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Statistical geometry of particle packings. II. ‘‘Weak spots’’ in liquids
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We investigate the statistical geometry of inherent structures~mechanically stable arrangements of particles
generated by a steepest-descent mapping of equilibrium configurations to local potential minima! of liquid
configurations of the shifted-force Lennard-Jones system, as an approach to elucidating mechanisms for the
decay of metastable states. For a wide range of densities, including some higher than the triple point density,
inherent structures are found to display remarkably heterogeneous geometry, with an apparently bicontinuous
structure consisting of a compact phase and a void region. The void region is found to consist of a single
system-spanning cavity. The volume fraction of this cavity vanishes above the densityr* 50.89. This density
coincides with the minimum in the pressure vs density curve for inherent structures, at negative pressure,
indicating that the observed heterogeneity of the inherent structures is triggered by the crossing of a threshold
of mechanical instability, much like the familiar spinodal concept. Analysis of spontaneous density fluctuations
in the equilibrium and superheated liquid reveals that atoms present in regions of low density~weak spots! map
predominantly to the cavity interface in the inherent structures. We discuss the relevance of these observations
to limits of stability of the metastable liquid, nucleation, and, possibly, the glass transition.
@S1063-651X~97!09811-5#

PACS number~s!: 61.20.Gy, 64.60.My, 64.60.Qb, 64.70.Fx
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I. INTRODUCTION

On account of their great structural diversity at the m
lecular level, substances in the liquid state present a ma
contrast to their counterparts in the crystalline state. T
diversity eliminates long-range periodic order, while su
porting substantial short-range order that can be partially
vealed by x-ray and neutron diffraction experiments@1#. It
also lies at the heart of hydrodynamic flow and diffusi
properties in liquids, attributes that are absent or at le
strongly suppressed in the crystalline state. Liquid-st
theory has attained substantial quantitative progress in c
acterizing that structural diversity and its implications f
both static and dynamic properties@1,2#. Nevertheless, full
understanding remains beyond reach at present. The pr
reported below was designed to move closer to that goa

We have focused our efforts on determining and interp
ing various aspects of the statistical geometry of fluctuat
void space in the liquid state. This collection of propert
irreducibly involves high order particle correlations, and th
requires powerful algorithmic tools for study as explain
below. We find that the computational study of void space
liquids provides fresh insight into, and suggests new a
interesting questions about, the rigorous statistical mecha
of metastability@3#, nucleation in superheated liquids, loss
mechanical strength in liquids and glasses, the glass tra
tion, and the ‘‘energy landscape’’~potential energy hypersur
face! of liquids.

A simple, classical many-body system serves as the
mary source for our results. However, we believe its imp
cations have far wider application, at least qualitative

*Electronic address: sastry@kanga.princeton.edu
561063-651X/97/56~5!/5533~11!/$10.00
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Equilibrium liquid states have been included in our stud
but metastable superheated and stretched liquid states
receive considerable attention. Sufficiently large voids t
have spontaneously formed in the latter metastable circ
stances constitute ‘‘weak spots’’ that preferentially serve
nucleation sites for boiling or cavitation@4#.

Historical balance requires mentioning that several
tempts to develop ‘‘hole’’ theories of the liquid state a
peared a few decades ago@5–7#. These analyses were als
concerned with voids in the medium and their role in det
mining thermodynamic and transport properties. Judged
present day standards, the authors of these prior works w
severely handicapped by lack of information about realis
molecular interactions and the geometric packing arran
ments they produce. Subsequent dramatic advances in c
putational quantum mechanics and in statistical mechan
simulation techniques now enable development of far m
powerful ‘‘hole’’ or ‘‘void’’ descriptions of local order in
liquids @3#.

Section II below describes the specific model used in
calculations, and states some of its elementary proper
Section II also provides details of the Monte Carlo simu
tion routine, and of the related procedure that generates
herent structures~local potential energy minima!. Section III
presents our results for the void distributions from a wi
range of equilibrium and metastable liquid states, as wel
the corresponding void distributions for their inherent stru
tures. The mapping from liquid configurations to inhere
structures generates a remarkable particle segregation,
allows separation of particles into ‘‘surface’’ and ‘‘bulk’
categories; Sec. IV documents this feature quantitatively,
suggests a possible connection with the glass transition.
statistical geometry of fluctuating void space presented
Secs. III and IV has interesting implications for the proce
5533 © 1997 The American Physical Society
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5534 56SASTRY, DEBENEDETTI, AND STILLINGER
of homogeneous nucleation in stretched and superheated
uids, and for the superheated liquid spinodal at low tempe
tures. These are discussed in Sec. V. Finally, Sec. VI s
marizes the most significant findings, and suggests fur
implications and directions for future investigation.

II. MODEL SYSTEM

A finite cutoff version of the Lennard-Jones 12-6 potent
forms the basis for our numerical simulations. The total
teraction potential in anN-particle system for this model ha
the form

F~r1 ,r2 ,...,rN!5e(
i , j

vc~r i j /s!, ~1!

where

vc~x!5 H4~x2122x26!1c01c1~2.52x!, x,2.5
0, x>2.5 ~2!

with

c050.016 316 891, c150.038 999 477. ~3!

Note that bothvc and its first derivativevc8 are continuous a
the cutoff value 2.5.

The full Lennard-Jones pair interaction

vLJ~x!54~x2122x26! ~4!

vanishes atx51, and passes through a unit depth minimu
at x521/651.122 462 . . . . By contrastvc vanishes at

x051.003 208 ~5!

and its minimum is displaced slightly outward and upwar

vc~xmin!520.929 973 . . . , xmin51.123 149. ~6!

When N is large,F in Eq. ~1! attains its absolute mini
mum at vanishing external pressure when the particles
arranged in a hexagonal close packed~hcp! crystal, with
nearest neighbor distancea* [a/s, number densityr*
[rs3, and potential energy per particlef* [F/Ne exhib-
iting the following values:

a* 51.101 526,

r* 51.058 110,

f* 526.658 894. ~7!

This model attains almost the same stability in the fa
centered cubic~fcc! crystal at zero pressure, but with slight
shifted values:

a* 51.101 672,

r* 51.057 689,

f* 526.654 082. ~8!

It should be noted in passing that the unmodified Lenna
Jones case, Eq.~4!, also favors the hcp crystal over the fc
liq-
a-
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-

crystal, in the large system limit at zero pressure@8#. The
triple point temperature, pressure, and liquid density h
been estimated for ourvc model @3#:

kBTt /e50.687,

Pts
3/e50.003 061 9,

r l ts
350.67. ~9!

The corresponding estimates for the location of the liqu
vapor critical point are@3#

kBTc /e51.16,

Pcs
3/e50.109,

rcs
350.247. ~10!

Results from two sets of simulations are presented in
paper. In both cases, the simulations were performed for
particles in the (N,V,T) ensemble for the shifted-forc
Lennard-Jones potential above@Eqs.~1!–~3!#. We also simu-
lated a system of 1372 particles at one particular state p
r* 5rs350.725,T* 5kBT/e50.9.

The first set of simulations were performed using the
nonical Monte Carlo algorithm, at a reduced temperat
value ofT* 5kBT/e52.5 which is substantially higher tha
the liquid-gas critical temperature. Simulations were p
formed for a series of reduced density values ranging fr
r* 50.6 to 1.05. In each case, the system was equilibra
for 1000 Monte Carlo cycles, and equilibrated configuratio
were generated for 3000 Monte Carlo cycles. Configurati
every 100 Monte Carlo cycles apart were then used to g
erate 30 inherent structures, using the procedure descr
below. For both the equilibrated fluid configurations and t
corresponding inherent structures, the void space was
lyzed as described below.

The second set of simulations were performed using
inherent structure void-constrained ensemble described
Ref. @3#, at a fixed reduced densityr* 50.7, for temperatures
ranging from very high (T* 515.0) to low values (T*
50.56) where the system is metastable with respect to
mation of the vapor phase. In the inherent structure vo
constrained ensemble, the inherent structures generated
odically ~every 100 Monte Carlo cycles! are constrained no
to contain voids exceeding a predefined cutoff size. Wh
ever an inherent structure at the end of a block of 100 Mo
Carlo cycles is found to possess voids exceeding the cu
size, the preceding block of configurations is disregarded
the simulation is started afresh from the configuration at
end of the preceding block. The cutoff parameterb
5dmaxr

1/3 ~wheredmax is the maximum allowed void diam
eter! is set to beb56 in this group of simulations. Thus n
void can form in the inherent structure with diameter grea
than six times the average interparticle separation. As sh
in @3#, the constraint resulting from this value of the cutoff
not severe, as reflected in its influence on the measured
modynamic properties. The role of the constraint is to p
vent the metastable system from phase separating. In t
runs, the system is equilibrated for 4000 Monte Carlo cyc
and equilibrated configurations are generated for 10
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56 5535STATISTICAL GEOMETRY OF . . . . II. . . .
cycles. Inherent structures are produced every 100 cyc
Thus the final output contains a sample of 100 inherent st
tures. As discussed in@3,4#, the rigorous statistical mechan
ics of metastability is the statistical mechanics of syste
under constraints. Both the present work and that of@3# are
examples of the computational implementation of constra
to study superheated liquids rigorously.

Inherent structures are local potential energy minima
which chosen instantaneous configurations map unde
steepest-descent minimization of the energy. In the pre
case, the appropriate mapping is generated by the follow
steepest-descent equations for each particlei @9#:

dr i~s!

ds
52“ iF@r1~s!,...,rN~s!#, ~11!

where s>0 is a progress variable indicating the extent
which the descent trajectory has been followed. Start
from an initial configuration (s50), a positive value ofs
displaces the configuration along the direction of the ne
tive of the potential energy gradient until it comes to re
(s→`) at the appropriate minimum. Given an initial co
figuration ofN particles, the simultaneous solution of theN
equations in Eq.~11! quenches the system into a potent
energy minimum, yielding the appropriate inherent structu

Potential energy minimizations for the shifted-for
Lennard-Jones fluid~described above! were performed using
the conjugate gradient method@10#. Details of the procedure
may be found in Ref.@3#.

III. VOID DISTRIBUTIONS

The analysis of void space in simulated equilibrium co
figurations and inherent structures begins with the const
tion of the Voronoi and Delaunay tessellation of the config
rations @11#. The Voronoi and Delaunay tessellatio
illustrated in Fig. 1, is defined as follows: a pointx ~wherex
is a vector denoting location in space with respect to so
origin! belongs to the Voronoi cell of atomi located at po-
sition xi if it is closer toxi than to any other pointxj of the
system. Mathematically, this can be represented by

xPVi⇔ux2xi u,ux2xj u ; j , ~12!

whereVi denotes the Voronoi polyhedron which surroun
atom i . The dual Delaunay construction is a tiling of spa
by simplices ~d-dimensional ‘‘tetrahedra’’ whered is the
system’s dimension! whose vertices are the atom positio
xi , while the centers of the spheres circumscribing th
simplices are the Voronoi vertices. For the purpose of ch
acterizing void space, we find it convenient to introduce
following definitions.

~1! The radius of the circumscribing sphere centered o
Voronoi vertex is called the ‘‘vertex radius.’’

~2! The diameter of the circumsphere minus the Lenna
Jones diameters is termed the ‘‘void size’’ and is taken a
the effective size of the void region about a Voronoi verte
This amounts to visualizing the voids as spherical partic
with diameters equal to their effective size.

~3! For the purpose of analyzing the connectivity of vo
space, an ‘‘exclusion radius’’ is assigned to each atom, eq
to the Lennard-Jones diameters. With this choice, acavity
s.
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@12# is any set of mutually connected points in space wh
an additional atom can be inserted such that its Lenna
Jones sphere~with diameters! does not overlap that of an
other atom. Equivalently, only those Voronoi vertices w
void size>s are considered to be in the void.

As observed in Ref.@3#, the void size distribution ob-
tained for inherent structures differs remarkably from that
the corresponding equilibrium configurations, displaying
long tail extending up to;4s. Correspondingly, a visua
inspection of these inherent structure configurations indica
that the particles in the system are arranged in a dense p
ing, leaving an apparently connected part of the system
ume empty@3#. Further, a double peak is found at small vo
sizes, which is associated with the presence of distorted
rahedral and octahedral voids in the dense packed reg
Similar results for small void sizes were also obtained
Finney and Wallace@13#, who generated dense amorpho
packings by allowing packings of hard spheres to relax un
a smooth repulsive potential.

Figure 2 shows an inherent structure configuration fo
system of 1372 particles, generated from a conjugate gr
ent minimization of the energy of a liquid configuration
r* 50.725 andT* 50.9. The particles shaded light gra
form the interface between the region where atoms
packed densely, and an empty region. The atoms in the d

FIG. 1. ~top! Two-dimensional illustration of the Voronoi
Delaunay dual construction. Atoms are shown as dark small d
The central atomi is surrounded by atomsj . The solid lines form
the Voronoi polygon about atomi . The dashed lines form the De
launay triangles whose circumspheres are centered at the c
sponding vertices of the Voronoi polygon.~bottom! The determina-
tion of the size~diameter! of ‘‘void particles.’’ The atoms, shown as
lightly shaded circles, lie on the vertices of the Delaunay triang
The void particles are centered on the vertices of the Voronoi p
gon. For clarity, only one void particle is shown~larger, darkly
shaded circle!. Its diameter~size! equals that of the circle circum
scribing the Delaunay triangle and centered on the vertex of
Voronoi polygon, minus the diameter of the atoms.
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5536 56SASTRY, DEBENEDETTI, AND STILLINGER
region are shaded dark gray. It can be seen that the morp
ogy of the packing of atoms is intricate. The empty spa
occupies a significant fraction of the total volume, and a
pears to be interconnected.

Figure 3 shows a comparison of void size distributions
equilibrated liquid configurations and corresponding inher
structures atr* 50.7. The temperature of the equilibrate
liquid is T* 50.6. In an effort to make these observatio
more precise, and to study the change in the observed
tures with the system density, we first consider the void s

FIG. 2. Configuration ofN51372 atoms in an inherent structu
obtained from an equilibrated liquid configuration atT* 50.9 and
r* 50.725. The atoms shaded light gray form the interface of
single cavity present. Atoms in the bulk part~not adjacent to the
cavity! are shaded dark gray. If a Voronoi vertex is~not! part of the
largest cavity, atoms at the vertices of the dual Delaunay simp
are classified as surface~bulk! atoms.

FIG. 3. Probability density of the diameter~in units of s! of
voids found in the inherent structure and in the unquenched liq
for the shifted-force Lennard-Jones fluid atT* 50.6 andr* 50.7.
The dashed line corresponds to the inherent structures and the
line corresponds to the unquenched configurations.
ol-
e
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distributions, and then analyze the connectivity properties
the void space.

Figure 4~a! shows the void size distributions for four den
sities~r* 50.75,0.85,0.95,1.05!. In all cases, the temperatur
of the equilibrated configurations from which the inhere
structures were obtained wasT* 52.5. Two trends in these
distributions are visible. As the density increases, the l
void size peaks~‘‘double peak’’! do not at first change loca
tion appreciably. In Fig. 4,r* 50.75,0.85 represent the rang
of densities where this behavior is observed. However
high densities, the peak positions move to lower values
seen forr* 51.05. The second trend in behavior is observ
in the tail of the distribution. While the two lower densitie
exhibit a large void tail~the range being smaller forr*
50.85 compared tor* 50.75!, no tail is observed for the
two higher densities. Figure 4~b! shows the same distribu
tions on a magnifiedy-axis scale to make this point cleare

We consider next the connectivity and extent of the vo
space associated with these void distributions. The void

e

x

id

lid

FIG. 4. ~a! Probability density of the diameter of voids~in units
of s! found in the inherent structures of the shifted-force Lenna
Jones fluid as a function of density. Note that while forr* 50.75,
0.85 the peak positions roughly coincide, they move to lower val
for r* 51.05. ~b! Detail of the void size distribution as shown i
~a!, but here on a differentx,y-axis scale. Note that the ‘‘tail’’ of
the void size distribution disappears at higher densities.
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56 5537STATISTICAL GEOMETRY OF . . . . II. . . .
distribution, while characterizing the empty space in a fa
ion useful for constrained ensemble simulations, does
provide a complete description of void space. For exam
the fraction of the system’s volume that is empty of partic
~void space volume fraction! cannot be obtained directl
from the void size distribution. In addition, it is important
understand how the void space is connected; i.e., whethe
void space present in the system can be decomposed
many disconnected cavities, or whether all the void sp
present in the system is connected and mutually access
To obtain this information, we have developed an algorit
that can~a! identify disconnected cavities that exist in th
system, and~b! yield the total void volume present in eac
cavity. The details of this algorithm are presented in part I
this work @12#. We note here that part of the procedure d
tinguishes Voronoi vertices that contribute to the total vo
from those that do not. In order to generate the above in
mation, we must define an exclusion radius around e
atom, which separates space into occupied and unoccu
~or void! volume. We choose the exclusion radius to ber c
5s, the Lennard-Jones diameter. Hence voids whose di
eter is smaller thans do not contribute to the total void
space, because it is impossible to insert another Lenn
Jones atom in such voids without overlap of its Lenna
Jones sphere with those of the other atoms in the surroun
Delaunay tetrahedron.

Figure 5 shows the volume fraction of the largest cav
as a function of density. We see that at a densityr* ;0.89,
the void volume fraction essentially vanishes. At higher d
sities, no void volume is present. We find that in a major
of the configurations analyzed, the bulk of the void volume
contained in a single cavity. The average number of cavi
varies from;1 at low densities~r* 50.6,0.7! to a maximum
of 2.45 atr* 50.87, close to the densityr* ;0.89 where the
void volume fraction becomes insignificant. In the range
densities where the average number of cavities deviates
nificantly from 1 (r* 50.85– 0.89), the void volume fractio
contained in cavities other than the largest cavity does
exceed 5%. We conclude that the void volume consists
dominantly of a single connected cavity. Given the mod
system sizes studied here, the asymptotic morphology o

FIG. 5. Volume fraction of the largest cavity in inherent stru
tures as a function of density. Note that this volume fraction v
ishes atr* 50.89.
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herent structures as the system size increases remains
studied. We summarize our expectation of the morpholo
of inherent structures for large systems, and the reaso
behind our expectation, in Appendix B.

IV. SURFACE AND BULK PARTICLES

The identification of the cavity containing the void vo
ume permits us to separate the void size distribution i
bulk and cavity components, wherein the bulk componen
formed by comparing the probability density of distances
the Voronoi vertices from atom centers for vertices that
not lie in the cavity, while the cavity component is forme
by considering Voronoi vertices that lie in the void. Figure
shows these two component distributions. It is observed
there is a sharp change when the vertex radius equals
exclusion radius.

The separation of Voronoi vertices into bulk and cav
vertices also permits us to distinguish two types of atom
Atoms that lie at the vertices of the Delaunay simplex dua
a Voronoi vertex which is in the void predominantly cons
tute the surface of the largest cavity. If the Voronoi vertex
not part of the largest cavity, the atoms at the vertices of
dual Delaunay simplex are classified as belonging to
bulk. We label atoms as either surface atoms or bulk ato
according to this criterion. As first shown in@3#, visual in-
spection of the inherent structures obtained from liquid sta
near the triple point density reveals a dense amorphous p
~bulk!, and a large, possibly system-spanning void. The
oms that we label as surface atoms form the interface
tween the amorphous bulk phase and the void space.
bulk or surface classification permits us to calculate the
erage density in the bulk component of the inherent str
tures. This is done by calculating the ratio of the number
bulk atoms to the sum of volumes of their Voronoi cel
since each Voronoi cell by definition contains one atom. F
ure 7 shows the variation of the density of the bulk a
surface parts of the inherent structures as a function of
system density. We notice the remarkable fact that the d
sity of the bulk component of the system increases as

-
FIG. 6. Separation of void size distribution into bulk and cav

components forT* 51.5,r* 50.7. Note that the separation is sha
at the exclusion radius defining the void~r c5s, which is equiva-
lent to void size equal to 1~in units of s!.
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5538 56SASTRY, DEBENEDETTI, AND STILLINGER
total density decreases. The density of the bulk compon
becomes equal to the overall density atr* ;0.89. The den-
sity associated with surface particles does not, since cav
with finite ~if extremely small! volume persist untilr*
50.92, and as a result yield lower values for the densitie
surface atoms. However, the number of such atoms is
tremely small forr* 50.90 and 0.92.

In seeking an explanation of this behavior, we calcul
the pressure experienced by the inherent structures. The
ical and methodological details germane to this calculat
are discussed in Appendix A. Over the range of densi
investigated, the equation of state~pressure vs density! of the
inherent structures displays van der Waals–type behavio
shown in Fig. 8. Starting at high density, decreasing the d
sity gradually places the inherent structures under tension
r* 50.89, the limit of maximum tension is reached. Up
further expansion, the pressure increases instead of dec
ing. This is exactly the density at which voids appear in
inherent structure, whose inhomogeneity atr* ,0.89 is

FIG. 7. Variation of density of the bulk and cavity componen
of inherent structures with the total density of the system. T
straight~dotted! line with unit slope (x5y) is also shown as refer
ence.

FIG. 8. Variation of the pressure of inherent structures with
system density. Note that the minimum in this curve coincides w
the density at which the void volume vanishes.
nt
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therefore the result of a mechanical instability. Thus the
pearance of void space in the inherent structures and
progressive densification of the bulk component belowr*
50.89 appear to be consequences of the system reach
density of mechanical instability, below which the syste
becomes heterogeneous, simultaneously lessening the te
stress it bears. Since a glass is simply a liquid trapped in
inherent structure@14#, Figs. 7 and 8 suggest the interestin
question of whether this mechanical instability can be c
sidered the absolute lower limit below which a glass can
exist. We are studying this question. The equation of stat
inherent structures~pressure vs density! was previously con-
sidered by LaViolette@15#. However, its relationship to
changes in the void geometry discussed here has not
previously reported.

At r* ;0.993, the inherent structures experience z
pressure. Amorphous packings prepared under condit
free of external pressure~e.g., vapor deposition! would pos-
sess this density. Of course, the precise value of the pac
density is a function of the intermolecular potential.

V. IMPLICATIONS FOR NUCLEATION,
AND THE SPINODAL CURVE

The above results show that the mechanically stable c
figurations of a simple atomic liquid become inhomogeneo
below a certain bulk density due to the appearance of la
voids. We now investigate some implications of this intere
ing observation for homogeneous nucleation in superhe
liquids.

Superheated liquids will transform irreversibly into th
vapor phase. In the absence of dissolved or suspended im
rities or foreign surfaces, this transformation necessitates
formation of large enough bubbles within the bulk liqui
This is an example of homogeneous nucleation, in which
stable phase is formed within the bulk metastable phase
the absence of a preexisting interface@4#. Since homoge-
neous nucleation in superheated liquids involves form
sufficiently large voids, it is natural to inquire whether void
in inherent structures are related to regions of low density
‘‘weak spots’’ in the unquenched superheated liquid th
could act as nucleating sites for boiling or cavitation.

To answer this question, we examine the void space
ometry of configurations of the shifted-force Lennard-Jon
fluid. As explained in Fig. 1, each vertex of the Voron
polyhedron associated with any given atom is the center
Delaunay tetrahedron. This Voronoi vertex is the center o
Delaunay circumsphere. The difference between the circ
sphere’s diameter and the Lennard-Jones size parames
defines the size of the void associated with the Voronoi v
tex. The maximum void size associated with an atom
Voronoi polyhedron defines the single void size assigned
an atom in any configuration under study@16#. This consti-
tutes a measure of local density fluctuations towards low
density values, which are important in superheated liqu
Having thus assigned a void size to each atom, we
whether a given atom, upon steepest-descent quenching
a mechanically stable inherent structure, becomes a bulk
surface atom, as defined in Sec. IV. This is repeated sev
times, to gather statistics. Finally, we calculate, at a giv
temperature and density, the probability that atoms ass
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ated with a given void size end up as surface atoms~i.e.,
atoms associated with the largest cavity in the inherent st
ture!. This amounts to asking whether the appearance
large voids~weak spots! in the liquid is associated with th
appearance of inhomogeneous inherent structures. The r
is shown in Fig. 9. The three curves correspond to calc
tions performed at a single density~r* 50.7, which is close
to the triple point!, and at temperatures spanning a ran
from subtriple to supercritical.

At each of the three temperatures investigated, there
void size dmin;0.5s @16# such that atoms associated wi
voids larger thandmin are increasingly likely to end on th
inherent structure interface, this probability increasing w
void size. The steepness of the interface probability vs v
size curve decreases with increasing temperature.

These calculations show that small voids (d,dmin) form
spontaneously and frequently, as a result of thermally dri
density fluctuations. The formation of large (d.dmin) voids,
on the other hand, requires favorable energetics, and th
reflected in the geometry of underlying inherent structur
Temperature, therefore, affects the formation of cavities
two ways: it is solely responsible for the formation of sm
voids that result from density fluctuations, and it affects
rate at which the energy landscape is traversed. This trave
provides the favorable energetics needed for forming la
voids, or weak spots. Questions worth examining include
temperature- and density-dependent rate of formation
weak spots of a given size, the energetics of weak spot
mation, and the fate of weak spots after they are form
Clearly, answers to these questions should provide a
basis on which an improved, molecular-based understan
of cavitation and homogeneous nucleation in superhe
liquids can be built.

The preceding discussion addressed some possible im
cations of inhomogeneous inherent structures for cavita
and nucleation. We now turn our attention to the inher
structures themselves, and to the thermodynamic impl
tions of their inhomogeneity. Figure 8 shows the equation
state of the inherent structures over the density ranger*

FIG. 9. Correlation between the void size assigned to an atom
the equilibrium configuration~in units ofs! and the probability that
the atom is a surface atom in the inherent structure, at several
peratures, forr* 50.7. The continuous line is drawn as a smooth
to the data atr* 50.7, T* 50.6.
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50.6 ~2.4 times the critical density! to 1.05 ~1.57 times the
liquid’s triple point density!. It is natural to inquire whether
the mechanical instability atr* 50.89 bears any relationshi
to theT50 limit of the superheated liquid spinodal. To th
end, we calculate the ratio of the maximum tensile stren
to the critical pressure. For the van der Waals fluid this qu
tity equals 27; for the shifted-force Lennard-Jones fluid,
ratio is 30. This close agreement suggests that the equa
of state of the inherent structures may be thought of as
T50 limit of the fluid’s equation of state. According to thi
interpretation, the inhomogeneous nature of inherent st
tures would correspond to spinodally decomposed structu
arrested atT50. Furthermore, theT50 limit of the super-
heated liquid spinodal would define a limiting density, abo
which inherent structures are homogeneous and below w
they are fissured, with possible consequences for the g
transition, insofar as glasses may only be formed at dens
higher than this spinodal density. Of course, the validity
this ‘‘fluidlike’’ interpretation of structures whose constitu
ent particles by definition lack any mobility whatsoeve
needs to be critically examined.

VI. DISCUSSION

In this work we have determined and interpreted the s
tistical geometry of fluctuating void space in a model atom
liquid. Calculations have been done both for liquid config
rations and for their mechanically stable inherent structu
generated by steepest-descent quenching onto local pote
energy minima. Both stable and metastable states have
considered. The most important findings are as follows.

~1! There exists a well-defined bulk density above whi
inherent structures are homogeneous, and below which
are fissured due to the appearance of large voids.

~2! Large voids appear in the inherent structures as a
sult of mechanical instability such that on further decrease
the bulk density, tension is relieved and the pressure
creases towards positive values.

~3! This mechanical instability appears to be theT50
extrapolation of the superheated liquid spinodal.

~4! Insofar as a glass can be considered a liquid trappe
an inherent structure, the mechanical instability may be
absolute lower density limit to the possibility of glass form
tion.

~5! Weak spots, that is to say large voids that serve
initiate bubble nucleation, form as a result of sampling lo
potential minima that provide the requisite favorable energ
ics.

~6! The quantitative investigation of the density- an
temperature-dependent kinetics of weak spot format
should provide a microscopic basis for the formulation o
rigorous theory of bubble nucleation of liquids.

Our analysis has been restricted to a simple model ato
liquid. We are pursuing the extension of this approach
molecular liquids, and in particular, water. Here, the stati
cal geometry of fluctuating void space, especially under c
ditions of negative expansivity, that is to say when the te
perature and pressure, or energy and volume,
anticorrelated, should prove useful in understanding the
intriguing properties of water at low temperatures@4#. Fi-
nally, the determination and interpretation of weak spot f
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5540 56SASTRY, DEBENEDETTI, AND STILLINGER
mation may also prove useful for understanding mechan
failure of materials at interfaces. Questions worth examin
here include the role of surface inhomogeneity in creat
favorable energetics for weak spot formation, and the fate
these weak spots once formed.
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APPENDIX A: VIRIAL EXPRESSION FOR PRESSURE
IN SIMULATIONS WITH PERIODIC

BOUNDARY CONDITIONS

The pressure is routinely calculated in simulations us
the virial function. However, in simulations where period
boundary conditions are employed, the separation of for
on particles into internal and external or ‘‘wall’’ forces is n
straightforward and hence the relation of the virial calcula
in simulations with thermodynamic pressure is subtle. F
ther ambiguities arise in calculating pressure in this man
for the inherent structures, in which each particle experien
zero net force, since an inherent structure is defined to b
mechanically stable configuration of particles. Hence we d
cuss below details leading to the identification of the vir
expression as calculated in simulations with the pressure
perienced by the simulated system. A discussion of this is
for hard core systems may be found in@17#.

Consider initial (t50) particle positionsr1 ,r2 ,... in the
primary cell

0<x,Lx ,

0<y,Ly ,

0<z,Lz . ~A1!

The cell volume is given by

V5LxLyLz . ~A2!

The Newtonian equations of motion

mi

d2r i

dt
5Fi ~ i 51,2, . . . ,N! ~A3!

determiner i(t) for t.0, wheremi is the mass of particlei ,
andFi is the force it experiences from all other particles a
their images in the periodic replicas of the primary cell. T
Newtonian dynamics can causer i(t) to leave the primary
cell, and as it does so, an image particle simultaneously
ters at the opposite face. Letr i* (t) be the position ofi or that
one of its images which is in the primary cell at timet. We
can write
al
g
g
of

p-
l

i-

g

es

d
r-
er
es

a
-

l
x-

ue

n-

r i~ t !5r i* ~ t !1nx~ t !Lxux1ny~ t !Lyuy1nz~ t !Lzuz

[r i* ~ t !1Di~ t !, ~A4!

whereux , uy , anduz are unit vectors along each of the thre
Cartesian axes, andnx , ny , andnz are signed integers tha
track crossings of cell boundaries.

Following Clausius, the conventional virial is defined a

V5(
i

N

r i•Fi . ~A5!

On account of the periodic boundary conditions, we a
need to consider the variant

V * 5(
i

N

r i* •Fi . ~A6!

We first carry out the usual analysis forV, which can be
rewritten, using Eq.~A3!, as

V5(
i 51

N

mir i•
d2r i

dt2
. ~A7!

Calculate the time averageV̄ over 0<t<t0 , where t0 will
eventually be allowed to become infinite.

V̄5
1

t0
E

0

t0
Vdt5

1

t0
E

0

t0

(
i

mi S r i•
d2r i

dt2 Ddt

52
1

t0
E

0

t0

(
i

mi S dr i

dt D
2

dt1
1

t0
F(

i
mir i•

dr i

dt G
0

t0

522K̄1
1

2t0
F(

i
mi

d

dt
~r i

2!G
0

t0

, ~A8!

whereK represents the system’s total kinetic energy. Assu
ing that the system approaches an equilibrium state in
long time limit, we can relateK̄ to the kinetic temperatureT,

lim
t0→`

K̄5 3
2 NkBT. ~A9!

Note also that

d

dt
~r i

2!U
t50

5finite,

d

dt
~r i

2!U
t0

;6Di , ~A10!

whereDi is the diffusion constant of speciesi , also a finite
quantity. Consequently the last term in Eq.~A8! vanishes in
the t0→` limit, and we have in that limit

V̄522K̄523NkBT. ~A11!

The second of Eqs.~A10! assumes that there is no center
mass drift for the coordinatesr i .

Because ther i(t) diffuse without bound throughout th
infinite periodic array of cells, there is no obvious way
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long times to resolve theFi into ‘‘wall’’ and ‘‘internal’’
components. However, this can be done in the case ofV * , as
we explain below. First, we invoke Eqs.~A4!–~A6!, and
write

V̄ * 5V̄2
1

t0
E

0

t0

(
i

Di~ t !•Fi~ t !dt. ~A12!

From its definition in Eq.~A4!, Di(t) is a piecewise constan
vector, which tracks the diffusive process for particlei in a
coarse-grained way, identifying only the cell of residence
any givent. But because this is so,uD i u will tend to increase
ast1/2 at long times. Except possibly at short times,Di andFi
should be uncorrelated~i.e., the position of a particle is un
correlated with the force acting on it!, so

lim
t0→1`

1

t0
E

0

t0
Di~ t !•Fi~ t !dt50. ~A13!

Therefore, in thet0→1` limit,

V̄ * 5V̄523NkBT, ~A14!

and soV̄ * can be used to derive the usual virial equation
state.

Consider the usual separation into external and inte
forces as is written in the derivation of the virial-explic
equation of state@18#:

V̄523NkBT5K (
i

r i•Fi
extL 1K (

i
r i•Fi

intL . ~A15!

The external part of the above expression is calcula
by writing ^S ir i•Fi

ext&52r(r•n)PdA52P*(“•r )dV
523PV, wheren is the local unit normal vector pointing
away from the center of the cell, andr is the position vector
on the wall@18#. Hence

V̄523NkBT523PV1K (
i

r i•Fi
intL , ~A16!

which leads to the familiar expression for pressure,

PV5NkBT1
1

3 K (
i

r i•Fi
intL [NkBT1

1

3
^V int&.

~A17!

We now describe the separation of the total force i
internal and external forces in a simulation, and the iden
cation of the external forces with the pressure term in
virial expression. In this discussion, we specialize to sh
ranged, pairwise central potentials, such that for any gi
pair of atomsi and j , there is only one force term acting o
i arising from j and all its periodic images. Further, we co
sider a cubic simulation box of dimensionL. With pairwise
interactions, we may writeFi5S j Þ iFi j , with Fi j 52Fj i .
We can thus write
t

f

al

d

o
-
e
t-
n

^V int&5(
i

K r i•S (
j Þ i

Fi j D L . ~A18!

This can be rearranged to obtain, withr i j 5ur i2r j u, andf i j
the pair potential,

^V int&52 (
i , j . i

K r i j

]f i j

]r i j
L . ~A19!

Now consider the simulated system with periodic boun
ary conditions, where the force on a particle in the prima
cell can be written asFi5S j Þ i ,wFi j w , where the vectorw
labels the periodic images ofj , and is of the form
(nx ,ny ,nz)[nxux1nyuy1nzuz . The periodic image has co
ordinates displayed byL(nxux1nyuy1nzuz)5Lw. ThusSw
stands for three embedded summations of the integer ind
nx , ny , andnz . For short-range forces~range,L/2! only
one image of particlej ~including the primary cell! contrib-
utes a finite force. Letwj index such a periodic image. Th
total virial is then written as

^V * &5(
i

(
j Þ i ,w

^r i* •Fi j w&5
1

2 (
i

(
j Þ i ,w

^~r i* 2r j* !•Fi j w&

5
1

2 (
i

(
j Þ i

^~r i* 2r j* !•Fi j wj
&. ~A20!

Note that (r i* 2r j* ) is not the vector displacement from ato
i to the particular image ofj which exerts a finite force oni ,
and consequently (r i* 2r j* ) is not parallel toFi j wj

. We re-
write this expression by adding and subtracting the vec
wjL. Thus

^V * &5
1

2 (
i

(
j Þ i

^~r i* 2r j* 2wjL !•Fi j wj
&

1
L

2 (
i

(
j Þ i

^wj•Fi j wj
&[^V sim&1^V ex&.

~A21!

The first term^V sim& is what one calculates in simulations
be the virial@19#. The second term contains a sum over
forces that are due to image particles, which lie outside
primary cell, multiplied vectorially with displacements from
the particle coordinates in the primary cell to the image
cations. Along each Cartesian direction (6x,6y,6z), if the
appropriate sum of normal component of forces is equa
with the pressure times the surface area, with the total vi
being equal to 3NkBT, the result of the above expression

PV5NkBT1 1
3 ^V sim&. ~A22!

Thus the pressure of an inherent structure is in general n
zero, even though the net force on every atom is zero,
T50.
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APPENDIX B: MORPHOLOGY
OF INHERENT STRUCTURES

Figure 8 identifies the densityr* 50.89 as the point of
maximum tension for liquid-phase inherent structures. O
analysis indicates further that whenr* ,0.89, large voids
appear in the inherent structures. The numerical simulat
have been restricted to modest numbers of particles for
vious practical reasons, but it seems reasonable to sup
that much larger, even macroscopic systems in the same
density range would also exhibit a corresponding fraction
large-void empty space in their inherent structures. Still
unanswered is a basic question about the geometric char
of this inherent structure empty space in the large-sys
limit. One possibility is that during the steepest-desc
quenching most of the large voids aggregate to produc
macroscopic, more or less compact, empty region, loos
speaking a ‘‘vacuum phase.’’ A second possibility is that t
voids, perhaps relatively large compared to particle diam
s, remain dispersed throughout the medium.

This appendix provides a simple heuristic argument t
favors the second alternative over the first. Subsequent s
lations with substantially larger systems may be able to c
firm or reject that conclusion. But if it turns out to be inco
rect, the reason for its failure will have to involve some de
and unsuspected characteristic of the steepest-descent
ping that generates liquid-phase inherent structures.

In the low-density regime under consideration, attract
interparticle interactions are a decisive feature for the att
ment of inhomogeneous structures as a result of applying
steepest-descent operation defined by Eq.~11!. In the early
stage of that operation, small groups of particles draw
gether in a coarsening process that simultaneously mus
gin to leave behind low-density spots of comparable s
The coarsening process continues as the small aggregate
attracted to one another and combine~with suitable readjust-
ments! to form larger dense aggregates.

Let l (s) be a coherence or correlation length for spa
density fluctuations in the partially quenched medium. It c
equally well be described as the mean aggregate size a
tual time s in the steepest-descent mapping, Eq.~11!. The
mean spatial extent of void regions created by the coarse
process hence should also be proportional to some mul
of this length, sayu(r* ) l (s). We wish to determine whethe

lim
s→`

l ~s! ~B1!

exists and is equal to some well-defined limitl `(r* ) even
for arbitrarily large systems, or whether the expression
~B1! diverges to infinity for arbitrarily large systems. In e
ther case, it is reasonable to assume thatl (s) increases
monotonically withs. Especially during the late stages
steepest-descent quenching, configurational readjustm
have a distinctive intermittent, or sporadic, character. Thi
vividly evident when virtual times is eliminated and the
potential energyF is plotted againstu“Fu or u“Fu2 for the
quench@20,21#. These episodes have a natural interpretat
as sudden relative motions of essentially solid particle
mains to produce larger groupings, and this is exactly
coarsening process described above and monitored by
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coherence lengthl (s). A facile analogy for the intermit-
tency, from geology, is the sudden realignment of tecto
plates marked by earthquakes.

The key question to be answered is whether at stagel (s)
attractive forces are sufficiently powerful to drive the syste
towards further consolidation. Consider the net attract
force acting between a pair of compact domains of lin
dimension comparable tol (s) and separated by a void o
fissure also of width comparable tol (s). The magnitude of
this net force can be expressed as the following integral o
the volumesV1 andV2 occupied by these domains:

F5ra
2E

V1

dr iE
V2

dr j u“v~r i j !•u12u. ~B2!

In this expression,ra stands for the particle density insid
each of the~amorphous! domains,v(r i j ) is the particle pair
potential that supplies the attraction, andu12 is a unit vector
along the line of centers between the domains. Realistic
lecular interactions between uncharged and nonpolar spe
are dominated by dispersion interactions at long range; in
conventional Lennard-Jones terminology we can set

v~r i j !.24e~s/r i j !
6. ~B3!

Consequently Eq.~B2! becomes

F5224ra
2es6E

V1

dr iE
V2

dr j r i j
27cos~ui j •u12!, ~B4!

whereui j 5r i j /r i j . Assuming that the shape and orientatio
of V1 and V2 remain fixed, and that their separation mai
tains a constant ratio with their size, it is easy to see thaF
scales inversely with the coherence lengthl (s).

F}1/l ~s!, ~B5!

so the net attraction diminishes to zero with increasingl (s).
Of course our simulations described earlier have used
finite cutoff version of the Lennard-Jones potential and
have an even weaker effect at largel (s) than that shown in
Eq. ~B5!, namely, vanishing identically when the gap b
tween domains exceeds the cutoff distance.

In order forF to succeed in pulling together domainsV1
and V2 ~and consequently combining void spaces in t
neighborhood! it must overcome the restoring forcesF8 that
attach them to other neighboring domains. It can be arg
that F8 should scale as a positive power ofl (s):

F85@ l ~s!#p, p.0. ~B6!

The area of attachment along a relatively poorly bond
boundary between contacting domains should, on aver
be proportional to@ l (s)#2, i.e.,p52. Alternatively, if elastic
deformation of the local domain complex is required
bridge the gap betweenV1 andV2 , thenp53. So long asp
is positive as indicated in Eq.~B6!, its precise value need no
be known.

The nature of the steepest-descent process at largel (s)
depends on which ofF and F8 dominates. In the earlies
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stages it is clearly the attractive forces, i.e.,F, that drive the
mapping to minima. However, it is obvious from comparis
of characteristic dependences onl (s) in Eqs.~B5! and ~B6!
that a crossover at finitel must occur. At this point, furthe
coarsening becomes infeasible. The consolidation pro
halts at finite coherence lengthl `(r* ).

This argument leaves unspecified the geometric natur
er

P.

er
ss

of

the void space at the termination of the arrested consol
tion process. It may consist of relatively large but disco
nected voids. Or it may be above the void space percola
threshold to produce a bicontinuous texture of interpenet
ing and multiply connected regions of dense amorphous m
ter and of empty space.
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