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Scaling theory of critical ultrasonics near the isotropic-to-nematic transition
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Based on the Pippard-Buckingham-Fairbank relation, a theory of critical ultrasonics near the isotropic-
nematic transition in a liquid crystal is developed. This allows us to demonstrate that the attenuation data at
different frequencies do indeed collapse on a single scaling plot in the isotropic phase.
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The isotropic-nematic transition in liquid crystals is a pa
ticularly good example of a weak first-order transition, w
a multicomponent order parameter@1#. In general, in a weak
first-order transition~or even in a second-order one! in a
liquid crystal, the critical fluctuations are not very appare
in measurements of static quantities such as the specific
@2#. However, strong effects of critical fluctuations show
in dynamic measurements such as the ultrasonic attenua
This is not difficult to understand once the role of the spec
heat in the ultrasonic attenuations in these materials is un
stood. Our contention is that near the isotropic-nematic tr
sition, the critical ultrasonics is determined by the frequen
dependent specific heat@3–5#; in general, a complex
quantity. The real part of this complex specific heat det
mines the dispersion and the imaginary part determines
tenuation. The real part is affected by the background s
cific heat, which in these complex molecules is quite b
Hence, the critical effects associated with the real part
difficult to disentangle from the background. The imagina
part of the specific heat, however, is not encumbered wi
background part and hence the ultrasound attenuation sh
a clear-cut critical behavior. We are thus able to obtain
combined scaling theory~above and below the transition! of
ultrasonic dispersion and attenuation for the isotropic
nematic transition.

To justify this assertion, we note that by varying the pre
sure, the temperature at which the isotropic-nematic tra
tion occurs can be made to change and consequently, in
ciple, we have a line of critical points as in thel transition of
liquid helium or the critical mixing transition in the binar
liquid. The common property of all transitions with such
critical line is the Pippard-Buckingham-Fairbank relation@6#,
which states that the sound velocity near the transition
given by a relation of the form

U~T!5U01
U1C0

Cp~T!
, ~1!

whereU05U(T0) is the sound velocity at the critical poin
U1 and C0 are constants, andCp is the constant pressur
specific heat. For thel transition in liquid He4 this is very
well known. What has not been noticed before is that
experimental data of Eden, Garland, and Williamson@7#
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on liquid-crystal 4-methoxybenzlidene-48-n-butylaniline
~MBBA ! supports Eq.~1! @i.e., DU5U(T)2U0}1/Cp# for
the isotropic-nematic transition. This is shown in Fig.
where we have plottedDU against the inverse specific he
in the ordered phase. The derivation of Eq.~1! is sufficiently
general that it holds not only in the thermodynamic limit b
also when the system has to respond to a perturbatio
finite frequency@8,9#. The frequency-dependent velocity i
that case is given by

U~v,T!5U01
U1C0

Cp~v,T!
. ~2!

Only the critical part ofCp will be frequency dependent an
we can write

Cp~v,T!5C~v,T!1CB

5Re C~v,T!1 i ImC~v,T!1CB , ~3!

where CB is the background specific heat, which is qu
large for these materials. If we use this fact to linearize E
~2! in ImC, then

FIG. 1. Sound velocity differenceU5U(T)2U0 taken from
Eden, Garland, and Williamson@7# plotted againstC0 /Cp , where
C0 is a constant. The straight-line fit shows the validity of Eq.~1!.
5549 © 1997 The American Physical Society
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ReU5U01
U1C0

ReC~v,T!1CB
, ~4a!

ImU52U1

C0ImC

@CB1ReC~v,T!#2 . ~4b!

The attenuation per wavelength is obtained as

al

2p
5

2pU1C0

U0@CB1ReC#21U1C0@CB1ReC#
ImC. ~5a!

If we choose to ignore the critical behavior of ReC(v,T) in
comparison toCB for the present~the error made never ex-
ceeds 15% in the nematic phase and 5% in the isotro
phase!, then Eq.~5a! can be written in the particularly simple
from

al

2p
5A0Im C~v,T!. ~5b!

Using the above representation, it will be possible to make
‘‘scaling plot’’ for the attenuation data@7# shown in Fig. 2
for T.T1 .

In the above equation, the factor multiplying ImC does
not show much critical variation because of the dominan
of CB and the main variation of the attenuation in frequenc
and temperature is governed by ImC(v,T). Thus the impor-
tant thing is to have a theory for the frequency-depende
specific heat near the weakly first-order transition, and on
we have that, Eqs.~4a! and~5b! give the complete prediction
of critical ultrasonics. This is the central point of the pape

To set up a theory for the frequency-dependent spec
heat, we have to decide upon the free-energy functional t
gives an adequate description of the static phenomena.
isotropic liquid crystals consist of long molecules random
oriented. At the isotropic-nematic transition, the molecul
tend to align along a given direction and the course-grain

FIG. 2. Attenuation as a function of temperature at differe
frequencies measured by Eden, Garland, and Williamson@7# for the
liquid-crystal MBBA. Note that in the nematic phase~negative val-
ues of DT! the low-frequency attenuation rises monotonically
while the higher-frequency data show a peak below the order
temperature.
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order parameter describing the transition is the thr
dimensional traceless tensor defined as

Qab5
1

N (
i

1

2
~3na

i nb
i 2dab!, ~6!

wherei refers, to thei th molecule in a collection ofN mol-
ecules in a small region of space. The unit vector for the a
of the i th molecule is denoted byn̂i . A Ginzburg-Landau
free-energy functionalF that can describe the transition ha
to include cubic invariants because of the weakly first-or
nature of the transition. It can be written as

F5
a

2
TrQ21

L1

2
]gQab]gQab1

L2

2
]aQab]gQgb

1
2

3
b TrQ31

C1

4
~TrQ2!21

C2

4
TrQ4, ~7!

with a5a0(T2Tm), Tm being the mean-field transition tem
perature.

At the mean-field level, writing the space independe
Q25S2, the free energy that needs to be minimized is

F5
a

2
S22

2

3
bS31

c

4
S4, ~8!

since for three-dimensional traceless matrices TrQ4

}(TrQ2)2. Minimization gives

S050, ~9a!

or

S05
1

c
@b1Ab22ac#. ~9b!

For b2.ac, the free energy has two minima. These minim
became equal atT5T1 , where

T12Tm5
8

9

b2

a0c
. ~10!

Thus we see that the system undergoes a first-order trans
~since for T,T1 the stable state is given by the nonze
value of S! before the second-order transition is reached
Tm . If b2!a0c, the transition is of weak first order and th
correlation length can become sizable, but not infinite. Th
fluctuations may be significant, but can be handled at
Gaussian level.

The specific heat is given as usual by the correlation
the square of the order parameter

C5nK E d3r 1d3r 2TrQ2~r 1!TrQ2~r 2!L ~11!

~where only the connected graphs are to be retained! and in
the mean-field theory

CMF
. 50 ~T.T1!, ~12a!

CMF
, 5

9

8

a0
2

c F11
b

~b22ac!1/2G ~T,T1!. ~12b!
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We now calculate the effect of fluctuations. To do so,
make use of a simplifications introduced by de Gennes.
stead of the variableQab one uses the fieldf i ( i
51,2,...,5) for the five independent components ofQab and
to calculate response functions to Gaussian order one w
down the Heisenberg free energy, which in momentum sp
has the form

FG5 1
2 (

k
~k1

2 1k2!f i~kW !f i~2kW !, ~13!

wherek1
2 5a0(T2Tm). The usual calculation yields, for th

fluctuation contribution,

Cfl
.5A0E d3p

~2p!3 •

1

~p21k1
2 !2 5

A

k1
, ~14!

whereA is a constant. This is in the thermodynamic limit.
we consider the response at finite frequency then we nee
know the relaxation rate for the nematic fluctuation. The
laxation rate is given byG(p,k1)5G0(p21k1

2 ) in the van
Hove approximation and the frequency-dependent respo
corresponding to Eq.~14! is

Cfl
.5~k1 ,v!

5A0E d3p

~2p!3

2G0~p21k1
2 !

~p21k1
2 !2@2 iv12G0~p21k1

2 !#

5
A

k1
•

2

2 iV
@~12 iV!1/221#, ~15!

where V5v/2G0k1
2 . Extracting the imaginary part o

Cfl
.(k1 ,v) and using it in Eq.~5!, we conclude that the

attenuation is going to rise monotonically from the bac
ground value at high temperatures up to the temperatur
which the first-order transition occurs. This qualitative fac
borne out by all raw experimental data@7,10–12#. The com-
bination of Eqs.~15! and ~5! tells us that if we are at low
frequencies, which means frequencies such t
v/2G̃0(T1 /Tm21)!1, then the attenuation will keep risin
sharply up toT5T1 ; in fact, it will rise according to the law
(T2Tm)23/2. However, if the frequency becomes comp
rable to or greater than 2G̃0@(T1 /Tm)21#, then we will see
the rise muted and at sufficiently high frequencies even s
rate. This means the temperature dependence is less p
nent at high frequencies, a fact borne out by the data sh
in Fig. 2. In Fig. 3 we show how the data compares with
theory. We have used the measurements of Eden, Gar
and Williamson@7# on MBBA.

To compare the theory with experiment, we have us
Eqs.~5b! and ~15! to write

al

aluT5Tm

5F~V!5A2

V
@~11V2!1/4cos~ 1

2 tan21V!21#,

~16!

where V5v/2G̃0@(T/Tm)21#. To convert T2T1 to T
2Tm , we have used the fact thatT12Tc.0.6 °K for
MBBA. Having noted that, we have set the scale by tak
the data at the highest frequency and matching the half
-
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points. This fixesG̃0 . Once that is done, all the other da
points are analyzed with no adjustable parameters. The
lapse of the data on the scaling plot is impressive.

We now consider the calculation of fluctuations effec
belowT1 . To do so, we have to expandf about the conden-
sateS0 . Sincef is a vector, the symmetry breaking occurs
one of the components, while the other components, wh
we call transverse, shall have a zero expectation value.
customary to work with a vector field cW (f1
2S0 ,f2 ,f3 , . . . ,fn) such that̂ c&50.

The free energy of the Heisenberg model is now e
pressed as

F,5E d3xF 1
2 k2

2 cL
21 1

2 ~¹W cL!21 1
2 ~¹W cT!2

1~cS02b!cL~cL
21cT

2!1
c

4
~cL

21cT
2!1••• G ,

~17!

where cL5f12S0 and cT is a (n2 i )-dimensional vector
with componentsf2 ,f3 ,...,fn andk2

2 52cS0@S02(b/c)].
Straightforward algebra@13–15# yields the specific heat to
one-loop accuracy. Working in the spherical@13,14# limit for
the effective Heisenberg model that we have considered
find

ImC,5
4S0

2

k2
2

V

11V2 1
4S2V3/2

k2~11V2!2 ~V222V21!,

~18!

whereV5v/2G0k2
2 .

In Eq. ~18!, we have the explanation for the single mo
important qualitative feature of the attenuation data of Ed
Garland, and Williamson@7# in the nematic phase. The da
clearly show that for low frequencies, the attenuation a
function of temperature is monotonic, while for higher fr
quencies, there is a clear-cut peak in the nematic phase
analysis of Eq.~18! reveals that for low frequencies, th
attenuation represented by Eq.~18! is monotonic as a func-
tion of k2 in the nematic phase. However, at sufficien

FIG. 3. Curve shows our predicted scaling function in the is
tropic phase. The data of Eden, Garland, and Williamson@7# at
different frequencies~Fig. 2! are also shown, supporting our claim
that there is a scaling regime in the isotropic phase.
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high frequencies there is a peak in the nematic phase
should be noted that this is different from the situation in
superfluid transition where we always encounter a peak
the attenuation forT,Tl . The difference has to do with th
nature of the transition. In the superfluid case, the temp
ture dependence ofS0

2 matches exactly the temperature d
pendence ofk2

2 in Eq. ~18! and, further, the necessity o
s

ys
It
e
in

a-
-

exponentiating the final answer~to yield the correct specific-
heat exponent! removes thek2

21 from the second term on th
right-hand side of Eq.~18!. In this case, one has to keep th
temperature dependence ofS0

2/k2
2 in Eq. ~18! and the term in

k2
21 remains a precritical fluctuation and cannot be expon

tiated. This means that there will be no simple scaling plo
the nematic phase.
ys.
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