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We present a computer simulation study of a binary mixture of hard spherocylinders with different diameters
(D;<D,) and the same lengthd {=L,=L). We first study a mixture of spherocylinders with lengths
=15D, andD; =0, which can be regarded as a mixture of rodlike colloids and ideal needles. We find clearly
an entropy-driven isotropic-isotropi¢-{) demixing transition in this mixture. In addition, we study a mixture
of spherocylinders with diameter ratido,/D,=0.1 and we investigated thiel demixing transition as a
function of the length_ of the particles. We observe a stalblé¢ demixing for all values ot in the range of
3=<L/D,=15, but we could not reach the limit=0, i.e., the hard-sphere mixture with diameter ratio of 0.1.
Striking agreement is found fdc/D,=15 with the results that follow from the second virial theory for
infinitely elongated rods. Fdr/D,=2, we did not find a demixing transition till a total packing fraction of
7=0.581, which is higher than the packing fraction at which freezing occurs for a pure system of thick rods.
Thus this result and the extrapolation of our finitedata toL=0 gives us a fingerprint that the fluid-fluid
demixing transition in the binary hard-sphere mixture with a diameter ratio of 0.1 is metastable with respect to
freezing or does not exist at all at densities below close packBt63-651%97)07310-9

PACS numbgs): 64.70.Md, 64.75tg, 61.20.Ja

[. INTRODUCTION equations of this system were theoretically analyzed in 1964
by Lebowitz and Rowlinson, who concluded that the homo-
One of the most intriguing aspects of mixtures is the posgeneous fluid phase is stable with respect to demixing, re-
sibility of a spontaneous transition from a mixed to a de-gardless of the diameter ratio, composition, or presgiife
mixed state. Such demixing transitions have been observethese conclusions, which are based on the Percus-Yevick
in binary alloys and also in complex fluids, as, e.g., in oil-(PY) closure of the OZ equations, were supported by other
water mixtures. Traditionally, such transitions have been extheoretical studie$2] and by computer simulation8—7],
plained on the basis of relatively unfavorable interaction en@nd do agree with our intuitive notion of entropy. However,
ergies between unlike particles, as, e.g., described by tHg the early 1990s Biben and Hansen provided evidence for a
Bragg-Williams theory for solutions and the Flory-Huggins spinodal ms_tablllty if t_he (;Ilameter ratio is more extreme than
theory for polymers. However, an interesting and Iongstand—1:5[8]' Their conclusion is based on the Rogers-Young clo-

ing question is whether a demixing transition can also beur® of the OZ equations, which is supposed to be more

observed in a mixture in which potential energy does notaccurate than the PY closure. They identified depletion

| le. | hard it for inst the tot effecte—known from colloid-polymer mixtureg10,11—as
play a role. In a hard-core mixture, for-instance, the total, demixing mechanism. Essentially the same instability

potential energy of the system vanishes, as only nonoverlag,vas also reported by Lekkerkerker and Stroobdgis The
ping configurations contribute to the configurational i”tegral'depletion mechanism in a binary hard-sphere fluid is based
In that case only entropic contributions are left to the freey, ihe gain of free volume for the small spheres due to clus-
energy, and phase separation can only occur in such an athggring of the larger spheres. To be more precise, in the case
mal fluid if demixing results in an increase of the entropy.that two large spheres are far apart from each other the small
The main contribution to the entropy of mixing of a binary spheres are excluded from a depletion layer with thickness
mixture comes from the entropy of mixing of an ideal mix- ¢,/2 around the large spheres, whergis the diameter of
ture, given bySy(x) = —NKg[x Inx+(1—-x)In(1—x)], where  the small spheres. When the two large spheres are brought
x denotes the number fraction of one component Wnithe  into contact, the depletion zones overlap and the volume ac-
number of particles. It follows from the convexity of this cessible to the small particles increases. The resulting gain in
function that phase separation always results in a decrease efitropy of the small particles is the driving force that makes
Sig(X). This would imply that one would never observe athe large particles cluster. Apart from this entropic picture of
demixing transition in a hard-core mixture. Also the intuitive depletion effect, there is also the kinetic picture in which the
notion that entropy is related to the disorder of the systenfsea” of small particles generates an effective attractive in-
suggests that a mixed system should have a higher entropggraction between two large spheres, if the latter are so close
than a demixed one at the same density and energy. together that no small particle fits in between. This unbal-
The simplest example of a well-studied mixture is theanced osmotic attraction is then responsible for the liquid-
binary hard-sphere mixture. The Ornstein-Zernik®Z)  vapor like demixing into a phase rich in large spheres and
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one rich in small spherd®]. For completeness, we mention mechanism. It is important to realize that these theoretical
that the effective potential or depletion force between tworesults only apply to hard rods in the limit of extreme elon-
large spheres due to a solvent of small spheres has begation. In the present simulation study we consider ItHe
calculated theoretically by Maet al.[12], and computed in  demixing transition as a function of the lendthof the par-
a simulation by Biberet al. [13]. Using this effective pair ticles, for a diameter rati®,/D,=0.1. Since the theoretical
potential in a Monte Carlo study a tendency for phase sepd€sults are supposed to be exactfdD,— =, we expect to
ration is found. However, this phase separation is differenteproduce the theoretical results closely for sufficiently
from that found in simple liquids, since it results in a rapid large—but finite—values of/D,. ForL=0 the system re-
growth of huge clusters and subsequently a very slow relaxduces to the binary hard-sphere mixture with diameter ratio
ation of the clusters. We finally also note that the demixingD1/D>=0.1. Although we could not reach the limit=0
transition in the binary hard-sphere fluid has also been founéwith D1/D>=0.1), we did find stabld-1 demixing for all
by Rosenfeld, within a self-consistent density functionalvalues ofL considered, ranging froms3L/D,<15. To our
theory[14]. knowledge, this is the first evidence of a fluid-fluid demixing
Experiments, however, suggest that the demixing transitransition driven by entropy alone in an off-lattice system of
tion in sufficiently asymmetric binary hard-sphere mixturesnonideal hard-core particles. Moreover, extrapolating our
is strongly coupled to the freezing transition, and that thefinite-L data toL =0 gives us a fingerprint that the fluid-fluid
actual coexistence is that between a crystalline phase of prilemixing spinodal in the binary hard-sphere system is meta-
marily big spheres and a fluid phase with primarily smallstable with respect to freezing.
sphereq17,18. These results are supported by recent den-
sity functional calculations, which show a fluid-solid phase
separation in binary hard-sphere mixtufé$,16. Whether
or not there is ametastable fluid-fluid spinodal in binary In order to determine the coexistence curve of the two
hard-sphere mixtures remains an open question. demixed phases directly, we carried out Gibbs ensemble
Computer simulation of phase separation in a mixture oMonte Carlo simulations. In this method, the two coexisting
very dissimilar spheres is difficult because of slow equilibra-phases are simulated in separate simulation boxes which may
tion. The numerical difficulties are less severe for latticeexchange volume and particles at a given temperature in or-
models. Indeed, a purely entropic demixing transition hasler to fulfill the phase equilibrium requirements of equal
been shown by computer simulation of a lattice model of apressures and chemical potentials. During the simulation or-
binary mixture of hard parallel cubes, if the diameter ratio ofdinary Monte Carlo steps are performed in both phases in
the cubes is sufficiently largel9,20. Recent density func- order to equilibrate both systems internally. However, the
tional calculations on this system have shown similar resultacceptance ratio for exchanging a large particle is small in a
[21]. Thus these results show that a demixing transition camlense system of small particles, as a large particle will al-
be driven by entropic effects alone. It is, however, unclear tanost always overlap with one of the small particles. In order
what extent this demixing transition is enhanced by the lat{o speed up equilibration, we used collective particle moves
tice and by the discrete orientations of the cubes. It is thushat employed a generalization of the configurational-bias
desirable and interesting to consider an off-lattice system oflonte Carlo scheme of Reff26, 27]. In this approach, we
hard-core particles. first choose randomly a large spherocylinder in one box and
An example of such an off-lattice mixture that has beentry to insert this particle at a random position in the other
studied by computer simulation is the mixture of sphericalbox. When the particle overlaps with another large sphero-
colloids and rodlike polymerg22]. The colloids are repre- cylinder the trial move is immediately rejected. If no such an
sented by hard spheres with a diameterand the rodlike overlap is found, the small spherocylinders overlapping with
particles by infinitesimally thin needles of length A de-  the large spherocylinder in its new position are removed and
mixing transition was found folc/o>0.3. Also, in computer are then moved to the volume vacated by the large sphero-
simulations of a colloid-polymer mixture, where the colloids cylinder in the first box using a generalization of the Rosen-
are modeled as hard spheres and the polymers as ideal lattibkith sampling. The trial move is then accepted with a prob-
chains, a demixing transition was foufid3]. However, in  ability determined by the ratio of the Rosenbluth weights of
both cases the polymers are ideal and do not interact witthe new and old configurations. For more technical details,
each other. we refer the reader to the Appendix. In our simulations, we
In this paper we present a computer simulation study operformed four types of trial moves.
binary mixtures of hard spherocylinders with different diam- (1) Random displacement and rotation of a particle in one
eters O,<D,) and the same length& {=L,=L). Within  of the boxes.
the Onsager theory for hard rods, Sear and Jackson showed (2) Small particle exchange between the boxes.

IIl. COMPUTER SIMULATIONS

for D;=0 andL/D,— that isotropic-isotropic I-1) de- (3) Large particle exchange between the boxes using con-
mixing can preempt the isotropic-nematit-l) transition figurational bias Monte Carlo method.
[24]. Our simulations of a system &f/D,=15 andD;=0 (4) Volume exchange between the boxes.

clearly show ari-1 demixing transition and thus confirm the In each simulation, we measure the number frackarf
results of Sear and Jackson. For a finite diamétgr van  the thick spherocylinders in both boxes, given>xy N/(N

Roij and Mulder estimated recently that thid demixingin  +M), whereN andM are, respectively, the number of the
thick-thin mixtures of hard rods is stable with respect to thethick and thin particles in that box. In addition, the numerical
I-N transition, as long aB;/D,>0.2[25]. Again in these value of the pressure was determined by virtual volume
cases, the depletion effect is identified as the demixinghanges. This method is based on the fact that the pressure is



5596 MARJOLEIN DIJKSTRA AND RENEvan ROIJ 56

TABLE I. The reduced pressuggPbd and the number fraction
of the thick particlesx of the critical points predicted by theory

(Ref. [25]) and estimated from the simulations for different diam-
eter ratiosd=D, /D, and lengthL=15D,.

Theory Simulation
d BPbd X BPbd X
e 6.75 0.1111 7.1 0.11
10 14.6854 0.1873 15.96 0.1953

order virial coefficients of the thicker rods are not that im-
portant. In the same figure we also plotted the theoretical
binodals obtained from Reff29], which is based on previous
0o.o 0.2 0.4 0.6 0.8 1.0 work. The deviation of the theoretical binodal and the simu-
X lated coexistence data at higher pressures>ad.2 can be
attributed to the third- and higher-order virial coefficients of

FIG. 1. The reduced pressuéP bd versus the number fraction the thicker rod§, Wh'_Ch arg ”eg'eCted 'n, t.he theorY-, .
x for a mixture of hard spherocylinders with lengths =L, In ord_er to investigate if _thls-l _dem|X|ng transm_o_n is
=15D, and diameteD,=0. The open squares denote thé de-  Stable with respect to the isotropic-nematic transition, we

mixing, the full circles and the stars tHeN demixing. The full ~ @lso performed Gibbs ensemble simulations starting from a
lines are the theoretical binodals taken from R&f]. box in which the particles are aligned and a box with an
isotropic configuration. We traced theN coexistence curve

minus the volume derivative of the Helmholtz free energy,Starting from the pure thick systemx€1) and gradually

which can be related to the acceptance ratio of virtual vol-2dding more and more thin rods. For a pure system of thick

ume changes as described in R&B]. spherocylinders, the-N co_eX|_sten.ce is found to be at a pres-
Most runs consisted of #6-1C° cycles per particle per SUre of BPbd= 16._15, which is sllghtly Iovx_/er than_the value

thermodynamic state point. In each cycle, we attempt a dis2f BPbd=17.141 in Ref[22] obtained by integration of the

placement and rotation of a particle in one of the boxes, an@iPbs-Duhem equation that describes thé® dependence

we try to exchange volume and a particle between the boxeéinstead of the temperature dependgnokthe pressure at

For the particle exchange we select with equal probabilit))"’h'ch the two phases CO?XIS'[. The adt_:lltlon of small particles

the box where a particle is removed and the species of th9 this pure system of thick spherocylinders leads td-ah .

particle that will be transferred. The system size varies fronPhase separation at higher pressures. Phase coexistence is

about 100 to 200 thick spherocylinders with 400-800 thinfound between an isotropic phase and a nematic phase with a
spherocylinders. slight tendency of the large particles to be in the nematic

phase and a slight tendency of the small particles to be in the
isotropic phase. However, the phase coexistence region is
. RESULTS narrow. At higher pressures, we find that thif\ transition
_ _ intervenes in thd -1 demixing transition, giving rise to an
A.L=1D;, D;/D,=0 and 0.1 I-1-N triple point, at which two isotropic phasésne with
The first set of Gibbs ensemble Monte Carlo simulationsprimarily thin rods and the other with a mixture of thick and
was performed on a binary mixture of hard spherocylindershin) coexist with a nematic phase of primarily thick rods. At
of lengthsL,=L,=L=15D, with D;=0. Here, and in the even higher pressures, we find a wide phase coexistence re-
sequel of this paper, we u&®, as unit length. In Fig. 1, we gion between an isotropic and a nematic phase.
show the resulting dimensionless pressgiebd of the co- The simulation results of Ref22] show that a first-order
existing phases as a function of the number frackolere  phase transition occurs from a nematic to a smectic phase for
b=mLiD,/4, d=D,/D;, and B=1kgT with kg Boltz- a pure system of thick rodsc& 1) with L/D=15 at a den-
mann’s constant and the temperature. We observe clearly asity of aboutp* =0.5, wherep* =p/pcp and pcp=2/(v2
demixing transition in the isotropic phase for pressures+v3L/D). We only performed simulations up to a density
BPbd>7. Phase coexistence is found between an isotropiof p* =0.4484 for a system consisting of thick rods (
phase of primarily thin spherocylinderg£0) and an iso- =1), which corresponds with a pressys®bd=30.16, so
tropic phase with a mixture of thick and thin spherocylinderswe did not consider the smectic phase in any detail.
(0.1=x=0.8). From Table I, we see that the critical pointas Next we performed simulations of a spherocylinder mix-
estimated from the simulation agrees very well with the oneure with both diameters finite. We s8t; /D,=0.1 and kept
that followed from the second virial theory for infinitely L/D,=15. In Fig. 2, we plot again the resulting coexistence
elongated rods of Ref25]. This good agreement is mainly pressure versus the number fraction. From Table |, we see
due to the fact thak~0.11 corresponds to only a small that we find again good agreement between the critical point
fraction of particles with a finite aspect ratio, while most of estimated in the simulations and calculated in the theory of
the particles have diameteD;=0 and hence satisfy Ref.[25]. We again investigated if thik-| demixing transi-
L/D;—%. Another reason for this good agreement is thattion is stable with respect to tHeN transition. Starting from
this transition occurs at low densities, so that the highera pure system of thick spherocylinders, we find a broader
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FIG. 3. The reduced pressug® bd versus the number fraction
x for a mixture of hard spherocylinders with varying lengths
=L, and diameteD;=0.1D,.

FIG. 2. The reduced pressug® bd versus the number fraction
x for a mixture of hard spherocylinders with lengths=L,
=15D, and diameteD;=0.1D,. The open squares denote thé¢
demixing, the full circles and the stars theN demixing. The full

lines are the theoretical binodals taken from Regl. In order to make a connection with the hard-sphere mix-

tures, we considered for fixed, /D,=0.1 a number of de-
- . . . creasing length&/D,=10,8,5,3. In Fig. 3, we show the re-
I-N demixing region at higher pressures, when we add thiny .5 tor thel-| demixing for the different values df/D,.
spherocylinders. Again, we found a triple point at which twoyye see that the phase coexistence region becomes smaller
isotropic phases coexist with a nematic phase, and a widgjith decreasingL. A second and third virial theory of a
I-N coexistence region for even higher pressures. hard-rod mixture with discrete orientatiofigwanzig model
[30]) does not reproduce this narrowing of thd coexist-
B. Towards hard spheres . . . ence region, which remains therefore unexplained. The num-
We showed above that we have been able to find a purel?er fraction of thg_thick ;pherocylindevsand the reduced
entropy-driven fluid-fluid (-1) demixing transition that pre- pressure of the grmcal point remain more or less the. same for
empts thel-N transition. The question immediately arises a_‘" lengths cons!dered. In Fig. 4, we plot the packl_ng frac-
why this transition is found in simulations of hard- UONS 72 of the thick spherocylinders versus the packing frac-
spherocylinder mixtures, while it is still not found in com- tions #», of the thin spherocylinders for the estimated critical
puter simulations of hard-sphere mixtures. One of the rea-

sons is that the fluid-fluid demixing transition for

spherocylinder mixtures occurs at much lower packing frac- 012
tions than for hard-sphere mixtures. To illustrate this, we

compare three different theoretical estimates for the total 0.10
packing fractionz at the critical point of the fluid-fluid de-

mixing transition of a hard-sphere mixture with a diameter 0.08
ratio of D, /D,=0.1 with the corresponding simulated value

in the hard-spherocylinder mixture &fD,=15. The total = 0.06
packing fractionn= 7, + 7, is the sum of the packing frac-

tions of the thinner and thicker species. For the hard spheres 0.04
we haven=0.47[8], 0.53[9], and 0.37/14], which is to be

contrasted withny=0.0736 for the spherocylinders. Another

reason why simulations of hard-sphere mixtures are difficult 0.02
is the low number fractiom at which the demixing transition

takes place. The same three hard-sphere theories give for the 0-000

critical x the valuesx=0.02[8], 0.0056[9], and 0.007414],
while the spherocylinders shox=0.2. A low number frac-

Rosenfeld
o _
Lekkerkerker
o |
Biben
LD, : O 4
15, 10, 8, 5, 3 %
0.1 0.2 0.3 04 0.5
P

0.6

tion means that a huge amount of small particles is needed g, 4. The packing fractiony, of the thin spherocylinders
for each large particle. Computer simulations of very asymyersus the packing fraction, of the thick spherocylinders for the
metric mixtures are difficult as all the computer time will be estimated critical points of thie| demixing transition in a mixture

spent on moving th(_a srr_1a|| particles aroun(_j, while displaceof hard spherocylinders with varying lengths=L,=L and D,
ment of a large particle is hardly accepted in a dense system0.1D, (star$ and the theoretical predicted critical points for the

of small particles.

hard-sphere mixtures with;=0.1D, taken from Refs[8, 9, 14.
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TABLE Il. The packing fractions of the thin particles,, the thick particlesy,, and the total packing
fraction = 5, + 7,, at which the critical point of thé-1 demixing transition is estimated from the simula-
tions for a mixture of hard spherocylinders with lengths=L,=L and diameter ratio ob,/D,=0.1. We
also tabulated for comparison the packing fractions at which a certain type of phase transition occurs from the
isotropic phase for a pure fluid of thick spherocylindexs=(L) for different values ot./D,.

Critical point Pure fluid
L/D, m 7 Mt 7 Type of transition
15 0.0028 0.0708 0.0736 0.1777 isotropic-nematic
10 0.0042 0.1084 0.1126 isotropic-nematic
8 0.0052 0.1398 0.1450 isotropic-nematic
5 0.0079 0.2131 0.2210 0.4532 isotropic-nematic
3 0.0138 0.4349 0.4487 0.5115 isotropic-solid
2 0.532366 isotropic-solid
0 0.47 isotropic-solid

points of thel-1 demixing transition for the various lengths. packing fraction ofy=0.581, which is above the packing
We also plot the three above mentioned theoretically prefraction of the freezing transition of a pure mixture of thick
dicted critical densities for the hard-sphere mixtures withrods. Slow equilibration prevented us from increasing the
D,/D,=0.1[8,9,14. We see that the packing fraction at packing fraction even more and from decreasing the length-
which the critical point is estimated increases enormouslyo-diameter ratio. A similar slowing down of the dynamics
when we decrease the length of the spherocylinders. In Tableas been found in simulations of the hard-sphere mixture by
Il, we compare the critical packing fractions of the sphero-Biben et al. [13]. Thus extrapolating our finite- data toL
cylinders with those at which pure fluid of thick sphero- =0 gives us a fingerprint that the fluid-fluid demixing tran-
cylinders will undergo a phase transition. The latter data arsition in the binary hard-sphere mixture with a diameter ratio
taken from Ref[22]. ForL/D,=2, we found no phase sepa- of 0.1 is metastable with respect to freezing, or does not exist
ration below a total packing fraction ofp=#%,+ 7%, at all at densities below close packing.
=0.581. From Table I, we can see that the isotropic-solid
transition for a pure system of thick spherocylinders with ACKNOWLEDGMENT
L/D=2 occurs already at a lower packing fraction. This ) ) - )
might be a fingerprint that the isotropic-isotropic demixing W€ thank Thierry Biben for a critical reading of the
transition becomes metastable with respect to the freezing@nuscript.
transition, or does not exist at all at densities below close
packing. A possible reason for the apparent absence of a
spinodal instability might be the narrowing of thel coex-
istence region with decreasing length of the spherocylinders |n Gibbs ensemble Monte Carlo simulations, the two co-
as discussed above. Unfortunately, equilibration problemexisting phases are simulated in separate simulation boxes
prevented us from increasing the packing fraction even moreand exchange of particles in the boxes are essential for ob-
so that we could not investigate whether a metastabléaining equal chemical potentials. However, in a dense sys-
isotropic-isotropic demixing transition exists above thetem of thin spherocylinders, random insertion of a thick
freezing transition. Also, slow equilibration prevented usspherocylinder is difficult. To overcome this problem, we
from decreasing the length-to-diameter ratio even more, seemove the thin particles that hinder the insertion of the thick
that the hard-sphere mixturd€0) could not be studied particle and reinsert them into the space vacated by the thick
directly—as expected. particle. The algorithm for exchanging a thick spherocylin-
In summary, we present the results of a computer simulader goes as follows.
tion study of binary mixtures of hard spherocylinders with (1) Choose first one of the boxes with equal probability.
different diameters @,;<D,) and the same lengthsL{ (2) Choose randomly one of the thick spherocylinders and
=L,=L). We find clearly anl-I demixing transition in a insert this in the other box at a random position and with a
mixture of spherocylinders with lengtlhs =L,=15D,, and  random orientation.
D;=0 or D;=0.1D,. Good agreement is found with the  (3) Check if the thick particle at its new position overlaps
results obtained from a second virial theory for infinitely with another thick particle. If there is such an overlap this
long rods. To our knowledge, this is the first evidence of amove will immediately be rejected.
fluid-fluid demixing transition driven by entropy alone in an  (4) If there is no such overlap, check which of the thin
off-lattice system of nonideal hard-core particles. In addition particles have an overlap with the thick particle at its new
we investigated thé-1 demixing transition as a function of position.
the lengthL and diameter ratidD,/D,=0.1. We find a (5) The thin particles that have an overlap with the thick
stablel-1 demixing for all values ofL in the range of 3 particle at its new position, say particles, will be inserted
<L/D,=<15, but we could not reach the limit=0, i.e., the in the volume that will become free in the old box of the
hard-sphere mixture with diameter ratio of 0.1. HoiD,  thick spherocylinder, where we have removed the thick par-
=2, we could not observe a demixing transition below a totaticle.

APPENDIX
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The insertion of them thin particles into the free volume lect the original configuration of the thin particle. We
is not simple since the probability of random insertionnof repeat this until we have added all particles.
particles in a restricted volume is small. We therefore used a
method similar to the one proposed by Biben for hard-spherén order to use this method to transfer a thick particle from
mixtures[27]. We will describe the method below. When we one box to the other box in a Gibbs ensemble simulation, we
have already inserted- 1 small particles, we will attempt to impose detailed balance on the Monte Carlo scheme. This
insert theith particle. implies that in equilibrium, the rate at which thick particles
) ] ) ) ] are transferred from one box to the other equals the reverse
(1) Choose firstk random orientations for theth particle, ate.
saywi(j) and (=1,... k). Let us first consider the partition function of a system of
(2) Define for each orientatiod;(j) a rectangular box, cen- N, thick particles in a box with a fixed configuration bf
tered around the center of the removed thick particlethin particles and a volum¥, .
The diameter of each box is glven by the absolute value
of the components of the vectdR= L202+ Lioi(j) Va
+(D;+D5)(1,1,1), whereﬂz is the old orientation of Q(N,,V,,T)= W J' quleXF[_BU(FI)], (A4)
the removed thick particle, and where the axes of the I*

simulation box were chosen as basis vectors. We then
whereV is the thermal volumé31], andU(T")) is the exter-
choose for each orientatiof;(j) a random position

7.(1) for the thi icle in th dina box. We nal potential ofN, thick particles and th#, thin particles in
Fi(j) for the thin particle in the corresponding box. box I interacting with each other by a hard -core potential.

then check if this thin particle has indeed overlap withgte that we used scaled coordinag®s and that the con-
the removed thick particle. If not, we try a nef®(j)  figurational integral of the thin particles is neglected as the
until the overlap condition is satisfied. configuration of the thin particles is fixed. However, the
(3) We now compute the Boltzmann factor exp thick particles do interact with the thin particles and thus the
[—Bu(fi(j),@i(j))] for all these trial insertions by external potential(I";) depends on the configuration of the
checking if there is an overlap with any of the other thick thin particles. If we now consideN,=N—N, particles in
and thin particles and thie- 1 particles that are already another box with a fixed configuration &, thin particles
inserted. For hard-core particles, this Boltzmann factor iand a volumeV,=V—V,, the partition function of the two
either zero in the case of overlap, or one when there is nboxes becomes
overlap with other particles.
(4) One of the trial insertions, say positigh with orienta-

tion @;, is now selected with a probability Nl(v v N

@i QN Ny, V1,V T) = ds'

T NN H(N= N
. _ exyd —Bu(r;,a)] (A1)
i fay X ex] — mxnnfd§“
with
K xexd —pu(l'y)]. (A5)
2 ":’i}:;l expL—pulry ;)] (A2) Now we consider the case that the two systems can ex-

The subscrip{F; ,&;} means that the selected positign c.hange. pa_rticles in such a way that the total number of par-
and orientatiorty: are one of thek trial insertions. The ticles distributed over the two boxes remains constant, and
i .

ith thin particle will be inserted at this position and the :hiitlthelvolur\n/e_%l fi”\‘;vu can change in suclh ahV.Vay that the
corresponding partial “Rosenbluth weight¥; will be otal volumeV=V,+V, remains constant. In this case, we
have to consider all possible distributions of tReparticles
stored, where .
over the two boxes and we have to integrate over the volume
V|, which gives for the partition function

o}

W= K (AS)
(5) These steps will be repeated until we have insertethall N v I(V VNN N,
particles. . . o . . Q(N’V’T):lezo fo Vi VNN TIN=N))! f ds,
(6) For the old configuration, a similar procedure is used in
order to calculate the old Rosenbluth factor. We again N-N,
try to add them overlapping particles in the space that is xexg —pUl)] [ ds,
vacated by moving the thick particle from its new posi-
tion to its old position. When we have already inserted xexp —pU(ly)]. (A6)

i — 1 thin particles, we will attempt to insert théh par-

ticle. In order to do that, we selekt1 trial directions It follows now that the probability to find a configuration
for the thin particle. Thekth trial direction will be the V‘ﬂth N, particles in box | with a volume 0¥/, and position
original configuration of the thin particle. We store the S; ' andN— NI particles in box Il with a volumé&/—V, with
corresponding partial “Rosenbluth weight” and we se- posmonss Niis given by
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B VvN(V=v NN 01d configuration
xexd —BU(I') Jexp[— BU(T"y)].
(AT)

For the configurational-bias method, we used the detailed
balance conditiof26] to determine the probability of accep-
tance

No)m(0—n)=Nn)m(n—o0), (A8)

where N{(0) and M(n) are, respectively, the probabilities
that the system is in the original conformatiorand in the
new conformatiom. The transition matrixr(o—n) is equal
to the probability to generate a trial move franto n times
the probability to accept this trial move, i.er(0o—n)

= a(0—n)Xacc(—n). In order to satisfy the detailed bal- FIG. 5. Schematic picture of the configurational-bias Monte
ance condition one can use the Metropolis scheme with thearlo method for moving a thick spherocylinder from box I to box
acceptance rule: Il in a Gibbs ensemble simulation.
N .
Vo (V=VN TN

/\f(n)a(n—>0)) N = RNy & AU @)

acqo— n) = mln( l,m

(A9)
xexd —pUT(n))] (A10)

while the old configuration has a probability of
Let us now assume that we want to move a thick spherocyl-

inder from box | to box II. The overlapping thin sphero- V:\"H(V—VON_N'_l

cylinders in box Il are now moved to box I. In order to No)= (N;+ 1)1 (N=N,—1)! exf —pU(I'i(0)]
compute the acceptance rule, it is convenient to split the

particles in box | in particles that will keep their position and xexd — Uy (0))]. (A11)
orientation going from the old to the new configuration, say,
N, thick particles andVl, thin particles, and in particles that

For the ratio of the two probabilities, we find

will be moved, so one thick particle amd thin particles. In N(n) (V=V)(N+1)

box Il, we findN,, thick particles andM, thin particles that Mo) = VI(N—N))

will keep their position and orientation and again one thick

particle andm thin particles that will be moved. We illustrate exd — U’ (n))]exd — BU(I"(n))]
this in Fig. 5 for clarity. Note that the number of thick and xexp:—,BU(F|(0))]exp[—,BU(F,,(O))]'

thin particles in the old configuration of box | is equal to AL?
N;+1 andM, and that the number of thick and thin particles (A12)

in the old configuration of box Il ifN,, and M +m. Using The Boltzmann factor for the new configuration can now
Eq. (A7), we find for the probability of the new configuration be written as follows:

ex — BU(T' (n)lexd — BUITy ()] =exp{— BLU(Ty ) + U (I Ty )+ U(Ty T +U () + U Uy, T T}
Xexp{—ﬁ[U(FL’,”)Jr U(FlrLoved’Fll\ll”)'FU(F:Lovedvrl\lllu)u(r:\ll” 1FII\III”)

+U(Ty )1 (A13)

WhereU(F'Nl) andU(F'MI) are, respectively, the external potential of a clusteNpthick particles and a cluster &fl, thin

particles interacting with each other by a hard-core potential. The external potential of a clustethadk particles with a

cluster ofM, thin particles is denoted bly(l“'NI 'FINH)' while U(I“L'mved,l“&”) is the external potential of the moved thickpar-

ticle in box Il with a cluster olN;, thick particles. The superscript denotes in which box the particles are. The Boltzmann factor
for the old configuration is given by
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expl — BU(T'\(0))]exd — BU (T (0))]=exp{— BLU(T'y )+ U(T'y Ty )+ U (T moveas i)+ U(Tinoveas T JU(T'yy ) T}
X exp{ — ,G[U(F” )+U(F” )+U(F”)+U(FM” r!
+U(Th r“)+U(FNII FL'A”)]}. (A14)
We now find for the ratio of the two probabilities

M) (V=V)(Ny+1) &= BUTY, T+ U(T ) +U (T, T 1}
MO)_ VI(N_NI) exp{ B[U(Fmovewr )+U(FmovedvrlMl)]}

exp{ ,B[U I‘Imoved’FII )+U(Fmovedi M”)]}
" exp{— ALU( LL>+U<P" ST +U@y Tl

(A15)

The probability to generate the new configuration starting from the old configuration is given by the probability to insert the
m thin particles in box | in the space vacated by moving the thick particle.
ﬁ exd — Bu(fi )]

=1 2 o)

a(o—n)=

i—1
e, exp{ B[U(F' T+ U I,r:ﬁ,)wLEl Uy, ,F!n.)H
i i i= !
k™
exp{— BLU(Ty, [y +U (T Th) +U(T] )]}

= T (AL6)

whereW,=1II",w}, i.e., the total Rosenbluth weight of tine particles in the new configuration.
The probability to generate the old configuration starting from the new configuration is given by the probability to insert the
m thin particles in box Il in the space vacated by the thick particle.

exp{— BLU(Ty, T)+U(Ty, T +UT )T}

a(n—o0)= K (AL7)
[0}
and we find for the acceptance rule
(V=V)(N,+1)W, exp{— IB[U(FmovedvF:\ll )+U(rmovedvr:\l/|”)]}
acdo—n)=min| 1, (A18)

I(N_NI)WO eXp{ B[U(Fmoved!rI )+U(Fmovedir:\/ll)]}

Note that the number of thin particles does not occur in the acceptance rule, as the thin particles cannot be chosen freely once
a thick particle, that will be moved, is selected. The acceptance rule depends only on the potential energy of the thick particle
with all the particles that will keep their positions and orientations in boxes | and II.
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