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Transient solution of the Kramers problem in the weak noise limit
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The one-dimensional escape problem for both overdamped and underdamped cases is treated using a com-
bination of matched asymptotic and Laplace transformation techniques. It is shown that the shape of transient
curves for the probability flux at the top of the barrier is insensitive to the specific shape of the potential, but
is determined only by the ratio of the characteristic time scales at the points of stable and unstable equilibria.
For the overdamped case this results in a relatively small number of possible types of transient behavior for
various potentialéexamples of quartic, slanted sinusoidal, cubic, and nonanalytic potentials are considered
the underdamped situation the transient curve is identical for any shape of poi&it#3-651X97)06411-§

PACS numbe(s): 05.40+j, 82.20.Mj

[. INTRODUCTION the escape problems in more complicated situations where
additional dimensions are addd®,13-15, the systems
In his celebrated pap¢i] Kramers considered Brownian lacks detailed balandel 6,17, or the potentiaW(x) fluctu-
diffusion of a classical particle in a nonuniform field of force ates[18] or changes with time periodical[y1 9] or monotoni-
described by a metastable potentid{x), x being the “re-  cally [15,20, etc.(The field is too broad and only represen-
action coordinate.” The Kramers proble(KP) can be cast tative references are given. For the Kramers problem with
in terms of a Langevin equation arbitrary damping the weak noisgsingular perturbation
methods proved very effective td@1-23. Nevertheless,
X+ yx+ W' (x)=¢(t), (L)Zt))=(2yIB)st—t"), even for weak noise the general problem is not yet fully
(1)  solved and there does not seem to be a straightforward way
to treat analytically the two-dimensional Fokker-Planck
with y describing dissipation and the random Gaussian counterpart of Eq.(1). Otherwise, numerically oriented
force; B~ t=kgT is the thermal noise, wittkg being the methods[24,25 are being introduced and damping is often
Boltzmann constant. Although originally intended to de-imitated by a contact with an oscillator bd#)]. Thus, in the
scribe chemical reactions, the problem turned to a mucipresent work the limits of large and smallwill be treated
broader applicability due to the universality of the activationseparately for the transient case; the crossover problem,
decay mechanisms. As an example, one could mention th&hich is much more elaborate even in the mean first-passage
nucleation problem, which could be treated in the spirit oftime and related formulationtsee, e.g., Refd5, 26-2§),
the Kramers approacf2]; diverse, more recent develop- Will not be discussed.
ments can be found in Refi3-5]. In the treatment of the corresponding Fokker-Planck
In the problems of activation decay, typically of interest is €quations we will mostly rely on a combination of matched
the mean exit timer, for a particle to escape the metastableasymptotic and Laplace transformation techniques that was
well or, equivalently, the quasi-steady-state probability fluxintroduced in a simplefnucleation context in Ref{29] (see
over the barriet c«~1/7 . This means that one is discussing @lso Refs.[12, 30)). Section Il deals with the overdamped
time scales when the transformation is already bound tocase and Sec. Il with the underdamped case. In Sec. IV
wards completion, and in a large system the number of prodseveral specific examples of the potentié(x) will be dis-
uct molecules is comparable to the one that originally encussed, although our main intent is the general treatment as
tered the reaction. On the other hand, a different question ca#ell as the exploration of the “universalityfweak sensitiv-
be asked: How quickly is the fluk established? The latter ity to W(x)] that arises in the weak noise limit. The nucle-
can be of interest when minor amounts of the product ar@tion problem also will be discussed as an example in some-
important and/or can be detected experimentally and will bavhat more detail in Sec. IV; it will be shown that despite
discussed in the present work. certain technical differences, this problem exhibits a very
Since in a general case it is impossible to treat exactly EgSimilar transient behavior to the Kramers escape problem,
(1) or its counterpart, the two-dimensional Fokker-Planckalbeit with a nonanalytic potential. Experimental conditions
(Kramers equation, attention is being turned to asymptoticwhere the transient effects in the KP may be of importance
methods for weak thermal noise. Such methods are esp@lso will be clarified in the course of the comparison with the
cially effective in the strong damping limit when E) can  nucleation problem. A summary of our main findings is
be mapped to a one-dimensional Fokker-PlariSknolu-  given in Sec. V.
chowskj equation6—8]. Specifically, for equations describ-
ing a forced diffusion in a nonuniform potential one could
mention the WKB[9] or path-integral approach¢&0], op-
erator methodfl1], matched asymptotic techniq{i&2], etc. Let ws andw,. denote the stable and unstable frequencies,
The weak noise ideas also turned out to be very effective fore.,

II. OVERDAMPED CASE
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) d2w which is the Laplace transform aofv(x,t). The function
Wg 5= iaz— . (20 V(x,p) obeys arordinary differential equation
XZXS,X*
) d dv dav
Herex, andx, > X are, respectively, the stable and unstable pV—w(x,0)= ax D(x) &+v(x) ax (8

points of the potentialW(x). In the overdamped case with
v>ws,w, , EQ.(1) can be reduced to a Smoluchowski equa-
tion for the probability density?(x,t) (see, e.g., Ref$31—
33] and references thergin

In the limit of weak noise,—«, this equation can be
treated using the standard matched asymptotic technique
(see, e.g., Ref34] for a general introduction A &-function
initial condition forw(x,0) will be assumed, i.e., the particle

JP a P :
—=——, j=—D(X) —+uv(x)P. (3)  is placed at the bottom of the metastable welt-a0.
at X X In the vicinity of the stable point we switch to a stretched
Here variable z;=(x—xg)/Ag. Together with the normalization
condition [Z_.V(z,p) Pe((z)dz=1/p, this leads to the inner
v(x)=—BD(x)dW/dx (4  solution
is the deterministic rate, witB (x) being the diffusion coef- V(zs,p) = 1s\aT (Mexp(z2) 2" " erfd|zd]).  (9)

ficient. For the KP the latter is constam= 1/8vy, but we
indicate the possible dependence for potential generaliza- Here I' denotes the gamma function amterfc is the re-
tions. peated error integrdi35]. The indexn is given byn=2m;
Formally, one can introduce (guasjequilibrium density ~ —1 with mg=pr and 75 = —2v, atx=x, (so that for the
KP one hasre= y/20?2).

The outer solution at,<x<Xx, is given by

1
PedX)= Am exp{— BIW(X) —W(xs) 1},

V(X,p)xe ;{— dx/v( )). (10
A=w; 1218, (5) Py pf o

which corresponds to a zero flyxin Eg. (3). The reduce
densityw(x,t)=P(x,t)/P.q obeys an equation

d The proportionality coefficient can be determined from
matching the asymptote of E(LO) for x— 0 with the one of
Eq. (9) for z;— .
oW d IW oW Similarly, near the unstable poiry. , one can switch to a
—=—D(X) —+v(Xx) (6) stretched variable, . The solutions of the resulting equation
Jat  ox X S
that decays ag, —~ can be expressed through a similar
repeated error integrallerfc(z,), although with a different
indexn. The proportionality coefficient can be deduced from
matching with Eq(10). The Laplace transform of the flux is
further obtained ag(x,p)=—DP,dV/dx. At x=x, one
ends up with the expression

ax’

In the (quasi)steady-state case E(f) can be solved ex-
actly. More instructive, however, is the singular perturbation
solution. The “outer solution” isnv(x) =1 atx<x, . In the
vicinity of x, there is a boundary layer with a width,
=w, \2IB; the stretched(innen variable is given byz,

=(x—x,)/A, . For a natural boundary conditigabsorbing 2
bolundary placed ag, —x) thg inner §0Iution isw(z,) I, (p)=Ixp — I'(MT(m/a)exp —pt). (11)
=5 erfc(z,). The Kramers flux is thus given by a
D(x,) 0o Here, in order to symmetrize the notations with respectto
= —_S* - andx, we introduced
Ik A a Ped(Xx) 2ym exp(— BW,), (7) *

T=maxX 7s,7,), a=71/min(7rs,7,)=1, (12
with W, =W(x, ) —W(x,). This is a well-known result; the
corresponding flux would be doubled if an absorbing boundwjith 7';1:211)’( atx=x, andm=pr. The parametet;, the
ary were placed directly at the top of the barrier; otherwiseincubation time,” is defined as
the description remains unchanged. Note that it is the pres-

ence of an absorbing boundary that selects the steady-state [x,-4, dx Xy — Xs Xy —Xs
distribution with a nonzero fluxsee also Refl5)). ti:j N WZZTS In ——+27, In——+7C,
We now proceed to our main concern: the evaluation of #st s s * (133
the reduced transient flupg (t)/1 .
| . c 1 fx*d { 1 1 1
A. Laplace transform =—- X ; - — .
_ P Tl v v (X)(X=X9) 0 (X ) (X—X,)
Let us switch to (13b)
V(X,p)= det e Plw(x,t) Here only the constar@ is sensitive to the specific shape of
’ 0 e the potentiaW/(x).
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B. Time dependence of the flux 1 [ e U\«
= - -y -
Equation(11) does not satisfy the formal requirements for Pg(t)=lk a JO dy e El[( y ) ] (18)

a Laplace transform due to a rapid growth of théunctions

for m—oo. This is due to the asymptotic treatment of the whereE, is the first exponential integral. At large times

problem: In the application of the matched asymptotic techs.1 one has the correction to the Kramers-type expression
nigue it is implicitly assumed that the dimensionless Laplace>«

index m is finite. Thus one does not expect the resulting
transient flux to be accurate for very small times. Neverthe-

"“tIK:

— —u
less, the error is present only during an initial time interval, Pe=lklt~ting 70(e 5} 19
which is asymptotically small compared to the incubation
timet;. Since the flux during this interval is negligibly small
compared td ¢, the error remains practically unobservable. 1 1,(p) 1
This situation is typical for asymptotic methods, which often ting= lim (—— = ] =t;+Cr| 1+ — (20)
do not distinguish between exact and asymptotic z€ses, p—ol P Ik @

e.g., the discussion of the WKB approach in H&6)).
Since Eq(11) is accurate in anfinite part of the complex

is the “induction time” (in nucleation terminologywith C

p plane, we apply the following expression to evaluate the=0.5772... being Euler’s constant. Obviously, the induction

time dependence of the flug9,30Q:

j.()=2>"Res,(p)e. (14)

The prime indicates that only residues at finiteare to be
considered. The summation over finite residues of khe
function leads to a double-exponential time dependéggg

> Red'(m)eM=exp{—exp—u)t=do(u), (15)

with
u=(t—t/. (16)

When several’ functions are present in the Laplace trans-
form, the convolution theorem can be appligdthough cer-

tain caution is required due to the asymptotic nature of the

problem[12]). In application to Eq(11) one needs a convo-
lution of two double-exponential functions. After some
straightforward transformations this leads to

J*(t)=IKJ:dy exp{—y—( )a]

which is the main result of this part of the study. Note an
asymptotic rather than an exact zerotatO, which corre-
sponds to large negatiwe Otherwise, Eq(17) is expected

e—U

y 7

time can be deduced directly from the large-time asymptote
of Eqg. (18), which leads to the same result as given by Eq.
(20) and testifies to the correctness of the inversion of the
Laplace transform. Fowr—« the functional form of Egs.
(17), (18), and(20) coincides with the corresponding nucle-
ation expression§29,37. This correspondence is rooted in
certain similarities between the nucleation and the KP and
will be examined in Sec. IV.

I1Il. UNDERDAMPED LIMIT

In the limit y<w,,w, the slow variable for a Brownian
particle described by Ed1) is the action] or, equivalently,
the total energye(J). Biased diffusion along thé axis can
be described by the equatiph| (see also the revieyb] and
references therejn

]

Herew, the angular frequency, is given lf/dJ; the factor
27 (see, e.g.[5]) can be included in the definition of the
action,J. For smallJ—0 one hasv— w,. For largeJ—J,
with J, corresponding to the value on the separaiti>goes

to zero as ¢/v2) w, {—In(J, —J)} 1. Equation(21) is appli-
cable forw> vy, which is satisfied unles$ is exponentially
close toJ, . Note, however, that the deterministic rate of the
decay of the action(J) in the leading order i3 has no
singularities asJ—J, and, in contrast to the overdamped
case, remains finite near the exit pojsée below. The latter

J

w

*1(9P+ P
a3 ¢

J
G PAO=7r—3 [

to be asymptotically accurate for the entire transient regiorbelittles the role of the weaftogarithmig singularity in 1,

when j, (t) changes from negligibly small values 1g .

at least for the time scales considered. Divergence of 1/

Again, one can note the insensitivity of the transient expresnearJ=J, , rather, serves as the remainder of the limited

sion to the specifics of the potenti®/(x) that enters the

result only through the parameter which is the ratio of

corresponding frequencies near the equilibrium points.
The probability for a particle to exit the well

PBzf dx P(x,t)
X

*

is given by integration of Eq(17) over time. One has with
asymptotic accuracy

applicability of Eq.(21).
Similarly to the overdamped case, one can introduce a
formal equilibrium probability density

PedJ) = Bws expg{— BE(J)} (22

and rewrite Eq(21) in terms ofw(J,t)=P(J,t)/P¢, as

ow

_aDJaW-l- J&W 23
E_()ﬁv()ﬁ' (23

9
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This equation may look identical to E(6) with x replaced The above expression does not satisfy the right-hand bound-

by J, but the size dependence of the coefficients is nowary condition where an absorbing boundary is assumed. Plac-

different: ing this boundary at any<J, , however, leads only to a
minor modification of the nonsingular equati2B) inside a

vd simple boundary layer. One can show in a general situation
D)= wB’ v(J)=—vJ. (24) [12] that the modified solution in the vicinity of the boundary
leads to a fluX =[v|PeqV, with V being a “free-boundary”
An absorbing boundary is assumed BtJ, . Due to  Outer solution, similar to Eq28). Thus one obtains
logarithmic divergence ob !, the corresponding boundary _
layer has a rather complicated structure. A detailed study of 1(3,p)= yIV(J,p)Ped J) (29)

this layer may be further hindered by the fact that B2L)  for the flux near the absorbing boundary placed at arbitrary
loses its applicability in the immediate vicinity ak, as 3 An important point is that this expression does not exhibit
discussed above. To bypass this boundary layer in thgny singularities as)—J, . Thus the boundary can be
steady-state situation one can either consider the exact SO'“‘pushed” towardsJ, and Eq.(29) can be used to evaluate
tion of Eq. (23) or shift the absorbing boundary to somie  the | aplace transform of the flux. Otherwise, an elaborate
<J, and take the limity—J, after the flux is evaluated. jyyestigation of the aforementioned logarithmic boundary
The latter represents the most natural approach in view of thgyyer neard, would be required(Anyway, one can expect
time-dependent generalizations. In the steady-state case{at the latter will affect the Laplace transform only at very
leads to the well-known result of Kramers for the under-j5rge p~ gE, , which correspond to times so small that the

damped flux flux is yet unobservable on the scalelgf.) From Eqgs.(25)
and(29) one obtains fot =1(J,,
&nder:,yJ*Peq(J*). (25) ( ) *(p) ( * p)
, _ _ _ , L (P) =11, Bws) PI'(p). (30)
Again, the problem is an evaluation of the transient behavior
1 (1) B. Time dependence of the flux

Applying to I, (p), the asymptotic inversion technique

A. Laplace transform : - . .
P described in Sec. Il, one ends up with the transient flux

Let us temporarily switch to a dimensionless “timeyt.
Similarly to the overdamped case, one can introduce a . IRY pt_ j under _
Laplace transfornV(J,p) of the reduced probability density i« (D=2" Red, (p)eP'=1{""Po(u), u=y(t—t),

w(J,t). The functionV(J,p) obeys an equation similar to (31
Eq. (8), with the coefficients defined in E¢24). In the vi- ) ] ] .
cinity of J=0 this function obeys the equation with ¢o(u) being the same double-exponential function as

defined by Eq(15) and
zV. +(1-2)V.—pV=—w(z,0), (26)
“ P ti=7In(Bl,ws), =7y L (32
with z=JBw, being the inner variable.

The homogeneous part of E@®6) has two linearly inde-
pendent solutions: Kummer’'s function$1(p,1z) and
U(p,12), with a WronskianW{M,U}=—e*zI'(p) [35].
Taking into account the behavior of Kummer’s functions at
z—0 andz—o, one can write the solution to E(R6) as

Formally, this expression follows from E(L7) in the limit
a— (note, however, a different definition af). In the
underdamped case transient behavior originates solely from
equilibration near the stable point, which gives a leading
term 7 In(Bwy in the incubation time. At higher energies
equilibration is fast on the scale ¢f. This leads only to a
; finite shift (of the order ofr) in the incubation time and does
V(z,p):F(p){ U(p,l,z)f dy M(p,1y)e Yw(y,0) not alter the double-exponential shape of the transient curve.
0 In principle, similar effects can be observed in the over-
- damped case as well if the deterministic ra{e) does not
+M(p,1,z)f dy U(p,ly)e Yw(y,0)}. (27) go to zero at one of the extrema ¥¥(x). This will be
z discussed in the next section.

This expression can be inverted, giving a Green'’s function of
Eqg. (21 nearJ=0 (see the Appendix It is easier to post-
pone the inversion, however, until the Laplace transform of We are going to consider several frequently discussed
the flux atJ=J, is obtained. shapes of the potenti&V(x) for the overdamped KP. A spe-
The outer solution is similar to Eq10) with v(J) from  cific shape ofW(x) affects the general result, Eq4.7) and
Eqg. (24). This givesV(J,p)eJ~P. The proportionality coef- (18), via the the parameter, which describes the asymmetry
ficient is obtained from matching with Eq27). For a8  of kinetics near the stable and unstable equilibrium points,
function initial distribution one ha¥/(z,p)—z PT'(p) for  respectively. The relation to the nucleation problem also will
z—, so that the outer solution is given by be examined, which might provide additional analytical and
experimental insight into the KP. On the other hand, at this
V(J,p)=JBws) PT'(p). (28 point one already can add little to the underdamped KP,

IV. EXAMPLES
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1 : i see Table I. The “real-life” nucleation problem, however,
has a different transient behavior due to the size dependence
of D(x) in Eq. (3) and will be discussed separately.

08 The slanted sinusoid&!'washboard”) potential

W(x) =3 W, {sinx, —x, co, } ~}(sicx—x co, ),
06

QUARTIC, — X, <7l2, (35
UBIC OR SINUSOIDAL ---—
NON:ANALYTIC -----

Iy is encountered in problems of ionic conductivity or in con-
nection with Josephson junctions. This potential has the
02 F same value ofe=1 as the cubic potential. Thus it is de-
/ scribed by the same transient curve, which turns indepen-
dently either of the barriew, or of the “driving force” x,
4 e o 2 4 s 8 The latter affects only the consta@tin the expression for
u the incubation time; see Table (Naturally, we limit the

_ _ _ ) discussion to a moderate driving force wikh<</2 so that
FIG. 1. Transient overdamped fljgt)/1« for various potentials  metastable states still exist.

W(x) as a function of dimensionless shifted tinobe=(t—t;)/ 7.
Analytical dependences used to plot the curves are listed in Table I.
The dotted line shows the “large” approximation for the quartic
potential(37) with «= 2. The underdamped flux has the same shape Consider a situation where the raiéx) does not go to

as the nonanalytic curv@lthough with different parametersand zero (has a discontinuity of first or second orgl@t one of

t;) and is given by Eq(31). the extreme ofV(x). For a constant diffusion coefficient this

is possible for a potential that is nonanalytic either neasr
which, according to Eq31), is completely insensitive to the nearx, . Such a behavior arises, say, for a piecewise linear
shape oW(x), and this problem will be invoked only occa- potential where the transient problem can be solved exactly
sionally. [38]. Formally, nonanalytidV/(x) also brings the situation

closer to the underdamped KP as well as to the nucleation

A. Analytic W(x) problem(see below.
The outer solution given by Eq10), which is not af-
cted(up to a factoy by the equilibrium points, is still valid

for a nonanalyticV(x). In the latter case, however, this so-

W(X) =W, { — 2(x/Xg) %+ (X/Xs)*} (33)  lution does not exhibit a singularity at a point with(x)

#0, which simplifies the problem. In particular, there re-
with stable points at= *+x, and a barrier ax=x, =0. This  mains only a single time scaleand the constant in the
potential is often discussed in connection with the Ginzburgexpression for the incubation time is now given by
Landau—type description of phase separation. Transient flux

0.4

REDUCED FLUX

B. Nonanalytic W(x) and the limit a—o

Consider the escape problem in a quartic bistable poter}-e
tial

is now given by Eq(17) with a=2. The integral cannot be C= l fx* x[ 1 1 (36)
evaluated in a closed form, and the results of numerical in- xs (v v (X)(x=x)|
tegration are shown in Fig. 1 together with an elementary _
approximation based on a largeexpansion. Herex' is the equilibrium point where (x) does go to zero.
The cubic potential The asymmetry parameter goes to infinity. The transient
flux has a double-exponential dependence of {&ig (note,
W(X) =W, {3(x/x, )2—2(x/x, )% (34)  however, differentr andly) and is shown in Fig. 1. Again,

we note the universality of, (t),Pg(t) for any particular
often arises in connection with the formation of nuclei. In shape of nonanalyti?/(x) as long as the consta@tdefined
such cases the cubic and quadratic terms correspond to vdly Eq.(36) is finite.
ume and surface contributions, respectively. The parameter  Since the nonanalytic situation should follow from the
equals 1, which allows one to express the integrals in Eqgyeneral equatioil?) in the limit «—cc, one could wish to
(17) and(18) through modified Bessel functiofs; andKy; examine the general result for large Integrating Eq.(17)

TABLE I. Typical parameters and shapes of the solution with(t—t;)/ 7.

Potential v(X) @ C Jx (D1 Pg(t)/ 7l
general Eq(4) Eq. (12 Eqg. (13b

biquadratic, Eq(33) x(x2—x3) 2 2In2 Eq.(17) Eq. (18
cubic, Eq.(34) X(X—X,) 1 0

slanted sinusoidal, E435) COSX, —COSX 1 4 In(x, /sinx,) 2e YK (e7Y?) 2Kq(e™1?)

nonanalytic discontinuous at or X, © Eq. (36) exp{—e™ Y} Ei(e™)
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by parts, switching to a new integration variable

=[y expW)] ¢ and expanding the resulting integral in pow-

ers of 1k, one obtains

L 7uC e*U(l_e*U)
S a T 24P

Jx (D)=l do(u)

X (C?+ 726)+ -+ |. (37

Here, again, u is defined by Eqg. (16), ¢g(u)
=exp[—exp(—u)], and C is Euler’'s constant. Similarly, one
has for the escape probability

Pe(t) =71 {E(€7Y) = ¢bo(U)0.577k + ¢b)y(u)0.989k>
‘4 (38

with ¢g(u)=exg —u—exp(-u)]. As seen from Fig. 1, the
expansion works quite well even for a moderate2; a
certain loss of accuracy for negativecomes from the limi-
tation a>max(1e™"), which is required in order to validate
Eq. (37).

Comparing various curves shown in Fig. 1 for different
values of the asymmetry parametey one can note their
relatively small difference from each other. This “weak

+ .-

universality should be kept in mind when analyzing experi-

mental(and possibly even numerigalata. In such situations

it might be hard to distinguish between different depen-

dences even for a minor amount of inevitable scatter.
Finally, since the functional form of the transient solution

is determined exclusively by the equilibrium points, the re-
sults may hold even if the Fokker-Planck description is in-

valid in the intermediate regioxy<<x<x, . This can happen
when the discrete version of E@3) is to be considered
[29,30,39. The functions listed in Table | will remain un-
changed and only the constar@swill be altered in such
cases.

An interesting point is that transition from analytical to
nonanalytical W(x) goes more smoothly in the time-

dependent case compared to the steady-state one. The lat

obviously, does not allow for a limiting transitian, — o in
Eqg. (7) and an alternative treatment is required for a cuspe
shaped potentiall,5]. In the time-dependent case, on the
other hand, one deals already with a reduced flugt)/1,
which tends to unity as— o for any potential, so that tran-
sition to nonanalytidNV(x) is not so dramatic. Similarly, for
the underdamped case, one does not have to expect t
modification of the prefactor in Eq25), which is observed
for certain exotic barrierfs], will necessarily affect the tran-
sient behavior, Eq(31), at least for the time scales consid-
ered.

C. Nucleation and the possibility of experimental observation

The classical picture of nucleatior2,40] is a random
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dimensional Fokker-Planck equation of ty(®), although
with an x-dependent diffusion coefficient; the probability
density is usually replaced by a distribution functibx,t)

of nuclei over their sizes. Apart from different normalization,
similarities to the KP are obvious and the activation flux over
the barrier determines the “nucleation rate.”

A technical difference in the nucleation problem comes
from the left-hand boundary condition: It is assumed that at
the smallestmoleculaj size, the distributiorf(x,t) is deter-
mined by the amount of monomefs. Generally speaking,
the nucleation process is nonlinear due to thelependence
of x, andW, [41]. However, variation in these parameters
can be neglected during an exponentially long time interval,
as long as the depletion of monomers by growing nuclei is
minor. During that interval, which is much larger than the
transient period, there is a strong similarity to the KP. In
particular, thglquasijsteady-state nucleation flux is given by

(2]

[h=D, w, VBI2mTe(X, ), (39

in complete analogy with the Kramers expression. In the
nucleation normalization the escape probabiffy(t) corre-
sponds to the number of nucleated partice@) and is
given by an equation that is functionally identical to the first
term in Eq.(38) [37].

Another difference in the nucleation and the Kramers
problems is that the deterministic ratéx) in the nucleation
case must satisfy the requiremefdx/v(x)—o for x—o
since a nucleus cannot grow to an infinite size during a finite
time interval. With a cubic shape &F/(x) this is achieved
due to anx-dependent diffusion coefficient in E@4). A
typical dependence iB(x)xx" ", with the power indexv
=1 determined by the type of mass exchange between the
nucleus and the surrounding. Note thgi) is nonzero at
x=0.

Finally, a difference from the KP comes from the fact that
in the nucleation context one is usually interested in the
overcritical flux atx>x, , where all the measurements are

?rformed[42,4f-,§|. The solution technique remains basically
thé same as described in Sec. Il, but one has to match the

d[ight-hand asymptote of the inner soluti¢® with the cor-

responding outer solution at>x, . The result[29], for-
mally, is given by the same double-exponential function as
for the nonanalytic KRthe first term in Eq(37)], although
with a differentr and a with size-dependent incubation time

htax). The values oft;(x) for different types of diffusion

coefficientD(x) are listed in Ref[37].

To summarize, the nucleation problems bears strong simi-
larities to the KP with a nonanalytic potential. This is due to
rapid decay of small nuclei, which leads to a zero relaxation
time 74 or, equivalently, to an infinite asymmetry parameter
a. The nucleation situation also shows that certain care
should be taken for stiff potentia®/(x), which are often
discussed in the KP. It is unphysical for a particle to reach

walk of a nucleus along the axis of its sizes due to gain andhfinity (or to come from infinity during a finite time inter-
loss of monomers. The loss and gain kinetic coefficients argal, in which case one has to be ready for mathematical

related to the minimal workV(x) required to form a nucleus
of a given radiusx by the detailed balance condition. This
work has a form given by Eq34). In the simplest casg2]

complications, up to the loss of uniqueness of the solution.
Nucleation provides an example of experimental observa-
tion of transient effects in activation decp42,43. With all

the nucleation problem can be described by a onethe specifics of nucleation in glasses considered in the afore-
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mentioned works, one could mention some general featuresansient curve is completely insensitive \(x).

that might be useful for the KP as well. In the studies in  Experimentally, results can be of importance for large
[42,43 the number of nucleN was much smaller than the systems with the number of molecules taking part in the
number of monomers$, in the system under investigation, reaction comparable to exg\V,) if one is able to detect
but N was still be large enough in order to be detectedeven minor amounts of the product molecules. Similarities
Further, a relatively short intrusion into the region of low between the Kramers and the nucleation problems where
W, was performed through temporal lowering of tempera-transient effects have been studied experimentally in great
ture, while the nuclei where actually counted at a later stagdetail [42,43 can be very useful in establishing limitations
when nucleation became impossible. In terms of the KPfor each specific system under consideration.

observation of the transient behavior would require the de-

tection of small escape probabiliti€®z(t)<1. Using the APPENDIX: THE GREEN'S EUNCTION

nucleation analogy, one can imagine the following situation: OF THE UNDERDAMPED PROBLEM NEAR J=0

A large number of moleculek; enters the reaction, but one ] ]

is able to detect already individusr minor amounts of Let us define the Green’s function of EQ1) for small
product molecules. In cases whefg is larger than the yalues of_ the outer varllablﬂa (or for arbitrary values of the
Kramers exponential exp{V, ) (sayf, is of the order of the inner variablez=JBws) in such a way that

Avogadro numbertransient effects may have direct experi- .

mental implications. More specifically, a short pulse that W(Z't):f dy G(z,t;y)w(y,0). (A1)
temporarily reduces the metastable barrier could provide the 0

required conditiongcorresponding techniques are developed ) ) ) )

in connection with femptochemistry; see, e.g., Re]). It is known that for a harmonic potential a two-dimensional
The duration of the pulse must be much smaller tharfOkker-Planck analog of Eq1) can be solved exactly. In

7 exp(8W, ) in order to observe transient effects, but the lat-Principle, the exact solution would allow one to calculate
ter condition can be quite realistic. G(x,t;y) directly. This might be useful when arbitrary

damping is considered. For the present, more modest pur-
poses, it is sufficient and more instructive to evaluate the
Green’s function from the already obtained Laplace trans-
We considered transient escape of a Brownian particléorm. Expressing the Kummer function®(p,1z) and
from a one-dimensional metastable well described by a pod(p,1y) in Eq. (27) through the Whittaker functions
tential W(x) in the overdamped and underdamped limits.M,_,,, (—2) andWy,,_, o(y), respectively35], and using
The term “transient” implies time scales that exceed thestandard tables of Laplace transformati¢#s], one ends up
largest relaxation or increment timenear the equilibrium  with
points but are smaller than the Kramers timég1/During

V. CONCLUSION

the time scale considered, the flux that starts from negligibly o1 y+z t \/y_z
small values at smalt achieves the(quasijsteady-state G(zty)= 1—e (XA 1- th§ lo sinh(t/2) ]
valuely (see Fig. 1 (A2)

The main results are given by Eq4.7) and (31 for the
overdamped and underdamped cases, respectively. In tiderel, is the modified Bessel function and to simplify no-
weak noise limit considered, these results turned out to btations we setr=1.
practically insensitive to the details of the potenWé(x). In One can consider an asymptote of E42) for z,t—oo
the overdamped case the potential affects the shape of tivéth ze '~const andy—0 (the latter corresponds to a lo-
transient curve only through a single parameterwhich  calized initial condition. This givesG~exp(—ze "), which
describes the asymmetry between the relaxation and the invith a size-dependent incubation timg=In z is the same
crement times. In the underdamped situation the shape of thgpe of dependence as described by 81).
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