards hard spheres . . .

We showed above that we have been able to find a pu
entropy-driven fluid-fluid (I -I ) demixing transition that pre
empts theI -N transition. The question immediately aris
why this transition is found in simulations of hard
spherocylinder mixtures, while it is still not found in com
puter simulations of hard-sphere mixtures. One of the r
sons is that the fluid-fluid demixing transition fo
spherocylinder mixtures occurs at much lower packing fr
tions than for hard-sphere mixtures. To illustrate this,
compare three different theoretical estimates for the t
packing fractionh at the critical point of the fluid-fluid de-
mixing transition of a hard-sphere mixture with a diame
ratio of D1 /D250.1 with the corresponding simulated valu
in the hard-spherocylinder mixture ofL/D2515. The total
packing fractionh5h11h2 is the sum of the packing frac
tions of the thinner and thicker species. For the hard sph
we haveh.0.47 @8#, 0.53@9#, and 0.37@14#, which is to be
contrasted withh50.0736 for the spherocylinders. Anoth
reason why simulations of hard-sphere mixtures are diffic
is the low number fractionx at which the demixing transition
takes place. The same three hard-sphere theories give fo
critical x the valuesx.0.02 @8#, 0.0056@9#, and 0.002@14#,
while the spherocylinders showx50.2. A low number frac-
tion means that a huge amount of small particles is nee
for each large particle. Computer simulations of very asy
metric mixtures are difficult as all the computer time will b
spent on moving the small particles around, while displa
ment of a large particle is hardly accepted in a dense sys
of small particles.

FIG. 2. The reduced pressurebPbd versus the number fraction
x for a mixture of hard spherocylinders with lengthsL15L2

515D2 and diameterD150.1D2 . The open squares denote theI -I
demixing, the full circles and the stars theI -N demixing. The full
lines are the theoretical binodals taken from Ref.@29#.
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In order to make a connection with the hard-sphere mix
tures, we considered for fixedD1 /D250.1 a number of de-
creasing lengthsL/D2510,8,5,3. In Fig. 3, we show the re-
sults for theI -I demixing for the different values ofL/D2 .
We see that the phase coexistence region becomes sma
with decreasingL. A second and third virial theory of a
hard-rod mixture with discrete orientations~Zwanzig model
@30#! does not reproduce this narrowing of theI -I coexist-
ence region, which remains therefore unexplained. The num
ber fraction of the thick spherocylindersx and the reduced
pressure of the critical point remain more or less the same f
all lengths considered. In Fig. 4, we plot the packing frac
tionsh2 of the thick spherocylinders versus the packing frac
tionsh1 of the thin spherocylinders for the estimated critica

FIG. 3. The reduced pressurebPbd versus the number fraction
x for a mixture of hard spherocylinders with varying lengthsL1

5L2 and diameterD150.1D2 .

FIG. 4. The packing fractionh1 of the thin spherocylinders
versus the packing fractionh2 of the thick spherocylinders for the
estimated critical points of theI -I demixing transition in a mixture
of hard spherocylinders with varying lengthsL15L25L and D1

50.1D2 ~stars! and the theoretical predicted critical points for the
hard-sphere mixtures withD150.1D2 taken from Refs.@8, 9, 14#.
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TABLE II. The packing fractions of the thin particlesh1 , the thick particlesh2 , and the total packing
fraction h5h11h2 , at which the critical point of theI -I demixing transition is estimated from the simul
tions for a mixture of hard spherocylinders with lengthsL15L25L and diameter ratio ofD1 /D250.1. We
also tabulated for comparison the packing fractions at which a certain type of phase transition occurs f
isotropic phase for a pure fluid of thick spherocylinders (x51) for different values ofL/D2 .

Critical point Pure fluid
L/D2 h1 h2 h11h2 h Type of transition

15 0.0028 0.0708 0.0736 0.1777 isotropic-nematic
10 0.0042 0.1084 0.1126 isotropic-nematic

8 0.0052 0.1398 0.1450 isotropic-nematic
5 0.0079 0.2131 0.2210 0.4532 isotropic-nematic
3 0.0138 0.4349 0.4487 0.5115 isotropic-solid
2 0.532366 isotropic-solid
0 0.47 isotropic-solid
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points of theI -I demixing transition for the various length
We also plot the three above mentioned theoretically p
dicted critical densities for the hard-sphere mixtures w
D1 /D250.1 @8,9,14#. We see that the packing fraction
which the critical point is estimated increases enormou
when we decrease the length of the spherocylinders. In T
II, we compare the critical packing fractions of the sphe
cylinders with those at which apure fluid of thick sphero-
cylinders will undergo a phase transition. The latter data
taken from Ref.@22#. ForL/D252, we found no phase sepa
ration below a total packing fraction ofh5h11h2
50.581. From Table II, we can see that the isotropic-so
transition for a pure system of thick spherocylinders w
L/D52 occurs already at a lower packing fraction. Th
might be a fingerprint that the isotropic-isotropic demixi
transition becomes metastable with respect to the free
transition, or does not exist at all at densities below clo
packing. A possible reason for the apparent absence
spinodal instability might be the narrowing of theI -I coex-
istence region with decreasing length of the spherocylind
as discussed above. Unfortunately, equilibration proble
prevented us from increasing the packing fraction even m
so that we could not investigate whether a metasta
isotropic-isotropic demixing transition exists above t
freezing transition. Also, slow equilibration prevented
from decreasing the length-to-diameter ratio even more
that the hard-sphere mixture (L50) could not be studied
directly—as expected.

In summary, we present the results of a computer sim
tion study of binary mixtures of hard spherocylinders w
different diameters (D1,D2) and the same lengths (L1
5L25L). We find clearly anI -I demixing transition in a
mixture of spherocylinders with lengthsL15L2515D2 , and
D150 or D150.1D2 . Good agreement is found with th
results obtained from a second virial theory for infinite
long rods. To our knowledge, this is the first evidence o
fluid-fluid demixing transition driven by entropy alone in a
off-lattice system of nonideal hard-core particles. In additi
we investigated theI -I demixing transition as a function o
the lengthL and diameter ratioD1 /D250.1. We find a
stable I -I demixing for all values ofL in the range of 3
<L/D2<15, but we could not reach the limitL50, i.e., the
hard-sphere mixture with diameter ratio of 0.1. ForL/D2
52, we could not observe a demixing transition below a to
-
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packing fraction ofh50.581, which is above the packin
fraction of the freezing transition of a pure mixture of thic
rods. Slow equilibration prevented us from increasing
packing fraction even more and from decreasing the leng
to-diameter ratio. A similar slowing down of the dynamic
has been found in simulations of the hard-sphere mixture
Biben et al. @13#. Thus extrapolating our finite-L data toL
50 gives us a fingerprint that the fluid-fluid demixing tra
sition in the binary hard-sphere mixture with a diameter ra
of 0.1 is metastable with respect to freezing, or does not e
at all at densities below close packing.
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APPENDIX

In Gibbs ensemble Monte Carlo simulations, the two c
existing phases are simulated in separate simulation bo
and exchange of particles in the boxes are essential for
taining equal chemical potentials. However, in a dense s
tem of thin spherocylinders, random insertion of a thi
spherocylinder is difficult. To overcome this problem, w
remove the thin particles that hinder the insertion of the th
particle and reinsert them into the space vacated by the t
particle. The algorithm for exchanging a thick spherocyl
der goes as follows.

~1! Choose first one of the boxes with equal probabilit
~2! Choose randomly one of the thick spherocylinders a

insert this in the other box at a random position and with
random orientation.

~3! Check if the thick particle at its new position overlap
with another thick particle. If there is such an overlap th
move will immediately be rejected.

~4! If there is no such overlap, check which of the th
particles have an overlap with the thick particle at its n
position.

~5! The thin particles that have an overlap with the thi
particle at its new position, saym particles, will be inserted
in the volume that will become free in the old box of th
thick spherocylinder, where we have removed the thick p
ticle.
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The insertion of them thin particles into the free volume
is not simple since the probability of random insertion ofm
particles in a restricted volume is small. We therefore use
method similar to the one proposed by Biben for hard-sph
mixtures@27#. We will describe the method below. When w
have already insertedi 21 small particles, we will attempt to
insert thei th particle.

~1! Choose firstk random orientations for thei th particle,
say v̂ i( j ) and (j 51, . . . ,k).

~2! Define for each orientationv̂ i( j ) a rectangular box, cen
tered around the center of the removed thick partic
The diameter of each box is given by the absolute va

of the components of the vectorRW 5L2V̂21L1v̂ i( j )
1(D11D2)(1,1,1), whereV̂2 is the old orientation of
the removed thick particle, and where the axes of
simulation box were chosen as basis vectors. We t
choose for each orientationv̂ i( j ) a random position
rW i( j ) for the thin particle in the corresponding box. W
then check if this thin particle has indeed overlap w
the removed thick particle. If not, we try a newrW i( j )
until the overlap condition is satisfied.

~3! We now compute the Boltzmann factor ex
@2bu„rW i( j ),v̂ i( j )…# for all these trial insertions by
checking if there is an overlap with any of the other thi
and thin particles and thei 21 particles that are alread
inserted. For hard-core particles, this Boltzmann facto
either zero in the case of overlap, or one when there is
overlap with other particles.

~4! One of the trial insertions, say positionrW i with orienta-
tion v̂ i , is now selected with a probability

PrWi ,v̂i
5

exp@2bu~rWi ,v̂i!#

Z$rWi ,v̂i%
, ~A1!

with

Z$rWi ,v̂i%
5(

j51

k

exp@2bu~rWj ,v̂j!#. ~A2!

The subscript$rW i ,v̂ i% means that the selected positionrW i

and orientationv̂ i are one of thek trial insertions. The
i th thin particle will be inserted at this position and th
corresponding partial ‘‘Rosenbluth weight’’wi will be
stored, where

wi5
Z$rWi ,v̂i%

k
. ~A3!

~5! These steps will be repeated until we have inserted am
particles.

~6! For the old configuration, a similar procedure is used
order to calculate the old Rosenbluth factor. We ag
try to add them overlapping particles in the space that
vacated by moving the thick particle from its new po
tion to its old position. When we have already insert
i 21 thin particles, we will attempt to insert thei th par-
ticle. In order to do that, we selectk21 trial directions
for the thin particle. Thekth trial direction will be the
original configuration of the thin particle. We store th
corresponding partial ‘‘Rosenbluth weight’’ and we s
a
re

.
e

e
n

s
o

n
n

lect the original configuration of the thin particle. W
repeat this until we have added allm particles.

In order to use this method to transfer a thick particle fro
one box to the other box in a Gibbs ensemble simulation,
impose detailed balance on the Monte Carlo scheme. T
implies that in equilibrium, the rate at which thick particle
are transferred from one box to the other equals the rev
rate.

Let us first consider the partition function of a system
NI thick particles in a box with a fixed configuration ofM I
thin particles and a volumeVI .

Q~NI ,VI ,T!5
VI

NI

VNINI!
E dsI

NIexp@2bU~G I!#, ~A4!

whereV is the thermal volume@31#, andU(G I) is the exter-
nal potential ofNI thick particles and theM I thin particles in
box I interacting with each other by a hard-core potent
Note that we used scaled coordinatessNI and that the con-
figurational integral of the thin particles is neglected as
configuration of the thin particles is fixed. However, th
thick particles do interact with the thin particles and thus
external potentialU(G I) depends on the configuration of th
thin particles. If we now considerNII5N2NI particles in
another box with a fixed configuration ofM II thin particles
and a volumeVII5V2VI , the partition function of the two
boxes becomes

Q~NI ,NII ,VI ,VII ,T!5
VI

NI~V2VI!
N2NI

VNNI! ~N2NI!!
E dsI

NI

3exp@2bU~G I!#E dsII
NII

3exp@2bU~G II !#. ~A5!

Now we consider the case that the two systems can
change particles in such a way that the total number of p
ticles distributed over the two boxes remains constant,
that the volumesVI andVII can change in such a way that th
total volumeV5VI1VII remains constant. In this case, w
have to consider all possible distributions of theN particles
over the two boxes and we have to integrate over the volu
VI , which gives for the partition function

Q~N,V,T!5 (
NI50

N E
0

V

dVI

VI
NI~V2VI!

N2NI

VNNI! ~N2NI!!
E dsI

NI

3exp@2bU~G I!#E dsII
N2NI

3exp@2bU~G II !#. ~A6!

It follows now that the probability to find a configuratio
with NI particles in box I with a volume ofVI and position
sI

NI andN2NI particles in box II with a volumeV2VI with

positionssII
N2NI is given by
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N~NI,VI,T,sI
NI,sII

N2NI!;
VI

NI~V2VI!
N2NI

NI! ~N2NI!!

3exp@2bU~G I!#exp[2bU~G II !].

~A7!

For the configurational-bias method, we used the deta
balance condition@26# to determine the probability of accep
tance

N~o!p~o→n!5N~n!p~n→o!, ~A8!

whereN(o) and N(n) are, respectively, the probabilitie
that the system is in the original conformationo and in the
new conformationn. The transition matrixp(o→n) is equal
to the probability to generate a trial move fromo to n times
the probability to accept this trial move, i.e.,p(o→n)
5a(o→n)3acc(o→n). In order to satisfy the detailed ba
ance condition one can use the Metropolis scheme with
acceptance rule:

acc~o→n!5minS 1,
N~n!a~n→o!

N~o!a~o→n! D . ~A9!

Let us now assume that we want to move a thick sphero
inder from box I to box II. The overlappingm thin sphero-
cylinders in box II are now moved to box I. In order t
compute the acceptance rule, it is convenient to split
particles in box I in particles that will keep their position an
orientation going from the old to the new configuration, s
NI thick particles andM I thin particles, and in particles tha
will be moved, so one thick particle andm thin particles. In
box II, we findNII thick particles andM II thin particles that
will keep their position and orientation and again one th
particle andm thin particles that will be moved. We illustrat
this in Fig. 5 for clarity. Note that the number of thick an
thin particles in the old configuration of box I is equal
NI11 andM I and that the number of thick and thin particl
in the old configuration of box II isNII andM II1m. Using
Eq. ~A7!, we find for the probability of the new configuratio
d

e

l-

e

y

N~n!5
VI

NI~V2VI!
N2NI

~NI!! ~N2NI!!
exp@2bU„G I~n!…#

3exp@2bU„G II~n!…# ~A10!

while the old configuration has a probability of

N~o!5
VI

NI11
~V2VI!

N2NI21

~NI11!! ~N2NI21!!
exp@2bU„G I~o!…#

3exp@2bU„G II~o!…#. ~A11!

For the ratio of the two probabilities, we find

N~n!

N~o!
5

~V2VI!~NI11!

VI~N2NI!

3
exp@2bU„G I~n!…#exp@2bU„G II~n!…#

exp@2bU„G I~o!…#exp@2bU„G II~o!…#
.

~A12!

The Boltzmann factor for the new configuration can no
be written as follows:

FIG. 5. Schematic picture of the configurational-bias Mon
Carlo method for moving a thick spherocylinder from box I to b
II in a Gibbs ensemble simulation.
r-

factor
exp@2bU„G I~n!…#exp@2bU„G II~n!…#5exp$2b@U~GNI

I !1U~GNI

I ,GM I

I !1U~GNI

I ,Gm
I !1U~Gm

I !1U~GM I

I !U~GM I

I ,Gm
I !#%

3exp$2b@U~GNII

II !1U~Gmoved
II ,GNII

II !1U~Gmoved
II ,GM II

II !U~GNII

II ,GM II

II !

1U~GM II

II !#%, ~A13!

whereU(GNI

I ) andU(GM I

I ) are, respectively, the external potential of a cluster ofNI thick particles and a cluster ofM I thin

particles interacting with each other by a hard-core potential. The external potential of a cluster ofNI thick particles with a
cluster ofM I thin particles is denoted byU(GNI

I ,GM I

I ), while U(Gmoved
II ,GNII

II ) is the external potential of the moved thickpa

ticle in box II with a cluster ofNII thick particles. The superscript denotes in which box the particles are. The Boltzmann
for the old configuration is given by



ert the

ert the

eely once
particle

56 5601ENTROPY-DRIVEN DEMIXING IN BINARY HARD-CORE . . .
exp@2bU„G I~o!…#exp@2bU„G II~o!…#5exp$2b@U~GNI

I !1U~GNI

I ,GM I

I !1U~Gmoved
I ,GNI

I !1U~Gmoved
I ,GM I

I !U~GM I

I !#%

3exp$2b@U~GNII

II !1U~GM II

II !1U~Gm
II !1U~GM II

II ,Gm
II !

1U~GNII

II ,Gm
II !1U~GNII

II ,GM II

II !#%. ~A14!

We now find for the ratio of the two probabilities

N~n!

N~o!
5

~V2VI!~NI11!

VI~N2NI!

exp$2b@U~GNI

I ,Gm
I !1U~Gm

I !1U~GM I

I ,Gm
I !#%

exp$2b@U~Gmoved
I ,GNI

I !1U~Gmoved
I ,GM I

I !#%

3
exp$2b@U~Gmoved

II ,GNII

II !1U~Gmoved
II ,GM II

II !#%

exp$2b@U~Gm
II !1U~GM II

II ,Gm
II !1U~GNII

II ,Gm
II !#%

. ~A15!

The probability to generate the new configuration starting from the old configuration is given by the probability to ins
m thin particles in box I in the space vacated by moving the thick particle.

a~o→n!5)
i 51

m
exp@2bu~rW i ,v̂ i !#

Z$rW i ,v̂ i %

5

P i 51
m expH 2bFU~GNI

I ,Gmi

I !1U~GM I

I ,Gmi

I !1(
j 51

i 21

U~Gmj

I ,Gmi

I !G J
kmW

5
exp$2b@U~GNI

I ,Gm
I !1U~GM I

I ,Gm
I !1U~Gm

I !#%

kmWn
, ~A16!

whereWn5P i 51
m wi

n , i.e., the total Rosenbluth weight of them particles in the new configuration.
The probability to generate the old configuration starting from the new configuration is given by the probability to ins

m thin particles in box II in the space vacated by the thick particle.

a~n→o!5
exp$2b@U~GNII

II ,Gm
II !1U~GM II

II ,Gm
II !1U~Gm

II !#%

kmWo
~A17!

and we find for the acceptance rule

acc~o→n!5minS 1,
~V2VI!~NI11!Wn

VI~N2NI!Wo

exp$2b@U~Gmoved
II ,GNII

II !1U~Gmoved
II ,GM II

II !#%

exp$2b@U~Gmoved
I ,GNI

I !1U~Gmoved
I ,GM I

I !#% D . ~A18!

Note that the number of thin particles does not occur in the acceptance rule, as the thin particles cannot be chosen fr
a thick particle, that will be moved, is selected. The acceptance rule depends only on the potential energy of the thick
with all the particles that will keep their positions and orientations in boxes I and II.
.
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