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Packings of spheres serve as useful models of the geometry of many physical systems; in particular, the
description of thevoid region in such packing&he region not occupied by the spheréscrucial in many
studies. The void region is, in general, composed of disconnemdeiies We present an algorithm for
decomposing void space into cavities and determining the exact volumes and surface areas of such cavities in
three-dimensional packings of monodisperse and polydisperse spl&t663-651X%97)10711-5

PACS numbds): 61.20.Gy, 02.70-c, 61.43.Bn

I. INTRODUCTION The above remarks serve to illustrate the usefulness of

knowing the volumes and surface areas of the void region in
Geometry plays an important role in determining thepackings of spheres. They also indicate that the general prob-
physica| properties of many Systems Composed of |arge nun’{em of interest is the calculation of these quantltles INn con-

bers of particles. In continuum systems, the study of g(:Jomf_igurations of overlapping spheres. In such configurations,

etry in a large number of cases involves the analysis of contr;gn\éo'grsgﬁggs's In general composed of disconnected re-

figurations of spheres, which may or may not intersept €acll  some of the void quantities mentioned above can be cal-
other. In many cases, the. representation of structure in termg|ated straightforwardly using standard Monte Carlo sam-
of assemblies of spheres is dictated by the inherent propertig§ing methods. However, such estimation becomes highly
of the component particles, as in the case of monatomic liqunsatisfactory on account of statistical uncertainty when the
uids [1-3], colloidal suspension§4], etc. In other cases, volume fraction of the void region is smdll3], e.g., for
such as the modeling of porous mef@#d, powders6], etc.  high densities in the hard sphere system. Hence it is desirable
arrangements of spheres serve as useful and reasonable mam-have a method that permits an exact decomposition of
els that facilitate theoretical analysis. void space into cavities and the calculation of the volume

In many problems, theoid region (the region that lies and surface areas associated with such cavities. While such
outside an appropriately definamtcupiedspace associated methods have previously been developed for two dimensions
with the spheres; see discussion beleand the interface [13-15, no exact method has been available for three-
between the void and Occupied regions are of Speciﬁc ime,dimensional systems. Further, no method has been available
est. An important example is the hard sphere system. It haf@r such calculation in polydisperse packings in either two-
been showii7,8] that the thermodynamics of a system com-Or three-dimensional systems.

posed of hard spheres is determined entirely by the volume N this paper, we present a method for calculating the
and surface area of thevailable spacewhich is defined as volumes and surface areas of cavities in arbitrary monodis-

the set of all allowed positions for the center of an additionalP€'S€ and polydisperse sphere packings. In the companion

hard sphere; the occupied space in this case is the union gart Il [16],f_whe use the algori;h7m_ to study the statisti%al
spheres around each hard sphere center, whose radius eqUfometry ofinherent structure$17] in a system compose

the diameter of the hard spheres. Note that unlike the har§l atoms interacting W.'th the Lennard-Jones potential.
spheres themselves, the relevarclusion spheresan over- The paper is organized as follows. In Sec. Il we state the

lap with each other. Another interesting example is the estiprOblem considered and outline the algorithm, for the mono-

mation of the solvation free energy of proteins, which de—dISIoerse case. _In SE."‘.:' ”.l we dlscqs_s the network mapping
pends on the accessible surface d@la that allows the identification of cavities. In Sec. IV we de-
A detailed analysis of various particle and void correla-scribe the identification of polyhedra that enclose the cavity

tion functions has been pursued in recent years, as a usem(plumes. In Sec. V we dlscu'ss'the calculation .Of cavity vol-
mes and surface areas within such enclosing polyhedra.

approach to quantifying the morphology and properties of! . I
inhomogeneous medid0-174. The nearest neighbowoid Some caveats that pertain to periodic arrangements of
distribution functions[11] for a given configuration of spheres are discussed in Sec. VI. The generalization to the

sphere centers may be related to the volume fraction anao_lydisperse case is detailed_in Sec. VII. Section VIl con-
surface areas of the void region, by defining exclusion@iNS @ summary and concluding remarks.
spheres of variable radius around sphere centers. Il. OUTLINE OF THE ALGORITHM
We consider a configuration of poineeferred to ast-

*Electronic address: sastry@kanga.princeton.edu omsin what follows in a three-dimensional volume. We
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Connected Cluster  Delaunay Simplex given particle center than to any other. Thus a point
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| &i\&&\w\\ \Q\\i?\\%\\k\\\\\s\\\\\\%i\@\\ \\\\\ d(x,x;) is the distance betweenandx;. Each Voronoi cell

&\\\\\\Q l\w\\k\\\\? ) \‘E\w\k\\\j : 3 is a convex polyhedron. The faces of the Voronoi cell are

\Q\\Q\\Eg\ \E Q . ‘Q\Q\\&\\,\\ ~ e_quidistant from two pa_rticle_centers. In _random _Configura-

Q\\\;\i\\\&{\ \\Q\&\\W\S\\W tions of atoms an edge is defined by the intersection of three

\WQWWQ? N faces and hence is equidistant from three atoms. A Voronoi

SN \\§ \\E\SV\\“‘ w TN vertex is equidistant from four particle centers. As a Voronoi
) ;’ NN + vertex is equidistant fromor, equally far from the sur-
CAVITY Exclusion = rounding atoms, it is the point that is locally farthest from

Diameter atom centers. Similarly, the edges connecting the Voronoi
vertices define paths between vertices that lie farthest from
FIG. 1. A random configuration of points with exclusion disks surrounding atoms. These observations will be used below in
as s.hown. The union qf shaded.areas around eaph disk is the Hofhe network mapping of void space. Joining pairs of particle
cupied space.” The void region is composed of disconnected cavigenters whose Voronoi polyhedra share a face, one obtains a
ties. Also shown are examples of Voronoi cells, Delaunay sim-q,,5| tessellation of space into simplical regions, the De-
pllces_,tand a connected cluster of Voronoi vertices corresponding t&:lunay simplicegFig. 1 shows the two-dimensional illustra-
a cavity. tion).

The following stepgwhich are justified with details in the
assume that this volume is subjected to periodic boundargections mentionedhen yield the volumes and surface areas
conditions, though this feature is not explicitly dealt with of individual cavities.
below. Defining an “exclusion sphere” around each atom, (1) Identifying the cavities (Sec. ll[)The set of Voronoi
we can divide the system volume into the occupied regiorvertices and Voronoi edges that belong to the void is identi-
(union of all exclusion sphergand the void regioricomple- ~ fied. Each set of vertices which is connected by edges in the
ment of the Occupied regi@nm the monodisperse case, the void belong to the same Cavity. Thus the cavities are identi-
exclusion spheres are of the same size for each atom, whiféed by obtaining the percolation clusters of edges that are in
they differ from atom to atom in the polydisperse case. Théhe void. _ -
void region is composed of subsets which are mutually dis- (2) ldentification of polyhedra enclosing the cavities (Sec.
connected, which we refer to as “cavities.” Thus a path!V): The union of Delaunay simplices corresponding(@o
existsin the voidbetween any two points that belong to the dual to) the Voronoi vertices in a cavity encl'oses the cavity
same cavity, while no such path exists between two point olume. _The_ pOthedron defined by the union of suc_h De-
belonging to two different cavities. aunay simplices provides an upper bound on the cavity vol-

A two-dimensional illustration is shown in Fig. 1, display- ume. Further, in order to calculate the volume of a given

. . . : . e -2 cavity exactly, we need inspect only these simplices.
ing an arbitrary configuration of points with finite exclusion (3) Determination of cavity volume and surface area
radii. The exclusion disks of distinct points overlap in this

) . X ) within a Delaunay simplex (Sec. \Bach Delaunay simplex
illustration, as in the general case to which our method apis givided into 24 subsimplices, each of which has as its
plies. It is apparent from Fig. 1 that for a configuration of vertices(a) an atom(total of 4), (b) the midpoint of a De-
overlapping exclusion disks or sphei@se general case that launay edgdthree per aton () the intersection point of a
we considef18]) the void region may be composed of dis- vioronoi edge with the plane of a Delaunay fa¢eo per
connected subsets. We refer to such subsetsaaities atom per Delaunay edyeand (d) the Voronoi vertex. The
Given a configuration of atom&.e., the three-dimensional volumes assigned to these 24 subsimplices can be positive or
coordinates of all centershe separation of space into occu- negative based on criteria described in Sec. V. Each subsim-
pied and void regions may be varied continuously by changplex is nominallytreated as forming a subset of the Voronoi
ing the exclusion radius. In this case, the calculated voigolyhedron of the atom which forms one of its vertices. With
volumes and surface areas as a function of the exclusioguch an assignment, the cavity volume and the surface area
radius yieldnearest neighbodistribution functions that per- contained within each subsimpléwhich can be positive or
mit precise quantification of the system’s geométtg]. negative according to criteria defined in Seg. afe calcu-
Given the configuration of atoms, the initial step in thelated by considering the exclusion sphere of just the vertex
algorithm is the generation of the corresponding Voronoi andatom. Summing in turn the cavity volumes and surface areas
Delaunay tessellationgfor an efficient method to obtain (with appropriate signswithin each subsimplex that belongs
these tessellations see, e.pl9]). Both Voronoi and De- to a Delaunay simplex, and within each Delaunay simplex
launay tessellations tile spa@ee., divide it into nonoverlap- belonging to a cavity, we obtain the total cavity volume and
ping region$ and aredual to each other. The Voronoi tes- surface area for a given cavity. The validity of the procedure
sellation divides space into regiokl®?; which are closer to a is demonstrated in Sec. V.
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lIl. IDENTIFYING THE CAVITIES

The first step in the algorithm is to establish a “percola-
tion problem” or network mapping of void space in order to
determine the location of the cavities. Considering the
Voronoi tessellation of a configuration of spheres, Kerstein
[20] (see als¢21,22)) showed that a network mapping could
be defined for identifying the cavities present in the configu-
ration. We reproduce Kerstein’s results below for the sake of
completeness.

Lemma 1. (Kerstein): A given point in the interior or on
the boundary of a Voronoi polyhedron is connected to a
vertex by a path which is never closer to the polyhedron
center than is the given point.

Theorem | (Kerstein): Every point in the void is connected Al
to some vertex by a path contained in the void. A4 V/

A3

Theorem Il (Kerstein): If two vertices are connected by
the void, then they are connected within the void by edges of
the Voronoi tessellation of the centers.

Theorem IIl (Kerstein): An edge of the tessellation is con- © (&
tained within the void if and only if its point of closest ap-
proach to the plane of the adjacent centers (i.e., the centers FIG. 2. Subdivision of a three-dimensional Delaunay simplex.
of the three Voronoi polyhedra sharing the edge) is in the(@ AAAV simplices when the Voronoi verteX is inside the De-
void. launay simplex. The shaded volume is the subsimpl&A2A3V.

Thus, in order to determine the connectivity of the void (?) Subdivision of a Delaunay simplex face for definiAAEV,
space, we consider the network formed by Voronoi vertice$\BEV subsimplices, when the intersection of the Voronoi edg (
and the edges that connect them. Then, each vertex is labelfgf Within the Delaunay faceA1A2A3). With the Voronoi vertex
(“occupied” or not) according to whether it lies outside the ¥ (Qut of the plangas the fourth vertexil, A2, andE define an
exclusion radii of atoms that surround it. The edges are theft\EY subsimplex, whileAl, B, and€& define anABEV subsim-
examined to determine whether they lie in the void or notP'€*: (©) AAAVsimplices when the Voronoi vertéxis outside the
and are labeled accordingly. We can then use standard CluDelaunay simplex. SubsimpleX1A2A3V lies entirely outside the

ter finding methods to determine connected vertices. Cluste§elaunay simplex, and further, overlaps with, eALA2A4V. (d)

£\ . i that in th id_ which i ubdivision of a Delaunay simplex face for definiR@EV, ABEV
of Voronoi vertices that are in the void, which areé connecte ubsimplices, when the intersection of the Voronoi edgg ljes

by edges that also lie ir_‘ th.e void, then Qefine each discon(Sutside the Delaunay facALA2A3). In this caseAAEV, ABEV
nected region of the void, i.e., the cavities. The number ofpsimplices may lie entirely outside the Delaunay simplex, and
vertices in a cluster affords a zeroth order estimate of cavitysg overlap with each othée.g.,A3B23EV and A3B12EV).

size.

such simplices. Consider next the line perpendicular to a
Delaunay face which is equidistant from the three atoms in
the face. This line passes through the Voronoi vertex and

Theorem | shows that any point in the void belonging to afurther contains the edge in the Voronoi construction that is
given Voronoi polyhedron is connected smmevertex of  dual to the Delaunay face in question. Let the intersection of
that polyhedron. The following lemma makes this statementhis point with the plane of the Delaunay face Bg, . De-
more specific. fine simplicesAAEV simplices with two atoms in the face,

Lemma 2: If any point in a Delaunay simplex belongs tothe pointE;;,, and the Voronoi vertex as the four corners.
the void, the corresponding Voronoi vertex belongs to théAny point in anAAAV simplex is inside one of the corre-
void. spondingAAEV simplices. Finally, for eachAEV simplex

This lemma can easily be seen to hold by considering théA;E;j«V, with B;; as the bisector oA;A;, define two sim-
definitions of the Voronoi construction. However, we dem-plices (ABEV simpleX A;B;E;;xV and A;B;;E;; V. Any
onstrate it by dividing the Delaunay simplex into subsim-point in an AAEV simplex is inside oneABEV simplex.
plices, whose construction will be useful later. The details ofThus any point in the Delaunay simplex is inside ABEV
this construction are illustrated in Fig. 2. simplex.

Consider the sphere around the Voronoi vertg (vith Assume now that some point in the Delaunay simplex
radius equal to the distance of the vertex and the atomghe initial point) is in the void. This point is inside some
(A1,A5,A3,A,) comprising the Delaunay simplex. By defi- ABEV simplex. The edge&B, BE, andEV of the ABEV
nition, the atoms lie on the surface of this sphere, and fursimplex are mutually orthogonal, as can be deduced from
ther, no other atom lies inside the sphere. The Delaunay sintheir definitions. Define a coordinate system wihas the
plex is contained in this sphere. For each face of theorigin andAB,BE,EV defining thex,y,z axes(the coordi-
Delaunay simplex A;A;Ay), define a simpleXAAAV sim-  nate system may be either right or left handed, but the hand-
plex) with A;, Aj, Ay, andV as the four corners. Any point edness is not relevant her8y constructionV has the high-
in the Delaunay simplex is inside orier more of the four  est value of each coordinate among points in KBEV

IV. IDENTIFICATION OF POLYHEDRA ENCLOSING
THE CAVITIES
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simplex, including the initial point. Thus the vertex is farther  For any simplexand its faces we can define an interior
from atomA than the initial point. Since the vertex is equi- and exterior surface. Consider now a face of the Delaunay
distant from each atom of the Delaunay simplex and furthersimplex. The interior side is oriented towards the fourth atom
no other atom is closer to it than these atoms, the Voronadihat completes the simplex. Now consider AAAV sim-
vertexV is in the void. plex. The interior of the Delaunay face for tAsAAV sim-

Next we show that in order to calculate the volume of aplex is the side that faces the vertex. We define the volume
cavity we need only inspect the Delaunay tetrahedra corresf an AAAV simplex to be negativéspecified by variable
sponding to the vertices that belong to the cavity or clusterS,,= —1) if the interior side of a Delaunay face with respect

Theorem 1V: Given a set of Voronoi vertices and edgeso theAAAV simplex is different from the interior side of the
that belong to a cavity or cluster, the union of Delaunayface with respect to the Delaunay simplex. With this defini-
simplices corresponding to the vertices in the cluster comtion, the volumes oAAAV simplices add up to the volume
pletely encloses the cavity. of the Delaunay simplex.

Let us assume the contrary. Let us assume that a De- To see this consider the projectionith the Voronoi ver-
launay simplex whose Voronoi vertex does not belong to theex as the apexof some arbitrary point in the union volume
cavity contains a poingthe initial point )) that belongs to the of all AAAV simplices, onto a Delaunay face. If the point
cavity. gets projected onto some point on the exterior surface of the

From Lemma 2, the Voronoi vertex is in the void. Con- Delaunay simplex, it also necessarily gets projected onto
sider now the lindV joining the initial pointl and the vertex some(only one point on the interior surface of the Delaunay
V. Clearly, every point onlV lies outside the exclusion simplex. Thus every volume element that is mapped to the
zones of the four atoms in the Delaunay simplex. Next, exexterior surface of the Delaunay simpléxence contributes
trapolatelV to the surface of the circumsphere around theto the volume of arAAAYV simplex that is counted as nega-
vertex, passing through the vertices of the Delaunay simplexive) also gets mapped to the interior surface of the Delaunay
The intersection pointg) defines the closest possible posi- simplex (and hence contributes to the volume of AAAV
tion of a fifth atom to any point on the line segmd. simplex which is counted as positiveOn the other hand,
Further, the point on line segmeitV closest toS is the volume elements inside the Delaunay simplex can only be
initial point I. Since the initial point by our assumption is in mapped to the interior surface and thus are counted as posi-
the void (and hence outside the exclusion zone of the fifthtive volumes.
atom), so are all points on the line joining the initial point  Next consider the area of a Delaunay face. In analogous
and the vertex. This implies that the initial point and thefashion to theAAAYV simplex volumes, we can define the
vertex belong to the same cavity, in contradiction with ourareas of 2-simpliceftriangles AAE to be positive or nega-

assumption. The theorem is thus proved. tive (specified by variableSe=*1), such that the sum of
A corollary of the above theorem is that every Delaunayareas ofAAE 2-simplices equals the area of the fatkAA.
simplex overlaps at most with a single cavity. The division of anrAAAV simplex intoAAEV simplices then

Thus the sum of volumes of Delaunay simplices correresults in the correct volume for th@AAV simplex. The
sponding to Voronoi vertices in a cavity yield the upper further division of anAAE 2-simplex intoABE 2-simplices
bound of the cavity volume. Further, we are in a position todoes not lead to any sign duality, since the location of the
calculate the volume of a given cavity by considering onepoint B is always fixed to be between two atoms.

Delaunay simplex at a time. The procedure for doing so is Thus, for a givePABEV simplex, if we define its volume
discussed in the next section.
Vasev=SvSe|(ABXAE)-AV/, 2

V. DETERMINATION OF CAVITY VOLUME
AND SURFACE AREA
WITHIN A DELAUNAY SIMPLEX

the sum of these volumes yields the volume of the Delaunay
simplex.

Next, we need to define how the overlap volumes of the

The calculation of cavity volumes is done by consideringexclusion zones are treated within this construction. We
one Delaunay simplex at a time from the set of Delaunaygroup theABEV simplices for each Delaunay simplex into
simplices enclosing the cavity. In each simplex we need tdour groups, according to which atom participates as a cor-
calculate the total volum@vhich is trivial) and subtract from ner. We then assign each such group to the Voronoi polyhe-
it the volume that is inside the exclusion zones of the atomsdron of the corresponding atorfe.g., A3B12EV and
The difference is the cavity volume in that simplex. The A3B23EV in Fig. 2(d) are assigned to the Voronoi polyhe-
approach is to divide the Delaunay simplex into smaller sim-dron of atomA3]. As shown below, the volumes of subsim-
plices in such a way that in each smaller simplex, one needglices, with the sign assignments as described above, add up
to calculate the overlap with only one exclusion zone. to the intersection volume of the Delaunay simplices in a

Consider theABEYV simplices defined in the course of cavity and the Voronoi cell of the appropriate atom. This
proving Lemma 2. As can readily be ascertained, the sum afmeans that each time ahBEV simplex includes volumes
volumes ofABEV simplices does not in the general case addoutside the Voronoi polyhedron of a given atom, the fraction
up to the volume of the Delaunay simplex, since &8EV  lying outside gets canceled by the negative volume of an-
simplices can both overlap and lie partially or fully outside other ABEV simplex. For each subsimplex, we define the
the Delaunay simplex. We show here that by an appropriateavity volume to be the simplex volunmainusthe overlap
assignment of signs to these volumes, the sum yields theolume of the simplex with the exclusion sphere of the atom
volume of the Delaunay simplex. in questiontimes $S¢.
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FIG. 4. Polygonal face of a Voronoi polyhedron, when a
Voronoi edge ¥Y1V2) does not intersect the corresponding De-
launay simplex faceA1A2A3). In this case, thBEV triangles for

FIG. 3. Polygona! face of_a \_/oronm polyhedr_on.. lee figure V1 andV2 overlap, but witBBEV1 counted as negative, the sum of
shows a two-dimensional projection along the axis joining atom%he WO areas iBV1V2

Al andA2 (which are thus at the same two-dimensional position in

the projection. Al lies below the plane of the Voronoi face, while belongs to the void V2 can belong to the void withoat1
’(Az ."f; abﬁvﬁ'l.The. p[gjectled 'm??ﬁ off the Tlﬂpo\'/m of IA“EAlzh lying in the void, but we need not consider this possibility: In
pointB which fies in the plane of the face of the Voronol POYNE- s case, no point in anxBEV simplex (with V=V1) has

dron) coincides, in this projection, witAl andA2. Atom A3 com- oints Ivina in the void. Hence we carominallvassianyvi
pletes one face of a Delaunay simplex, which is intersected by thd ying : y 9

Voronoi edgeV4V5 at pointE123. The dashed lines represented to the same cavity a¥2, without Ch{inging a”Ythi”Q- Since
edges of the Voronoi polyhedron which are out of the plane of the?1 @ndV2 belong to the same cavity, we can define a new
Voronoi face shown. simplexABV1V2 by combining the volumes &BEVL and

ABEV2. Note that bothV1 andV2 are on the same side of
To demonstrate that the above prescription is valid, wdhe Delaunay face they share, while their corresponding De-
first consider thesimplecase, and note the possible excep-launay simplices are on opposite sides. HeAGEVI has
tions. Then we demonstrate that in the exceptional cases, tfegative volume whilABEV2 has positive voluméin the
counting of volumes outlined above results in a meaningfupeneral case, i.e., when we let the locatiofBofary, the two
answer. simplices haveppositesigng. Further, the negative volume
Let us consider &polygona) face of a Voronoi polyhe- 0f ABEVL cancels exactly the volume &BEV2 that lies
dron and the pyramid defined with the polygon as the bas@utside the Voronoi polyhedrofboth simplices share the
and the atom in the center of the polyhedron as the apex. Inase ABE, with choices for the fourth vertex¥1 or
the simple case, thABEV simplices can be described as V2—Ilying on the same line orthogonal to the baske dif-
follows. Define pointsE between each pair of polygon ver- ference being the volume &&BV1V2, which lies entirely
tices (which are Voronoi verticés as shown in Fig. 3the  inside the Voronoi polyhedron.
location of the pointsE between two vertices is the Next we consider the situation wheh lies outside the
“simple” feature). The pointB (defined as the intersection Polygon. This case is illustrated in Fig. 5. For its analysis, we
point of a Delaunay edge with the corresponding Voronoifirst consider the following theorem.
face in the simple case is located inside the polygon. Thus Theorem V: When the intersection point of a Delaunay
trianglesBEV tessellate the polygon. For each triangle, tak-€dge and the plane of the corresponding Voronoi face lies
ing the atom as the fourth vertex, we obtain thBEV sim- outside the Voronoi face, all Voronoi vertices that are verti-
plices, which, in this case, are clearly contained inside th&es of the Voronoi face, if in the void, belong to the same
Voronoi polyhedron. Thus our prescription works in the cavity.
simple case. Consider the plane of the Voronoi face. The cross section
The exceptions to the situation arise for two possible reaof the exclusion sphere around the atom is a circular area
sons.(i) The pointsE do not lie “between” two vertices, but  (s€e Fig. 5, whose center lies & (the intersection point of
on an extrapolation of the line joining two vertices. In this the Delaunay edge and the plane of the corresponding
case, clearlyE lies outside the Voronoi polyhedrorii) ~ Voronoi face and whose radius is given byrg—rg)*?
Point B does not lie inside the polygon. In this case aBo, Wherer is the radius of the exclusion sphere, ardis the
lies outside the Voronoi polyhedron. distance ofB from the atom. Considering the perimeter of
Consider the case whdlies inside the polygon, but one the Voronoi face, any vertex that lies outside a distance (
of the pointsE does not lie between the corresponding two—ré)l’2 from B is connected along the perimeter to any other
vertices. This situation is illustrated in Fig. 4. Consideringvertex that lies outside. Thus such vertiéasbelong to the
the face that is shared by the Delaunay simplices correspondoeid, and(b) belong to the same cavity.
ing to the two vertices, we identify one of therWw) to be As before, if any vertex of the polygon is not in the void,
closer to the face than the othevZ). If V1 belongs to the we cannominallyinclude it in the cavity, since thABEV
void, V2 also belongs to the void, and in this case, they bottsimplices corresponding to such a vertex do not contribute
belong to the same cavitgince the edge between them alsoany volume. Now, as earlier, we can defifiy combining
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applicability of our algorithm. It must further be noted that
the degeneracies present in regular structures are destroyed
by infinitesimal perturbations away from perfect regularity.

VIlI. POLYDISPERSE PACKINGS

In order to generalize the algorithm for polydisperse sys-
tems, we need correspondingly to generalize the type of tes-
sellations utilized. We consider two such generalizations be-
low and discuss the extension of our algorithm for
calculating cavity volumes and surface areas in the two
cases.

A. Voronoi S regions

FIG. 5. Polygonal face of a Voronoi polyhedron, when the in-  The usual Voronoi construction is not very useful in the
tersection pointB of the Delaunay edge does not lie within the case of polydisperse packings, since the Voronoi vertices,
polygonal facer. is the exclusion radius from the position of the edges, and faces no longer retain the properties of equidis-
atomA, andryg is the distance between the atom and p@nfThe  tance from particlegsince the particles we consider in the
radius of the circle of intersection of the exclusion sphere and thgyolydisperse case are not identical, we drop from now on the
plane of the Voronoi face is thus¥—rg)*2 reference to “atoms” adopted before and henceforth refer to

“particles”). In particular, the relevant notion of equal dis-
VE line segments of adjoining verticesriangles on the tance from distinct particleéwhich we use in the conven-
Voronoi faceBV1V2, one of whose sides will be a Voronoi tional Voronoi construction to define the faces of the
edge. For such edges whose interior side iB\ALV2 tri-  Voronoi polyhedra is the equality of a distance measured
angle is different from the interior side with respect to thefrom the “surface” of each given particle. Thus one must
polygonal face,Sg will be negative. Thus we see that the construct tessellations of space into regions that are closest,
area of the Voronoi face, and hence the volume of the pyranot to the centers, but to the “surfaces” of individual par-
mid with the polygon as base, is counted correctly in ourticles. Such a construction has recently been investigated by
prescription. MedvedeV 21]. In this construction, the notion of a Voronoi

Thus, counting the volumes &BEV simplices(and the  polyhedron generalizes to a Voron®iregion, defined to be
corresponding overlap volumes with the exclusion sphereshe set of points closer to the surface of a given spherical
as in Eq.(2), we obtain the proper calculation of the cavity particle than to any other surface. Unlike Voronoi polyhedra,
volumes. the faces and edges of the Voror®regions are curved. In

The practical step of calculating the overlap volumeparticular, the faces are pieces of rotation hyperbolgids
within eachABEV simplex is straightforward, and is de- geometric locus of points equidistant from the surfaces of
scribed in the Appendix. Thus the procedure outlined in Sectwo spheres of different radii The edges are defined by
Il may be used for calculating cavity volumes and the distri-intersections of such hyperboloids. A two-dimensional ex-
bution thereof. Note that within eadhBEV simplex, if one  ample is shown in Fig. 6.
calculates, instead of the overlap volume, the area of the As discussed by Medvedd21], the topology of the tes-
exclusion sphere, the summation of such area elementellation by VoronoiS regions is not in general equivalent to
yields the cavity surface areas. that of the conventional Voronoi tessellation. However, there
are polydisperse systems whose topology is equivalent, and
such polydisperse systems are termed by Medveedgular
systems At present, no criteria have been established for

When the configurations considered are periodic, theletermininga priori which polydisperse systems are regular
Voronoi vertices sometimedo notpossess the property that and which are not.
four Voronoi edges meet at a vertex, since, due to the sym- The discussion that follows is restricted to polydisperse
metries present in periodic configurations, one may findsystems which are regular. Thus we assume that the network
more than four atoms at equal distances from a Voronoi vertopology of VoronoiS vertices and edges is the same as in
tex. In such an event, the Delaunay tessellation of space ihe conventional Voronoi tessellation.
degeneratpthere exist Delaunay polyhedra which may be In this circumstance, then, the cavities may be identified
arbitrarily broken up into Delaunay simplices in more thanby vertices and edges of th& regions that belong to the
one way. Then, the Voronoi vertices dual to such Delaunayoid. In analogy to the monodisperse case, then, we can
simplices coincide. The practical problems to be solved indentify cavities in terms of Voronoi vertices connected via
such cases in order to determine cavity volumes (@rea  Voronoi edges.
systematic procedure for breaking the degeneracy in defining Thus, in order to justify the generalization of the algo-
the Voronoi or Delaunay tessellations, giiglaccounting for  rithm to the polydisperse case, we need only to demonstrate
the fact that the “edges” connecting degenerate Voronoithat (a) an appropriate set of Delaunay simplices covers the
vertices are in fact points, which further coincide with the cavity volume andb) the volumes of individual Delaunay
locations of the two Voronoi vertices in question. Both thesesimplices can be divided and evaluated by a procedure analo-
problems are “bookkeeping” problems and do not affect thegous to the monodisperse case.

VI. CAVEATS FOR PERIODIC CONFIGURATIONS
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(@

FIG. 6. Construction of Voronos regions. The boundaries be-
tween VoronoiS regions are segments of surfadesrrves in two
dimensiongthat are at equal distances from the surfaces of particles
adjacent to them. The dashed circle illustrates the fact that the FIG. 7. Radical plane construction. Boundaries are shown for
Voronoi vertex at the center of the circle is at equal distances fronthree separations of the sphere cent@salso illustrates the fact
the surfaces of the three corresponding parti¢fegure adapted that the tangent distances to the two spheres are equal along the
with permission fron{21]). boundary.

()

First we consider Lemma 2 for the polydisperse case. Asre now decomposed intABEV simplices with one face
before, we consideABEV “simplices,” whereB is now the  that is not planalthe BEV face. Though this complicates
intersection point of a Delaunay edge with a féitegeneral, the calculation of volumes and intersection volumes for in-
extension of the fageof the VoronoiS region, E, the inter-  dividual ABEV simplices, the procedure outlined in Sec. V
section of an edgéor extensioh of the VoronoiS region  for calculating the cavity volumes remains valid.
with the corresponding Delaunay face, avids a Voronoi
vertex. Note that one face of tAeBEV simplex is nonplanar B. Radical plane construction
(the BEV face. Any point O inside the Delaunay simplex is
inside someABEV simplex. Now, the conical projectiod’
(with the particle coordinaté as apex of any point inside
an ABEV simplex maps the initial point onto tHeEV face
and the projected point is necessarily farther from the loca
tion of the particle. We can consider next a “curvilinear”
projectionO” of the projected poin®’ with pointB as base.
To do so, we consider the plane formed by poiatsB, and
O’ and its intersection with thBEV face. On this intersec-
tion curve,O” is the farthest point away froff that is on the d(x,x)%— ri2<d(X,Xj)2— rJ_Z Vj#i, (3)

BEV face.Q"” lies betweerkE andV, and is farther fromA

than O’. Point E is the point closest to the surface &f  wherer; are the radii of the particles; the position of the
along EV. Thus a projection of0” along the curveEV, particle center, and(Xx,¥;) is the distance betweenandx; .
namely, the poinV, is farther fromA thanO”. Thus, if any  The radical plane construction is illustrated in Fig. 7.

point inside a Delaunay simplex is in the void, the corre- It has recently been shown by van der Maf2H] that the
sponding Voronoi vertex is in the void, since the Voronoi network mapping obtained by Kerstdi20] for the monodis-
vertex is closer to the surfaces of the particles of the giveiperse case generalizes to the polydisperse case under the
Delaunay simplex than to any other particles. radical plane construction.

Next we generalize Theorem IV. Consider some point The arguments presented in Secs. IV and V apply to the
which belongs to a given cavit@. The pointi is inside the radical plane construction as well. To show this, we first
Voronoi S region of some particle, V, . V, is composed of consider Lemma 2. The construction and properties of the
overlap volumes oV, with Delaunay simplices which have AAAV, AAEV, andABEYV simplices is identical to that in
a as one of the vertices. Létbe inside one such Delaunay Sec. IV. Thus, if some point in a Delaunay simplex is in the
simplex. Sincé is in the void, the corresponding vertex is in void, the corresponding vertex is in the void. Consider a
the void by Lemma 2. Further, points along the line joining pointi which is in the void. Let belong to some Voronoi
and the vertex are at increasing distances from the spherell V. Further,i belongs to the overlap volume ®f, with
surface and thus the vertex belongs to the ca€ityfHence, some Delaunay simplex which hasas one of the vertices.
given any point in the cavity, it belongs to a Delaunay sim-Any point in a Delaunay simplex belongs to at least one
plex whose vertex is in the cavity. ABEYV simplex. Since the Voronoi vertex is in the void by

The prescription for calculating the cavity volumes re-Lemma 2, and is farther from partictethani, the pointi is
mains as before, except that individual Delaunay simplicesonnected to the Voronoi vertex, which consequently be-

Another generalization of the Voronoi construction is the
radical plane constructionln this construction, one general-
izes the usual Voronoi construction by considering a differ-
ent distance measure for defining regions that are associated
with each particle[23]. A significant advantage in this
method is that the boundaries between regions associated
with each particle remain planar. A poirtbelongs to the
generalized Voronoi cell of particlg if
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longs to the same cavity as the initial pointFinally, the
arguments in Sec. V apply without change for the radical
plane construction. The radical plane construction for the
polydisperse case has the advantage that its geometry is no
more complicated than that of the usual Voronoi or Delaunay
construction equal sized particles.

<
[

= (%, ,Y,:2,)

E = (X,,Y,:0)

= B= (%,,0,0
VIIl. SUMMARY A= (0.0,0) (30 0:9)
In this paper, we have presented an algorithm for the ex- FIG. 8. ABEV subsimplex, with coordinate assignments for
act calculation of volumes and surface areas of cavities iointsB, E, andV, relative to atomA.
monodisperse and polydisperse sphere packings in three di-
mensions. The method depends on the tessellation of spaogherex,, yo, andz, are related toy, rg, andrg by
into Voronoi and Delaunay polyhedra. In discussing the ap-
licability of our algorithm for the polydisperse case, we > s
Sescribe%:l two genegralizations of thz uysua?Voronoi or De- f8=Xo, TE™ x§+y§, fv= xé+yg+zé. (A2)
launay construction to the polydisperse case, namely, the
construction of VoronoS regions and the radical plane con- The geometry is illustrated in Fig. 8. In order to calculate the
struction. With the appropriate tessellation of space, the voig¢avity volume, we need to calculate the overlap voluvhe
space is characterized first by employing a network mappingsf the subsimplex with the exclusion sphere of radiys
wherein the “nodes” and “bonds” are the vertices and (<r,). The cavity volume is then obtained by subtracting
edges of the Voronoi tessellation. By labeling these nodevC from V,, the volume of the subsimplexs (XYoZo)-
and bonds according to whether they lie in the void or notpjfferentiating V. with respect tor . yields the contribution
we obtain a preliminary description of the cavities present agf the given subsimplex to the cavity surface ar8a, The

percolation clusters of Voronoi vertices that are in the void,ca|culation is straightforward and will not be elaborated here.
connected by edges that lie in the void space. We have prerhe final expressions fov, and S, follow.

sented a method for calculating the void volume and the case Iir <x,.
cavity surface area for individual Delaunay simplices and
have shown how the total void volumes and surface areas of

3 2,,2 2,2
cavities may be calculated by considering Delaunay sim- e | (ZoXo—Yorv
. . . .. ", Vc__ 20— m/2—arcsi 3 7 o || (A3)
plices dual to Voronoi vertices defining the cavities. 6 re(yo+zp)
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APPENDIX: VOID VOLUME IN A SUBSIMPLEX r2 ( - {(ngg_ygrg )
. L SCI OXol c— = — 4 arcsi — > | |- (AB)
Here we calculate the cavity volume inside ABEV 212 re(Yo+ 2o
subsimplex described in Secs. IV and V. lgtbe the dis-
tance from the atom to the Voronoi vertey/. Similarly, let .
re andrg be the distances frorA to the intersection of the Case lll:re<re<fy.
Voronoi edge with the Delaunay faéeand the midpoint of
a Delaunay edgB, respectively. PointB, E, andV lie in a 1 T ) Yo ) xg
plane perpendicular to the Delaunay edge along wBidies Vc:§ 0— 2l +arcsi \/ﬁ FeXo™ 3
(i.e., perpendicular toAB). Further, the line joining the ™o
Voronoi vertexV with E is perpendicular to the plane con- XoYo re Xa—y2—x2
taining pointsA, B, andE. Thus, by choosing the appropri- + & \/rﬁ—ré+ 5 arcsir{ﬁ
ate coordinate system, we can describe the coordinates of Fe™%o
E, andV as (3 22 \22
- arcs‘{% , (A7)
B:(X01010)1 E:(meo,O): V:(X01yO!ZO)1 (Al) 6 rE(yo+Zo)
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S.= 60— T+ arcsin —2° 1( 2y %0
= Xol¢ E arcsi m E I'-Xo g

3 2,2 2
re 2reXgYo 1 r

+_
3 re(re—x0) V(r2—x3)— (G-y3—x3)? 2

where f=arctangy/yg), Xo=rXo/rg, andy,=ryo/re.

Yol'c XoYo ¢ L rg arcsi{xg_yg_xg
> — 7 7
EoGE L 6 i 2 T

c
— arcs

(A8)

2,2 2.2
.r{(zoxo_yorv

N—2 = >
re(yo+zp)
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