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Statistical geometry of particle packings. I. Algorithm for exact determination of connectivity,
volume, and surface areas of void space in monodisperse and polydisperse sphere packings
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Packings of spheres serve as useful models of the geometry of many physical systems; in particular, the
description of thevoid region in such packings~the region not occupied by the spheres! is crucial in many
studies. The void region is, in general, composed of disconnectedcavities. We present an algorithm for
decomposing void space into cavities and determining the exact volumes and surface areas of such cavities in
three-dimensional packings of monodisperse and polydisperse spheres.@S1063-651X~97!10711-5#

PACS number~s!: 61.20.Gy, 02.70.2c, 61.43.Bn
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I. INTRODUCTION

Geometry plays an important role in determining t
physical properties of many systems composed of large n
bers of particles. In continuum systems, the study of geo
etry in a large number of cases involves the analysis of c
figurations of spheres, which may or may not intersect e
other. In many cases, the representation of structure in te
of assemblies of spheres is dictated by the inherent prope
of the component particles, as in the case of monatomic
uids @1–3#, colloidal suspensions@4#, etc. In other cases
such as the modeling of porous media@5#, powders@6#, etc.
arrangements of spheres serve as useful and reasonable
els that facilitate theoretical analysis.

In many problems, thevoid region ~the region that lies
outside an appropriately definedoccupiedspace associate
with the spheres; see discussion below! and the interface
between the void and occupied regions are of specific in
est. An important example is the hard sphere system. It
been shown@7,8# that the thermodynamics of a system co
posed of hard spheres is determined entirely by the volu
and surface area of theavailable space, which is defined as
the set of all allowed positions for the center of an additio
hard sphere; the occupied space in this case is the unio
spheres around each hard sphere center, whose radius e
the diameter of the hard spheres. Note that unlike the h
spheres themselves, the relevantexclusion spherescan over-
lap with each other. Another interesting example is the e
mation of the solvation free energy of proteins, which d
pends on the accessible surface area@9#.

A detailed analysis of various particle and void corre
tion functions has been pursued in recent years, as a u
approach to quantifying the morphology and properties
inhomogeneous media@10–12#. The nearest neighborvoid
distribution functions @11# for a given configuration of
sphere centers may be related to the volume fraction
surface areas of the void region, by defining exclus
spheres of variable radius around sphere centers.

*Electronic address: sastry@kanga.princeton.edu
561063-651X/97/56~5!/5524~9!/$10.00
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The above remarks serve to illustrate the usefulness
knowing the volumes and surface areas of the void regio
packings of spheres. They also indicate that the general p
lem of interest is the calculation of these quantities in co
figurations of overlapping spheres. In such configuratio
the void space is in general composed of disconnected
gions, orcavities.

Some of the void quantities mentioned above can be
culated straightforwardly using standard Monte Carlo sa
pling methods. However, such estimation becomes hig
unsatisfactory on account of statistical uncertainty when
volume fraction of the void region is small@13#, e.g., for
high densities in the hard sphere system. Hence it is desir
to have a method that permits an exact decomposition
void space into cavities and the calculation of the volu
and surface areas associated with such cavities. While s
methods have previously been developed for two dimens
@13–15#, no exact method has been available for thre
dimensional systems. Further, no method has been avai
for such calculation in polydisperse packings in either tw
or three-dimensional systems.

In this paper, we present a method for calculating
volumes and surface areas of cavities in arbitrary mono
perse and polydisperse sphere packings. In the compa
part II @16#, we use the algorithm to study the statistic
geometry ofinherent structures@17# in a system composed
of atoms interacting with the Lennard-Jones potential.

The paper is organized as follows. In Sec. II we state
problem considered and outline the algorithm, for the mo
disperse case. In Sec. III we discuss the network mapp
that allows the identification of cavities. In Sec. IV we d
scribe the identification of polyhedra that enclose the cav
volumes. In Sec. V we discuss the calculation of cavity v
umes and surface areas within such enclosing polyhe
Some caveats that pertain to periodic arrangements
spheres are discussed in Sec. VI. The generalization to
polydisperse case is detailed in Sec. VII. Section VIII co
tains a summary and concluding remarks.

II. OUTLINE OF THE ALGORITHM

We consider a configuration of points~referred to asat-
oms in what follows! in a three-dimensional volume. W
5524 © 1997 The American Physical Society
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56 5525STATISTICAL GEOMETRY OF . . . . I. . . .
assume that this volume is subjected to periodic bound
conditions, though this feature is not explicitly dealt wi
below. Defining an ‘‘exclusion sphere’’ around each ato
we can divide the system volume into the occupied reg
~union of all exclusion spheres! and the void region~comple-
ment of the occupied region!. In the monodisperse case, th
exclusion spheres are of the same size for each atom, w
they differ from atom to atom in the polydisperse case. T
void region is composed of subsets which are mutually d
connected, which we refer to as ‘‘cavities.’’ Thus a pa
existsin the voidbetween any two points that belong to th
same cavity, while no such path exists between two po
belonging to two different cavities.

A two-dimensional illustration is shown in Fig. 1, displa
ing an arbitrary configuration of points with finite exclusio
radii. The exclusion disks of distinct points overlap in th
illustration, as in the general case to which our method
plies. It is apparent from Fig. 1 that for a configuration
overlapping exclusion disks or spheres~the general case tha
we consider@18#! the void region may be composed of di
connected subsets. We refer to such subsets ascavities.
Given a configuration of atoms~i.e., the three-dimensiona
coordinates of all centers! the separation of space into occ
pied and void regions may be varied continuously by cha
ing the exclusion radius. In this case, the calculated v
volumes and surface areas as a function of the exclu
radius yieldnearest neighbordistribution functions that per
mit precise quantification of the system’s geometry@11#.

Given the configuration of atoms, the initial step in t
algorithm is the generation of the corresponding Voronoi a
Delaunay tessellations~for an efficient method to obtain
these tessellations see, e.g.,@19#!. Both Voronoi and De-
launay tessellations tile space~i.e., divide it into nonoverlap-
ping regions! and aredual to each other. The Voronoi tes
sellation divides space into regionsVPi which are closer to a

FIG. 1. A random configuration of points with exclusion dis
as shown. The union of shaded areas around each disk is the
cupied space.’’ The void region is composed of disconnected c
ties. Also shown are examples of Voronoi cells, Delaunay s
plices, and a connected cluster of Voronoi vertices correspondin
a cavity.
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given particle centeri than to any other. Thus a pointx
belongs toVPi if and only if

d~x,xi !,d~x,xj ! ; j Þ i , ~1!

wherexi ,xj are the positions of particle centersi and j , and
d(x,xi) is the distance betweenx andxi . Each Voronoi cell
is a convex polyhedron. The faces of the Voronoi cell a
equidistant from two particle centers. In random configu
tions of atoms an edge is defined by the intersection of th
faces and hence is equidistant from three atoms. A Voro
vertex is equidistant from four particle centers. As a Voron
vertex is equidistant from~or, equally far from! the sur-
rounding atoms, it is the point that is locally farthest fro
atom centers. Similarly, the edges connecting the Voro
vertices define paths between vertices that lie farthest f
surrounding atoms. These observations will be used below
the network mapping of void space. Joining pairs of parti
centers whose Voronoi polyhedra share a face, one obta
dual tessellation of space into simplical regions, the D
launay simplices~Fig. 1 shows the two-dimensional illustra
tion!.

The following steps~which are justified with details in the
sections mentioned! then yield the volumes and surface are
of individual cavities.

~1! Identifying the cavities (Sec. III):The set of Voronoi
vertices and Voronoi edges that belong to the void is ide
fied. Each set of vertices which is connected by edges in
void belong to the same cavity. Thus the cavities are ide
fied by obtaining the percolation clusters of edges that ar
the void.

~2! Identification of polyhedra enclosing the cavities (Se
IV): The union of Delaunay simplices corresponding to~or
dual to! the Voronoi vertices in a cavity encloses the cav
volume. The polyhedron defined by the union of such D
launay simplices provides an upper bound on the cavity v
ume. Further, in order to calculate the volume of a giv
cavity exactly, we need inspect only these simplices.

~3! Determination of cavity volume and surface are
within a Delaunay simplex (Sec. V):Each Delaunay simplex
is divided into 24 subsimplices, each of which has as
vertices~a! an atom~total of 4!, ~b! the midpoint of a De-
launay edge~three per atom!, ~c! the intersection point of a
Voronoi edge with the plane of a Delaunay face~two per
atom per Delaunay edge!, and ~d! the Voronoi vertex. The
volumes assigned to these 24 subsimplices can be positiv
negative based on criteria described in Sec. V. Each sub
plex is nominally treated as forming a subset of the Voron
polyhedron of the atom which forms one of its vertices. W
such an assignment, the cavity volume and the surface
contained within each subsimplex~which can be positive or
negative according to criteria defined in Sec. V! are calcu-
lated by considering the exclusion sphere of just the ver
atom. Summing in turn the cavity volumes and surface ar
~with appropriate signs! within each subsimplex that belong
to a Delaunay simplex, and within each Delaunay simp
belonging to a cavity, we obtain the total cavity volume a
surface area for a given cavity. The validity of the procedu
is demonstrated in Sec. V.
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5526 56SASTRY, CORTI, DEBENEDETTI, AND STILLINGER
III. IDENTIFYING THE CAVITIES

The first step in the algorithm is to establish a ‘‘perco
tion problem’’ or network mapping of void space in order
determine the location of the cavities. Considering
Voronoi tessellation of a configuration of spheres, Kerst
@20# ~see also@21,22#! showed that a network mapping cou
be defined for identifying the cavities present in the config
ration. We reproduce Kerstein’s results below for the sake
completeness.

Lemma 1. (Kerstein): A given point in the interior or o
the boundary of a Voronoi polyhedron is connected to
vertex by a path which is never closer to the polyhed
center than is the given point.

Theorem I (Kerstein): Every point in the void is connect
to some vertex by a path contained in the void.

Theorem II (Kerstein): If two vertices are connected
the void, then they are connected within the void by edge
the Voronoi tessellation of the centers.

Theorem III (Kerstein): An edge of the tessellation is co
tained within the void if and only if its point of closest a
proach to the plane of the adjacent centers (i.e., the cen
of the three Voronoi polyhedra sharing the edge) is in
void.

Thus, in order to determine the connectivity of the vo
space, we consider the network formed by Voronoi verti
and the edges that connect them. Then, each vertex is lab
~‘‘occupied’’ or not! according to whether it lies outside th
exclusion radii of atoms that surround it. The edges are t
examined to determine whether they lie in the void or n
and are labeled accordingly. We can then use standard
ter finding methods to determine connected vertices. Clus
of Voronoi vertices that are in the void, which are connec
by edges that also lie in the void, then define each disc
nected region of the void, i.e., the cavities. The number
vertices in a cluster affords a zeroth order estimate of ca
size.

IV. IDENTIFICATION OF POLYHEDRA ENCLOSING
THE CAVITIES

Theorem I shows that any point in the void belonging to
given Voronoi polyhedron is connected tosomevertex of
that polyhedron. The following lemma makes this statem
more specific.

Lemma 2: If any point in a Delaunay simplex belongs
the void, the corresponding Voronoi vertex belongs to
void.

This lemma can easily be seen to hold by considering
definitions of the Voronoi construction. However, we de
onstrate it by dividing the Delaunay simplex into subsi
plices, whose construction will be useful later. The details
this construction are illustrated in Fig. 2.

Consider the sphere around the Voronoi vertex (V) with
radius equal to the distance of the vertex and the ato
(A1 ,A2 ,A3 ,A4) comprising the Delaunay simplex. By defi
nition, the atoms lie on the surface of this sphere, and
ther, no other atom lies inside the sphere. The Delaunay
plex is contained in this sphere. For each face of
Delaunay simplex (AiAjAk), define a simplex~AAAV sim-
plex! with Ai , Aj , Ak , andV as the four corners. Any poin
in the Delaunay simplex is inside one~or more! of the four
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such simplices. Consider next the line perpendicular to
Delaunay face which is equidistant from the three atoms
the face. This line passes through the Voronoi vertex a
further contains the edge in the Voronoi construction tha
dual to the Delaunay face in question. Let the intersection
this point with the plane of the Delaunay face beEi jk . De-
fine simplices~AAEVsimplices! with two atoms in the face,
the pointEi jk , and the Voronoi vertex as the four corner
Any point in anAAAV simplex is inside one of the corre
spondingAAEV simplices. Finally, for eachAAEV simplex
AiAjEi jkV, with Bi j as the bisector ofAiAj , define two sim-
plices ~ABEV simplex! AiBi j Ei jkV and AjBi j Ei jkV. Any
point in an AAEV simplex is inside oneABEV simplex.
Thus any point in the Delaunay simplex is inside anABEV
simplex.

Assume now that some point in the Delaunay simp
~the initial point! is in the void. This point is inside som
ABEV simplex. The edgesAB, BE, andEV of the ABEV
simplex are mutually orthogonal, as can be deduced fr
their definitions. Define a coordinate system withA as the
origin andAB,BE,EV defining thex,y,z axes~the coordi-
nate system may be either right or left handed, but the ha
edness is not relevant here!. By construction,V has the high-
est value of each coordinate among points in theABEV

FIG. 2. Subdivision of a three-dimensional Delaunay simpl
~a! AAAV simplices when the Voronoi vertexV is inside the De-
launay simplex. The shaded volume is the subsimplexA1A2A3V.
~b! Subdivision of a Delaunay simplex face for definingAAEV,
ABEVsubsimplices, when the intersection of the Voronoi edge (E)
lies within the Delaunay face (A1A2A3). With the Voronoi vertex
V ~out of the plane! as the fourth vertex,A1, A2, andE define an
AAEV subsimplex, whileA1, B, andE define anABEV subsim-
plex. ~c! AAAVsimplices when the Voronoi vertexV is outside the
Delaunay simplex. SubsimplexA1A2A3V lies entirely outside the
Delaunay simplex, and further, overlaps with, e.g.,A1A2A4V. ~d!
Subdivision of a Delaunay simplex face for definingAAEV, ABEV
subsimplices, when the intersection of the Voronoi edge (E) lies
outside the Delaunay face (A1A2A3). In this case,AAEV, ABEV
subsimplices may lie entirely outside the Delaunay simplex, a
also overlap with each other~e.g.,A3B23EV andA3B12EV!.
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56 5527STATISTICAL GEOMETRY OF . . . . I. . . .
simplex, including the initial point. Thus the vertex is farth
from atomA than the initial point. Since the vertex is equ
distant from each atom of the Delaunay simplex and furth
no other atom is closer to it than these atoms, the Voro
vertexV is in the void.

Next we show that in order to calculate the volume o
cavity we need only inspect the Delaunay tetrahedra co
sponding to the vertices that belong to the cavity or clus

Theorem IV: Given a set of Voronoi vertices and edg
that belong to a cavity or cluster, the union of Delaun
simplices corresponding to the vertices in the cluster co
pletely encloses the cavity.

Let us assume the contrary. Let us assume that a
launay simplex whose Voronoi vertex does not belong to
cavity contains a point~the initial point I! that belongs to the
cavity.

From Lemma 2, the Voronoi vertex is in the void. Co
sider now the lineIV joining the initial pointI and the vertex
V. Clearly, every point onIV lies outside the exclusion
zones of the four atoms in the Delaunay simplex. Next,
trapolateIV to the surface of the circumsphere around
vertex, passing through the vertices of the Delaunay simp
The intersection point (S) defines the closest possible pos
tion of a fifth atom to any point on the line segmentIV.
Further, the point on line segmentIV closest toS is the
initial point I . Since the initial point by our assumption is
the void ~and hence outside the exclusion zone of the fi
atom!, so are all points on the line joining the initial poin
and the vertex. This implies that the initial point and t
vertex belong to the same cavity, in contradiction with o
assumption. The theorem is thus proved.

A corollary of the above theorem is that every Delaun
simplex overlaps at most with a single cavity.

Thus the sum of volumes of Delaunay simplices cor
sponding to Voronoi vertices in a cavity yield the upp
bound of the cavity volume. Further, we are in a position
calculate the volume of a given cavity by considering o
Delaunay simplex at a time. The procedure for doing so
discussed in the next section.

V. DETERMINATION OF CAVITY VOLUME
AND SURFACE AREA

WITHIN A DELAUNAY SIMPLEX

The calculation of cavity volumes is done by consideri
one Delaunay simplex at a time from the set of Delaun
simplices enclosing the cavity. In each simplex we need
calculate the total volume~which is trivial! and subtract from
it the volume that is inside the exclusion zones of the ato
The difference is the cavity volume in that simplex. T
approach is to divide the Delaunay simplex into smaller s
plices in such a way that in each smaller simplex, one ne
to calculate the overlap with only one exclusion zone.

Consider theABEV simplices defined in the course o
proving Lemma 2. As can readily be ascertained, the sum
volumes ofABEVsimplices does not in the general case a
up to the volume of the Delaunay simplex, since theABEV
simplices can both overlap and lie partially or fully outsi
the Delaunay simplex. We show here that by an appropr
assignment of signs to these volumes, the sum yields
volume of the Delaunay simplex.
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For any simplex~and its faces!, we can define an interio
and exterior surface. Consider now a face of the Delau
simplex. The interior side is oriented towards the fourth at
that completes the simplex. Now consider anAAAV sim-
plex. The interior of the Delaunay face for thisAAAV sim-
plex is the side that faces the vertex. We define the volu
of an AAAV simplex to be negative~specified by variable
SV521! if the interior side of a Delaunay face with respe
to theAAAVsimplex is different from the interior side of th
face with respect to the Delaunay simplex. With this defi
tion, the volumes ofAAAV simplices add up to the volum
of the Delaunay simplex.

To see this consider the projection~with the Voronoi ver-
tex as the apex! of some arbitrary point in the union volum
of all AAAV simplices, onto a Delaunay face. If the poi
gets projected onto some point on the exterior surface of
Delaunay simplex, it also necessarily gets projected o
some~only one! point on the interior surface of the Delauna
simplex. Thus every volume element that is mapped to
exterior surface of the Delaunay simplex~hence contributes
to the volume of anAAAV simplex that is counted as nega
tive! also gets mapped to the interior surface of the Delau
simplex ~and hence contributes to the volume of anAAAV
simplex which is counted as positive!. On the other hand
volume elements inside the Delaunay simplex can only
mapped to the interior surface and thus are counted as p
tive volumes.

Next consider the area of a Delaunay face. In analog
fashion to theAAAV simplex volumes, we can define th
areas of 2-simplices~triangles! AAE to be positive or nega-
tive ~specified by variableSE561!, such that the sum o
areas ofAAE 2-simplices equals the area of the faceAAA.
The division of anAAAVsimplex intoAAEVsimplices then
results in the correct volume for theAAAV simplex. The
further division of anAAE 2-simplex intoABE 2-simplices
does not lead to any sign duality, since the location of
point B is always fixed to be between two atoms.

Thus, for a givenABEV simplex, if we define its volume

VABEV5SVSEu~ABW3AEW !•AVW u, ~2!

the sum of these volumes yields the volume of the Delau
simplex.

Next, we need to define how the overlap volumes of
exclusion zones are treated within this construction. W
group theABEV simplices for each Delaunay simplex int
four groups, according to which atom participates as a c
ner. We then assign each such group to the Voronoi poly
dron of the corresponding atom@e.g., A3B12EV and
A3B23EV in Fig. 2~d! are assigned to the Voronoi polyhe
dron of atomA3#. As shown below, the volumes of subsim
plices, with the sign assignments as described above, ad
to the intersection volume of the Delaunay simplices in
cavity and the Voronoi cell of the appropriate atom. Th
means that each time anABEV simplex includes volumes
outside the Voronoi polyhedron of a given atom, the fracti
lying outside gets canceled by the negative volume of
other ABEV simplex. For each subsimplex, we define t
cavity volume to be the simplex volumeminus the overlap
volume of the simplex with the exclusion sphere of the at
in questiontimes SVSE .
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5528 56SASTRY, CORTI, DEBENEDETTI, AND STILLINGER
To demonstrate that the above prescription is valid,
first consider thesimplecase, and note the possible exce
tions. Then we demonstrate that in the exceptional cases
counting of volumes outlined above results in a meaning
answer.

Let us consider a~polygonal! face of a Voronoi polyhe-
dron and the pyramid defined with the polygon as the b
and the atom in the center of the polyhedron as the apex
the simple case, theABEV simplices can be described a
follows. Define pointsE between each pair of polygon ve
tices ~which are Voronoi vertices!, as shown in Fig. 3~the
location of the pointsE between two vertices is th
‘‘simple’’ feature!. The pointB ~defined as the intersectio
point of a Delaunay edge with the corresponding Voro
face! in the simple case is located inside the polygon. Th
trianglesBEV tessellate the polygon. For each triangle, ta
ing the atom as the fourth vertex, we obtain theABEV sim-
plices, which, in this case, are clearly contained inside
Voronoi polyhedron. Thus our prescription works in th
simple case.

The exceptions to the situation arise for two possible r
sons.~i! The pointsE do not lie ‘‘between’’ two vertices, but
on an extrapolation of the line joining two vertices. In th
case, clearly,E lies outside the Voronoi polyhedron.~ii !
Point B does not lie inside the polygon. In this case alsoB
lies outside the Voronoi polyhedron.

Consider the case whenB lies inside the polygon, but on
of the pointsE does not lie between the corresponding tw
vertices. This situation is illustrated in Fig. 4. Consideri
the face that is shared by the Delaunay simplices corresp
ing to the two vertices, we identify one of them (V1) to be
closer to the face than the other (V2). If V1 belongs to the
void, V2 also belongs to the void, and in this case, they b
belong to the same cavity~since the edge between them al

FIG. 3. Polygonal face of a Voronoi polyhedron. The figu
shows a two-dimensional projection along the axis joining ato
A1 andA2 ~which are thus at the same two-dimensional position
the projection!. A1 lies below the plane of the Voronoi face, whi
A2 lies above. The projected image of the midpoint of lineA1A2
~point B which lies in the plane of the face of the Voronoi polyh
dron! coincides, in this projection, withA1 andA2. Atom A3 com-
pletes one face of a Delaunay simplex, which is intersected by
Voronoi edgeV4V5 at pointE123. The dashed lines represent
edges of the Voronoi polyhedron which are out of the plane of
Voronoi face shown.
e
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h

belongs to the void!. V2 can belong to the void withoutV1
lying in the void, but we need not consider this possibility:
this case, no point in anyABEV simplex ~with V5V1! has
points lying in the void. Hence we cannominallyassignV1
to the same cavity asV2, without changing anything. Sinc
V1 andV2 belong to the same cavity, we can define a n
simplexABV1V2 by combining the volumes ofABEV1 and
ABEV2. Note that bothV1 andV2 are on the same side o
the Delaunay face they share, while their corresponding
launay simplices are on opposite sides. HenceABEV1 has
negative volume whileABEV2 has positive volume~in the
general case, i.e., when we let the location ofB vary, the two
simplices haveoppositesigns!. Further, the negative volum
of ABEV1 cancels exactly the volume ofABEV2 that lies
outside the Voronoi polyhedron~both simplices share the
base ABE, with choices for the fourth vertex—V1 or
V2—lying on the same line orthogonal to the base!, the dif-
ference being the volume ofABV1V2, which lies entirely
inside the Voronoi polyhedron.

Next we consider the situation whenB lies outside the
polygon. This case is illustrated in Fig. 5. For its analysis,
first consider the following theorem.

Theorem V: When the intersection point of a Delaun
edge and the plane of the corresponding Voronoi face
outside the Voronoi face, all Voronoi vertices that are ver
ces of the Voronoi face, if in the void, belong to the sa
cavity.

Consider the plane of the Voronoi face. The cross sec
of the exclusion sphere around the atom is a circular a
~see Fig. 5!, whose center lies atB ~the intersection point of
the Delaunay edge and the plane of the correspond
Voronoi face! and whose radius is given by (r c

22r B
2)1/2,

wherer c is the radius of the exclusion sphere, andr B is the
distance ofB from the atom. Considering the perimeter
the Voronoi face, any vertex that lies outside a distancer c

2

2r B
2)1/2 from B is connected along the perimeter to any oth

vertex that lies outside. Thus such vertices~a! belong to the
void, and~b! belong to the same cavity.

As before, if any vertex of the polygon is not in the voi
we cannominally include it in the cavity, since theABEV
simplices corresponding to such a vertex do not contrib
any volume. Now, as earlier, we can define~by combining

s

e

e

FIG. 4. Polygonal face of a Voronoi polyhedron, when
Voronoi edge (V1V2) does not intersect the corresponding D
launay simplex face (A1A2A3). In this case, theBEV triangles for
V1 andV2 overlap, but withBEV1 counted as negative, the sum
the two areas isBV1V2.
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VE line segments of adjoining vertices! triangles on the
Voronoi faceBV1V2, one of whose sides will be a Vorono
edge. For such edges whose interior side in aBV1V2 tri-
angle is different from the interior side with respect to t
polygonal face,SE will be negative. Thus we see that th
area of the Voronoi face, and hence the volume of the py
mid with the polygon as base, is counted correctly in o
prescription.

Thus, counting the volumes ofABEV simplices~and the
corresponding overlap volumes with the exclusion sphe!
as in Eq.~2!, we obtain the proper calculation of the cavi
volumes.

The practical step of calculating the overlap volum
within eachABEV simplex is straightforward, and is de
scribed in the Appendix. Thus the procedure outlined in S
II may be used for calculating cavity volumes and the dis
bution thereof. Note that within eachABEV simplex, if one
calculates, instead of the overlap volume, the area of
exclusion sphere, the summation of such area elem
yields the cavity surface areas.

VI. CAVEATS FOR PERIODIC CONFIGURATIONS

When the configurations considered are periodic,
Voronoi vertices sometimesdo notpossess the property tha
four Voronoi edges meet at a vertex, since, due to the s
metries present in periodic configurations, one may fi
more than four atoms at equal distances from a Voronoi v
tex. In such an event, the Delaunay tessellation of spac
degenerate; there exist Delaunay polyhedra which may
arbitrarily broken up into Delaunay simplices in more th
one way. Then, the Voronoi vertices dual to such Delau
simplices coincide. The practical problems to be solved
such cases in order to determine cavity volumes are~i! a
systematic procedure for breaking the degeneracy in defi
the Voronoi or Delaunay tessellations, and~ii ! accounting for
the fact that the ‘‘edges’’ connecting degenerate Voro
vertices are in fact points, which further coincide with t
locations of the two Voronoi vertices in question. Both the
problems are ‘‘bookkeeping’’ problems and do not affect t

FIG. 5. Polygonal face of a Voronoi polyhedron, when the
tersection pointB of the Delaunay edge does not lie within th
polygonal face.r c is the exclusion radius from the position of th
atomA, andr B is the distance between the atom and pointB. The
radius of the circle of intersection of the exclusion sphere and
plane of the Voronoi face is thus (r c

22r B
2)1/2.
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applicability of our algorithm. It must further be noted th
the degeneracies present in regular structures are destr
by infinitesimal perturbations away from perfect regularity

VII. POLYDISPERSE PACKINGS

In order to generalize the algorithm for polydisperse s
tems, we need correspondingly to generalize the type of
sellations utilized. We consider two such generalizations
low and discuss the extension of our algorithm f
calculating cavity volumes and surface areas in the t
cases.

A. Voronoi S regions

The usual Voronoi construction is not very useful in t
case of polydisperse packings, since the Voronoi vertic
edges, and faces no longer retain the properties of equ
tance from particles~since the particles we consider in th
polydisperse case are not identical, we drop from now on
reference to ‘‘atoms’’ adopted before and henceforth refe
‘‘particles’’ !. In particular, the relevant notion of equal di
tance from distinct particles~which we use in the conven
tional Voronoi construction to define the faces of t
Voronoi polyhedra! is the equality of a distance measure
from the ‘‘surface’’ of each given particle. Thus one mu
construct tessellations of space into regions that are clos
not to the centers, but to the ‘‘surfaces’’ of individual pa
ticles. Such a construction has recently been investigated
Medvedev@21#. In this construction, the notion of a Vorono
polyhedron generalizes to a VoronoiS region, defined to be
the set of points closer to the surface of a given spher
particle than to any other surface. Unlike Voronoi polyhed
the faces and edges of the VoronoiS regions are curved. In
particular, the faces are pieces of rotation hyperboloids~the
geometric locus of points equidistant from the surfaces
two spheres of different radii!. The edges are defined b
intersections of such hyperboloids. A two-dimensional e
ample is shown in Fig. 6.

As discussed by Medvedev@21#, the topology of the tes-
sellation by VoronoiS regions is not in general equivalent t
that of the conventional Voronoi tessellation. However, th
are polydisperse systems whose topology is equivalent,
such polydisperse systems are termed by Medvedevregular
systems. At present, no criteria have been established
determininga priori which polydisperse systems are regu
and which are not.

The discussion that follows is restricted to polydispe
systems which are regular. Thus we assume that the netw
topology of VoronoiS vertices and edges is the same as
the conventional Voronoi tessellation.

In this circumstance, then, the cavities may be identifi
by vertices and edges of theS regions that belong to the
void. In analogy to the monodisperse case, then, we
identify cavities in terms of Voronoi vertices connected v
Voronoi edges.

Thus, in order to justify the generalization of the alg
rithm to the polydisperse case, we need only to demonst
that ~a! an appropriate set of Delaunay simplices covers
cavity volume and~b! the volumes of individual Delaunay
simplices can be divided and evaluated by a procedure an
gous to the monodisperse case.

e
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First we consider Lemma 2 for the polydisperse case.
before, we considerABEV ‘‘simplices,’’ whereB is now the
intersection point of a Delaunay edge with a face~in general,
extension of the face! of the VoronoiS region,E, the inter-
section of an edge~or extension! of the Voronoi S region
with the corresponding Delaunay face, andV is a Voronoi
vertex. Note that one face of theABEVsimplex is nonplanar
~theBEV face!. Any point O inside the Delaunay simplex i
inside someABEV simplex. Now, the conical projectionO8
~with the particle coordinateA as apex! of any point inside
an ABEV simplex maps the initial point onto theBEV face
and the projected point is necessarily farther from the lo
tion of the particle. We can consider next a ‘‘curvilinear
projectionO9 of the projected pointO8 with point B as base.
To do so, we consider the plane formed by pointsA, B, and
O8 and its intersection with theBEV face. On this intersec
tion curve,O9 is the farthest point away fromB that is on the
BEV face.O9 lies betweenE andV, and is farther fromA
than O8. Point E is the point closest to the surface ofA
along EV. Thus a projection ofO9 along the curveEV,
namely, the pointV, is farther fromA thanO9. Thus, if any
point inside a Delaunay simplex is in the void, the cor
sponding Voronoi vertex is in the void, since the Voron
vertex is closer to the surfaces of the particles of the gi
Delaunay simplex than to any other particles.

Next we generalize Theorem IV. Consider some poini
which belongs to a given cavityC. The pointi is inside the
Voronoi S region of some particlea, Va . Va is composed of
overlap volumes ofVa with Delaunay simplices which hav
a as one of the vertices. Leti be inside one such Delauna
simplex. Sincei is in the void, the corresponding vertex is
the void by Lemma 2. Further, points along the line joiningi
and the vertex are at increasing distances from the sp
surface and thus the vertex belongs to the cavityC. Hence,
given any point in the cavity, it belongs to a Delaunay si
plex whose vertex is in the cavity.

The prescription for calculating the cavity volumes r
mains as before, except that individual Delaunay simpli

FIG. 6. Construction of VoronoiS regions. The boundaries be
tween VoronoiS regions are segments of surfaces~curves in two
dimensions! that are at equal distances from the surfaces of parti
adjacent to them. The dashed circle illustrates the fact that
Voronoi vertex at the center of the circle is at equal distances f
the surfaces of the three corresponding particles~figure adapted
with permission from@21#!.
s
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are now decomposed intoABEV simplices with one face
that is not planar~the BEV face!. Though this complicates
the calculation of volumes and intersection volumes for
dividual ABEV simplices, the procedure outlined in Sec.
for calculating the cavity volumes remains valid.

B. Radical plane construction

Another generalization of the Voronoi construction is t
radical plane construction. In this construction, one genera
izes the usual Voronoi construction by considering a diff
ent distance measure for defining regions that are assoc
with each particle@23#. A significant advantage in this
method is that the boundaries between regions assoc
with each particle remain planar. A pointx belongs to the
generalized Voronoi cell of particlei , if

d~x,xi !
22r i

2,d~x,xj !
22r j

2 ; j Þ i , ~3!

wherer i are the radii of the particles,xi the position of the
particle center, andd(x,xi) is the distance betweenx andxi .
The radical plane construction is illustrated in Fig. 7.

It has recently been shown by van der Marck@24# that the
network mapping obtained by Kerstein@20# for the monodis-
perse case generalizes to the polydisperse case unde
radical plane construction.

The arguments presented in Secs. IV and V apply to
radical plane construction as well. To show this, we fi
consider Lemma 2. The construction and properties of
AAAV, AAEV, andABEV simplices is identical to that in
Sec. IV. Thus, if some point in a Delaunay simplex is in t
void, the corresponding vertex is in the void. Consider
point i which is in the void. Leti belong to some Vorono
cell Va . Further,i belongs to the overlap volume ofVa with
some Delaunay simplex which hasa as one of the vertices
Any point in a Delaunay simplex belongs to at least o
ABEV simplex. Since the Voronoi vertex is in the void b
Lemma 2, and is farther from particlea thani , the pointi is
connected to the Voronoi vertex, which consequently

s
e

m

FIG. 7. Radical plane construction. Boundaries are shown
three separations of the sphere centers.~a! also illustrates the fact
that the tangent distances to the two spheres are equal alon
boundary.
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longs to the same cavity as the initial pointi . Finally, the
arguments in Sec. V apply without change for the radi
plane construction. The radical plane construction for
polydisperse case has the advantage that its geometry
more complicated than that of the usual Voronoi or Delaun
construction equal sized particles.

VIII. SUMMARY

In this paper, we have presented an algorithm for the
act calculation of volumes and surface areas of cavities
monodisperse and polydisperse sphere packings in thre
mensions. The method depends on the tessellation of s
into Voronoi and Delaunay polyhedra. In discussing the
plicability of our algorithm for the polydisperse case, w
described two generalizations of the usual Voronoi or D
launay construction to the polydisperse case, namely,
construction of VoronoiS regions and the radical plane co
struction. With the appropriate tessellation of space, the v
space is characterized first by employing a network mapp
wherein the ‘‘nodes’’ and ‘‘bonds’’ are the vertices an
edges of the Voronoi tessellation. By labeling these no
and bonds according to whether they lie in the void or n
we obtain a preliminary description of the cavities presen
percolation clusters of Voronoi vertices that are in the vo
connected by edges that lie in the void space. We have
sented a method for calculating the void volume and
cavity surface area for individual Delaunay simplices a
have shown how the total void volumes and surface area
cavities may be calculated by considering Delaunay s
plices dual to Voronoi vertices defining the cavities.
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APPENDIX: VOID VOLUME IN A SUBSIMPLEX

Here we calculate the cavity volume inside anABEV
subsimplex described in Secs. IV and V. Letr V be the dis-
tance from the atomA to the Voronoi vertexV. Similarly, let
r E and r B be the distances fromA to the intersection of the
Voronoi edge with the Delaunay faceE and the midpoint of
a Delaunay edgeB, respectively. PointsB, E, andV lie in a
plane perpendicular to the Delaunay edge along whichB lies
~i.e., perpendicular toAB!. Further, the line joining the
Voronoi vertexV with E is perpendicular to the plane con
taining pointsA, B, andE. Thus, by choosing the appropr
ate coordinate system, we can describe the coordinates oB,
E, andV as

B5~x0,0,0!, E5~x0 ,y0,0!, V5~x0 ,y0 ,z0!, ~A1!
l
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wherex0 , y0 , andz0 are related tor V , r E , andr B by

r B5x0 , r E5Ax0
21y0

2, r V5Ax0
21y0

21z0
2. ~A2!

The geometry is illustrated in Fig. 8. In order to calculate t
cavity volume, we need to calculate the overlap volumeVc
of the subsimplex with the exclusion sphere of radiusr c
(,r V). The cavity volume is then obtained by subtracti
Vc from Vt , the volume of the subsimplex,5 1

6 (x0y0z0).
DifferentiatingVc with respect tor c yields the contribution
of the given subsimplex to the cavity surface area,Sc . The
calculation is straightforward and will not be elaborated he
The final expressions forVc andSc follow.

Case I:r c,x0 .

Vc5
r c

3

6 S 2u2p/22arcsinF ~z0
2x0

22y0
2r V

2 !

r E
2~y0

21z0
2! G D , ~A3!

Sc5
r c

2

2 S 2u2
p

2
2arcsinF ~z0

2x0
22y0

2r V
2 !

r E
2~y0

21z0
2! G D . ~A4!

Case II:x0,r c,r E .

Vc5
u

2 S r c
2x02

x0
3

3 D 2
r c

3

6 S p

2
1arcsinF ~z0

2x0
22y0

2r V
2 !

r E
2~y0

21z0
2! G D ,

~A5!

Sc5ux0r c2
r c

2

2 S p

2
1arcsinF ~z0

2x0
22y0

2r V
2 !

r E
2~y0

21z0
2 G D . ~A6!

Case III: r E,r c,r V .

Vc5
1

2 S u2
p

2
1arcsinF y0

Ar c
22x0

2G D S r c
2x02

x0
3

3 D
1

x0y0

6
Ar c

22r E
21

r c
3

6
arcsinFx2

22y2
22x0

2

r c
22x0

2 G
2

r c
3

6
arcsinF ~z0

2x0
22y0

2r V
2 !

r E
2~y0

21z0
2! G , ~A7!

FIG. 8. ABEV subsimplex, with coordinate assignments f
pointsB, E, andV, relative to atomA.
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Sc5x0r cS u2
p

2
1arcsinF y0

Ar c
22x0

2G D 2
1

2 S r c
2x02

x0
3

3 D y0r c

~r c
22x0

2!Ar c
22r E

2
1

x0y0

6

r c

Ar c
22r E

2
1

r c
2

2
arcsinFx2

22y2
22x0

2

r c
22x0

2 G
1

r c
3

3

2r cx0
2y0

2

r E
2~r c

22x0
2!

1

A~r c
22x0

2!22~x2
22y2

22x0
2!2

2
r c

2

2
arcsinF ~z0

2x0
22y0

2r V
2 !

r E
2~y0

21z0
2! G , ~A8!

whereu5arctan(z0 /y0), x25r cx0 /r E , andy25r cy0 /r E .
-

e,

ys.

ng

,
c-
@1# J. D. Bernal, inLiquids: Structure, Properties, Solid Interac
tions, edited by T. J. Hughel~Elsevier, Amsterdam, 1965!,
p. 25.

@2# R. Zallen, inFluctuation Phenomena, edited by E. W. Mon-
troll and J. L. Lebowitz~Elsevier, Amsterdam, 1979!, p. 207.

@3# H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys.31,
369 ~1959!.

@4# W. B. Russel, D. A. Saville, and W. R. Schowalter,Colloidal
Dispersions ~Cambridge University Press, Cambridg
England, 1989!.

@5# H. L. Weissberg and S. Prager, Phys. Fluids5, 1390~1962!.
@6# M. Shahinpoor, Powder Technol.25, 163 ~1980!.
@7# R. J. Speedy, J. Chem. Soc. Faraday Trans. II76, 693 ~1980!.
@8# R. J. Speedy and H. Reiss, Mol. Phys.72, 999 ~1991!.
@9# C. H. Chothia, Nature~London! 248, 338 ~1974!.

@10# S. Torquato, Physica A207, 79 ~1994!.
@11# S. Torquato, B. Lu, and J. Rubinstein, Phys. Rev. A41, 2059

~1990!.
@12# H. Reiss, J. Phys. Chem.96, 4736~1992!.
@13# M. D. Rintoul and S. Torquato, Phys. Rev. E52, 2635~1995!.
@14# R. J. Speedy and H. Reiss, Mol. Phys.72, 1015~1991!.
@15# W. G. Hoover, N. E. Hoover, and K. Hanson, J. Chem. Ph

70, 1837~1979!.
@16# S. Sastry, P. G. Debenedetti, and F. H. Stillinger, followi

paper, Phys. Rev. E56, 5533~1997!.
@17# F. H. Stillinger and T. A. Weber, Phys. Rev. A25, 978~1982!.
@18# The cherry-pit model, in S. Torquato, J. Chem. Phys.81, 5079

~1984!, encompasses the range of possible cases.
@19# M. Tanemura, T. Ogawa, and N. Ogita, J. Comput. Phys.51,

191 ~1983!.
@20# A. R. Kerstein, J. Phys. A16, 3071~1983!.
@21# N. N. Medvedev, Dokl. Akad. Nauk337, 767 ~1994! @Phys.

Dokl. 337, 157 ~1994!#.
@22# N. N. Medvedev, V. P. Voloshin, and Yu. I. Naberukhin

Physical Chemistry of Colloids and Interfaces in Oil Produ
tion ~Editions Technip, Paris, 1992!.

@23# B. J. Gellatly and J. L. Finney, J. Non-Cryst. Solids50, 313
~1981!.

@24# S. C. van der Marck, Phys. Rev. Lett.77, 1785~1996!.


