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Equation of state for a partially ionized gas

George A. Baker, Jr.
Theoretical Division, Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87544

~Received 10 June 1997!

The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from
a fundamental point of view. First, a cubic cellular model and then a spherical cellular model is deduced for the
hot curve limit~or ideal Fermi gas!. Next the Coulomb interactions are added to the spherical model for general
ionic chargeZ. A numerical example of the theory for the case of hydrogen is reported, and it reduces in
various limits of temperature and density to the expected behavior. It displays an electron, localization-
delocalization phase transition of the normal liquid-gas character.@S1063-651X~97!04911-8#

PACS number~s!: 05.30.2d, 51.30.1i, 05.70.2a, 64.70.Fx
e-
uc
on
et
o
he
ve
a

th
e
ly
de
su
es
th

er
n
ur

-
te

t
s
on
ow

e
n
n

it-
xi
el
sy

la
n
tr
r-

ial.
r
en

-
ed
cies
p-

f the
d

h is

a

at
ry

that
the

has
with

ron
his
ep-

by
tric

or-
he
ye-

by
y
s
ve
rge

by
I. INTRODUCTION AND SUMMARY

The theory of crystalline solids is currently very well d
veloped, and relies on Bloch’s theorem to provide the str
ture of the necessary quantum-mechanical wave functi
This theory has been successfully investigated in great d
by numerous workers. The properties of fluids and am
phous solids, considered at the corresponding level of t
basic constituents, i.e., electrons and ions, has received
much less attention. It is the purpose of this paper to begin
effort to construct such a fundamental investigation of
problem of the partially ionized gas. Needless to say ther
no clear dividing line between partially ionized, and ful
ionized, nor, for that matter, nonionized. The resulting mo
has been evaluated in the case of hydrogen, and the re
have all the expected physical properties. The limiting pr
sure is correct for high temperature. The model shows
expected complete ionization phenomena for fixed temp
ture in the dilute limit. As expected at medium to high de
sities, the model predicts a ‘‘cold curve’’ where the press
is very insensitive to the temperature.~The compression
pressure dominates.! It also predicts a localization
delocalization phase transition, although critical parame
are not yet in accord with experimental results.

Perhaps the theories in most general use today are
Thomas-Fermi @1–6# and Thomas-Fermi-Dirac theorie
@7,8#. These theories permit the computation of the equati
of state over wide regions of temperature and volume; h
ever, they are basically semiclassical in nature.

There are a number of other approaches which have b
employed, many of which are quite good in certain regio
of the phase diagram. There is the classical theory of io
fluids of Debye-Hu¨ckel @9#. A more modern version of it is
the restricted primitive model@10,11#. In this model there is
a fifty-fifty mixture of hard spheres with charges1q and
2q, which move in a dielectric medium. This model is su
able for Monte Carlo simulations and for mean-field appro
mations. It produces results which compare informativ
@12# with experimental data. The hard-sphere reference
tem for the neutral components has also been used@13,14#.
The thermodynamic perturbation theory approach in its c
sical @15,16# and quantum@17,18# forms has been used. I
addition there is the perturbation expansion in the elec
charge@19#. A further approach which has been very tho
561063-651X/97/56~5!/5216~24!/$10.00
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oughly worked out is to use an empirical interatom potent
The Lenard-Jones 6-12 potential~sometimes cut off at large
distances! is a popular choice. Rather full results have be
obtained here for the equation of state@20–22#. There is the
method of Bunkeret al. @23#, concerned with the metaliza
tion of hydrogen. It uses fluid variational theory, a modifi
hypernetted chain approach, and empirical species-spe
potentials. A description of a number of additional a
proaches may be found in the book by Kraeftet al. @24#, plus
some subsequent work which takes into account some o
many-body effects~dynamical screening, self-energy, an
polarization forces! @25,26#.

An approach somewhat similar to the present approac
the confined-atom method@27,28#. It differs from our current
method, and my report of some preliminary results from
precursor to the present method@29#, by requiring for all
angular momentum states that the wave function vanish
the cell boundaries. It is well known that for these bounda
conditions that the lowest eigenvalue is never less than
for the atom, whereas in the case of the present approach
lowest eigenvalue may well be lower@30#, in a manner simi-
lar to the so-called ‘‘metallic bond.’’ A first-principles type
of approach is the quantum Monte Carlo method, which
been applied to a system of 32 electrons and 32 protons,
the observation of phase transition@31#.

Our alternate approach is to start from the ideal elect
gas plus a gas of ions, all of which are non-interacting. T
system corresponds to a state of complete ionization. It r
resents the correct description when the electric chargee is
set to zero. The deviations from complete ionization
means of many-body perturbation theory in the elec
charge~or more accurately in terms ofe2! have been studied
for some time. The leading correction is the exchange c
rection @7#, as all the direct terms cancel each other for t
case of charge neutrality. The next correction is the Deb
Hückel term, which is of ordere3 and results from the sum
of an infinite series of terms of ordere4 @32#. The term of
order e4, the second exchange correction, was added
Baker and Johnson@19#. This approach is plainly completel
correct within its region of validity. The requirement for it
validity is the smallness of the Coulomb interaction relati
to the thermal energy. This approach is quite good for la
temperatures and/or high densities.

In this paper we apply a number of the insights gained
5216 © 1997 The American Physical Society
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56 5217EQUATION OF STATE FOR A PARTIALLY IONIZED GAS
the study of crystalline solids to an effort to construct
theory of quantum fluid behavior. The cellular model is
old idea @33# in that theory. For crystals, the cells can
chosen so that space is completely filled, opposite sides h
values of the wave function related by the lattice periodic
I will apply the idea of a cellular model to the case of a flu
For a fluid, there is no preferred direction, so that one
forced to choose a spherical cell. Since one cannot fill sp
with spheres of uniform diameter, as one could with Wign
Seitz cells, this choice is necessarily an approximate o
Various many-body effects are added to the spherical
model through the boundary conditions, an effective ma
and changes to the potential.

In the second section of this paper I give the derivation
the Schro¨dinger equation for our case. I also outline the ne
essary thermodynamics and statistical mechanics to com
the pressure, internal energy, etc. for our case. Some
must be taken here as our case is a more general one th
often seen.

In the third section, I show how to construct a cellul
model of the ideal Fermi gas. Here cubic cells are used,
the model is in principle exact for this case. Some discuss
is given regarding the various integrals over the Brillou
zone which need to be evaluated. This model is evalua
numerically. I show how to obtain the fugacity in this cas
The results are found to be in agreement with the exact o
as expected.

In the fourth section I construct a spherical cellular mo
of the ideal Fermi gas. I discuss the question of the selec
of appropriate boundary conditions. In addition to the pro
lem of spheres not filling space, there is an additional pr
lem which arises. We resolve the wave function in the us
spherical coordinates, and then we letl denote the angula
momentum index, andl the radial wave function index. In
the Hamiltonian there is a termkW•¹W , wherekW is a vector in
the Brillioun zone. This term unfortunately couples comp
nents with all values ofl to the components with adjacen
values ofl . This problem greatly complicates the numeric
work. I have used the observation of the degeneracy and
degeneracy of the eigenvalues to give a prescription to
duce this numerical problem to a more tractable level. A
result, the pressure as computed by this method is accura
within 22.5 to 4.9%.

In the fifth section, we come to the heart of the pap
Here I show how to construct a spherical cellular model
an ion-electron gas. I begin with a simplified discussion
the cases of hydrogen. I start with the Heitler-London ato
Drawing on our knowledge of the high-temperature limit, t
electron-ion, electron-electron, and ion-ion interactions
adjusted to lead to correct results in that case. A modifica
of the various potentials is used to this end. Next the
change correction is considered, and an effective-mass
is introduced as well as a further potential modificatio
Again our knowledge of the high-temperature limit is used
guide the construction of these modification. Finally, a c
rection of a semiclassical nature is made to take accoun
the fact that the electron-electron and ion-ion repulsio
force the electrons apart, and so reduce the energies w
depend on these interactions. These resulting equations
then generalized to general nuclear chargeZ together withZ
surrounding electrons.
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In Sec. VI, I compute the results of the spherical cellu
model for the case of hydrogen. The results are as descr
above.

II. GENERAL FORMALISM FOR THE CELLULAR
MODEL OF A GAS

Our work here will be based on the independent-elect
approximation, modified as appropriate to included furth
important effects. That approximation is certainly genera
valid for an ideal Fermi gas, and we also expect it to be v
good for the application to extremely low-density atomic h
drogen. In the absence of other, more reliable, pictures,
shall be guided here by the way in which this approximat
is structured for a crystal, while keeping in mind that wh
we are doing should work for an ideal Fermi gas. From
fundamental point of view, it is impossible to describe t
behavior of the electrons correctly in terms of the solutio
of a one-electron Schro¨dinger equation, no matter how clev
erly the potential, etc. is chosen. Nevertheless,
independent-electron approximation has had very consi
able success in the theory of crystalline solids. If we ma
this approximation, then we expect to represent the cry
by a periodic lattice of ions which leads in turn to a period
potential. The solutions for the single-electron wave fun
tions in this case can, by Bloch’s theorem, be represente
terms of the wave function in a single lattice cell, and a wa
vector in the first Brillouin zone. The difficulty in determin
ing the appropriate potential within the cell is well known.
the case of a fluid it may seem jarring, to those who are u
to thinking of a fluid as a many-body system in continuo
space, to discretize the system by dividing it up into ce
However, following the Wigner-Seitz construction, if w
take a given configuration of ions and put a surface halfw
between each ion and its nearest neighbor ions, we will
vide the system into cells of various sizes and shapes w
one ion in the ‘‘center’’ of each cell. As the ions are muc
heavier than the electrons, we expect the electrons to r
into configurations in these cells on a time scale shorter t
that of the movement of the ions. In the independent-elect
approximation, we generate the energy states of the sys
by the use of the eigenfunctions of the single-electron in
acting via an appropriate potential in each of these cells,
as was done in the crystal case. Rather than treat suc
ensemble of different cell types, in this effort we repla
them by a single cell whose volume is equal to the aver
volume. To the extent that volume fluctuations are importa
they are ignored here. This uniformization of cell size allo
us, as in the crystal case, to suppose reasonably that we
describe the system in terms of the eigenvalues of the s
tion within a single cell and the wave vectors of the fir
Brillouin zone. The eigenspectrum of the individual cell, t
gether with the spread in these energy levels due the
wave vectors just mentioned, models~in the independent-
electron approximation! the energy eigenspectrum of th
whole system. We will see in Sec. III that this method
exactly correct for a cubic cell model of the ideal gas. F
ther, we know from tight-binding approximation theory tha
at least for the low-lying levels, it is very accurate in the co
dilute limit of an interacting Coulomb system. That th
model behaves correctly in these two extremes is a ne
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5218 56GEORGE A. BAKER, Jr.
sary, but not a sufficient, condition for its overall validit
Our choice of what seems to be a reasonable intracell
potential is addressed in Sec. V. The issue of the screenin
the electric charges is handled in this model by the enfor
neutrality of each cell. If the electronic state is spherica
symmetric, then the force outside the cell is zero. Otherw
higher-order moment forces can occur. The cell-cell inter
tion forces are modeled here, as we will see later, by me
of the boundary conditions. As explained in Sec. V, th
model, in some sense, replaces the long-range part of
potential by a nearest-neighbor, cell-cell interaction.

The first step is to divide the system up into Wigner-Se
cells, with one atom per cell. We will not specify the unde
lying lattice now, but will choose it later to fit our conve
nience. We will, however, insist that the Wigner-Seitz ce
chosen be inversion invariant. Bloch’s theorem on crys
lattices@6# says that any solution for the ‘‘one-electron wa

function’’ is of the form c(rW)5eikW•rWf(rW), wheref(rW) has
the periodicity of the lattice. By using all thekW ’s which lie in
the first Brillouin zone, one can construct the entire ba
corresponding to that state. By the general theory the c
bination of all the reciprocal-lattice vectors plus those in
first Brillouin zone covers the entirekW space. We will see
later that our procedures will allow us to construct a corr
model of an ideal gas. Although this procedure is more co
plex than the standard one, it can be generalized to the
ideal case more readily. The point is not to construct a b
theory of a gas, but rather to use this method to include
Pauli exclusion principle effects between electrons on diff
ent atoms. We add that to the extent that shape fluctuat
are important, they are ignored in this procedure. Here
boundary conditions are

c~rW !5e2 ikW•RW c~rW1RW ! ~2.1!

and

nW ~rW !•¹W c~rW !52e2 ikW•RW nW ~rW1RW !•¹W c~rW1RW !, or

nW ~rW !•¹W f~rW !52nW ~rW1RW !•¹W f~rW1RW !, ~2.2!

wherenW (rW) is the outward normal vector to the surface of t
cell, andRW is a lattice vector. These conditions provide f
the continuity of the wave function and its derivative at t
surface of the cell. From our point of view, every calculati
we make must be reduced to a single cell, and the ma
scopic effects are reflected solely through the boundary c
ditions and the effective-mass and potential modification

The next step is to substituteeikW•rWfl(rW) into the Schro¨-
dinger equation,

\2k2

2m
fl~rW !2

i\2

m
kW•¹W fl~rW !2

\2

2m
¹2fl~rW !1V~rW !fl~rW !

5El~kW !fl~rW !. ~2.3!

Of course the issue of the best choice ofV(rW) is an important
one, and we shall return to this topic in Sec. V. We w
however, use an inversion invariant potential. Notice that
left-hand side of Eq.~2.3! is Hermitian, soEl(kW ) is neces-
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sarily real. Note also that since the Wigner-Seitz cell is
version invariant and Eq.~2.3! is invariant under inversion
and complex conjugation, it must be that iffl(rW) is an
eigenfunction, then so too isfl* (2rW). If the eigenvalue is
nondegenerate, then these two quantities must be a con
multiple of each other.

Next we need the pressure of an atom enclosed in a
We will suppose that the nucleus is fixed in the center of
cell. The most straightforward thing to compute is the gra
canonical partition function which is normally given as@34#

Q~V,T!5 (
N50

exp@Nm~V,T!/~kT!#QN~V,T!

5 (
N50

`

(
$nj %

(nj 5N

@~m~V,T!2e j !nj /~kT!#

5)
j

$11exp@~m~V,T!2e j !/~kT!#% ~2.4!

for the case of Fermi statistics. By taking the partial deriv
tive of lnQ with respect to the parameterm, we can obtain in
the usual manner

N5(
j

1

exp@~e j2m!/kT#11
, ~2.5!

where hereN51, the average number of occupied states
the system, which fixesm, as a function of the temperatur
and the volume. Since for the canonical partition functi
QN(V,T), as usual we havekT lnQN52A(V,T), where
A(V,T) is the Helmholtz free energy, we deduce directly f
Eq. ~2.4! in the usual way by considering only the term in th
sum corresponding toN,

A~V,T!5Nm~V,T!

2kT(
j

ln$11exp@~m~V,T!2e j !/~kT!#%.

~2.6!

The energy is given from the Helmholtz free energy
the thermodynamic relation

U5A2T
]A

]TU
V

5(
j

e j2T
]e j

]TU
V

exp@~e j2m!/kT#11
. ~2.7!

We remark that, normally,]e j /]TuV50, and so is not in-
cluded in the textbook presentations. However, in our ca
our treatment of the many-body effects induces a temp
ture dependence in energy eigenvalues in the cellular e
tions. It may at first sight seem surprising that, although
start with a system in which the potentials in the Hamiltoni
are independent of density and temperature, we could en
with this sort of dependence in the cellular equations. T
sort of dependence occurs naturally when one goes bey
the independent-electron approximation. As an exam
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56 5219EQUATION OF STATE FOR A PARTIALLY IONIZED GAS
consider the exchange energy which arises due to the
symmetry of the electron wave function. In the textbo
derivation@35# of this electron-electron interaction term fo
free electrons at zero temperature, the Fermi momentum
ters directly in the effective interaction term. Since the Fer
momentum is proportional to the cube root of the density,
obtain a direct dependence on the density in the effec
interaction term. As the temperature increases, the distr
tion of the electron states no longer has a sharp cutoff at
Fermi surface, but is smeared out there. This difference
the energy distribution of the electrons will likewise cause
dependence of the effective interaction on the temperatur
well.

The pressure is also given from the Helmholtz free ene
by the thermodynamic relation

p52
]A

]VU
T

5(
k

]m

]VU
T

2
]ek

]VU
T

exp@~ek2m!/kT#11
2N

]m

]VU
T

52(
k

]ek

]V U
T

exp@~ek2m!/kT#11
. ~2.8!

It will be useful to rewrite Eq.~2.8! in terms of the ‘‘radius’’
r b , or typical linear dimension of the cell, as

pV52 1
3 (

k

r b

]ek

]r b
U

T

exp@~ek2m!/kT#11
. ~2.9!

A remark at this point is worthwhile. It is common to see
text books the expressionpV5kT lnQ. This result is only
valid in the case where the Gibbs free energyG5Nm, as is
usually so and is certainly true for the ideal Fermi gas.
general,

G5A2V
]A

]VU
T

5Nm~V,T!

2kT(
j

log$11exp@~m~V,T!2e j !/~kT!#%

2 1
3 (

k

r b

]ek

]r b
U

T

exp@~ek2m!/kT#11
. ~2.10!

The last two terms cancel each other for the ideal gas c
and correspond to the two forms off 5/2 given in Eq.~3.2!
below. For reference, the entropyS can be obtained from
Eqs. ~2.6! and ~2.7! and the thermodynamic relatio
A5U2TS.

Thus, in general, the computation of the pressure, etc
reduced to computations within a single cell. When we o
serve that for an ideal gas every eigenvalue is of the fo
\2k2/(2mrb

2), with k independent ofr b , then, for the ideal
Fermi gas,
ti-

n-
i
e
e
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e,

is
-

m

r b

]e j

]r b
522e j . ~2.11!

The substitution of this result into Eq.~2.9! yields the well-
known result

pV5
2

3
U. ~2.12!

The boundary conditions~2.1! and ~2.2! are known to be
sufficient to produce a discrete set of states for each valu
kW . Thus, in principle, what one needs to do is to comp
these quantities for everykW in the first Brillouin zone, then to
integrate over the zone and sum over the discrete state
indicated in Eq.~2.5! for variousm’s, in order to determinem
as a function ofr b and the temperatureT. From this deter-
mination, one can then substitute it into Eq.~2.7!, et seq.to
determine the various thermodynamic quantities as predi
by our cellular model. The computation of the necessary
rivatives is discussed in Appendix A.

III. CUBIC CELLULAR MODEL
FOR AN IDEAL FERMI GAS

The standard formulas@34# for the ideal Fermi gas~of
chargeless electrons! are

z5
N

2V S h2

2pmkTD
3/2

5 f 3/2~z!5
2

Ap
E

0

` zy1/2e2ydy

11ze2y ,

~3.1!

wherez is the deBroglie density which measures the imp
tance of quantum effects,N is the number of electrons,V is
the volume, andm is the electron mass andz5exp(m/kT) in
the notation of Eq.~2.5!. The pressure equation is

pV

NkT
5

f 5/2~z!

f 3/2~z!
,

f 5/2~z!5
2

Ap
E

0

`

y1/2 log~11ze2y!dy

5
4

3Ap
E

0

` zy3/2e2ydy

11ze2y , ~3.2!

where the second form off 5/2(z) follows from the first
through an integration by parts, or vice versa. It is instruct
to re-express these equations in cellular form. Let us cho
cubes of edgea such thata35V/N, so that on average ther
is one electron per cell. Then the reciprocal lattice is a
cubic, and the edge of a primitive cell is 2p/a. If we make
the change of variables,y5\2k2/(2mkT), then Eq.~3.1!
can be rewritten as

15
2a3

~2p!3 E E E
2`

`
z expS 2

\2k2

2mkTDdkW

11z expS 2
\2k2

2mkTD
. ~3.3!
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5220 56GEORGE A. BAKER, Jr.
By dividing the range of integration according to primitive cells of the reciprocal lattice, we obtain for Eq.~3.3!

152 (
j 152`

1`

(
j 252`

1`

(
j 352`

1` S a

2p D 3E E E
2p/a

p/a dkW

11z21expF \2

2mkTS kW1
2p

a
W D 2G , ~3.4!

where the steps in thej sums are unity. The factor of 2 is a reflection of the two spin states of the electron. The corresp
formula for the pressure is, by Eq.~3.2!,

pV

NkT
5

4

3 (
j 152`

1`

(
j 252`

1`

(
j 352`

1` S a

2p D 3E E E
2p/a

p/a

\2

2mkT S kW1
2p

a
W D 2

dkW

11z21expF \2

2mkTS kW1
2p

a
W D 2G , ~3.5!

We are now in a position to compare these exact results for the ideal gas with the results of the cellular model des
Sec. II. First, if kW50, thenf(rW)5exp(isW•rW) satisfies Eq.~2.3!, with E(0)5\2s2/(2m), and if each component ofsW is an
integral multiple of 2p/a, wherea is again the cell edge, the solutions also satisfy the boundary conditions. WhenkWÞ0 then
it is easy to verify thatf(rW)5exp(isW•rW) still satisfies Eq.~2.3! and the boundary conditions with the same restrictions onsW.
However, nowE(kW )5\2(sW1kW )2/(2m). When this is substituted into Eq.~2.7!, Eq. ~2.12! gives us exactly Eq.~3.5!. Thus the
cubic cell model is exact for the ideal gas. It is not difficult to persuade oneself that the same is true for any Bravias lat
model, as it just amounts to a reorganization of the intergals.

It is of interest to investigate what is involved in the numerical evaluation of the properties of the ideal Fermi gas
method, as later on we will be interested in the accuracy of the spherical approximation to the cell model, and in the ca
of models with Coulomb forces added. As the integrals are symmetric in the 8-octants, we can reduce the integra
single octant. To do so, it is convenient to shift the Brillouin zone to 0<ki<2p/a; thus we do not divide any Brillouin zone
in the process. Hence Eq.~3.4! becomes

1516(
j 150

1`

(
j 250

1`

(
j 350

1` E E E
0

1 dkW

11exp@p~2z!2/3~kW 1W !22m/~kT!#
, ~3.6!

and Eq.~3.5! becomes

pV

NkT
5

32p

3
~2z!2/3 (

j 150

1`

(
j 250

1`

(
j 350

1` E E E
0

1 ~kW 1W !2dkW

11exp@p~2z!2/3~kW 1W !22m/~kT!#
. ~3.7!

The problem here is to do the integrals overkW , and then do the sums overW. Because of the exponential these sums cut
quite rapidly once the eigenvalues exceed the free energym. We have used the Euler-Maclaurin sum formula, because
quite efficient for Gaussian-type integrals. Specifically, with remainder, it is

E
0

m

f ~x!dx5
1

2
@ f ~0!1 f ~m!#1 (

k51

m21

f ~k!2 (
r 51

n21
B2r

~2r !!
@ f ~2r 21!~m!2 f ~2r 21!~0!#2 f ~2n!~unm!

B2n

~2n!!
, ~3.8!

whereBn are the Bernoulli numbers,

B25 1
6 , B452 1

30 , B65 1
42 , B852 1

30 , B105
5

66 ,... . ~3.9!

We have found that dividing the range of each rectangular component ofkW in Ap(2z)1/311 intervals with no Bernoulli
number corrections was sufficient to give a maximum deviation of 0.2% for the pressure from the representation of Ba
Johnson@36#,

pV

NkT
5g~z!'F110.610 948 80z10.126 604 36z210.009 117 764 4z3

110.080 618 739z G1/3

, ~3.10!
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which is accurate to 0.1%. A binary search method was u
to solve Eq.~3.6! for m. The starting value ofm used was
computed from the representation given by Baker a
Johnson. The left-hand side was@19# reproduced to at leas
on part in 1010. We checked over a range o
731024<z<73102. Note is taken that the Bernoulli num
ber corrections all vanish at the boundary where a com
nent of W is zero, as this is an even function inkW , and the
others cancel in pairs, except at the large cutoff inW where
they are negligible anyway. Thus this particular case is n
good guide in general to the expected number of Berno
number corrections for this accuracy.

IV. SPHERICAL CELLULAR MODEL
FOR AN IDEAL FERMI GAS

As background to the spherical cellular model, let us fi
consider the body-centered-cubic or face-centered-cubic
tice. These lattices are reciprocals of each other, as is
well known. Their primitive cells are more nearly spheric
than for the simple cubic lattice. For the ideal Fermi g
problem we can again choose the single-electron eigenf
tion to be of the form exp(ipW•rW), wherepW lies on the recip-
rocal lattice, and couple the sum over the reciprocal lat
with an intergal over the first Brillouin zone. The same stru
ture as explained above for the simple cubic lattice contin
to work here, and reproduces the ideal Fermi gas result
the same way. If for example we takepW 5nbW 1 wherebW 1 is
one of the basic reciprocal-lattice vectors, then we can w
the eigenfunction in terms of the spherical basis system

eipW •rW5(
l 50

`

~2l 11!i l Pl~cosu rp! j l~rp !, ~4.1!

wherePl(x) are the Legendre polynomials, andj l(x) are the
spherical Bessel functions. If we choose the length ofrW to be
p/ubW 1u then we can, if we wish, select equivalent bounda
conditions for a sphere of that radius to be

einp cosurp5(
l 50

`

~2l 11!i l Pl~cosu rp! j l~np! ~4.2!

on its surface, and we will have defined this eigenfunction
the sphere. This in turn can be decomposed into its even
odd parts under inversion. On the surface of this sphere
are

fe5cos~np cosupr!, fo5 i sin~np cosupr!. ~4.3!

In order to insure periodicity in the directionbW 1 , we note
fo50 automatically here, and by differentiation we find t
bW 1•¹W fe50 here as well. In the tangent plane perpendicu
to bW 1 , we have, by the usual theory of lattices, two of t
basic vectors for the lattice. In this whole plane, the sa
two boundary conditionsfo50 andbW 1•fe50 hold, as men-
tioned above for the poles of the sphere. This set of bound
conditions reflects the usual three-dimensional periodicity
a space lattice. In other directions we see the oscilla
boundary conditions described by Eqs.~4.2! and~4.3! above,
which of course reflect the existence of special directions
the space lattice.
d

d

o-

a
lli

t
t-
ry
l
s
c-

e
-
s
in

te

y

n
nd
ey

r

e

ry
f
g

r

These boundary conditions would be rather hard to us
the spherical coordinate framework if we did not alrea
know the result, as they mix a potentially large number
different l states and greatly increase the solution effort. F
the ideal gas cases, of course, there is no problem, as
have the solution already, but a problem would arise if
were to try to add a spherically symmetric potential. In a
dition, this sort of boundary condition violates the spirit
the spherical cellular model, as it has preferred directio
The spherical cellular model is necessarily an approximat
as one cannot fill space with spheres of constant diame
and the whole Bravias lattice structure which works so nea
for actual space lattices is inapplicable for spherical cells

Alternatively we can start with Eq.~2.3! and impose the
boundary conditions~2.1! and ~2.2! for periodicity in all di-
rections at every point on the surface of the spherical cel
radiusr b . These requirements lead to the conditions

nW •¹W feven50, fodd50 ~4.4!

on the surface of the spherical cell. The first Brillouin zone
taken to beukW u<kB5(9p/2)1/3/r b . In the casekW50W , we can
construct a basis set of solutions of Eq.~2.3! in the spherical
cell with these boundary conditions. They imply, in sho
that the radial derivative of the part which is even und
inversion must vanish at the surface, and the value of the
part must vanish on the surface of the cell. Specifically,
basis set is

u l ,m,l&5Ylm~u,f!Nll j l~pllr !, m52 l ,2 l 11,...,l ,

l 50,1,..., l51,2,..., ~4.5!

whereYl ,m(u,f) are the usual normalized spherical harmo
ics, and are, in terms of the associated Legendre polyno
als, Pl

m(cosu),

Yl ,m~u,f!5S ~2l 11!~ l 2umu!!
4p~ l 1umu!! D 1/2

Pl
umu~cosu!eimf.

~4.6!

The quantitiespl ,l are determined by the boundary cond
tions through the requirements,

j l~pl ,lr b!50,
j l8~pl ,lr b!50,

l odd,
l even. ~4.7!

Finally, Nl ,l are given by

15Nl ,l
2 E

0

r b
j l
2~pl ,lr !r 2dr5 1

2 r b
3@ j l

2~pl ,lr b!

2 j l 21~pl ,lr b! j l 11~pl ,lr b!#Nl ,l
2 , ~4.8!
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where we take j 21(x)52n0(x)5cosx/x. This set of
basisfunctions is a complete orthonormal set. It is not
only possible such set, but it is appropriate to our pres
needs.

The next step is to resolve the operatorH8

52( i\2/m)kW•¹W in this basis. Since the spherical cell has
in
a
s

ct
n

.

n

on
e
nt

preferred direction, we have, for convenience, takenkW to be
parallel to thez axis. It is to be noticed that the variousm
states are not mixed by this operator because it comm
with the z component of the angular momentum. This res
lution requires some straightforward, but tedious compu
tion:
H8u l ,m,l&5
2 i\2k

m F2l 11

4p

~ l 2umu!!
~ l 1umu!! G

1/2

eimfF l 2m11

2l 11
Pl 11

m ~x!S pl ,l j l8~pl ,lr !2
l

r
j l~pl ,lr ! D

1
l 1m

2l 11
Pl 21

m ~x!S pl ,l j l8~pl ,lr !1
l 11

r
j l~pl ,lr ! D GNl ,l . ~4.9!

Thus the results arêl 8,m8,l8uH8u l ,m,l&50, unlessu l 82 l u51. The nonzero elements are

^ l 21,m8,l8uH8u l ,m,l&

55
2 i\2kpl ,l

m S l 22m2

4l 221D 1/2

dm8,mF 2pl ,l j l 218 ~pl ,lr b!

r b~pl ,l
2 2pl 21,l8

2
!u j l 21~pl ,lr b!u S j l 21~pl 21,l8r b!

2 j l 219 ~pl 21,l8r b! D
1/2G for l odd

2 i\2kpl ,l

m S l 22m2

4l 221D 1/2

dm8,mF 2pl 21,l8 j l 21~pl ,lr b!

r b~pl ,l
2 2pl 21,l8

2
!@2 j l~pl ,lr b! j l9~pl ,lr b!#1/2G for l even

~4.10!

and

^ l 11,m8,l8uH8u l ,m,l&

55
2 i\2kpl ,l

m S ~ l 11!22m2

4~ l 11!221D 1/2

dm8,mF 2pl ,l j l 118 ~pl ,lr b!

r b~pl ,l
2 2pl 11,l8

2
!u j l 11~pl ,lr b!u S j l 11~pl 11,l8!

2 j l 119 ~pl 11,l8r b! D
1/2G for l odd

2 i\2kpl ,l

m S ~ l 11!22m2

4~ l 11!221D 1/2

dm8,mF 22pl 11,l8 j l 11~pl ,lr b!

r b~pl ,l
2 2pl 11,l8

2
!@2 j l~pl ,lr b! j l9~pl ,lr b!#1/2G for l even.

~4.11!
her

be
gen-
ce

rre-
s,
As the operatorH8 is Hermitian, but does not appear so
this mode of expression, we remark that its Hermiticity c
be explicitly verified by use of the Bessel function identitie

pl ,l j l 11~pl 11,l8r b! j l 118 ~pl ,lr b!

5pl 11,l8 j l 11~pl ,lr b! j l~pl 11,l8r b!, l odd,
~4.12!

pl 11,l8 j l~pl ,lr b! j l8~pl 11,l8r b!

5pl ,l j l 11~pl ,lr b! j l~pl 11,l8r b! l even,

where use has been made of the standard Bessel fun
identities and also, in particular, the boundary conditio
~4.7!. It is to be noticed thatj l9(pl ,lr b) only appears in Eqs
~4.10! and ~4.11! for even l . In this case, asj l8(pl ,lr b)50,
the j 9 terms can be replaced, using the spherical Bessel fu
tion equation

j l9~pl ,lr b!52S 12
l ~ l 11!

pl ,l
2 r b

2 D j l~pl ,lr b!, ~4.13!

which eases the problem of the evaluation of the expressi
n
,

ion
s

c-

s.

In the case wherepl 61,l85pl ,l the@ # terms in Eqs.~4.10!
and ~4.11! considerable simplify. They are

@ #→2S 12
L~L11!

pl ,l
2 r b

2 D 1/2

, ~4.14!

where for l even, L5 l , and, for l odd, L5 l 21 for Eq.
~4.10! andL5 l 11 for Eq. ~4.11!, respectively.

One might think that the occurrence of degeneracy, ot
than between the states with differentz components of an-
gular momentum, which do not mix in this case, would
accidental and rare. However, degeneracy and near de
eracy are quite common in this basis. First, sin
j 08(z)52 j 1(z), them50 component of thel 51 member of
our basis states is always exactly degenerate with the co
spondingl 50 state. In general, for the higher-order zero
we have the asymptotic expansions@37#. The sth zero of
j l8(z) is

ẑs~ l !5b2
~2l 11!217

8b
1O~b23!, b5pS s1

1

2
l 2

1

2D ,

~4.15!

and thesth zero of j l(z) is
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zs~ l !5b2
~2l 11!221

8b
1O~b23!, b5pS s1

1

2
l D .

~4.16!

By way of comparison we consider the results from E
~4.15! for l 52m11, and from Eqs.~4.16! for l 52m. In this
caseb5p(s1m) for both cases so to leading order they a
degenerate. Taking the difference, we obtain

zs~2m!2 ẑs~2m11!52S m11

b D1O~b23!. ~4.17!

So for larges we obtain very near degeneracy. For smal
values ofs, except for thel 50 and 1 correspondence, th
degeneracy is not too bad but not so close. We report s
of the values in Table I@38#.

If there is a near degeneracy so that for somel9 andl8,
pl ,l9'pl 61,l8 then, without the compensating vanishing
near vanishing ofpl ,l9

2
2pl 61,l8

2 the vanishing, or near van
ishing of the numerators in Eqs.~4.10! or ~4.11! causes the
corresponding matrix element ofH8 to vanish or nearly van-
ish. With this observation as guidance, we will now divi
the Hamiltonian matrix into blocks characterized by a va
of m, the z component of the angular momentum, and
those states which are degenerate in leading order as
pressed in Eqs.~4.14! and ~4.15!. The largest block will be
for the m50, case and the lowest-energy state of the larg
value of l retained.

It is to be noted that the matrix elements ofH8 depend on
m. This dependence adds greatly to the length and comp
ity of the computation. For numerical expediency, with
each block of degenerate, or nearly degenerate states
replace the resulting eigenvalues with the eigenvalue plu
minus the root-mean-square deviation over its block of
eigenvalues due toH8. These latter values are easily com
puted by taking the trace of (H01H8)2 for that block. The
exception is for the lowestl 50 state, which is not degene
ate nor nearly degenerate with any other state, and so
change is made here on account ofH8. This treatment agree
with that of Bardeen@39# for the ground-state case.

The necessary partial traces to be taken are thos
(H8)2. One convenient way to obtain them is to start fro
result ~4.9!, and use the completeness formula

^ l ,m,lu~H8!2u l ,m,l&5( l 8,m8,l8^ l ,m,luH8u l 8,m8,l8&

3^ l 8,m8,l8uH8u l ,m,l&.

TABLE I. The values ofpl ,l in units of p. v5l1@~l 11!/2#,
where@a# is the greatest integer not exceedinga.

l\v 0 1 2 3 4

0 0.0000 1.4303 2.4590 3.4709 4.4775
1 1.4303 2.4590 3.4709 4.4775
2 1.0638 2.3205 3.3785 4.4074
3 2.2243 3.3159 4.3602
4 1.7974 3.1323 4.2321
.
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These results, together with the completeness of
f l 61,l(r ) over all l for 0<r<r b , allow us to deduce, by
direct computation, the conclusion

^ l ,m,lu~H8!2u l ,m,l&54S \2k2

2m D S 2l 212l 2122m2

~2l 21!~2l 13!
Tl ,l

1
l ~ l 11!23m2

~2l 21!~2l 13!
Sl ,lD , ~4.18!

where

Tl ,l52
\2

2m
^ l ,m,lu¹2u l ,m,l&, Sl ,l5

\2

2m
r buf l ,l~r b!u2,

~4.19!

and use was made of our boundary conditions, which im
that f l ,l(r b)f l ,l8 (r b)50 for all values of l . Note that
Sl ,l50 for l odd. The sum of the absolute squares over
2l 11 states of them is, by direct computation from Eq
~4.18!,

(
m52 l

l

^ l ,m,lu~H8!2u l ,m,l&54S \2k2

2m D S 2l 11

3 DTl ,l ,

~4.20!

where the sum overm of the Sl ,l term vanishes here. Th
(2l 11)/3 factor has the interpretation that it is the to
number of states, divided by the number of spatial dim
sions, as only one direction is singled out bykW . The result in
Eq. ~4.20! corresponds to averaging over all the directions
kW as the sum over them states is independent of the origin
direction chosen forkW , and so is in line with the concept o
the spherical cell.

The next step is to sum over thel values of the degenerat
or nearly degenerate block. For thevth excited state ofl 50,
this sum would be up toL, which is the lesser of the maxi
mum l value considered or 2v. Thus the root-mean-squar
value Dv(k) for this block would be given, in units of the
Brillouin energy, by

F\2kB
2

2m
Dv~k!G2

5
4

~L11!2 S \2k2

2m D
3 (

l 50

L21 S 2l 11

3 DTl ,v2[ ~ l 11!/2] .

~4.21!

In a manner similar to Eqs.~3.6! and ~3.7!, we obtain
expressions which determine the parameterm and the pres-
sure. The parameterm is given by the solution of
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153(
l 50

`

~2l 11! (
n50

` E
0

1

dk k2H 1

11exp@~1.5Apz!2/3~el ,n1k21kDn1[ ~ l 11!/2]!2m/kT#

1
1

11exp@~1.5Apz!2/3~el ,n1k22kDn1[ ~ l 11!/2]!2m/kT#
J , ~4.22!

where we use the notationel ,n5pl ,n
2 /kB

2, and where 352333 1
2 and the 2 is for the two electron states, the 3 normalizes

integral, and the1
2 compensates for the two6D terms. For the pressure, remembering the factor of2

3 given by Eq.~2.12!, we
obtain

pV

NkT
52~1.5Apz!2/3(

l 50

`

~2l 11! (
n50

` E
0

1

dkk2H el ,n1k21kDn1[ ~ l 11!/2]~kB!

11exp@~1.5Apz!2/3~el ,n1k21kDn1[ ~ l 11!/2]!2m/kT#

1
el ,n1k22kDn1[ ~ l 11!/2]~kB!

11exp@~1.5Apz!2/3~el ,n1k22kDn1[ ~ l 11!/2]!2m/kT#
J . ~4.23!

This form is analogous to the second form forf 5/2 in Eq. ~3.2!.
A form analogous to the first form forf 5/2 in Eq. ~3.2! is

pV

NkT
53(

l 50

`

~2l 11! (
n50

` E
0

1

dk k2
„ln$11exp@m/kT2~1.5Apz!2/3~el ,n1k21kD l ,n!#%

1 ln$11exp@m/kT2~1.5Apz!2/3~el ,n1k22kD l ,n!#%…, ~4.24!

It is to be noted that the structure of Eq.~4.24! is such that the pressure is necessarily positive. We can obtain an expre
which makes the integrals and the numerical approximations used to evaluate them parallel those of Eqs.~4.22! and~4.23!, if
we integrate Eq.~4.24! by parts with respect tok. The result is

pV

NkT
5(

l 50

`

~2l 11! (
n50

`

„ln$11exp@m/kT2~1.5Apz!2/3~el ,n111Dn1[ ~ l 11!/2]!#%1 ln$11exp@m/kT2~1.5Apz!2/3~el ,n11

2Dn1[ ~ l 11!/2]!#%…1~1.5Apz!2/3(
l 50

`

~2l 11! (
n50

` E
0

1

dk k2H 2k21kDn1[ ~ l 11!/2]~kB!

11exp@~1.5Apz!2/3~el ,n1k21kDn1[ ~ l 11!/2]!2m/kT#

1
2k22kDn1[ ~ l 11!/2]~kB!

11exp@~1.5Apz!2/3~el ,n1k22kDn1[ ~ l 11!/2]!2m/kT#
J . ~4.25!
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In order to compute the thermodynamics of the ideal
for a spherical cellular model, we first compute the eigenv
ues and eigenvectors of the above-mentioned blocks. T
block matrices are tridiagonal, and so the numerical com
tations are straightforward and quick. The eigenvalue sp
trum allows us to compute by Eq.~4.22! the value of the
parameterm, and then in turn by Eqs.~4.23! or ~4.25! the
value of the pressure. Remember that as discussed in Se

we need to pick out a discrete set ofkW ’s and appropriately
sum over them to simulate the integral over the first Brillou
zone. We have evaluated these equations numerically,
solve for m as described in Sec. III for the cubic cellula
model. We find that the results of our spherical approxim
tion for the pressure using Eq.~4.25! is accurate to within
22.2 to 1.2 %, and, using Eq.~4.23!, is accurate to within
about22.5 to 4.9 %. Form~4.25! is somewhat more accu
rate in the ideal gas case; however, form~4.23! must be used
in later sections as Eq.~4.25! does not hold in general. W
s
l-
se

u-
c-

. II,

nd

-

illustrate these results in Fig. 1. Our results forz are accurate
from 210% to 4%. However, the equations forz are not
very sensitive to the value ofz. That is to say, the change i
the left-hand side of Eq.~4.22! is proportionately much less
than the change inz. It is to be noted that for Eq.~4.25! in
Fig. 1 the smallest three plus decades~high temperature! and
approximately the first two decades~low temperature! in z
are accurate to fractions of a percent, and tend rapidly
correct values in each limiting case. For form~4.23! it is to
be noted that in Fig. 1 the smallest two decades~high tem-
perature! and approximately the first decade~low tempera-
ture! in z are accurate to fractions of a percent, and also t
rapidly to the correct values in each limiting case. We ha
studied the same range ofz here as we did in the case of th
cubic cellular model in Sec. III.

The technical details of the calculations are as follow
We divide the range ofr up into the larger of 16x or
2xATmaximum, whereTmaximumis in eV, andx looks ahead to
Sec. V and is defined as
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x5S 128

9p2D 1/3me2r b

\2 , ~4.26!

wheree is the charge on the electron. The number of part
waves taken is governed by

L> 1
2 ~A113.54x21!110, ~4.27!

which also looks ahead to Sec. V and keeps the minim
value of the potential plus the angular momentum barrier
the maximum value ofl outside the considered sphere. Th
10 is added for safety. In addition, we require that

L>„x1x2Tmaximum@0.864 66

1max@0,ln~x2Tmaximum!/17.3479#%…1/2, ~4.28!

which enforces the condition that the minimum accepta
value of the potential plus the angular momentum barrier
the surface of the sphere should be 1512 ln(L11). The
L-dependent part is to take account of the fact that there
about (L11)2 degenerate, or nearly degenerate states c
tributing at that energy level. This restriction leads to a r
duction in the relative term size of the order of 106. In the
case reported in Fig. 1,L5213, and the number of interval
in r is 353. The method of integration overk discussed in
Sec. III is used here with two Euler-Maclaurin correction
We selected 16(1.5Apz)1/3110 intervals for thek integra-
tion, which refines the rule in Sec. III by an order of magn
tude because the Euler-Maclaurin corrections do not can
out as they did for the cubic model. We have checked t
these rules are adequate for our purposes by running
cases where the numbers were at least double, and found
the resultant changes were not at a significant level.

FIG. 1. The pressure of the spherical cellular model of an id
gas divided by the pressure of the ideal Fermi gas vsz, the deBro-
glie density. The solid line is for Eq.~4.25!, and the dashed line is
for Eq. ~4.23!. The dotted line is for a ratio of unity, and is put in fo
reference.
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V. SPHERICAL CELLULAR MODEL
FOR AN ION-ELECTRON GAS

The addition of Coulomb forces to the spherical model
an ideal Fermi gas is not straightforward, if we wish to
able to compute numerical results from our model. We w
in the main use the independent-electron model with so
modifications where required. Initially we will begin with
discussion of hydrogen (Z51), which is conceptually some
what simpler. In the highly dilute, cold limit, following
Wigner and Seitz@33#, we start with the Heitler-London
atomic approximation, together with the boundary conditio
as discussed in Sec. II, and so we start with the equatio

\2k2

2m
fl~rW !2

i\2

m
kW•¹W fl~rW !2

\2

2m
¹2fl~rW !2

e2

r
fl~rW !

5El~kW !fl~rW !. ~5.1!

As is well known, the boundary conditionf8(r b)50 for the
ground state~even parity! leads to a lower energy than tha
for the atomic ground state@30#. This boundary condition
‘‘pushes’’ the electrons which would have been outside
cell into the cell, and has the effect of concentrating them
the outer part of the cell~relative to the atomic wave func
tion!. This can be viewed as clustering electrons between
two adjacent ions, and thus lowering the energy and form
a bond between them. This effect, in some sense, repres
the polarization attraction of two atoms, but is, of cours
sphericalized in our model.

In our subsequent discussions it will be useful to intr
duce the relative strength of the Coulomb energy to the th
mal energy by

y25
e2

r bkT
. ~5.2!

The ideal Fermi gas of Sec. IV is characterized byy50, and
the cold isolated atom picture of the previous paragraph
large y. The properties of the ideal gas depend onz alone,
Eq. ~3.1!. A considerable amount is known about the sma
y behavior from many-body perturbation theory. In partic
lar, it is known that the sum@40# of the ion-ion repulsion,
electron-electron repulsion, and ion-electron direct ter
cancel in first order ine2 for electrically neutral systems. Th
only term which contributes to this order is the so-call
exchange term. Let us now examine the properties of
cellular model in this regime. The ion-ion repulsion term
not in evidence because there is only one ion in the cell,
the ion-ion term for ions outside the cell is cancelled by t
ion-electron attraction terms with the electrons outside
cell. We do have the ion-electron attraction term within t
cell. As in this regime the electron density is uniform in th
cell, we can easily compute this energy as

Ei -e52
3

4pr b
3 E

urWu<r b

drW
e2

r
52

3e2

2r b
. ~5.3!

This derivation would normally be supposed to be valid on
for high temperature~small z!, but for our boundary condi-
tions the ground-state wave function for the ideal gas is
a constant. This circumstance leads to a uniform elect

l
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density for very low temperature~largez!. In Fig. 2 we plot
this energy divided by the result in Eq.~5.3!. We have cal-
culated this quantity using the spherical cellular model of
ideal gas as described in Sec. IV. It is to be observed tha
quantity is substantially independent ofz. There is about a
6% dip nearz51, but this may reflect an inadequacy of o
spherical cellular model.

In addition there are the electron-electron and ion-ion
pulsion energies. These arise because we are really tre
an system ofN electrons andN ions, each of which is
present in a particular cell with probability 1/N. This energy
can be computed directly as is done in the ‘‘Hartree term
@35#. As usual, even though there is no self-interaction,
weighted square of the wave function need not be subtrac
as it only contributes of the order of 1/N to the results. Thus
we obtain

Ee-e5S 3

4pr b
3D 2E

urW1u<r b

drW1E
urW2u<r b

drW2

e2

urW12rW2u

5
3e2

2r b
S 3

4pr b
3D E

urW1u<r b

drW1F12
1

3 S r 1

r b
D 2G5

6e2

5r b
, ~5.4!

Ei - i5S 3

4pr b
3D 2E

urW1u<r b

drW1E
urW2u<r b

drW2

e2

urW12rW2u
5

6e2

5r b
.

It is to be noted thatEi -e10.5(Ee-e1Ei - i) does not cancel
The physical reason for this is that in this regime the ions
also uniformly distributed, thereby reducing the ion-electr

FIG. 2. The average value of ion-electron attractive energy
computed in the ensemble determined by the spherical cel
model of the ideal Fermi gas.
e
he

-
ing

’
e
d,

e
n

attraction so exact cancellation occurs. However, since
are not going to adjust the2e2/r term in the Hamiltonian
because of its correctness for largey, we will instead add
Ei53e2/(10r b) to Ei -e to compensate for the ion distributio
effect. The addition of constant amounts to all the ene
levels, by Eq. ~2.5!, adds the same constant tom. The
changes in the potential in Eq.~5.1! necessary to take ac
count of all the direct terms of the first order iny2 are the
addition of the two terms

Ei5
3e2

10r b
, and Ṽ~r !5S 3e2

2r b
2

e2r 2

2r b
3 D

e-e

1S 6e2

5r b
D

i - i

5
27e2

10r b
2

e2r 2

2r b
3 . ~5.5!

Because this potential is caused by interaction with the o
electrons and between the ion-ion pairs, as usual, we

el5El2 1
2 ^Ṽ& for the energiese of Sec. II. When the po-

tential of Eq.~5.5! is averaged over the spherical cell, it give
12e2/(5r b). The net contribution is just one-half of that, s
we find that this term exactly cancelsEi -e1Ei to leading
order iny2.

Note is taken that the total potentialṼ(r )2e2/r seren-
dipitiously has zero radial derivative at the surface of t
cell. We will see below, however, that this feature is on
valid to leading order iny2.

The ‘‘exchange term’’ comes from the interchange
electrons between two different states as a result of t
mutual interaction via the electron-electron force. The io
ion exchange term will be neglected here. The first-or
interaction energy for all values ofz was given by Baker and
Johnson@19# as

Eexch52
4pe2

~2p!6 S 4pr b
3

3
D E dkW1dkW2

~kW12kW2!2
n~kW1!n~kW2!,

~5.6!

wheren(pW ) is the Fermi distribution function,

n~pW !5
1

exp$@~\2p2/2m!2m#/kT%11
. ~5.7!

This equation reduces to the textbook result for the
change energy when the limitT→0 is taken, wheren(pW )51
for upW u<kF , and zero otherwise. Baker and Johnson@36#
further give a representation which is good to about 0.1
It is

Eexch52
e2

2pr b
S 3

p D 1/3

z2 4/3X~z!, ~5.8!

where

s
ar
X~z!'
p

2
z2F 110.088 412 769z

110.795 519 53z10.193 500 34z210.013 716 390z3G1/3

. ~5.9!



a

ve

f

.

la
e
x

re
le
y

er

r
.

of
-

of

56 5227EQUATION OF STATE FOR A PARTIALLY IONIZED GAS
Clearly, this exchange term is not independent ofz. Whenz
is large, then the textbook value of the exchange energy,
function of wave numberpW , is just given@35# by

V̂~kW1!52
2e2

p
kBS 1

2
1

kB
22k1

2

4k1kB
lnUkB1k1

kB2k1
U D

52
2e2

p
kBF12

1

3 S k1

kB
D 2

1••• G , ~5.10!

which increases from a minimum atk150 in a manner pro-
portional tok1

2. We can also compute the results for smallz.
Here, by taking a factor of 2 times the functional derivati
of ~5.6! with respect todn(kW1), we obtain

V̂~kW1!5
28pe2

~2p!3 E dkW2

~kW12kW2!2
n~kW2!

'
28pe2

~2p!3
zE dkW2

~kW12kW2!2
expS 2

\2k2
2

2mkT
D .

~5.11!

SubstitutingkW25kW31kW1 and integrating over the angles o
kW3 , we obtain

V̂~kW1!'2
2e2z

pk1
S 2mkT

\2 DexpS 2
\2k1

2

2mkTD
3E

0

`

dk3 expS 2
\2k3

2

2mkTD sinhS \2k1k3

mkT D Y k3

52
2e2z

Ap
S 2mkT

\2 D 1/2

3expS 2
\2k1

2

2mkTD 1F1S 1

2
;
3

2
;

\2k1
2

2mkTD , ~5.12!

where 1F1( 1
2 ; 3

2 ;z) is a confluent hypergeometric function

For largek1
2, V̂(kW1) goes asymptotically to zero likek1

22,
and for smallk1

2 it is

V̂~kW1!52
2e2

r b
S 3

p D 1/3

z2/3F12
\2k1

2

3mkT
1•••G . ~5.13!

The usual procedure for the exchange energy is to rep
its effects by an effective mass. This idea corresponds w
with the small-k behavior and the general shape of the e
change energy vs the wave number, at least where the
significant statistical weight attached to the state. To imp
ment this idea we will represent the exchange potential b

v̂~kW1!5V̂~0!1y2A~z!
\2k1

2

2m
. ~5.14!

First we may observe that the value of the exchange en
for k150 is given from Eq.~5.11! by
s a

ce
ll
-
is
-

gy

V̂~0!52
8pe2

~2p!3 E dkW2

k2
2 n~kW2!

52
2e2

r b
z21/3S 3

p D 1/3 1

Ap
E

0

` zy21/2e2ydy

11ze2y

52
2e2

r b
z21/3S 3

p D 1/3

f 1/2~z!, ~5.15!

in line with the notation of Eq.~3.1!. Baker and Johnson@36#
provided a representation off 1/2(z) as a function ofz which
is uniformly accurate to within 0.1%. It is

f 1/2~z!5 1
2 zS v3~z!

u5~z! D
1/3

, ~5.16!

where

v3~z!5110.175 492 05z11.183 343 731022z2

13.092 359 731024z3, ~5.17!

and

u5~z!5111.236 152 2z10.543 270 35z2

19.798 599 831022z316.191 263 931023z4

11.619 155 731024z5. ~5.18!

To determine the value of the coefficient ofk1
2 and thus the

effective mass as a function ofz, we require that the prope
value of Eexch be reproduced. The multiplication of Eq
~5.14! by n(kW1) and the integration overkW1 leads, by two
times Eq.~5.8!, Eqs.~5.14!, and~5.15!, to the equation

2
e2

pr b
S 3

p D 1/3

z24/3X~z!52
2e2

r b
z21/3S 3

p D 1/3

f 1/2~z!

1 3
2 kTz21y2A~z! f 5/2~z!,

~5.19!

which determinesA(z) to be

A~z!5
2

3
z2/3S 3

p D 1/3H 2 f 1/2~z!2X~z!/~pz!

f 5/2~z! J . ~5.20!

The functionf 5/2 is justzg(z) of Eq. ~3.10!. The behavior of
A(z), whenz→0, is

A~z!'S 3

p D 1/3

z2/31••• , ~5.21!

whose value is3
4 of that obtained by cross comparison

Eqs. ~5.13! and ~5.14!. The difference is due to taking ac
count in Eq.~5.21! in an average sort of way the effects
higher orders ink1

2. The asymptotic behavior, whenz→`, is

A~z!_̂
25

3p
~2z2!2 1/3 ~5.22!
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The summary of our investigation of the exchange energ
that we will replace its effects~to leading order iny! by an
effective mass given by

m

m*
511A~z!y2, ~5.23!

and includeV̂(0). I have checked numerically the behavi
of A(z) as defined by Eq.~5.20! over the same range ofz as
shown in Fig. 1, and this definition is negative nowhere
that range. Thus the effective mass~5.23! always obeys
m>m* .0. Further modifications to the model could b
made to insure that the Debye-Hu¨ckel and second exchang
corrections@19# are reproduced in the small-y limit.

The next issue is how these energies vary asy increases.
The important physical effect is that when the electro
electron Coulomb energy is not negligible with respect to
thermal energy, then the electron-electron repulsion for
the electrons apart, and thereby reduces the energies
depend on this interaction. There are various ways of tak
this effect into account. One can use the classical turn
point, and just take zero density where a state is classic
disallowed. What comes to much the same result, but is s
pler to apply, is to reduce the electron-electron density b
Gibbs weight factor, exp@2e2/(rkT)# wherer is the distance
between the two electrons. This method is certainly valid
the classical limit wherez→0. It is important that whateve
is done cause these energies to vanish in the cold, dilute
mentioned above.

To illuminate this behavior, we next compute th
electron-electron repulsive energy in the presence of
Gibbs weight factor. It is

Ee-e5S 3

4pr b
3D E

0

r b
drW

e2

r
expS 2

e2

rkTD5
3e2

r b
y4E

y2

` dj

j3 e2j,

~5.24!

where the change of variablesj5e2/(rkT) was made. For
small y, by expanding the exponential, we obtain

Ee-e5
3e2

2r b
~122y21••• !, ~5.25!

We can rearrange Eq.~5.24! to give

Ee-e5
3e2

r b
y22e2y2E

0

` e2hdh

~11y22h!3

5
3e2

r b
y22e2y2

~123y221••• !, ~5.26!

for the large-y behavior. This behavior at both the large- a
small-y limits can be compactly represented by

Ee-e5
3e2

2r b
F~y2!, F~y2!'e2y2S 212y2

214y21y4D ,

~5.27!

whereF(y2) is a damping factor forEe-e . We will apply it
to Eexch as well.@The approximation forF(y2) in Eq. ~5.27!
is not necessary, as it can easily be evaluated numeric
however, it helps to summarize the general behavior of
is

-
e
s

hat
g
g
lly

-
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n

it

e

ly;
e

damping factor, and I will use it in this paper.# The damping
factor has the physical interpretation of representing a hol
the electron-electron density distribution reflecting their m
tual repulsion.

In addition we need to consider the modification toEi
when yÞ0. To this end we note that the difference in th
potential energy experienced by the electrons between
case where the ions are uniformly distributed, and the c
where the ions are fixed at the center of their spheres
given by

Pi~r /r b!5
e2

r
2

3

4pr b
3 ER<r b

e2dRW

uRW 2rWu

5
e2

r b
F r b

r
2

3

2
1

1

2
S r

r b
D 2G . ~5.28!

When this potential difference is averaged over a unifo
distribution of electrons in the sphere, we obta
Ei53e2/(10r b), as before. Again, to compute the effects
y increases from zero, we will apply the correspondi
Gibbs weight. Thus

Ei5
3

4p E
r<1

drW Pi~r!exp@2y2Pi~r!#

5
3e2

10r b
H 10E

r<1
drW S 1

r
2

3

2
1

1

2
r2D

3expF2y2S 1

r
2

3

2
1

1

2
r2D G J

5
3e2

10r b
g~y2!. ~5.29!

For small and largey, we find

g~y2!512 41
14 y21••• and g~y2!_̂S 2p

3 D 1/2 5

2y3 ,

~5.30!

which suggests the approximation

Ei'S 3e2

10r b
D 1

11
41

14
y21

2

5 S 3

2p D 1/2

y3

. ~5.31!

Again, approximation~5.31! is not necessary becauseg(y2)
is easily computed numerically, but serves to make mani
the behavior ofg, and I will use it in this paper.

In order to take account of the many-body quantum
fects of the electron-electron repulsion and the attractive
change interaction, I propose a modified version of Eq.~5.1!,
which is temperature and density dependent. It is



a

i-
ns
q

n

at

ed
e

on

n

l.
al-
in

the
e

t
ion
ric
-
,
d by
ect

r-
e-
nse

iven

56 5229EQUATION OF STATE FOR A PARTIALLY IONIZED GAS
\2k2

2m*
fl~rW !2

i\2

m*
kW•¹W fl~rW !2

\2

2m*
¹2fl~rW !

2Fe2

r
2

3e2

10r b
g~y2!Gfl~rW !1

e2

r b
F~y2!

3F27

10
2

r 2

2r b
2 22z2 1/3S 3

p D 1/3

f 1/2~z!Gfl~rW !

5El~kW !fl~rW !, ~5.32!

where now we define the effective mass by

m

m*
511A~z!y2F~y2!. ~5.33!

In order to define the energy per state to go into the form
ism of Sec. II, we first solve Eq.~5.32! by the methods of
Sec. IV for El(kW ). Then we must deduct half of the contr
butions from the electron-electron and ion-ion interactio
as otherwise we will have overcounted them. Using E
~5.32! to eliminate the dependence on the matrix eleme
which involve the derivatives, we obtain

el~kW !5F12
1

2 S m*

m DA~z!y2F~y2!GEl~kW !

2
3e2

4r b
F12S m*

m DA~z!y2F~y2!GF~y2!

3F9

5
2

1

3
^fl~rW !u

r 2

r b
2 ufl~rW !&

2
4

3 S 3

pz D 1/3

f 1/2@z~z!#G2
1

2 S m*

m DA~z!y2F~y2!

3F ^fl~rW !u
e2

r
ufl~rW !&2

3e2

10r b
g~y2!G . ~5.34!

The pressure, free energy, etc. related to this revised equ
follow directly from its energy spectrum~5.34! and its de-
rivatives by Eqs.~2.5!–~2.9!. These derivatives are discuss
in Appendix A. The solution for this energy spectrum will b
discussed in Appendix B, and in Sec. VI.

These results may be generalized to ions of chargeZ ac-
companied byZ electrons each. We begin this discussi
with the extension of Eq.~5.1! to Z.1. Again we use the
Heitler-London atomic approximation, which will be valid i
the cold dilute limit. It is

(
j 51

Z H \2

2m
@k222ikW•¹W j2¹ j

2#2
Ze2

r j
J fl~rW1 ,...,rWZ!

1 1
2 (

j Þ l

Z
e2

urW l2rW j u
fl~rW1 ,...,rWZ!5El~kW !fl~rW1 ,...,rWZ!,

~5.35!

where¹W j means differentiation with respect torW j . The same
value ofkW is used in exp(ikW•rWj) for all rW j in order to maintain
l-

,
.

ts

ion

the antisymmetry of the wave function. Of course,f is
meant to embody the spin states of the electrons as wel

When the eigenspectrum is substituted into to the form
ism of Sec. II, it is to be remembered that what is counted
Eq. ~2.5! is the average number of occupied states, not
number of electrons, soN remains unity. For example, in th
case of the ideal gas~noninteracting electrons!, we consider
enlarging the cell so that it containsZ electrons. If we still
consider single-electron states, then for largez ~picks out the
ground state! we needN5Z to allow us to occupy the lowes
Z levels which we need to do in order to satisfy the exclus
principal. On the other hand, if we consider antisymmet
states of the whole system ofZ electrons, then the lowest
energy state already involves the firstZ single-particle states
and so we obtain the same physical ground state selecte
choosingN51 in this case. Consequently, here we sel
cells that contain~on the average! one ion and its attendantZ
electrons, and chooseN51.

Following the procedures above, we now need to ‘‘co
rect’’ Eq. ~5.35! to take proper account of the behavior d
duced from many-body perturbation theory in the hot, de
limit. The generalized versions ofEi andṼ with the damping
factors included are

Ei5
3Z2e2

10r b
g~Zy2!, and

Ṽ~rW1 ,...,rWZ!5
3e2

2r b
F~y2!FZ2 1

3 (
j 51

Z S r j

r b
D 2G

1
6Z2e2

5r b
F~y2Z2!. ~5.36!

The generalized results for the exchange energy are g
by definingA(z) through an equation similar to Eq.~5.19! as

2
e2

pZrb
S 3

p D 1/3

z24/3X~Zz!52
2e2

r b
z21/3S 3

p D 1/3

f 1/2@z~zZ!#

1 3
2 kTz21y2A~z! f 5/2@z~zZ!#,

~5.37!

where the valuezZ replaces the valuez in definition ~3.1! of
z. The solution of Eq.~5.37! is

A~z!5
2

3
z2/3S 3

p D 1/3H 2 f 1/2@z~Zz!#2X~Zz!/~pZz!

f 5/2@z~Zz!# J .

~5.38!

With these generalizations toZ.1, we propose a modified
version of Eq.~5.35!,
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(
j 51

Z H \2

2m* @k222ikW•¹W j2¹ j
2#2

Ze2

r j
1

3Ze2

10r b
g~Zy2!J fl~rW1 ,...,rWZ!1H 1

2 (
j Þ l

Z
e2

urW l2rW j u
1

3e2

2r b
F~y2!FZ2 1

3 (
j 51

Z S r j

r b
D 2

2
4

3 S 3

pz D 1/3

f 1/2@z~Zz!#G J fl~rW1 ,...,rWZ!1
6Z2e2

5r b
F~y2Z2!fl~rW1 ,...,rWZ!5El~kW !fl~rW1 ,...,rWZ!, ~5.39!

wherem* is again given by Eq.~5.33!, with A(z) now given by Eq.~5.38!. Finally we need the generalized expression
el(kW ). It is

el~kW !5F12
1

2 S m*

m DA~z!y2F~y2!GEl~kW !2
3e2

4r b
F12S m*

m DA~z!y2F~y2!G H F~y2!FZ

2 1
3 (

j 51

Z

^fl~rW1 ,...,rWZ!u
r j

2

r b
2 ufl~rW1 ,...,rWZ!&2

4

3 S 3

pz D 1/3

f 1/2~z~Zz!!G1 4
5 Z2F~Z2y2!J 2

1

2 S m*

m DA~z!y2F~y2!

3F (
j 51

Z

^fl~rW1 ,...rWZ!u
e2

r j
ufl~rW1 ,...,rWZ!&2 1

2 (
j Þ l

Z

^fl~rW1 ,...rWZ!u
e2

urW j2rW l u
ufl~rW1 ,...,rWZ!&2

3Ze2

10r b
g~Zy2!G . ~5.40!
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These equations are intrinsically more difficult to solve th
the ones forZ51, and I shall not take up this subject her

VI. SPHERICAL CELLULAR MODEL FOR HYDROGEN

The basic equations for our spherical cellular model
hydrogen were derived in Sec. V. I take note that this mo
has not been refined to take account of physically relev
molecular hydrogen, nor does it take account of any so
crystalline phase. It looks at only the gas and fluid phas
The purpose is not to investigate solid hydrogen, as ther
already a great body of work on this topic. The molecu
states which are very relevant physically could be includ
by including two protons and two electrons in each cell, b
the theoretical structure requires some modification, and
numerical work increases significantly. This extension w
not be part of the present work. For numerical purposes,
convenient to rewrite the basic equations in terms of

El ,l~kW !5El ,l~kW !2
3e2

10r b
g~y2!

2
e2

r b
F~y2!F27

10
22S 3

pz D 1/3

f 1/2@z~z!#G . ~6.1!

The subscript~l! has been expanded here to (l ,l) to empha-
size the resolution of the eigenfunctions in spherical coo
nates. Thus Eq.~5.32! becomes

\2k2

2m*
fl~rW !2

i\2

m*
kW•¹W fl~rW !2

\2

2m*
¹2fl~rW !

2Fe2

r
1

e2r 2

2r b
3 F~y2!Gfl~rW !5El ,l~kW !fl~rW !, ~6.2!

and Eq.~5.34! becomes
n

r
l

nt
d
s.
is
r
d
t
e

l
is

i-

e l ,l~kW !5
1

2 S 11
m*

m D El ,l~kW !1
3e2

10r b
g~y2!

1
e2

r b
F~y2!F27

20
2S 3

pz D 1/3

f 1/2@z~z!#G
1^f l ,l~rW !u H 2

e2

2r
1

m*

2m Fe2

r

1
e2r 2

2r b
3 F~y2!G J uf l ,l~rW !&, ~6.3!

whereg, F, andm* are given by Eqs.~5.20!, ~5.26!, ~5.27!,
~5.29!, ~5.31!, and~5.33!.

Next we follow the procedures used for the spherical c
lular model of an ideal gas developed in Sec. IV, except t
the starting guess form is now taken to be 5kT plus the
lowest eigenvalue. We treatH852( i\2/m* )kW•¹W as a per-
turbation, and solve the rest of the equation as resolve
spherical coordinates. In order to apply these methods,
necessary to extend the computation of the root-mean-sq
deviation of the eigenvalues over each nearly degene
block to our present case. In Appendix B we discuss
character of the degeneracy structure of Eq.~6.2! with
ukW u50. There we find that the states are divided into ide
gas-like states, jumper states, and Coulomb-like sta
Again, as in Sec. IV, we will usev to denote thevth excited
state, that is thev11st level.

For the ideal-gas-like states~v11.s with s defined in
Appendix B!, Eq. ~4.21! continues to be valid withm* re-
placing m. For uniformity, the subscriptv to D will be re-
placed by (l ,n). For the case of the Coulomb-like state
(v11<s), if we defineL̃ to be the lesser of the maximum
value of l considered andv5n1 l , then, in this regime,

F\2kB
2

2m*
D l ,n~k!G 2

5
4

~ L̃11!2 S \2k2

2m*
D (

l 850

L̃ S 2l 811

3
D Tl 8,v2 l 8 .

~6.4!

Finally, for the jumper states,
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F\2kB
2

2m*
D l ,n~k!G2

5
8

s~s11!~2s11! S \2k2

2m* D
3 (

~ l 8,v!PJ
S 2l 811

3 DTl 8,v , ~6.5!

where the setJ is defined by Eq.~B11! in Appendix B. If all
the jumper states are not included because the maxim
value of l considered is too small, then this equation wou
have to be modified; however, the approximation to
physical situation would then be rather poor so we will n
elaborate on this case.

This model is defined by Eqs.~4.22! and ~2.9!, which is
made explicit in Eq.~4.23! for the ideal gas case. Here w
need to use

el ,n5
2me l ,n~0W !

\2kB
2 , ~6.6!

with thee l ,n defined by Eq.~6.3!. The derivative ofEl ,n with
respect tor b is given by Eq.~A5!. For the complete evalua
tion of the derivatives necessary to put in the numerato
d
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Eq. ~2.9!, we need the derivatives ofm* , g(y2), F(y2), and
(3/pz)1/3f 1/2@z(z)#, as well as of course 1/r b , with respect
to r b . The best method is to compute these quantities
rectly from their definitions by a direct numerical evaluatio
However in this paper I shall simply differentiate the repr
sentations previously given. This procedure will insure th
modynamic consistency, at the cost of some possible los
accuracy. Finally we need the derivative of the matrix e
ment appearing in Eq.~6.3!. This result is given by Eq.
~A11!. All these parts may be assembled into a rather leng
expression for the numerator of Eq.~2.9! appropriate for this
case. We take

El ,l~kW !5El ,l~0W !1
\2k2

2m*
6

\2kB
2

2m*
D l ,l~k!, ~6.7!

where the6 is for the two energy values for eachukW u that we
used as the method to take account of all the different dir
tions of kW in Sec. IV. We will use the same method here f
the same purpose. If we differentiate Eq.~6.3!, and use Eqs.
~6.7! and ~A5!, then we obtain
r b

]

]r b
e l ,l~kW !52

1

2 S 11
m*

m D H S 21
] lnm*

] lnr b
D FEl ,l~0W !1

\2k2

2m*
6

\2kB
2

2m*
D l ,l~k!G2^f l ,l~rW !uFe2r 2

2r b
3 y2F8~y2!2S 11

] lnm*

] lnr b
D

3S e2

r
1

e2r 2

2r b
3 F~y2! D G uf l ,l~rW !&J 1

1

2m

]m*

] lnr b
FEl ,l~0W !1

\2k2

2m*
6

\2kB
2

2m*
D l ,l~k!G2

e2

r b
H 3

10
g~y2!

1
3

10
y2g8~y2!1 27

20 @F~y2!1y2F8~y2!#2y2F8~y2!S 3

pz D 1/3

f 1/2@z~z!#23S 3

pz D 1/3

z f 1/28 @z~z!#F~y2!J
1r b

]

]r b
^f l ,l~rW !u H 2

e2

2r
1

m*

2m Fe2

r
1

e2r 2

2r b
3 F~y2!G J uf l ,l~rW !&, ~6.8!
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where the last line is given by Eq.~A11!. These equations
have been programmed in the same manner as describe
those of Sec. IV.

There are several features which are expected from
model. First, if the temperature is sufficiently high, the ele
trons will be mostly in the high-energy states which are v
much like those for the free-electron gas. This feature is
so-called ‘‘hot curve’’ limit. As an illustration of this behav
ior, in Fig. 3 we display the ratio of the electron pressure
the ideal electron gas pressure for a temperature of 1000
as a function of density.~The plot is versusz, for ease of
comparison with Fig. 1.! A line for the ratio exactly equal to
unity is put in to guide the eye. The fluctuations about t
line are reminiscent of those in Fig. 1. The values of
pressure ratio greater than unity are undoubtedly due to
spherical approximation, as was the case in the sphe
cellular model approximation to the ideal gas.

Another feature which is to be expected is that when
temperature is low enough the dominant feature is the re
sive pressure exerted by the compressed atoms as the de
is increased. This feature is the so-called ‘‘cold curve’’ lim
for

is
-
y
e

o
V,

s
e
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al

e
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sity

The resulting pressure is roughly independent of the te
perature. In Fig. 4 we plot the results for several tempe
tures. The ratio to the Thomas-Fermi cold curve is wha
plotted. I have used the representation of Baker and John
@36#. It is, for reference,

Pcold curve59.054 969 2S w

r D 5/3

3F ~111.596 59xa211.065 95x2a2!

110.278 343 6x2a2 G9.715

,

~6.9!

in megabars wherex is given by Eq.~4.26!, r is the density
in grams per cubic centimeter,w is the gram molecular
weight, anda2'20.772. It is to be noticed that the col
curve produced by this model is lower than that of t
Thomas-Fermi model, which is known@3# to be too high,
except in the limit of infinite density where both mode
reduce to the high-density ideal electron gas. As the temp
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ture increases, the pressure begins to deviate from the c
curve at successively higher densities.

The spherical cellular model of hydrogen predicts a pha
transition. This fact can be seen, for example, by plotting th
total pressure~the electron pressure plus the pressure asso
ated with the motion of the center of mass of the atom!
versus the volume forT51.5 eV. This plot is given in Fig. 5
as the solid curve. The region where the pressure increa
with the volume is physically unstable. The dotted line rep
resent the pressure derived from the Maxwell constructi

FIG. 3. The ratio of the electron pressure for hydrogen to th
ideal electron gas pressure plotted vsz, the deBroglie density along
the T51000 eV isotherm.

FIG. 4. The ratio of the electron-gas pressures for hydrogen
T52, 5, 10, and 100 eV to the pressure computed in the Thom
Fermi model at the same volume and zero temperature. There
dotted line included at unit ratio to guide the eye. The volume is
cm3 per gram.
ld

e
e
i-

es
-
n

which corresponds to a tangent line in the plot of the Gib
free energy to maintain its convexity property. I take th
opportunity to show some of the effects of the many-bo
terms. The dashed curve is just the Heitler-London ato
~with our boundary conditions! and it omits the many-body
terms. The line of short dashes shows the Maxwell constr
tion for that curve. The pressure-volume plot with the t
lines drawn in is given in Fig. 6. The critical properties o
this model are:Tc'1.83 eV, rc'0.11 gm/cc,Pc'0.084

e

at
s-
a

n

FIG. 5. The total pressure for hydrogen in megabars as a fu
tion of the volume in cc per gram for theT51.5 eV isotherm. The
solid curve represents our model, and the dashed curve omits
many-body terms. The dotted line shows the crossover pressur
computed by the Maxwell construction for the solid curve. The lin
of short dashes shows the same for the dashed curve.

FIG. 6. The total pressures for hydrogen in megabars vs
volume in cc per gram for the following isotherms. In descendi
order,T510, 5, 2, 1.83, 1.7, 1.5, 1.0, 0.5, and 0.1 eV.
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56 5233EQUATION OF STATE FOR A PARTIALLY IONIZED GAS
MB, zc'4.4, andyc'2.3. These values are at considera
variance with the experimental values for the liquid gas cr
cal point in hydrogen, which are roughly 33 K, 12.8 atm, a
0.03 gm/cc. Since there is no provision in the model as
for two-atom molecular states, perhaps this difference is
surprising.V-T and P-T plots of the phase boundary a
given in Fig. 7.

Magro et al. @31# found a critical point at about half th
temperature and twice the density of that given here. T
indicated that they believed that their phase transition is
lated to the molecular dissociation. Thus it is worthwhile
consider the nature of the phase transition in the sphe
cellular model of hydrogen. One method is to consider
pressure along the phase boundary. In Fig. 8 we plot the
pressure divided by the sum of the ideal electron-gas p
sure, and the pressure due to the center of mass motion o
electron and the proton. At least for low densities, if t
system consists of hydrogen atoms, this quantity should
about one-half. A dotted line has been included at this le
in Fig. 8 to guide the eye. A ratio of about one-quarter wo
be expected in the presence of molecular hydrogen. Pres
ratios higher than one-half would be indicative of ionizatio
Lower pressure ratios would presumably indicate the form
tion of groups of atoms bound together. What we see is
on the high-density~small V! side of the critical point, the
pressure decreases very rapidly, which probably indicat
condensed state. On the low-density side, the pressure
rises to about 0.69, and then declines. Another way to inv
tigate the nature of the transition is to plot the internal ene
along an isotherm which intersects the two phase-reg
Such a figure forT50.5 eV is shown in Fig. 9. A dotted line
has been added at the lowest-energy level of atomic hy
gen. Here we see, in the high-density region, that as
density decreases toward the phase boundary~indicated by a
dot! the internal energy drops below that of atomic hydrog

FIG. 7. The phase boundary of the cellular model of hydrog
in the volume-temperature plane and the pressure-temper
plane. The dot is the critical point.
-

t
ot

y
-

al
e
tal
s-
the

e
el

ure
.
-

at

a
tio
s-
y
n.

o-
e

n

due to the many body interactions, which suggests a bou
many-body state of the system. The model produces a co
tinuous curve through the two-phase region which is show
On the low-density side, the energy is higher than that
atomic hydrogen, and suggests the existence of some exc
states, and perhaps a bit of ionization. Continuing to ev

n
re

FIG. 8. The ratio of the total pressure to that of the sum o
the pressures due to noninteraction electrons and protons al
the phase boundary. The critical point is indicated by a do
The expected value for atomic hydrogen indicated by a dott
line.

FIG. 9. The energy of the electron in the spherical cellula
model of hydrogen at a temperature of 0.5 eV as a function
volume. The energy is in eV and the volume in cm3 per gram. The
dotted line indicates the binding energy of the electron in atom
hydrogen. The large dots mark the boundaries of the two-pha
region. The dashed curve is the result with no many-body terms
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5234 56GEORGE A. BAKER, Jr.
lower densities, there is again a binding energy which
greater than that of atomic hydrogen. I illustrate the effe
of the many-body terms by including a dashed curve wh
omits them. As also seen in Fig. 5, the deviations fro
the Heitler-London atom become apparent when the sys
becomes mostly plasmalike. Indeed, the pressure ratio
T50.5 eV drops to a minimum of about 0.33 at a volume
about 6000 cc/gm, and then begins to increase again.
increase is to be expected as one expects total ionization@41#
in the infinitely dilute limit for fixed temperature. One ca
see this effect more clearly in the energy ratio plot
T510 eV given in Fig. 10. Also note in this figure that,
the high-density limit, the increase in the free-electron
ergy ~and pressure! due to the Pauli exclusion principl
swamps the effects of the Coulomb interaction and ag
leads toU ideal as the asymptotic value ofUelectron. We con-
clude that the phase transition found to occur in this mode
best described as a localization-delocalization transition.

One further question of interest is the low-density ioniz
tion profile predicted by this model. The Saha formula@42#
suggests that

Zi5
1

11Az exp~x/T!
, ~6.10!

whereA is a constant, andx513.5978 eV is the ionization
potential for atomic hydrogen. For isochores, this equat
suggests that a plot against 1/T would be appropriate. I give
such a plot in Fig. 11 for four different densities. The curv
could be extended to the phase boundaries, but they are
relevant to ionization behavior while they are positive. Ev
here the pressure probably understates the degree of io
tion, as there may well be some clumping of atoms wh
would give a negative contribution to the electron pressu
This issue requires further investigation.

FIG. 10. The ratio of the energy of the electron to the energy
an electron in an ideal electron gas as a function of density for
T510 eV isotherm. The density is in grams per cm3.
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APPENDIX A: ENERGY DERIVATIVES

In order to use Eq.~2.9! it is convenient to re-express
]e j /]r b in terms of the wave function. First note that forkW in
the first Brillouin zone, it is to be remembered thatkW can be
parametrized askW5kW /r b , with kW independent of the cell
size. Also we will userW5r brW , and the derivatives¹W and¹2

are to be taken here with respect torW . In this notation, Eq.
~6.2! becomes

\2

2m* r b
2 ~k222ikW •¹W 2¹2!f~r b ,rW !1V~r b ,rW !f~r b ,rW !

5Ef~r b ,rW !. ~A1!

If we now differentiate with respect tor b , and denote the
partial with respect tor b by an overdot, we obtain

2
\2

2m* r b
2 S 2

r b
1

ṁ*

m* D ~k222ikW •¹W 2¹2!f~r b ,rW !

1V̇~r b ,rW !f~r b ,rW !1
\2

2m* r b
2 ~k222ikW •¹W 2¹2!

3ḟ~r b ,rW !1@V~r b ,rW !2E#ḟ~r b ,rW !5 Ėf~r b ,rW !. ~A2!

f
e

FIG. 11. The ratio of the electron pressure in the spherical c
lular model of hydrogen to the pressure of an ideal electron gas
the four densities which are the result of compression of 1, 0
0.01, and 0.001 of a system of the density of liquid hydrogen. T
temperature is in eV.
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The next step is to multiply Eq.~A2! by f* (r b ,rW )drW, and
integrate over the unit cell. The result is

2S 2

r b
1

ṁ*

m* D r b
3EdrW f* ~r b ,rW !H \2

2m* r b
2 ~k222ikW •¹W 2¹2!

3f~r b ,rW !1V~r b ,rW !f~r b ,rW !J 1r b
3E drW f* ~r b ,rW !

3F V̇~r b ,rW !1S 2

r b
1

ṁ*

m* D
3V~r b ,rW !Gf~r b ,rW !1r b

3E drW f* ~r b ,rW !

3H \2

2m* r b
2 ~k222ikW •¹W 2¹2!ḟ~r b ,rW !

1@V~r b ,rW !2E#ḟ~r b ,rW !J 5 Ė, ~A3!

where use has been made of the normalization off. If we
now use Eq.~A1! on the first two lines of Eq.~A3!, integrate
by parts in the last three lines so that the derivatives ac
f* instead ofḟ, and use Eq.~A1! again, we obtain

Ė52S 2

r b
1

ṁ*

m* D E1r b
3E drW f* ~r b ,rW !F V̇~r b ,rW !

1S 2

r b
1

ṁ*

m* DV~r b ,rW !Gf~r b ,rW !

2
\2r b

2m* E dS nW •@f* ~r b ,rW !¹W ḟ~r b ,rW !

2ḟ~r b ,rW !¹W f* ~r b ,rW !12ikW f* ~r b ,rW !ḟ~r b ,rW !#,

~A4!

where *dS is over the surface of the cell, andnW is the
outward-pointing normal. The last two lines in Eq.~A4!
vanish because of the periodicity. That is to say, the valu
the f’s is the same on opposite sides of the cell, but
normal vectornW points in opposite directions, so that the
contributions cancel each other. Thus we conclude that

r b

]E
]r b

52S 21
] lnm*

] lnr b
D E1r b

3E drW f* ~r b ,rW !F r bV̇~r b ,rW !

1S 21
] lnm*

] lnr b
DV~r b ,rW !Gf~r b ,rW !. ~A5!

We really need]e l ,l /]r b , so, in addition, we need, b
Eq. ~6.3!, to differentiate the further term

]

]r b
^f l ,l~rW !u H 2

e2

2r
1

m*

2m Fe2

r
1

e2r 2

2r b
3 F~y2!G J uf l ,l~rW !&

5^fu$V%uḟ&1^fu$V̇%uf&1^ḟu$V%uf& ~A6!

schematically. This formula requires the values ofḟ(r b ,rW ).
If we substitute the results of Eq.~A5! in Eq. ~A2!, then we
obtain an inhomogeneous differential equation forḟ(r b ,rW ).
n

of
e

The boundary conditions~in spherical coordinates! are easier
to describe if we make the usual substitution,u(r b ,rW )

5r brf(r b ,rW ). Then, necessarilyu̇(r b ,0W )50. For the case
of odd-parity states, we also must haveu̇(r b ,r b)50. For
even parity,]f(r b ,r )/]r ur 5r b

50 implies thatr]u(r b ,r)/

]rur515u(r b ,r)ur51 , which, by taking the partial with re-
spect tor b , gives directly the remaining boundary conditio
that ]u̇(r b ,r)/]rur515u̇(r b ,r)ur51 for states of even par
ity. As these boundary conditions are the same as for
eigenfunction solutions of Eq.~A1!, we may expand

]f l ,l~r b .rW !

]r b
5 (

nÞl
al ,nf l ,n~r b ,rW !. ~A7!

To express the solution, it is convenient to define the qu
tities

Vn~ l ,l!5
e2

r b
^f l ,n~r b ,rW !ur21uf l ,l~r b ,rW !&,

~A8!

Hn~ l ,l!5
e2

r b
^f l ,n~r b ,rW !ur2uf l ,l~r b ,rW !&.

The next step is to substitute Eq.~A7! into Eq. ~A2!, to
multiply on the left byf l ,n* (r b ,rW )drW for nÞl, and to inte-
grate over the cell. If use Eq.~A1!, we can eliminate the

derivative and the explicitlykW -dependent terms. The result

~El ,l2El ,n!al ,n5
e2

r b
^f l ,n~r b ,rW !uFr2y2

2r b
F8~y2!2S 1

r b
1

ṁ*

m* D
3S 1

r
1

1

2
r2F~y2! D G uf l ,l~r b ,rW !&. ~A9!

Thus,

r b

]f l ,l~r b ,rW !

]r b

5 (
nÞl

f l ,n~r b ,rW !

El ,n2El ,l
H S 11

] lnm*

] lnr b
DVn~ l ,l!

1
1

2 F S 11
] ln m*

] ln r b
DF~y2!2y2F8~y2!GHn~ l ,l!J .

~A10!

The substitution of Eq.~A10! into Eq. ~A6! gives, for the
needed casekW50W whereV andH are real, the result
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r b

]

]r b
^f l ,l~rW !u H 2

e2

2r
1

m*

2m Fe2

r
1

e2r 2

2r b
3 F~y2!G J uf l ,l~rW !&

5S 11
] lnm*

] lnr b
D S m*

m
21DA~ l ,l!1

1

2 F S 11
] lnm*

] lnr b
D

3F~y2!2y2F8~y2!G m*

m
F~y2!B~ l ,l!

1H S 11
] lnm*

] lnr b
D m*

m
F~y2!1

1

2 S m*

m
21D

3F S 11
] lnm*

] lnr b
DF~y2!2y2F8~y2!G J C~ l ,l!

1
1

2 S 12
m*

m DVl~ l ,l!1
1

2m

]m*

] lnr b
@Vl~ l ,l!

1 1
2 F~y2!Hl~ l ,l!#2

m*

4m
@F~y2!1y2F8~y2!#Hl~ l ,l!,

~A11!

where we define the further quantities

A~ l ,l!5 (
nÞl

@Vn~ l ,l!#2

El ,n2El ,l
,

B~ l ,l!5 (
nÞl

@Hn~ l ,l!#2

El ,n2El ,l
,

C~ l ,l!5 (
nÞl

Vn~ l ,l!Hn~ l ,l!

El ,n2El ,l
. ~A12!

Thus the substitution of the results of Eqs.~A5! and~A12!
into Eq. ~2.9!, plus some further straightforward differentia
tions, gives, via Eq.~6.3!, an explicit expression for the pres
sure. Likewise, we obtain an explicit expression for t
Gibbs free energy by means of this result and Eq.~2.10!.

The computation of]e j /]TuV needed in Eq.~2.7! pro-
ceeds in a similar manner. It begins with the differentiati
of Eq. ~6.2! with respect toT as at Eq.~A2!. The result is

2
]m*

]T

\2

2~m* !2 ~k222ikW•¹W 2¹2!f~rW !

1
e2r 2

2r b
3 F8~y2!y2f~rW !1

\2

2m* ~k222ikW•¹W 2¹2!
]f~rW !

]T

2Fe2

r
1

e2r 2

2r b
3 F~y2!1EG]f~rW !

]T
5

]E
]T

f~rW !, ~A13!

where use was made of](y2)/]T52y2/T. Again the next
step is to multiply byf* drW on the left and integrate over th
spherical cell. As in the transition from Eq.~A3! to Eq.~A4!
the operators acting on]f/]T are, by an integration by
parts, made to act onf* instead, and then by means
Schrödinger’s equation eliminated in favor of some surfa
terms. These terms cancel as they did in Eq.~A4!. By further
use of Schro¨dinger’s equation we can eliminate the matr
elements depending on derivatives, and thus obtain
T
]E
]T

52
T

m*
]m*

]T H E1E drW f* ~rW !

3Fe2

r
1

e2r 2

2r b
3 F~y2!Gf~rW !J

1
e2F8~y2!y2

2r b
3 E drW f* ~rW !r 2f~rW !. ~A14!

]e/]T now follows by straightforward differentiation of Eq
~6.3! with respect toT. It is to be noted that, as in Eq.~A6!,
]/]T of the same matrix element is also required. Again
we use the standard substitutionu(r )5rf(r ) for the radial
part of the wave function, we find]u/]T50 for r 50, and
also for r 5r b for states of odd parity. For states of eve
parity, the other boundary condition is

]2u~r !

]r ]T
5

1

r

]u~r !

]T
for r 5r b . ~A15!

Again we find that these boundary conditions are the sam
those satisfied by the eigenfunctions of Eq.~A1!, so we can
make the expansion

]f l ,l~r b .rW !

]T
5 (

nÞl
bl ,nf l ,n~r b ,rW !. ~A16!

Proceeding as above, we find

T
]f l ,l~r b ,rW !

]T
5 (

nÞl

f l ,l~r b ,rW !

El ,n2El ,l
H ] lnm*

] lnT

3@Vn~ l ,l!1 1
2 F~y2!Hn~ l ,l!#

2 1
2 y2F8~y2!Hn~ l ,l!J . ~A17!

Thus we obtain, again for the needed casekW50W ,

T
]

]T
^f l ,l~rW !u H 2

e2

2r
1

m*

2m Fe2

r
1

e2r 2

2r b
3 F~y2!G J uf l ,l~rW !&

5
] lnm*

] lnT S m*

m
21DA~ l ,l!1

1

2 F] lnm*

] lnT
F~y2!

2y2F8~y2!GF~y2!B~ l ,l!1F S m*

m
11D ] lnm*

] lnT
F~y2!

2S m*

m
21D y2F8~y2!GC~ l ,l!1

1

2m

]m*

] lnT
@Vl~ l ,l!

1 1
2 F~y2!Hl~ l ,l!#2

m*

4m
y2F8~y2!Hl~ l ,l!. ~A18!

Thus the substitution of the results of Eqs.~A14! and~A18!
into Eq. ~2.7! plus some further straightforward differentia
tions gives, via Eq.~6.3!, an explicit expression for the in
ternal energy, which, together with Eq.~2.6!, also gives an
explicit expression for the entropy.
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APPENDIX B: COULOMB-OSCILLATOR EQUATION

The following Schro¨dinger equation arises in Secs. V an
VI ~for kW50W ! when the many-body effects are taken in
account in the manner that we have proposed:

2
\2

2m
¹2f~rW !2S e2

r
1ar2Df~rW !5Ef~rW ! ~B1!

This equation can be separated in spherical coordinates in
usual way to yield the radial equation

2
\2

2m S 1

r 2

d

dr
r 2

d

dr
2

l ~ l 11!

r 2 DRl~r !2S e2

r
1ar2DRl~r !

5ERl~r !; ~B2!

with the boundary conditions,Rl(0) is finite and

Rl~r b!50, l odd, Rl8~r b!50, l even. ~B3!

If we use the notations

A52 l ~ l 11!, B5
2me2r b

\2 , C5
2mErb

2

\2 ,

D5
2marb

4

\2 , r5
r

r b
, ~B4!

then Eq.~B2! becomes

r2
d2Rl~r!

dr2 12r
dRl~r!

dr
1~A1Br1Cr21Dr4!Rl~r!50.

~B5!

FIG. 12. Some of eigenvalues in units of 4 Ry for the Coulom
oscillator potential of Eq. ~B7! with D5

1
2 and B

5(3Ap/z)2/3y2(F51). The jumper states are connected by so
lines. The Coulomb-like states are connected in groups by do
lines, and lie below the jumper states. The ideal-gas-like states
also connected in groups by dotted lines, but lie above the jum
states.
the

If we make the usual substitution

Rl~r!5ul~r!/r, ~B6!

then Eq.~B5! reduces to

r2
d2ul~r!

dr2 1~A1Br1Cr21Dr4!ul~r!50, ~B7!

where nowul(0)50, and Eq.~B3! becomes

ul~1!50, l odd, ul8~1!5ul~1!, l even. ~B8!

We now have the degeneracy of the 2l 11 m states for each
solution of the radial equation. For both the Coulomb pote
tial, and the harmonic-oscillator (a,0) potentials in an in-
finite cell, there is further eigenvalue degeneracy. If we s
stitute the series expansion

ul~r!5rn(
j 51

`

ajr
j ~B9!

into Eq.~B8!, then the indicial equation implies thatn5 l 11
or n52 l . The second case is ruled out by the bound
conditions, so we select the first case. Thus we obtain
recursion relations

aj50, j ,0, a051,

aj52@ j 21~2l 11! j #21~Baj 211Caj 221Daj 24!,

j .0. ~B10!

A straightforward analysis indicates thataj decrease like
( j !) 21/2 whenDÞ0, so this series converges for all finiter.
@For a.0 the regular solution oscillates very quickly lik

exp(12iADr2), for larger, but this feature is not of concern t
us here as we are only considering the range 0<r<1.# For

d
re
er

FIG. 13. Some of the eigenvalues in units of 4 Ry for the Co
lomb potential for hydrogen. The dotted line connects the eigen
ues characterized by 275s1@( l 11)/2#.
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the given the values ofB and D, the value ofC must be
adjusted to satisfy the boundary conditions. For the cas

Eq. ~6.2!, D5 1
2 F(y2)B andB5(3Ap/z)2/3y2.

In order to implement our approximation scheme to
clude the effects of the operatorH852( i\2/m)kW•¹W for the
Coulomb-oscillator equation, we need to consider the deg
eracy and near-degeneracy structures of the eigenvalu
have computed them numerically by the same methods u
in Sec. IV. The first observation is that for the higher en
gies, the states for whichs1@( l 11)/2# is a constant are
nearly degenerate, as we also saw for the ideal gas acco
to Eq. ~4.17!, where agains is the level number andl is the
angular momentum index. The second observation is
when the system is sufficiently dilute, the very lowest lev
follow the degeneracy pattern of the Coulomb problem. T
is to say, the states for whichs1 l is a constant are very
nearly degenerate. There is a fairly sharp transition in
eigenvalue structure as it jumps from one regime to
other. If s is the highest level in the Coulomb regime f
l 50, then this jump occurs between the levelss ands11
for l 50. The marker fors is the condition that the energy
level gap E0,s112E0,s is a relative minimum among th
energy gaps. There then remains a number of (l ,l) states
which are in neither regime but lie in the jump. I call the
jumper states. There ares(s21)/2 of them, or, when the
degeneracy of the 2l 11 m states is taken into account, the
are s(s21)(2s11)/2 of them. Specifically, they are th
states for which

max~s2 l 11,1!<l<s2F l 11

2 G ~B11!
s

.

m

.

of

-

n-
. I
ed
-

ing

at
s
t

e
e

holds, and we call the set of (l ,l)’s the setJ. I observe that
that all the jumper states lie in a fairly narrow band of e
ergy, so in line with our approximation in Sec. IV, I will trea
them as nearly degenerate. As an illustration in Fig. 12
show a sample of the structure forD5 1

2 B ~its maximum
value! for hydrogen at a compression of 431024 times its
normal density. The Coulomb-like states are very close
being degenerate~on this scale!. The ideal-gas-like states in
the low levels show a noticeable variation within our nea
degenerate groups, as was also the case for the idea
states tabulated in Table I. The shift between theF50 case
and theF51 case displayed here is imperceptible for t
Coulomb-like states~on this scale! and for the ideal-gas-like
states is about one or two dot widths. For intermediate co
pressions, the low-lying states are noticeably effected by
F corrections, but the higher states not so much. For h
compressions~for example, 20 times normal densities! the
effect of theF correction is not visible on a plot similar to
Fig. 12. The effective-mass correction only affectsz and not
y. SinceC5(3Ap/z)2/3(E/kT), the value ofE/kT is just
that for the same value ofy and a different value ofz. Thus
the degeneracy structure of the eigenvalue spectrum is
affected by the mass correction, although the values th
selves are, of course.

We illustrate in Fig. 13 some of the eigenvalues for t
Coulomb potential in the case of a compression of 0.2 tim
normal liquid hydrogen density. The dotted line connects
eigenvalues for whichs1@( l 11)/2#527. This identification
corresponds to that for the ideal gas for a set of nearly
generate states. It is to be observed that, relative to the
genvalue spacing, these states are nearly degenerate. A
even-odd fluctuation can be seen.
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