PHYSICAL REVIEW E VOLUME 56, NUMBER 5 NOVEMBER 1997

Statistical geometry of particle packings. Il. “Weak spots” in liquids
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We investigate the statistical geometry of inherent struct(mechanically stable arrangements of particles
generated by a steepest-descent mapping of equilibrium configurations to local potential )nohimaid
configurations of the shifted-force Lennard-Jones system, as an approach to elucidating mechanisms for the
decay of metastable states. For a wide range of densities, including some higher than the triple point density,
inherent structures are found to display remarkably heterogeneous geometry, with an apparently bicontinuous
structure consisting of a compact phase and a void region. The void region is found to consist of a single
system-spanning cavity. The volume fraction of this cavity vanishes above the dehsity.89. This density
coincides with the minimum in the pressure vs density curve for inherent structures, at negative pressure,
indicating that the observed heterogeneity of the inherent structures is triggered by the crossing of a threshold
of mechanical instability, much like the familiar spinodal concept. Analysis of spontaneous density fluctuations
in the equilibrium and superheated liquid reveals that atoms present in regions of low deesityspotsmap
predominantly to the cavity interface in the inherent structures. We discuss the relevance of these observations
to limits of stabilty of the metastable liquid, nucleation, and, possibly, the glass transition.
[S1063-651%97)09811-5

PACS numbg(s): 61.20.Gy, 64.60.My, 64.60.Qb, 64.70.Fx

I. INTRODUCTION Equilibrium liquid states have been included in our study,
but metastable superheated and stretched liquid states also
On account of their great structural diversity at the mo-receive considerable attention. Sufficiently large voids that
lecular level, substances in the liquid state present a markdehve spontaneously formed in the latter metastable circum-
contrast to their counterparts in the crystalline state. Thistances constitute “weak spots” that preferentially serve as
diversity eliminates long-range periodic order, while sup-nucleation sites for boiling or cavitatide].
porting substantial short-range order that can be partially re- Historical balance requires mentioning that several at-
vealed by x-ray and neutron diffraction experimefts It  tempts to develop “hole” theories of the liquid state ap-
also lies at the heart of hydrodynamic flow and diffusionpeared a few decades affo-7]. These analyses were also
properties in liquids, attributes that are absent or at leastoncerned with voids in the medium and their role in deter-
strongly suppressed in the crystalline state. Liquid-staténining thermodynamic and transport properties. Judged by
theory has attained substantial quantitative progress in chapresent day standards, the authors of these prior works were
acterizing that structural diversity and its implications for severely handicapped by lack of information about realistic
both static and dynamic properti¢,2]. Nevertheless, full molecular interactions and the geometric packing arrange-
understanding remains beyond reach at present. The projestents they produce. Subsequent dramatic advances in com-
reported below was designed to move closer to that goal. putational quantum mechanics and in statistical mechanical
We have focused our efforts on determining and interpretsimulation techniques now enable development of far more
ing various aspects of the statistical geometry of fluctuatingrowerful “hole” or “void” descriptions of local order in
void space in the liquid state. This collection of propertiesliquids [3].
irreducibly involves high order particle correlations, and thus ~ Section Il below describes the specific model used in our
requires powerful algorithmic tools for study as explainedcalculations, and states some of its elementary properties.
below. We find that the computational study of void space inSection Il also provides details of the Monte Carlo simula-
liguids provides fresh insight into, and suggests new andion routine, and of the related procedure that generates in-
interesting questions about, the rigorous statistical mechanidserent structureocal potential energy minimaSection Il|
of metastability[ 3], nucleation in superheated liquids, loss of presents our results for the void distributions from a wide
mechanical strength in liquids and glasses, the glass transiange of equilibrium and metastable liquid states, as well as
tion, and the “energy landscapdpotential energy hypersur- the corresponding void distributions for their inherent struc-
face of liquids. tures. The mapping from liquid configurations to inherent
A simple, classical many-body system serves as the pristructures generates a remarkable particle segregation, and
mary source for our results. However, we believe its impli-allows separation of particles into “surface” and “bulk”
cations have far wider application, at least qualitatively.categories; Sec. IV documents this feature quantitatively, and
suggests a possible connection with the glass transition. The
statistical geometry of fluctuating void space presented in
*Electronic address: sastry@kanga.princeton.edu Secs. lll and IV has interesting implications for the process
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of homogeneous nucleation in stretched and superheated ligrystal, in the large system limit at zero press{8& The
uids, and for the superheated liquid spinodal at low temperatriple point temperature, pressure, and liquid density have
tures. These are discussed in Sec. V. Finally, Sec. VI surmbeen estimated for our, model[3]:

marizes the most significant findings, and suggests further

implications and directions for future investigation. kgT:/€=0.687,
3 _
Il. MODEL SYSTEM Pio°/€=0.003 061 9,
A finite cutoff version of the Lennard-Jones 12-6 potential pio>=0.67. 9

forms the basis for our numerical simulations. The total in- _ . _ o
teraction potential in al-particle system for this model has The corresponding estimates for the location of the liquid-

the form vapor critical point arg3]
kgT./e=1.16,
(D(rl,rz,...,rN)=eZ_ ve(rijlo), (1)
= P.o®/e=0.109,
where
pc0=0.247. (10)
A(x 2—x"®)+cotcy(2.5-%), x<2.5
velX) =10 x=2.5 ) Results from two sets of simulations are presented in this
paper. In both cases, the simulations were performed for 256
with particles in the N,V,T) ensemble for the shifted-force

Lennard-Jones potential abopMegs.(1)—(3)]. We also simu-
Co=0.016 316 891, ¢,=0.038 999 477. (3 lated a system of 1372 particles at one particular state point
p*=po>=0.725T*=kgT/e=0.9.

The first set of simulations were performed using the ca-
nonical Monte Carlo algorithm, at a reduced temperature
value of T* =kgT/e=2.5 which is substantially higher than

—A(y—12_ 6 the liquid-gas critical temperature. Simulations were per-
oLX)=4(x X @ formed for a series of reduced density values ranging from
vanishes ak=1, and passes through a unit depth minimump* =0.6 to 1.05. In each case, the system was equilibrated

Note that bothy . and its first derivativer; are continuous at
the cutoff value 2.5.
The full Lennard-Jones pair interaction

atx=2Y6=1.122 4@ ... . Bycontrasty, vanishes at for 1000 Monte Carlo cycles, and equilibrated configurations
were generated for 3000 Monte Carlo cycles. Configurations
Xo=1.003 208 (5  every 100 Monte Carlo cycles apart were then used to gen-

. . . ) _erate 30 inherent structures, using the procedure described
and its minimum is displaced slightly outward and upward: pe|ow. For both the equilibrated fluid configurations and the

N L corresponding inherent structures, the void space was ana-
Ue(Xmin)==—0.9299B ..., Xmin=1.123149. (6) lyzed as described below.
WhenN is large,® in Eq. (1) attains its absolute mini- The second set of simulations were performed using the

arranged in a hexagona| close pacl(éntp) Crystal, with Ref. [3], at a fixed redl:lced densihf :07, for temperatures
nearest neighbor distanca*=a/c, number densityp*  ranging from very high T*=15.0) to low values T*

=po?, and potential energy per particts* =®/Ne exhib- =0.56) where the system is metastable with respect to for-

iting the following values: mation of the vapor phase. In the inherent structure void-
constrained ensemble, the inherent structures generated peri-

a*=1.101 526, odically (every 100 Monte Carlo cyclgsre constrained not

to contain voids exceeding a predefined cutoff size. When-

p*=1.058 110, ever an inherent structure at the end of a block of 100 Monte

Carlo cycles is found to possess voids exceeding the cutoff

¢* =—6.658 894. (7)  size, the preceding block of configurations is disregarded and

the simulation is started afresh from the configuration at the
‘end of the preceding block. The cutoff parameter
=d 20" (Whered,,., is the maximum allowed void diam-
etep is set to beb=6 in this group of simulations. Thus no

This model attains almost the same stability in the face
centered cubigfcc) crystal at zero pressure, but with slightly
shifted values:

a*=1.101672, void can form in the inherent structure with diameter greater
than six times the average interparticle separation. As shown
p* =1.057 689, in [3], the constraint resulting from this value of the cutoff is
not severe, as reflected in its influence on the measured ther-
$* = —6.654 082. (8)  modynamic properties. The role of the constraint is to pre-

vent the metastable system from phase separating. In these
It should be noted in passing that the unmodified Lennardruns, the system is equilibrated for 4000 Monte Carlo cycles,
Jones case, Ed@4), also favors the hcp crystal over the fcc and equilibrated configurations are generated for 10 000
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cycles. Inherent structures are produced every 100 cycles. )
Thus the final output contains a sample of 100 inherent struc-
tures. As discussed if8,4], the rigorous statistical mechan-
ics of metastability is the statistical mechanics of systems
under constraints. Both the present work and thdt3dfare
examples of the computational implementation of constraints ~~ *~..__
to study superheated liquids rigorously. "'
Inherent structures are local potential energy minima to .
which chosen instantaneous configurations map under a /  Trge-e--
steepest-descent minimization of the energy. In the present
case, the appropriate mapping is generated by the following ‘
steepest-descent equations for each parti¢:

.
5 DR

dri(s)
ds

==V, ®[r(s),....,rn(s)], (11

wheres=0 is a progress variable indicating the extent to
which the descent trajectory has been followed. Starting
from an initial configuration $=0), a positive value of
displaces the configuration along the direction of the nega-
tive of the potential energy gradient until it comes to rest
(s—o) at the appropriate minimum. Given an initial con-
figuration of N particles, the simultaneous solution of tRe
equations in Eq(11) quenches the system into a potential FIG. 1. (top) Two-dimensional illustration of the Voronoi-
energy minimum, yielding the appropriate inherent structureDelaunay dual construction. Atoms are shown as dark small dots.
Potential energy minimizations for the shifted-force The central atoni is surrounded by atomjs The solid lines form
Lennard-Jones fluidescribed abovyevere performed using the Voronoi polygon about atoin The dashed lines form the De-
the conjugate gradient meth§ti0]. Details of the procedure launay triangles whose circumspheres are centered at the corre-
may be found in Ref[3]. sponding vertices of the Voronoi polygofottom The determina-
tion of the sizg(diametey of “void particles.” The atoms, shown as
lightly shaded circles, lie on the vertices of the Delaunay triangles.
The void particles are centered on the vertices of the Voronoi poly-
The analysis of void space in simulated equilibrium con-gon. For clarity, only one void particle is showfarger, darkly
figurations and inherent structures begins with the construcshaded circlg Its diameter(size equals that of the circle circum-
tion of the Voronoi and Delaunay tessellation of the configu-scribing the Delaunay triangle and centered on the vertex of the
rations [11]. The Voronoi and Delaunay tessellation, Voronoi polygon, minus the diameter of the atoms.
illustrated in Fig. 1, is defined as follows: a pointwherex ) . .
is a vector denoting location in space with respect to somé&L2l is any set of mutually connected points in space where
origin) belongs to the Voronoi cell of atomlocated at po- &7 additional alltom. can be inserted such that its Lennard-
sition x; if it is closer tox; than to any other point; of the ~ JONes spheréwith diametero) does not overlap that of any

system. Mathematically, this can be represented by otr_ler _atom. Equivaleqtly, only thoge Voronpi vertices with
void size=¢ are considered to be in the void.

xeVie|x—x|<[x—x| Vj, (12) As observed in Ref[3], the void size distribution ob-
tained for inherent structures differs remarkably from that for

whereV; denotes the Voronoi polyhedron which surroundsthe corresponding equilibrium configurations, displaying a
atomi. The dual Delaunay construction is a tiling of spacelong tail extending up to~4o¢. Correspondingly, a visual
by simplices(d-dimensional “tetrahedra” wherel is the inspection of these inherent structure configurations indicates
system’s dimensionwhose vertices are the atom positions that the particles in the system are arranged in a dense pack-
X;, while the centers of the spheres circumscribing theséng, leaving an apparently connected part of the system vol-
simplices are the Voronoi vertices. For the purpose of charume empty[3]. Further, a double peak is found at small void
acterizing void space, we find it convenient to introduce thesizes, which is associated with the presence of distorted tet-

lll. VOID DISTRIBUTIONS

following definitions. rahedral and octahedral voids in the dense packed region.
(1) The radius of the circumscribing sphere centered on &imilar results for small void sizes were also obtained by
Voronoi vertex is called the “vertex radius.” Finney and Wallac¢13], who generated dense amorphous

(2) The diameter of the circumsphere minus the Lennardpackings by allowing packings of hard spheres to relax under
Jones diametes is termed the “void size” and is taken as a smooth repulsive potential.
the effective size of the void region about a Voronoi vertex. Figure 2 shows an inherent structure configuration for a
This amounts to visualizing the voids as spherical particlesystem of 1372 patrticles, generated from a conjugate gradi-
with diameters equal to their effective size. ent minimization of the energy of a liquid configuration at

(3) For the purpose of analyzing the connectivity of void p* =0.725 andT*=0.9. The particles shaded light gray
space, an “exclusion radius” is assigned to each atom, equdbrm the interface between the region where atoms are
to the Lennard-Jones diameter With this choice, acavity = packed densely, and an empty region. The atoms in the dense
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FIG. 2. Configuration oN= 1372 atoms in an inherent structure
obtained from an equilibrated liquid configurationTt=0.9 and

p*=0.725. The atoms shaded light gray form the interface of the

single cavity present. Atoms in the bulk parnot adjacent to the
cavity) are shaded dark gray. If a Voronoi vertexiimt) part of the

largest cavity, atoms at the vertices of the dual Delaunay simplex

are classified as surfa¢bulk) atoms.

region are shaded dark gray. It can be seen that the morphol-
ogy of the packing of atoms is intricate. The empty space
occupies a significant fraction of the total volume, and ap-

pears to be interconnected.

Figure 3 shows a comparison of void size distributions for

equilibrated liquid configurations and corresponding inheren
structures afp* =0.7. The temperature of the equilibrated
liquid is T*=0.6. In an effort to make these observations
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FIG. 4. (a) Probability density of the diameter of voidis units

more precise, and to study the change in the observed feaf o) found in the inherent structures of the shifted-force Lennard-
tures with the system density, we first consider the void sizdones fluid as a function of density. Note that while #dr=0.75,
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FIG. 3. Probability density of the diametén units of o) of

0.85 the peak positions roughly coincide, they move to lower values
for p* =1.05. (b) Detail of the void size distribution as shown in
(a), but here on a different,y-axis scale. Note that the “tail” of
the void size distribution disappears at higher densities.

distributions, and then analyze the connectivity properties of
the void space.

Figure 4a) shows the void size distributions for four den-
sities(p* =0.75,0.85,0.95,1.05In all cases, the temperature
of the equilibrated configurations from which the inherent
structures were obtained was =2.5. Two trends in these
distributions are visible. As the density increases, the low
void size peaks$“double peak”) do not at first change loca-
tion appreciably. In Fig. 49* = 0.75,0.85 represent the range
of densities where this behavior is observed. However, at
high densities, the peak positions move to lower values, as
seen forp* =1.05. The second trend in behavior is observed
in the tail of the distribution. While the two lower densities
exhibit a large void tail(the range being smaller fos*
=0.85 compared tep* =0.75), no tail is observed for the

voids found in the inherent structure and in the unquenched liquidwo higher densities. Figure(d) shows the same distribu-

for the shifted-force Lennard-Jones fluid Bt=0.6 andp* =0.7.
The dashed line corresponds to the inherent structures and the so
line corresponds to the unquenched configurations.

tions on a magnifieg-axis scale to make this point clearer.
lid We consider next the connectivity and extent of the void
space associated with these void distributions. The void size
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FIG. 5. Volume fraction of the largest cavity in inherent struc-  FIG. 6. Separation of void size distribution into bulk and cavity
tures as a function of density. Note that this volume fraction van-components fol* = 1.5, p* =0.7. Note that the separation is sharp
ishes atp* =0.89. at the exclusion radius defining the vdid.= o, which is equiva-

lent to void size equal to lin units of o).
distribution, while characterizing the empty space in a fash-
ion useful for constrained ensemble simulations, does ndierent structures as the system size increases remains to be
provide a complete description of void space. For examplestudied. We summarize our expectation of the morphology
the fraction of the system’s volume that is empty of particlesof inherent structures for large systems, and the reasoning
(void space volume fractioncannot be obtained directly behind our expectation, in Appendix B.
from the void size distribution. In addition, it is important to
understand how the void space is connected; i.e., whether the
void space present in the system can be decomposed into
many disconnected cavities, or whether all the void space The identification of the cavity containing the void vol-
present in the system is connected and mutually accessiblame permits us to separate the void size distribution into
To obtain this information, we have developed an algorithmbulk and cavity components, wherein the bulk component is
that can(a) identify disconnected cavities that exist in the formed by comparing the probability density of distances of
system, andb) yield the total void volume present in each the Voronoi vertices from atom centers for vertices that do
cavity. The details of this algorithm are presented in part | ofnot lie in the cavity, while the cavity component is formed
this work[12]. We note here that part of the procedure dis-by considering Voronoi vertices that lie in the void. Figure 6
tinguishes Voronoi vertices that contribute to the total voidshows these two component distributions. It is observed that
from those that do not. In order to generate the above inforthere is a sharp change when the vertex radius equals the
mation, we must define an exclusion radius around eachxclusion radius.
atom, which separates space into occupied and unoccupied The separation of Voronoi vertices into bulk and cavity
(or void) volume. We choose the exclusion radius torbe vertices also permits us to distinguish two types of atoms.
= ¢, the Lennard-Jones diameter. Hence voids whose diamAtoms that lie at the vertices of the Delaunay simplex dual to
eter is smaller tharr do not contribute to the total void a Voronoi vertex which is in the void predominantly consti-
space, because it is impossible to insert another Lennardute the surface of the largest cavity. If the Voronoi vertex is
Jones atom in such voids without overlap of its Lennard-not part of the largest cavity, the atoms at the vertices of the
Jones sphere with those of the other atoms in the surroundirgual Delaunay simplex are classified as belonging to the
Delaunay tetrahedron. bulk. We label atoms as either surface atoms or bulk atoms,

Figure 5 shows the volume fraction of the largest cavityaccording to this criterion. As first shown [13], visual in-
as a function of density. We see that at a dengity-0.89,  spection of the inherent structures obtained from liquid states
the void volume fraction essentially vanishes. At higher dennear the triple point density reveals a dense amorphous phase
sities, no void volume is present. We find that in a majority(bulk), and a large, possibly system-spanning void. The at-
of the configurations analyzed, the bulk of the void volume isoms that we label as surface atoms form the interface be-
contained in a single cavity. The average number of cavitiepween the amorphous bulk phase and the void space. The
varies from~1 at low densitie$p* =0.6,0.7 to a maximum  bulk or surface classification permits us to calculate the av-
of 2.45 atp* =0.87, close to the densify* ~0.89 where the erage density in the bulk component of the inherent struc-
void volume fraction becomes insignificant. In the range oftures. This is done by calculating the ratio of the number of
densities where the average number of cavities deviates sitpulk atoms to the sum of volumes of their Voronoi cells,
nificantly from 1 (p* = 0.85-0.89), the void volume fraction since each Voronoi cell by definition contains one atom. Fig-
contained in cavities other than the largest cavity does natre 7 shows the variation of the density of the bulk and
exceed 5%. We conclude that the void volume consists presurface parts of the inherent structures as a function of the
dominantly of a single connected cavity. Given the modessystem density. We notice the remarkable fact that the den-
system sizes studied here, the asymptotic morphology of insity of the bulk component of the system increases as the

IV. SURFACE AND BULK PARTICLES
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therefore the result of a mechanical instability. Thus the ap-
pearance of void space in the inherent structures and the
progressive densification of the bulk component bejgiv
=0.89 appear to be consequences of the system reaching a
density of mechanical instability, below which the system
becomes heterogeneous, simultaneously lessening the tensile
stress it bears. Since a glass is simply a liquid trapped in an
inherent structur¢l4], Figs. 7 and 8 suggest the interesting
question of whether this mechanical instability can be con-
sidered the absolute lower limit below which a glass cannot
exist. We are studying this question. The equation of state of
inherent structure§ressure vs densityvas previously con-
sidered by LaViolette[15]. However, its relationship to
‘ ‘ { ‘ ( } . ‘ changes in the void geometry discussed here has not been
04958 062 066 070 074 078 062 0.86 0.90 094 previously reported.

P At p*~0.993, the inherent structures experience zero
pressure. Amorphous packings prepared under conditions

FIG. 7. Variation of density of the bulk and cavity components]c f ext | 1 d itio Id
of inherent structures with the total density of the system. The ree or external pressur@.g., vapor depositionvouid pos-

straight(dotted line with unit slope k=Yy) is also shown as refer- Sess _th|§ densny.l Of Course_, the precise value Of, the packing
ence. density is a function of the intermolecular potential.
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total density decreases. The density of the bulk component V. IMPLICATIONS FOR NUCLEATION,
becomes equal to the overall densitypdt~0.89. The den- AND THE SPINODAL CURVE
sity associated with surface particles does not, since cavities
with finite (if extremely small volume persist untilp* The above results show that the mechanically stable con-
=0.92, and as a result yield lower values for the densities ofigurations of a simple atomic liquid become inhomogeneous
surface atoms. However, the number of such atoms is eXielow a certain bulk density due to the appearance of large
tremely small forp* =0.90 and 0.92. voids. We now investigate some implications of this interest-
In seeking an explanation of this behavior, we calculaténg observation for homogeneous nucleation in superheated
the pressure experienced by the inherent structures. Theordguids. o _ _ o
ical and methodological details germane to this calculation Superheated liquids will transform irreversibly into the
are discussed in Appendix A. Over the range of densitie¥apor phase. In the absence of dissolved or suspended impu-
investigated, the equation of stafessure vs densitpf the  fities or foreign surfaces, this transformat_mn necessitates the
inherent structures displays van der Waals—type behavior, §grmation of large enough bubbles within the bulk liquid.
shown in Fig. 8. Starting at high density, decreasing the denl'his is an example of homogeneous nucleation, in which the
sity gradually places the inherent structures under tension. Attable phase is formed within the bulk metastable phase, in
p*=0.89, the limit of maximum tension is reached. Uponthe absence of a preexisting interfajell. Since homoge-
further expansion, the pressure increases instead of decred0Us nucleation in superheated liquids involves forming
ing. This is exactly the density at which voids appear in thesufficiently large voids, it is natural to inquire whether voids

inherent structure, whose inhomogeneity @it<0.89 is  ininherent structures are related to regions of low density, or
“weak spots” in the unquenched superheated liquid that

40 . . . could act as nucleating sites for boiling or cavitation.

To answer this question, we examine the void space ge-
ometry of configurations of the shifted-force Lennard-Jones
fluid. As explained in Fig. 1, each vertex of the Voronoi
20 7 polyhedron associated with any given atom is the center of a
Delaunay tetrahedron. This Voronoi vertex is the center of a
Delaunay circumsphere. The difference between the circum-
00 L | sphere’s diameter and the Lennard-Jones size parameter
y defines the size of the void associated with the Voronoi ver-
tex. The maximum void size associated with an atom’s
Voronoi polyhedron defines the single void size assigned to

Poe

20 1 an atom in any configuration under studh6]. This consti-
tutes a measure of local density fluctuations towards lower-
density values, which are important in superheated liquids.

4.0 ‘ . ; : Having thus assigned a void size to each atom, we ask

0.60 0.70 0.80 0.90 1.00 1.10

5 whether a given atom, upon steepest-descent quenching onto
a mechanically stable inherent structure, becomes a bulk or a

FIG. 8. Variation of the pressure of inherent structures with thesurface atom, as defined in Sec. IV. This is repeated several
system density. Note that the minimum in this curve coincides withtimes, to gather statistics. Finally, we calculate, at a given
the density at which the void volume vanishes. temperature and density, the probability that atoms associ-

po
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10 ’ et .=O..6 (2.4 times.the critipal dgnsf;yto 1.05(1.57_ times the
0 =07, =05 .‘,,_“ liquid’s triple point density. It is natural to inquire whether

£p =07,T =12 T o the mechanical instability at* =0.89 bears any relationship
¢p=07,T =15 . g, to theT=0 limit of the superheated liquid spinodal. To this
He end, we calculate the ratio of the maximum tensile strength
to the critical pressure. For the van der Waals fluid this quan-
tity equals 27; for the shifted-force Lennard-Jones fluid, the
, ratio is 30. This close agreement suggests that the equation
of state of the inherent structures may be thought of as the
T=0 limit of the fluid’s equation of state. According to this
interpretation, the inhomogeneous nature of inherent struc-
tures would correspond to spinodally decomposed structures,
arrested aff =0. Furthermore, th& =0 limit of the super-
heated liquid spinodal would define a limiting density, above
which inherent structures are homogeneous and below which
they are fissured, with possible consequences for the glass
transition, insofar as glasses may only be formed at densities

FIG. 9. Correlation between the void size assigned to an atom itigher than this spinodal density. Of course, the validity of
the equilibrium configuratiokin units of o) and the probability that  this “fluidlike” interpretation of structures whose constitu-

the atom is a surface atom in the inherent structure, at several teremt particles by definition lack any mobility whatsoever,
peratures, fop* =0.7. The continuous line is drawn as a smooth fit needs to be critically examined.

to the data ap*=0.7, T* =0.6.

0.8

Probability of being on the surface

5 | | | .
0.70 0.90 1.10 1.30 1.50 1.70
Void Size

ated with a given void size end up as surface atdngs,
atoms associated with the largest cavity in the inherent struc-
ture). This amounts to asking whether the appearance of In this work we have determined and interpreted the sta-
large voids(weak spotsin the liquid is associated with the tistical geometry of fluctuating void space in a model atomic
appearance of inhomogeneous inherent structures. The reslitjuid. Calculations have been done both for liquid configu-

is shown in Fig. 9. The three curves correspond to calcularations and for their mechanically stable inherent structures
tions performed at a single density* =0.7, which is close generated by steepest-descent quenching onto local potential
to the triple poin}, and at temperatures spanning a rangeenergy minima. Both stable and metastable states have been
from subtriple to supercritical. considered. The most important findings are as follows.

At each of the three temperatures investigated, there is a (1) There exists a well-defined bulk density above which
void size d,;;~0.50 [16] such that atoms associated with inherent structures are homogeneous, and below which they
voids larger thard,,, are increasingly likely to end on the are fissured due to the appearance of large voids.
inherent structure interface, this probability increasing with  (2) Large voids appear in the inherent structures as a re-
void size. The steepness of the interface probability vs voidult of mechanical instability such that on further decrease of
size curve decreases with increasing temperature. the bulk density, tension is relieved and the pressure in-

These calculations show that small voidb<{(d,,,) form  creases towards positive values.
spontaneously and frequently, as a result of thermally driven (3) This mechanical instability appears to be the0
density fluctuations. The formation of largd>*d,,,) voids, extrapolation of the superheated liquid spinodal.
on the other hand, requires favorable energetics, and this is (4) Insofar as a glass can be considered a liquid trapped in
reflected in the geometry of underlying inherent structuresan inherent structure, the mechanical instability may be an
Temperature, therefore, affects the formation of cavities irabsolute lower density limit to the possibility of glass forma-
two ways: it is solely responsible for the formation of small tion.
voids that result from density fluctuations, and it affects the (5) Weak spots, that is to say large voids that serve to
rate at which the energy landscape is traversed. This traversilitiate bubble nucleation, form as a result of sampling local
provides the favorable energetics needed for forming larg@otential minima that provide the requisite favorable energet-
voids, or weak spots. Questions worth examining include thécs.
temperature- and density-dependent rate of formation of (6) The quantitative investigation of the density- and
weak spots of a given size, the energetics of weak spot fotemperature-dependent kinetics of weak spot formation
mation, and the fate of weak spots after they are formedshould provide a microscopic basis for the formulation of a
Clearly, answers to these questions should provide a firmigorous theory of bubble nucleation of liquids.
basis on which an improved, molecular-based understanding Our analysis has been restricted to a simple model atomic
of cavitation and homogeneous nucleation in superheatelijuid. We are pursuing the extension of this approach to
liquids can be built. molecular liquids, and in particular, water. Here, the statisti-

The preceding discussion addressed some possible implkal geometry of fluctuating void space, especially under con-
cations of inhomogeneous inherent structures for cavitatioditions of negative expansivity, that is to say when the tem-
and nucleation. We now turn our attention to the inherenperature and pressure, or energy and volume, are
structures themselves, and to the thermodynamic implicaanticorrelated, should prove useful in understanding the still
tions of their inhomogeneity. Figure 8 shows the equation ofntriguing properties of water at low temperatuleq. Fi-
state of the inherent structures over the density ragsifge nally, the determination and interpretation of weak spot for-

VI. DISCUSSION
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mation may also prove useful for understanding mechanical F(1)=rF (1) +ny(t) L+ ny(HLyuy+ny(t)L,u,
failure of materials at interfaces. Questions worth examining

here include the role of surface inhomogeneity in creating =rf(t)+A(t), (A4)
favorable energetics for weak spot formation, and the fate of
these weak spots once formed. whereu,, uy, andu, are unit vectors along each of the three

Cartesian axes, amd, ny, andn, are signed integers that
track crossings of cell boundaries.
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APPENDIX A: VIRIAL EXPRESSION FOR PRESSURE !
IN SIMULATIONS WITH PERIODIC

BOUNDARY CONDITIONS We first carry out the usual analysis fdt which can be

rewritten, using Eq(A3), as
The pressure is routinely calculated in simulations using
the virial function. However, in simulations where periodic E dr,
boundary conditions are employed, the separation of forces V= mif- dt2
on particles into internal and external or “wall” forces is not
straightforward and hence the relation of the virial calculatedCalculate the time averag\é over Ost<ty, wherety will
in simulations with thermodynamic pressure is subtle. Fureventually be allowed to become infinite.
ther ambiguities arise in calculating pressure in this manner t 1 n p
for the inherent structures, in which each particle experiences V== Oth: = f 02 m|<fi f.>d
0

(A7)

zero net force, since an inherent structure is defined to be a dt?

mechanically stable configuration of particles. Hence we dis-

cuss below details leading to the identification of the virial _ o+ tOE ( ) dt+ -

expression as calculated in simulations with the pressure ex- ,

perienced by the simulated system. A discussion of this issue

for hard core systems may be found[it7]. ,
Consider initial (=0) particle positiongq,r,,... in the = —2K+ [2 M gt (ri)

primary cell 0

to
(A8)

whereK represents the system'’s total kinetic energy. Assum-

O<x<Ly, ing that the system approaches an equilibrium state in the
long time limit, we can relat& to the kinetic temperatur€,
Osy<Ly, _
lim K= 2 NkgT. (A9)
0=z<L,. (A1) to—oe
The cell volume is given by Note also that
V=L,L,L,. (A2) =finite,
=0
The Newtonian equations of motion d
o2 g; ()| ~6D;, (A10)
r t
m g =F (i=12,...N) (A3) °

whereD; is the diffusion constant of speciésalso a finite
guantity. Consequently the last term in E48) vanishes in

determiner;(t) for t>0, wherem, is the mass of particle, the ty—oc limit, and we have in that limit

andF; is the force it experiences from all other particles and
their images in the_ periodic replicas of the primary c_eII. The V=—2K=—3NkgT. (A11)
Newtonian dynamics can causgt) to leave the primary

cell, and as it does so, an image particle simultaneously erfhe second of EqgA10) assumes that there is no center of
ters at the opposite face. Lgt(t) be the position of or that  mass drift for the coordinates.

one of its images which is in the primary cell at timeWe Because the;(t) diffuse without bound throughout the
can write infinite periodic array of cells, there is no obvious way at
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long times to resolve thé; into “wall” and “internal”
components. However, this can be done in the ca3& ofas
we explain below. First, we invoke Eq$A4)—(A6), and
write

ooyt Jt"z A()-Fi(tdt. (AL2)
to 0 1

From its definition in Eq(A4), A;(t) is a piecewise constant

vector, which tracks the diffusive process for particle a

coarse-grained way, identifying only the cell of residence at

any givent. But because this is s@A;| will tend to increase
ast*? at long times. Except possibly at short timaAs andF;
should be uncorrelated.e., the position of a particle is un-
correlated with the force acting on,itso

1 [t
im = | "At)-F(t)dt=0. (A13)
to— -+ 0JoO
Therefore, in they— + oo limit,
V* =Y=—3NkgT, (A14)

and soV* can be used to derive the usual virial equation of

state.

equation of stat¢18]:

V=—3N|<BT:<2_ ri'FieXt>+<2 ri'F:m>' (A15)
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Consider the usual separation into external and internal =—
forces as is written in the derivation of the virial-explicit 2
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(A18)

<Vim>22 <ri'

%))

This can be rearranged to obtain, with=|r;—r;[, and ¢;;
the pair potential,

(vm=-3
i,j>i

o > . (A19)

r.. —_—
< Uy

Now consider the simulated system with periodic bound-
ary conditions, where the force on a particle in the primary
cell can be written a&=2;.; ,Fi;w, where the vectow
labels the periodic images of, and is of the form
(ny,Nny,nz)=n,u,+nyuy+n,u,. The periodic image has co-
ordinates displayed bly(n,u,+nyu,+n,u,)=Lw. Thuss,,
stands for three embedded summations of the integer indices
Ny, Ny, andn,. For short-range force§ange<L/2) only
one image of particlg (including the primary cellcontrib-
utes a finite force. Lew; index such a periodic image. The
total virial is then written as

V=3 3 (R3S 3 (0t Fu

> 2 ((rf =) Fiju)- (A20)

Ed

Note that ¢ — r]*) is not the vector displacement from atom
i to the particular image gf which exerts a finite force on
and consequentlyr{ —rj’) is not parallel toFijo. We re-

write this expression by adding and subtracting the vector

The external part of the above expression is calculated/i- Thus

by writing (3ir;-F)Y=—¢(r-n)PdA=—P[(V-r)dV
=—3PYV, wheren is the local unit normal vector pointing
away from the center of the cell, amds the position vector
on the wall[18]. Hence

V=—3NkgT=—3PV+ < > F}’“> . (Ale)
1

which leads to the familiar expression for pressure,

1 A 1
PV=NkgT+ 3 < > F;”‘> =NksT+ 5 (V™).
I
(A17)

1
(V=352 2

: E ((ri—rf _WjL)'Fijwj>

L )
t5 2 > <Wj’Fijwj>E<VSIm>+<Vex>'
iEa
(A21)

The first term{ V™ is what one calculates in simulations to
be the virial[19]. The second term contains a sum over all
forces that are due to image particles, which lie outside the
primary cell, multiplied vectorially with displacements from
the particle coordinates in the primary cell to the image lo-
cations. Along each Cartesian directiah X, *y,* z), if the

We now describe the separation of the total force intoappropriate sum of normal component of forces is equated

internal and external forces in a simulation, and the identifiwith the pressure times the surface area, with the total virial

cation of the external forces with the pressure term in thebeing equal to BlkgT, the result of the above expression is
virial expression. In this discussion, we specialize to short-

ranged, pairwise central potentials, such that for any given
pair of atoms andj, there is only one force term acting on
i arising fromj and all its periodic images. Further, we con-

PV=NkgT+ 3(VsM, (A22)

sider a cubic simulation box of dimensidan With pairwise
interactions, we may writds=2;.;F;;, with Fjj=—F;;.
We can thus write

Thus the pressure of an inherent structure is in general non-
zero, even though the net force on every atom is zero, and
T=0.
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APPENDIX B: MORPHOLOGY coherence length(s). A facile analogy for the intermit-
OF INHERENT STRUCTURES tency, from geology, is the sudden realignment of tectonic

. . e e . plates marked by earthquakes.
Figure 8 |de_nt|f|es the _densmy =089 as the point of The key question to be answered is whether at skége
maximum tension for liquid-phase inherent structures. Our

analysis indicates further that whert <0.89, large voids attractive forces are sufficiently powerful to drive the system

appear in the inherent structures. The numerical Simulationtowards further consolidation. Consider the net attractive
PP : ' . force acting between a pair of compact domains of linear
have been restricted to modest numbers of particles for oby

; . ; dimension comparable t(s) and separated by a void or
vious practical reasons, but it seems reasoqable to SUPPORE. o 21so of width comparable tés). The magnitude of
that much larger, even macroscopic systems in the same lo '

densi s . ) his net force can be expressed as the following integral over
ensity range would also exhibit a corresponding fraction ot | & qv ied by th d .
large-void empty space in their inherent structures. Still left € volumesvy andV, occupied by these domains.
unanswered is a basic question about the geometric character
of this inherent structure empty space in the large-system
limit. One possibility is that during the steepest-descent
guenching most of the large voids aggregate to produce a
macroscopic, more or less compact, empty region, looselin this expressionp, stands for the particle density inside
speaking a “vacuum phase.” A second possibility is that theeach of theamorphousdomains,v(rj;) is the particle pair
voids, perhaps relatively large compared to particle diametepotential that supplies the attraction, amg is a unit vector
o, remain dispersed throughout the medium. along the line of centers between the domains. Realistic mo-
This appendix provides a simple heuristic argument thatecular interactions between uncharged and nonpolar species
favors the second alternative over the first. Subsequent simare dominated by dispersion interactions at long range; in the
lations with substantially larger systems may be able to coneonventional Lennard-Jones terminology we can set
firm or reject that conclusion. But if it turns out to be incor-

F:pgf drif drj|VU(rij)'U12|. (BZ)
Vi Va

rect, the reason for its failure will have to involve some deep v(rij)= —4e(a/rij)6. (B3)
and unsuspected characteristic of the steepest-descent map-
ping that generates liquid-phase inherent structures. Consequently Eq.B2) becomes

In the low-density regime under consideration, attractive
interparticle interactions are a decisive feature for the attain-
ment of inhomogeneous structures as a result of applying the F=- 24p§60'6f drif drjrifcos( Uij-Uyp), (B4)
steepest-descent operation defined by @4). In the early V1 V2
stage of that operation, small groups of particles draw to-

. ) ; whereu;; =rj; /ri; . Assuming that the shape and orientations
gether in a coarsening process that simultaneously must bgf V, andV, remain fixed, and that their separation main-

gin to leave behind low-density spots of comparable SI1Z€5ins a constant ratio with their size, it is easy to see fhat

The coarsening process continues as the small aggregates : :
attracted to one another and combiméth suitable readjust- SCales inversely with the coherence lentfts).

ments to form larger dense aggregates.
Let I(s) be a coherence or correlation length for spatial Foc1l(s), (BS)

density fluctuations in the partially quenched medium. It can . L o .

equally well be described as the mean aggregate size at vi 0 the net attrac'glon d'f"'”'SheS tq zero W't.h increasis).

tual time's in the steepest-descent mapping, Etl). The Of course our simulations described earlier have used the

mean spatial extent of void regions created by the coarseni fijite cutoff ver5|oT< of tf?e It_ertwrllard-\]oﬂr:es tphottentrllal an.d S0

process hence should also be proportional to some multipl av?BaSr; e:]/err:qv\lleaverme hie: ail q ?]?e)" 3\?h na tr? own 'E

of this length, sayd(p*)I(s). We wish to determine whether d- » hamely, vanishing identically wnhe € gap be-
tween domains exceeds the cutoff distance.

In order forF to succeed in pulling together domaivs
lim 1(s) (B1) and V, (and consequently combining void spaces in the
s neighborhoodlit must overcome the restoring forces that
attach them to other neighboring domains. It can be argued
exists and is equal to some well-defined limj(p*) even thatF’ should scale as a positive power|¢§):
for arbitrarily large systems, or whether the expression Eq.
(B1) diverges to infinity for arbitrarily large systems. In ei- F'=[I(s)]’, p>0. (B6)
ther case, it is reasonable to assume t{a) increases
monotonically withs. Especially during the late stages of The area of attachment along a relatively poorly bonded
steepest-descent quenching, configurational readjustmertteundary between contacting domains should, on average,
have a distinctive intermittent, or sporadic, character. This ide proportional tg1(s)]?, i.e.,p=2. Alternatively, if elastic
vividly evident when virtual times is eliminated and the deformation of the local domain complex is required to
potential energyp is plotted againstV®| or [V®|? for the  bridge the gap betweewi; andV,, thenp=3. So long ap
guench[20,21]. These episodes have a natural interpretations positive as indicated in E¢B6), its precise value need not
as sudden relative motions of essentially solid particle dobe known.
mains to produce larger groupings, and this is exactly the The nature of the steepest-descent process at l¢g)e
coarsening process described above and monitored by tliepends on which oF and F’ dominates. In the earliest
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stages it is clearly the attractive forces, ilg,,that drive the the void space at the termination of the arrested consolida-
mapping to minima. However, it is obvious from comparisontion process. It may consist of relatively large but discon-
of characteristic dependences Ig) in Egs.(B5) and(B6)  nected voids. Or it may be above the void space percolation
that a crossover at finitemust occur. At this point, further threshold to produce a bicontinuous texture of interpenetrat-
coarsening becomes infeasible. The consolidation procesag and multiply connected regions of dense amorphous mat-

halts at finite coherence length(p*). ter and of empty space.
This argument leaves unspecified the geometric nature of
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