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Scaling theory of critical ultrasonics near the isotropic-to-nematic transition
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Based on the Pippard-Buckingham-Fairbank relation, a theory of critical ultrasonics near the isotropic-
nematic transition in a liquid crystal is developed. This allows us to demonstrate that the attenuation data at
different frequencies do indeed collapse on a single scaling plot in the isotropic phase.
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The isotropic-nematic transition in liquid crystals is a par-on liquid-crystal 4-methoxybenzlidené-h-butylaniline
ticularly good example of a weak first-order transition, with (MBBA) supports Eq(1) [i.e., AU=U(T)—Uy*1/C,] for
a multicomponent order parametdy. In general, in a weak the isotropic-nematic transition. This is shown in Fig. 1,
first-order transition(or even in a second-order ons a  where we have plotted U against the inverse specific heat
liquid crystal, the critical fluctuations are not very apparentin the ordered phase. The derivation of Eb.is sufficiently
in measurements of static quantities such as the specific hegéneral that it holds not only in the thermodynamic limit but
[2]. However, strong effects of critical fluctuations show upalso when the system has to respond to a perturbation at
in dynamic measurements such as the ultrasonic attenuatiofinite frequency[8,9]. The frequency-dependent velocity in
This is not difficult to understand once the role of the specificthat case is given by
heat in the ultrasonic attenuations in these materials is under-
stood. Our contention is that near the isotropic-nematic tran-
sition, the critical ultrasonics is determined by the frequency-
dependent specific hedt3—5]; in general, a complex
quantity. The real part of this complex specific heat deter-Only the critical part ofC,, will be frequency dependent and
mines the dispersion and the imaginary part determines atwe can write
tenuation. The real part is affected by the background spe-
cific heat, which in these complex molecules is quite big. Cp(w,T)=C(w,T)+Cg
Hence, the critical effects associated with the real part are .
difficult to disentangle from the background. The imaginary =ReC(w,T)+i ImC(w,T)+Cs, (3)
part of the specific heat, however, is not encumbered with a

background part and hence the ultrasound attenuation shoi'/vg]ere Cg is the background specific heat, which is quite

_ U1Co
U(w, T)=Uy+ m (2

a clear-cut critical behavior. We are thus able to obtain a2 9€ for these materials. If we use this fact to linearize Eq.

combined scaling theorfabove and below the transitipof 2) in ImC, then
ultrasonic dispersion and attenuation for the isotropic to
nematic transition.

To justify this assertion, we note that by varying the pres-
sure, the temperature at which the isotropic-nematic transi-
tion occurs can be made to change and consequently, in prin- T <17
ciple, we have a line of critical points as in theéransition of 1
liquid helium or the critical mixing transition in the binary 80
liquid. The common property of all transitions with such a
critical line is the Pippard-Buckingham-Fairbank relatiéi AU
which states that the sound velocity near the transition is
given by a relation of the form

40

_ UiCo '
U(T)—Uo‘l'm, (1) 1 é ;

whereUy=U(T,) is the sound velocity at the critical point, (AT )V2

U, and C, are constants, an@, is the constant pressure

specific heat. For tha transition in liquid Hé this is very FIG. 1. Sound velocity differencé)=U(T)—U, taken from
well known. What has not been noticed before is that theEden, Garland, and Williamsdi7] plotted againsC,/C,, where
experimental data of Eden, Garland, and Wiliamda@h C, is a constant. The straight-line fit shows the validity of EL).
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order parameter describing the transition is the three-

dimensional traceless tensor defined as
Vs L5 L e
A O - i i
B 0612 Qup=N 2 5 (3MaN—dup), ©®
- € 0989
a D 2999 . . . .
N E 5.012 wherei refers, to thath molecule in a collection o mol-
010 F 9.049 ecules in a small region of space. The unit vector for the axis
' ﬁ ;318; of the ith molecule is denoted bg'. A Ginzburg-Landau
free-energy functiondF that can describe the transition has
to include cubic invariants because of the weakly first-order
nature of the transition. It can be written as
0 1 B—7 A JA 1 a ) Ll |_2
-16 -8 0 8 16 2% F=5TrQ°+ - 9,Q,89,Qupt 5 9aQupd,Qp
AT (0) 2 2 2
; ; ; 2 ! 212, C2 4
FIG. 2. Attenuation as a function of temperature at different + 3 b TrQ°+ 7 (TrQ“)“+ 7 TrQ", (7)

frequencies measured by Eden, Garland, and Williamigpfor the
liquid-crystal MBBA. Note that in the nematic phagesgative val-
ues of AT) the low-frequency attenuation rises monotonically,
while the higher-frequency data show a peak below the orderin

with a=a(T—T,,), Ty, being the mean-field transition tem-
erature.
At the mean-field level, writing the space independent

temperature. Q?=8?, the free energy that needs to be minimized is
U]_CO a 2 C
= —_— = — 2_ - -
ReU=U,+ RC(w.T) 7 Cy’ (4a) F=58-3 bS*+ 2 s, t3)
ColmC since for three-dimensional traceless matricesQ“Tr
ImU=-U, [CotRC(o T (4b)  «(TrQ?)?2. Minimization gives
=0, 9
The attenuation per wavelength is obtained as So 3
or
al 27TU1CO
27~ UglCyt RECZTU,ColCat RG] MC- (53 L
m U Cg 17+ U1Co[Cp ] o=t [b+VbZ—ac]. (9b)

If we choose to ignore the critical behavior of &a,T) in ) o o
comparison tcCg for the presentthe error made never ex- Forb“>ac, the free energy has two minima. These minima

ceeds 15% in the nematic phase and 5% in the isotropie€came equal &=T,, where
phase, then Eq.(5a) can be written in the particularly simple

f 8 b?

rom Tl_Tm:§ a_oc (10)
a_)‘ =Aylm C(w,T). (5b) Thus we see that the system undergoes a first-order transition
2 (since for T<T; the stable state is given by the nonzero

) ) o . value of S) before the second-order transition is reached at
Using the above representation, it will be possible to make & |t n2<ga ¢, the transition is of weak first order and the
scaling plot” for the attenuation dat@r] shown in Fig. 2 correlation length can become sizable, but not infinite. Thus

for T>T,. _ o fluctuations may be significant, but can be handled at the
In the above equation, the factor multiplying fndoes  Gaussian level.

not show much critical variation because of the dominance ¢ specific heat is given as usual by the correlation of
of Cg and the main variation of the attenuation in frequencyihe square of the order parameter
and temperature is governed by @w,T). Thus the impor-
tant thing is to have a theory for the frequency-dependent _ 3 43 ) )
specific heat near the weakly first-order transition, and once C=n f d°rdr,TrQ (r ) TrQ*(ro) 1D
we have that, Eqg4a) and(5b) give the complete prediction
of critical ultrasonics. This is the central point of the paper. (where only the connected graphs are to be retained in
To set up a theory for the frequency-dependent specifithe mean-field theory
heat, we have to decide upon the free-energy functional that

gives an adequate description of the static pnenomena. The Cur=0 (T>Ty), (129
isotropic liquid crystals consist of long molecules randomly )
oriented. At the isotropic-nematic transition, the molecules 9 ap

< _
Cyvr=

tend to align along a given direction and the course-grained gc |t (bz—ac)m} (T<Ty. (2
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We now calculate the effect of fluctuations. To do so, we
make use of a simplifications introduced by de Gennes. In
stead of the variableQ,; one uses the fieldg; (i
=1,2,...,5) for the five independent component£f; and 1.0
to calculate response functions to Gaussian order one write
down the Heisenberg free energy, which in momentum spac (%
has the form

0.5} MHz
> " 23
Fo=32 (k5 +K?)¢i(K)i(—K), (13) ° o
K Y.
. . o 3
wherexi =ay(T—T,). The usual calculation yields, for the
fluctuation contribution, x s B ¥,
10 10 Q 10 10
- d3p 1
Ci=Ao (277)3. (p2+ 2 )2 = Z (14 FIG. 3. Curve shows our predicted scaling function in the iso-
+

tropic phase. The data of Eden, Garland, and Williamgdhat
whereA is a constant. This is in the thermodynamic limit. If different frequencieFig. 2) are also shown, supporting our claim
we consider the response at finite frequency then we need {82t there is a scaling regime in the isotropic phase.
know the relaxation rate for the nematic fluctuation. The re- ~
laxation rate is given by’ (p,«.)=To(p?+«2) in the van  points. This fixesl’y. Once that is done, all the other data
Hove approximation and the frequency-dependent respond®ints are analyzed with no adjustable parameters. The col-

corresponding to Eq(14) is lapse of the data on the scaling plot is impressive.
We now consider the calculation of fluctuations effects
Ci=(k,,w) belowT,. To do so, we have to expantlabout the conden-
5 _ sateS,. Sincedg is a vector, the symmetry breaking occurs in
A dp 2T o(p=+«%) one of the components, while the other components, which
0 (2m)3 (p2+ Ki)z[—iw+21“o(p2+ Ki)] we call transverse, shall have a zero expectation \ialue. Itis
5 customary to work with a vector field (¢,
:i . .—[(1_iQ)l/2_1], (15) _So,¢2,¢3,...,¢n) such that<<//)=O. '
Ky —iQ The free energy of the Heisenberg model is now ex-

) ) . pressed as
where sz/Zl"oKi. Extracting the imaginary part of

Cq (x4 ,0) and using it in Eq.(5), we conclude that the - 3
attenuation is going to rise monotonically from the back- F :f d*x
ground value at high temperatures up to the temperature at

which the first-order transition occurs. This qualitative fact is 2, 2., C o o

borne out by all raw experimental dgta10—13. The com- H(CSH=D) i (Yi+yr+ 5 (YLt yp+- |,
bination of Egs.(15) and (5) tells us that if we are at low 17
frequencies, which means frequencies such that

wlzfo(Tlle—lKl, then the attenuation will keep rising where , = ¢;—S, and ¢ is a (n—i)-dimensional vector
sharply up toT=Ty; in fact, it will rise according to the law ith componentsp,, és,...,¢, and k> =2cS[Sy— (b/c)].
(T—Tw ¥ However, if the frequency becomes compa- Syraightforward algebrgl3—13 yields the specific heat to
rable to or greater thanl2[ (T,/T)— 1], then we will see  one-loop accuracy. Working in the spherifB,14 limit for

the rise muted and at sufficiently high frequencies even satuhe effective Heisenberg model that we have considered, we
rate. This means the temperature dependence is less prorfind

nent at high frequencies, a fact borne out by the data shown

in Fig. 2. In Fig. 3 we show how the data compares with the . 482 O 45,0372 )
theory. We have used the measurements of Eden, Garland, IMC™ ="z 7oz~ qzz (27720-1),
and Williamson[7] on MBBA. - -

TP (V) 2+ 5 (V)2

18
To compare the theory with experiment, we have used (18
Egs.(5b) and(19) to write whereQ = w/2' gk .
\ 5 In Eqg. (18), we have the explanation for the single most
a . o .
_ =~/ (1+ 02 Ycoq L tar 1O — important quahta.tl.ve featurg of the attenuation data of Eden,
0‘)‘|T=Tm F() \[Q [(1+0%)Tcodz tan )~ 1], Garland, and Williamsohf7] in the nematic phase. The data

(16) clearly show that for low frequencies, the attenuation as a
_ function of temperature is monotonic, while for higher fre-
where Q=w/2l5[(T/T,)—1]. To convert T—T,; to T  quencies, there is a clear-cut peak in the nematic phase. An
—Tm, we have used the fact thaf,—T.=0.6 °K for  analysis of Eq.(18) reveals that for low frequencies, the
MBBA. Having noted that, we have set the scale by takingattenuation represented by E48) is monotonic as a func-
the data at the highest frequency and matching the halfwatjon of «_ in the nematic phase. However, at sufficiently
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high frequencies there is a peak in the nematic phase. Exponentiating the final answép yield the correct specific-
should be noted that this is different from the situation in theheat exponentremoves thec_* from the second term on the
superfluid transition where we always encounter a peak imight-hand side of Eq(18). In this case, one has to keep the
the attenuation fol <T, . The difference has to do with the temperature dependenceS§f <> in Eq.(18) and the term in
nature of the transition. In the superfluid case, the temperaz~* remains a precritical fluctuation and cannot be exponen-
ture dependence cﬁ% matches exactly the temperature de-tiated. This means that there will be no simple scaling plot in
pendence of«? in Eq. (18) and, further, the necessity of the nematic phase.
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