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Linear Benard-Marangoni instability in rigid circular containers
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A linear study of the Beard-Marangoni instability in small rigid circular containers is presented. The fluid
is assumed to be Newtonian with a temperature-dependent surface tension at the upper free surface. The layer
is horizontal and heated from below. The principle of exchange of stability is numerically shown to be valid.
The critical conditions for the onset of motion are determined as well as the convective patterns at the
threshold. Generally, the cells take the form of either concentric or “transverse” rolls. The coupled influence
of gravity and capillarity is analyzed and the influence of the gas lying above the fluid on the Biot number is
also taken into account. Comparisons with other works are discUs$E@63-651X97)13607-9

PACS numbds): 44.25:+f, 47.20—k, 47.27.Te

[. INTRODUCTION lar case of slippery side walls was also studied experimen-
tally in [11].

The problem of thermoconvective instabilities in fluid  Despite this relative lack of experimental results, more
layers heated from below has become a classical subject snd more theoretical studies are devoted nowadays to the
fluid mechanics. Many authors have analyzed this problenthermoconvective instabilities in fluid layers of finite hori-
and the bibliography is very large. An interesting review canzontal extent. A precursory theoretical work in this area is
be found, for instance, in the book of Koschmiefl&}. the paper of Davis in 196[12], who studied pure gravity-

It is well known that two different effects are responsible driven instability in rectangular containers with rigid hori-
for the onset of motion when the temperature difference bezontal and lateral walls. The problem of thermocapillary con-
comes larger than a certain threshold value. The first one iection in finite boxes was first considered by Rosenblat,
referred to as the Rayleigh-Bard effect and originates in Davis, and Homsy[13] and Rosenblat, Homsy, and Davis
the gravity force. After the experiments of Bard in 1900 [14]. Th¢|r'stud|es are poth Ilnear gnd nonlinear but they use
[2], this effect was studied from a theoretical point of view the restrl_ctlve assumption of vorticity-free lateral walls. This
by Rayleigh in 191§3]. The second possible cause of mo- 8Ssumption has also been used by Daebyl. [15] who
tion is the so-called Marangoni effect, which generates mo;cmalyzed hexagonal convective cells and also by Echeabarri

tion due to the capillary forces appearing at an upper fre tal.[16] and Johnson and Narayarid]. Linear and non-

surface whose tension is a function of temperature. This e Inear approaches to two-dimensionidD) Marangoni con-

fect was described theoretically by Pearson in 1988 In vection in rigid rectangular containers haye been examined
Earth grounded experiments, both effects combine and givby]several authors using different numerical methpt-
E;s/eNti(éléh[eS].Benard-Marangonl instability studied in 1964 "¢ three-dimensional problem has been considered only
i ) . recently. Three papers by Dijkstf21-23 have been de-
Until rather recently, most of the theoretical studies were,gied to a rather complete study of Marangoni instability in
concerned with layers of infinite horizontal extent and thesequare containers. The convective thresholds are determined
approaches did not model lateral side-wall effects; the correang several bifurcation diagrams are given. Good agreement
sponding experiments were carried out in containers of veryith experiments is obtained in small boxes. The appearance
large horizontal extent for which the influence of lateral of hexagonal convective cells is also examined in larger con-
walls may actually be disregarded. tainers. Another analysis of this problem was proposed in
Experimental works on confined thermocapillary convec-1996 for rectangular cavities by Dauby and Lelj@ad] who
tion are today still a bit scarce. A very important paper in thisuse amplitude equations to reduce the dynamics of the sys-
area is the work of Koschmieder and Prf#] who reported tem to the dynamics of the most unstable modes of convec-
careful experiments on Bard-Marangoni instability in tion. Bifurcation diagrams are presented and the results are in
small square and circular containers. Other interesting exvery good agreement with all the experiments of Ko-
perimental works are those of Ezerséyal.[7], Ondarchu  schmieder and Prahl in square boxes with aspect ratio
etal. [8], and Ondarehu etal. [9]. A recent work by smaller than about 8.
Johnson and NarayanddO] presents experimental results  The case of circular containers has also been examined in
for circular containers with aspect ratios equal to 1.5 and 2.5everal papers. In 1981, Vrentas al. [25] studied pure
and shows the possibility of oscillatory motion. The particu-gravity and pure capillarity-driven convection in circular
vessels but their work is restricted to a ZBxisymmetrig¢
linear approach. In 1991, Chen al. [26] considered the 3D

*Electronic address: PC.Dauby@ulg.ac.be linear Marangoni problem with an adiabatic upper surface
TAlso at Louvain University, Department of Mechanics, B 1348 but their results for axisymmetric perturbations seem a bit
Louvain-La-Neuve, Belgium. doubtful since they do not recover Nield’s results in large
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aspect ratio boxes. A nonlinear code was also used by Wag-he results are then presented in Sec. IV. Eventually, our
neret al.[27] to determine the convective thresholds by in-approach is compared with other works and with experi-
terpolating the bifurcation points. The agreement betweements in Sec. V and a short summary is presented in the last
their results and those of the two above-mentioned papers Bection.

good since the deviation with the non-axisymmetric results

of Chenet al. is about 6% while the difference with Vrentas Il. BASIC LINEAR EQUATIONS

et al.is less than 2%.

Very recently, Zaman and Narayangg] proposed a lin- Let us consider a fluid layer of thicknedsilling a circu-

lar container with radiugad (a is the aspect ratjo The sur-

ear study of gravity- and capillarity-driven convection in cir- . .
cular boxes. They determine the critical heating for the apface tension at _th_e upper free surface is temperature depen-
. dent and the fluid is heated from below. It is well known that

pearance of motion and give pictures of the ConV.eCt'Vemotion sets in after the vertical temperature gradient has
patterns at the threshold. The agreement between this paper

and the work of Vrentagt al. is quite good in the case of ached a critical value.

pure Rayleigh convection since the deviation between boti& In the reference state, there is no motion and heat propa-
results is about 2% for an aspect ratio equal to 1 and b gates by conduction only. In the linear Boussinesq equations,

. . . he azimuthal variable> can be separated fromandz. We
comes still smaller in larger containers. For the Marangon|

. . X will then seek a solution of the form
problem, the agreement is also quite good in large boxes

(difference less than 2)but becomes less satisfactory in
small aspect ratio vessels. Note also that these authors
present a detailed comparison of their results for conducting
lateral side walls with the experimental data of Koschmieder
and Prah[6].

In the present work, a similar linear analysis of the
coupled gravity- and capillarity-driven instability is devel-
oped. However, our numerical method is different since we
used a spectral tau method with Chebishev decompositions i —p(t
in both thez andr directions. Moreover our code works P(t.r, $,2) =Pn(t,r,z)cosNg,
Raywag fixed in Zamegm and Naravanan's ag roach }<Ne ha \Perature and velocity perturbations with respect to the con-

) yanar pproach. uctive solution, p is the pressure perturbation, and
also tried to model carefully the experimental situation use . T .
by Koschmieder and Prahl. In particular, we show that the r.¢,2) are the polar coordinates. Tleaxis is vertical and
y rani. in p - griented from the bottom to the top of the box.
Biot number to be considered in the calculations depends on : . o .
X . The general equations for the fields with indexin Eq.
the aspect ratio of the container. 2.1) are easily shown to be

Apart from these rather technical reasons, our paper ig ' y
motivated by the following points. First, it is clear that the

. . e . 19(ru) m oW
results of a linear analysis of thermoconvection in confined — +—v+—=0, (2.2
geometries must tend to Nield's resul§ corresponding to ar Jr ar oz
horizontally infinite domains when the aspect ratio gets
larger and larger. In Zaman and Narayanan’s paper, the criti- pr1 ‘9_“: _ } ‘?_p+V2 U— 2m v 2.3
cal numbers for an aspect ratio equal to 8 are within Nield’s ot adr m2+15 T 22 ¥ '
values by 1.2% but are smaller than these values. This fact is
a bit astonishing since side walls should always play a sta- ,0v.m 5 2m
bilizing role. Another important point is the comparison be- Pr ot ar Pt Vi 10— azr2 2.4
tween insulating and conducting side walls. For reasons dis-
cussed below, the critical heating for insulating side walls

u(t,r,é,z)=uy(t,r,z)cosme,
v(t,r,¢,z)=vy(t,r,z)sirme,
w(t,r,¢,z)=wy(t,r,z)cosng, (2.1

o(t,r,¢,z) = 6,(t,r,z)coameo,

woap

should always lie below that for conducting boundaries. The Pri—=——+ V2 W+Raé, (2.5
results of Zaman and Narayanan comply with this require- Jt 9z

ment in small boxes but not always in larger ones, even if the 20

error is less than 1%. For these two reasons, we have thought oy =W+V§120, (2.6)

it interesting to reproduce the calculations. Moreover, an ot

original by-product of our study is a numerical proof of the

validity of the principle of exchange of stability for the where the indexm has been canceled for simplicity. These

coupled gravity- and capillarity-driven instability problem. equations are written in dimensionless form with vertical dis-

Eventually, the comparison with the experiments of Ko-tance, horizontal distance, time, and temperature scaled by

schmieder and Prahl is also very briefly discussed in the cash ad, d?/x, andAT, respectively,AT is the (conductive

of insulating side walls. temperature drop between the bottom and the top of the
The content of the paper is as follows. In Sec. Il, the basidayer, andp is the dimensionless pressure. The Rayleigh

equations are recalled very briefly since these are the same member is defined by RaatgATd®*/ kv, wherea is the

in the work of Zaman and Narayanan. Section Ill and thecoefficient of volume expansion ampthe intensity of grav-

Appendix consist of a description of the numerical methodity; v is the kinematic viscosity of the fluid and its heat
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diffusivity. The Prandtl number is given by Pw/«x. V2 is TABLE I. Convergence of the critical Marangoni number Ma
defined byVﬁ=a‘2r‘1 alar (ralar) — na-2r 2+ 92/ 972 with N, andN, for insulating side walls. The aspect ratio is equal to

The boundary conditions are the following. The bottom of5_; Bi=2 and Ra=0. The values of the azimuthal wave numbers are

the box is rigid and assumed to be perfectly heat ConduCtma/llven in the first column. The next three colgmns glve.the valuee of
so that a. for differentN, X N,. The last column gives the difference in

% between columns “189” and “9 X5.”

v=0=0 at z=0. 2.
@7 N, X N, 9x5 11x7 139 Ajgcg_ogxs(%)
The upper surface of the fluid is assumed to be free, \._q 1541463 154.0648 154.0630 0.05
plane, and nondeformable. The surface tengiemsupposed m=1  152.9577 1529518 152.9515 0.004
tf&b%?r“”‘?”"’“bf“”c“o'.‘ dOf tge ter.‘:.perat”re.; the C?’}Smt , m=2 1543350 1542497 154.2105 0.08
quid§s W\elzv Ialsoeagcsjzfr;eetr:at %ﬁhlgib assulffaucseuie;tri;n t(rjzns-m:?’ 153.2802 1532720 153.2684 0.008
. ! P ' m=4 153.9933 153.9915 153.9908 0.002

ferred from the liquid to the ambient gas according to New-
ton’s law of cooling, which results in a Biot condition for the

temperature perturbations. The mathematical expressions %n threshold is determined by evaluating the critical Ma-

the boundary conditions at the upper surface are thePangoni and Rayleigh numbers corresponding to a zero

[4,5,12,13,28 growth rateo. It is also worth stressing that the vertical and
2.9 horizontal coordinates cannot be separated as in vorticity-
free boxeqd13]. For this reason, a numerical solution of the
90 equations is required.
—+Big=0 at z=1, (2.9 The numerical method used here is a spectral tau method
9z [29], which is similar to the method used by Dauby and
Lebon for the study of rectangular rigid containg2d|. The
(?_UJFMaE ‘9_0:0 at z=1 (2.10 unknown fields are expanded in series of trial functions that
Jz adr ’ form a complete set and satisfy some of the boundary con-
ditions, the so-called “essential” boundary conditions. Trun-
v Ma m 0=0 at z=1 2.11) cated series are introduced in the field equations as well as in
9z ar ’ ' the “natural” boundary conditions, which are nat priori
satisfied by the trial functions. Then these equations and
where Bi is the Biot number and MayATd/pkv is the  natural boundary conditions are projected on the same trial
Marangoni number withp the constant mass density. functions; i.e., the equations and natural boundary conditions
The lateral side wall is rigid and we will consider both are multiplied by the trial functions before being integrated
conducting(CSW) and adiabatically insulatedSW) side  over the ¢,z)-fluid volume.

walls. The corresponding boundary conditions for velocity In the present study, the velocity and temperature pertur-

w=0 at z=1,

and temperature are bations are written in the form
v=0, d6/or=0 (ISW), 6=0 (CSW) at r=1. vl NN N N, N, 0 N, 0
(212 ): > A Ik)+ > Bm( Ik)+2 Xk( k)
. ) 0 =i 0) =1 é&& 0) & 0
Note eventually that the use of cylindrical coordinates, N
which are singular at=0, imposes regularity conditions on . 0
the velocity and temperature field29]. These conditions +i21 k§=:1 Cik i)’ 3.

express that the unknown fields are single valued=a0.

Eor the temperature and velocity perturbations, these Cond\'ﬂlhere N, and N, are integers; v, =(ul,0wl), vﬁ(
tions are written as

=(0,vf ,wh), V&= (ud,v%,wd), and ;. are trial functions,
#=0 at r=0 for m=#0, which are specified in the Appendid, Bix, X¢, and
Cix are unknown constants. The pressprés not given an
u=py=0 at r=0 for m=0, explicit decomposition because the pressure gradient disap-
(2.13 pears in the final equations as a result of integration by parts
u=—»;,w=0 at r=0 for m=1, and the boundary conditions.
Before examining in detail the results of our study, it is
u=v=w=0 at r=0 for m#0,1. important to consider the problem of the convergence of the
calculations whem, andN, are increased. Table | presents
Il SOLUTION AND NUMERICAL METHOD the values (_)f the eriticel Marangoni pumbers calculated in
the case of insulating side walls for different values of these
In order to determine the critical temperature differencetwo parameters. The aspect ratio is equal to 5 ardBiThe
an exponential time dependence of the form expfor all Rayleigh number is zero. These values are selected to exam-
the variables is introduced in the equations. The principle ofne the convergence for the following reasons. The slowest
exchange of stability is taken for granted here but we shoveonvergence is obtained in large aspect ratio boxes since the
later on that this hypothesis is actually valid. So the conveceonvective pattern is then more complex. Similarly, large
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TABLE II. Critical Marangoni numbers Mafor insulating(ISW) and conductindCSW) side walls and
for different azimuthal wave numben. The Rayleigh and Biot numbers are 100 and 0.2, respectively. The
corresponding Nield’s value for an infinite layer is equal to 75.544.d&e8, we used\, X N,=13X7.

a=1 a=2 a=4 a=8

ISW CcsSw ISW CsSw ISW Ccsw ISW CcsSw

163.57 179.73 80.876 91.174 78.777 79.545 76.196 76.467
109.08 198.06 91.249 94.459 77.870 79.326 76.487 76.504
160.15 274.09 99.113 105.53 79.783 79.968 76.233 76.518
257.86 390.67 101.20 123.50 78.141 79.902 76.531 76.531

w Nk o3

Biot numbers make smaller cellsee belowand thus more zero. Moreover, the zero Biot number condition at the top
complicated structures. The Rayleigh number does not havg&urface is also approximate. Note also that the adiabatic lat-
a great influence on the patte(see belowand is then arbi- eral wall assumption must also be considered with caution
trarily fixed to zero. since the thermal condition on lateral walls may be of some
Table | shows thal, X N,=9X5 gives very good results importance in small containers.

for aspect ratios less than about 5 and Biot numbers less than For these reasons, we have tried to provide a better ac-
about 2. So, except where otherwise stated, all results giveeount of the real experimental conditions by modeling with
below correspond to the valuds X N,=9Xx5. some care the conditions under which the observations of
Koschmieder and Prah6] were realized. Let us consider in
particular the thermal condition at the upper free surface of
IV. NUMERICAL RESULTS the fluid layer. In the experiments, a 0.5-mm air layer lies

For possib|e Checking, we present a Samp|e of numerica’lbove the fluid and the temperature is kept fixed at the top of
results in Table Il. Some interesting comments may be madtis air layer. In these circumstances, one can give the fol-
about these results. First of all, the critical Marangoni numJowing approximate value for the Biot number at the upper
bers for finite boxes are always larger than the values corrdree surface of the liquigi30]:
sponding to an infinite domain, which means that rigid side
walls are stabilizing as expected. Moreover, Mands to . Nair k
Nield's values for large aspect ratios, whatever the value of I_)\_ﬂtanf(kdau) '
the azimuthal wave numben and for both conducting and

insulating side walls. We also notice that the critical Ma- | this formula,\ ,;; and\ 4 represent the conductivities of the

rangoni numbers for insulating side walls are always smallegjr and of the fluidd,; is the dimensionless thickness of the
than for conducting ones. This is due to the fact that a temgyj, layer, that is, 0.5 mm divided by the thickness of the

perature perturbation arriving at an insulating boundary is

reflected towards the bulk of the fluid while it is dissipated in 115
the walls when these are conducting. For this reason, con- .
ducting side walls give rise to more stable systems. This ,
argument is similar to Nield’§5] who interpreted the in- 110+ |
crease of Mawith Bi in infinite layers.

It is also interesting to plot Maas a function of the aspect 105 —
ratio of the container. Results for insulating side walls are
presented in Fig. 1 when Ra&i=0. The aspect ratio varies
from 0.5 to 5. The curves corresponding to valuesnobe-
tween 0 and 3 are presented; the critical Marangoni numberMac
is the absolute minimum of these curves. Azimuthal wave 95
numbers larger than 3 are not considered in the figures since
these never correspond to the absolute minimum. We ob- 90
serve that the critical Marangoni number is a globally de-
creasing function of the aspect ratio of the box. Similar re-
sults were obtained by Dauby and Lebon in the case of
square and rectangular containd®4]. The decrease of
Ma, consists of different portions of concave curves, each of 80 T— — I — T
which corresponds to a typical convective pattern. The dif- 05 1 15 2 25 3 35 4 45 5
ferent convective patterns are discussed in more detail be- a
low.

Despite its theoretical importance, it is worth noting that  F|G. 1. Critical Marangoni number Maas a function of the
the “usual case” Ra&Bi=0 can never correspond to real aspect ratioa for insulating side walls. Curves corresponding to
experimental conditions. Actually, under terrestrial condi-different azimuthal wave numbers are represented. The Rayleigh
tions, gravity is never completely negligible and Ra is notand Biot numbers are zero.

4.9

100

85
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FIG. 2. Critical Marangoni number Maas a function of the aspect rat@oin a container with radius 5.6 mm. A 0.5-mm gas layer lies
above the fluid and the lateral walls are insulatiagor conducting(b). In (a), small letters indicate aspect ratios for which the convective
structure is represented in Fig. 3; the corresponding azimuthal and radial wave numaeds are also indicated.

fluid. The wave numbek is somewhat undetermined in con- function of the aspect ratio for this container and for both

fined convection, but its importance is minor for sm@j|,  insulating[Fig. 2@] and conducting side wallg=ig. 2(b)].
and we will usek=2, which is a typical value in natural For insulating side walls, it is interesting to notice that Nt
convection. not globally decreasing since the first portion of the curve

Another important point for earth-based experiments igies below the next ones. This is due to the fact that, in small
that both the Rayleigh and Marangoni numbers are proporaspect ratio boxes, the instability is mainly gravity driven. In
tional to the temperature difference so that both of thes%rger boxeS, the Marangoni effect is dominant and the criti-
parameters increase simultaneously in a progressive heating, Rayleigh number tends to zero.
experiment. For this reason, we introduqe two dimensionless The convective patterns appearing at threshold depend on
parameters. and « by the following relationg 31]: the aspect ratio, and, in particular, depend on the azimuthal

Ra Ma a wave numbem giving rise to the absolute minimum of the
(1—a)R—=aM— and )\:R—+M—, (4.2 different curves in Fig. 2. The classification of the possible
% % % 4 patterns is also made easier by defining a radial wave number

where Rg and Mg are two arbitrary constants. Here we fix i. To define this number, we note first that each curve cor-
Ra,=669 and Ma=79.6. These two values correspond re-responding to a fixean in Fig. 2 is made up of different
spectively to the critical values of pure gravity-driven andregions in which the concavity is successively upwards and
pure capillary convection in a horizontally infinite fluid layer downwards. This is most easily seen in Figa)2vhere local
with Bi=0. The parametex is proportional to the tempera- minima and maxima appear. Then, every region with up-
ture difference and will be considered as the eigenvalue pawvards concavity can be associated with a radial wave num-
rameter whilea, which is independent AT, can be inter- beri, which is obtained by counting the successive upwards
preted as the percentage of the buoyancy effect with respegpncavity regions from the left of the picture: on a curve
to the capillary effect. This parameter can be expressed aith fixed m, the first upwards concavity region has a radial
a=[1+Rayy(Magarpgd?) ~1]~! and depends on the fluid wave numbeii=0, the next corresponds te-1, etc. Note,
material properties and on the thickness of the liquid layerhowever, that, fom=0 thei=0 region does not exist for a
Thick fluid layers correspond to large and to mainly reason that is explained below.
buoyancy-driven convection while thin films give rise to  Typical convective patterns corresponding to insulating
small @ and to capillary instability. side walls are shown in Fig. 3 for different aspect ratios. The

In the experiments of Koschmieder and Prahl, the aspeotertical velocityw at mid-depth of the container is repre-
ratio of the container is varied by modifying the thickness ofsented. On each picture, the corresponding radial and azi-
the fluid layer. It is then clear that is different in all ex- muthal wave numbers are given. The azimuthal wave num-
periments. Similarly, the Biot number defined in Eg4.1)  bermis the number of timew vanishes for any within the
also varies withd. In view of these observations we have 6 interval]0,2#{. The radial wave numbercan also be seen
computed the critical value of for aspect ratios between 0.5 as the number of timew is equal to 0 within the interval
and 5 by considering the corresponding variations of Bi and0,1[, that is, the number of “radial rolls” that make up the
a. These parameters are determined by using the materiatructure. We can now better understand why the mode
coefficients given ir[6,28]. The case of a circular cylinder (m,i)=(0,0) is not present in Fig. 2. This mode would cor-
with radius 5.6 mm is considered in the following. Somerespond to a pure thermal mode, with zero velocity and uni-
typical values of the Biot number for this container are 1.84 form horizontal temperature. This mode is the well-known
0.66, and 0.46 for aspect ratios equal to 1, 3, and 5, respet® mode” [31] and is never marginally stable since its
tively. growth rate is always negativevhen RaBi=0, for in-

In Fig. 2, we plot the critical Marangoni number as a stance, this growth rate is equal tom?/4).
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FIG. 3. Convective patterns at the threshold
for different aspect ratios. The vertical velocity
w at mid-depth of the container is represented.
The aspect ratios and the critical azimuthal and
radial wave numbers are indicated. The letters
(a)—(f) correspond to the labels in Fig(a2.

The main results about the convective patterns at th@=2.9, the critical pattern has the form given in FigdB
threshold are the following. For very small aspect ratios, thehe marginally stable mode is the mo@&1). Neara=3.4,
critical mode is the moden=1, i=0. For simplicity, this the critical mode is the mod®,2), which is also axisymmet-
mode is denotedl,0). A picture of the convective structure ric [Fig. 3(€)] and consists of two concentric rolls. When the
is given in Fig. 3a) for a=0.7. We observe an upflow in the aspect ratio is very close to 3.7, the md8gl), drawn in Fig.
right-hand half of the container and a symmetrical downflow3(f), is linearly unstable. The last mode represented in Fig.
in the left-hand part. For aspect ratios around 1.8, the patter®(g) corresponds t@a=4.15; the wave numbers are in this
is axisymmetric and consists of a circular roll centered in thecase (n,i)=(1,2) and 5 deformed transverse rolls are dis-
middle of the boX{Fig. 3b)]. Fora close to 2.5, the critical played. The critical modes for larger values of the aspect
mode is the modé€1,1), which is represented in Fig.(@. ratios are not given because they are easily derived when the
The structure may be seen as made up by three transveraave numbers are known. Moreover, for large aspect ratios,
and somewhat deformed rolls. In a very small area aroundhany modes are nearly critical at threshold and it is not
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always easy to determine which one is unstable first. the different curves corresponding to a fixed azimuthal wave
Let us mention that the succession of the different criticalnumber could not cross because the eigenmodes have the

modes whera is increased is similar in Fig. 1 and in Fig. samed# symmetry. Some further remarks may be added con-

2(a) even if the aspect ratios for which the switchings occurcerning the bifurcation of the different eigenmodes. First, the

are somewhat different. Similarly, we observed the samén=0 eigenmodes are axisymmetric and are also invariant
succession when Mais calculated for R&0, Bi=2, for ~ for a reflection about any diameter of the box. The bifurca-

Ra= 200, Bi=0 and also when we calculated for the ex-  tion of such modes is nondegenerate and transcritical for the

periments of Koschmieder and Prahl in containers with radiBénard-Marangoni problem. On the other hand, the bifurca-
8.75 and 11.9 mm. In summary, we can say that an increadton of eigenmodes with nonvanishing azimuthal wave num-
of Ra gives rise to a decrease of Mhut no significant bers is degenerate and a complete family of solutions
variation of the pattern is observed. An increase of the Bioemerges symmetrically at the bifurcation point, each member
number makes the critical Marangoni number larger sinc®€ing characterized by its azimuthal phase. The transcritical
perturbations may be dissipated in the upper gas |ayer_ In thiadr Symmetric character of the bifurcation for aXisymmetriC or
case, the cells become smaller and smaller as Bi increas@§naxisymmetric modes, respectively, was also noticed in
but the succession of the patterns for increasing aspect ratidde numerical study of Wagnet al. [27].
remains the same. So, it may be stated that gravity and the TO finish this section, we discuss briefly the principle of
Biot number do not seem very important for the successio§xchange of stability. Our code has the possibility to con-
of the eigenmodes. sider the growth rate of the perturbations as the eigenvalue
The patterns for conducting side walls will not be studiedParameter when Ra and Ma are fixed. The validity of the
in detail since, for any value of the azimuthal wave numbemrinciple of exchange of stability has then been checked in
m, they are quite similar to those given in Fig. 3. Note, the following way. First, a zero growth rate is fixed and the
however, that the succession of the critical modes is differergfitical Ra and Mg are determined. Then the growth rate is
since in the Conducting case, modas-2 [Fig 3(d)] and recalculated with fixed R@.Rac and Ma= Mac . The result is
m=3 [Fig. 3f)] are never observed at the threshold. then .that, in all cases, the groyvth rate with the largest ieal
The succession of patterns whanbecomes larger and Part is actually. 0. This anal'ysis provides thus a numgilcal
larger can be summarized in the following way. Except for_proof of_the validity of the pnnmple of exchange of _stablllty
the structures described by Fig(dB and Fig. Zf), which  in the circular Bgard?Marangonl problem for both insulat-
appear only for insulating side walls and for a very smalling and conducting side walls.
range of the aspect ratio, the patterns observed at the thresh-
old are made up by concentric rolls or by some kind_ ofv. COMPARISON WITH OTHER THEORETICAL WORKS
deformed transverse rolls. In very small boxes, a unique
transverse roll is observedFig. 3a)]. Then, whena is in- As already mentioned in the Introduction, several papers
creased, a unique roll with its center in the middle of theon the same problem exist, whose results are now compared
vessel appearfFig. 3(b)]. Figure 3c) exhibits 3 transverse with ours.
rolls while 2 concentric rolls are displayed in FigieB Fi- A linear study of thermoconvective instabilities in circular
nally, 5 transverse rolls are present in Fi¢g)3So, the num- bounded domains was first presented by Vrentas, Narayanan,
ber of rolls is progressively increased. The number of transand Agrawal in 1981 for axisymmetric perturbatidi2§). It
verse rolls is always odd while the number of concentricis easy to compare oum=0 results with those of these
rolls may take any value. authors. Some typical situations are analyzed in Table IlI,
A last comment on the radial wave numligs in order. It  which shows excellent agreement between both approaches
is important to notice that along a curve with fixed azimuthal(difference nearly always less 0.1%except for the critical
wave numbem in Fig. 2, the variations of the convective Rayleigh numbers when the aspect ratio is equal to 1. This
structure are continuous. So a radial wave number is not easlisagreement for the Rayleigh problem with snaai$ some-
to define everywhere along these curves. For instance, theghat surprising and we have rechecked the convergence of
m=0 convective pattern in the neighborhooda#2.5 in  our results in this casgor Bi=1, we got Rag=1483.11 with
Fig. 2(a) shows a continuous transition from=1 to i=2. N, XN,=4X4 and Ra=1481.84 with N,XN,=20x 20).
For aspect ratios just on the right of the minimumat Actually, we have also checked the other results given in
=1.7 for them=0 curve in Fig. 2a), two small and very Vrentaset al. Except for the Rayleigh problem with aspect
weak axisymmetric rolls appear along the side walls, one atatios lower than or equal to 1, the agreement was excellent.
the top surface and the other one at the bottom of the con- The comparison of the critical numbers with the work by
tainer. When the aspect ratio still increases, these two roll€hen et al. [26] is not easy because their results are pre-
grow and eventually merge to give birth to the2 mode sented only graphically. Moreover, we have already men-
(see alsd25]). tioned that their axisymmetric results are probably incorrect.
In view of a future nonlinear approach of the problem, it However, except for then=0 mode, it is interesting to note
is worth making some comments on the symmetry of thethat the succession of the modes in their Fig. 2 is the same as
different patterng32—35. First we can note that all curves in our Fig. 1, with codimension-2 points appearing for values
in Figs. 1 and 2 are crossing each other, which is madef the aspect ratios close to ours.
possible because the eigenmodes corresponding to these dif- The numerical results given in Table | of Wagredral.
ferent curves have different azimuthal wave numbers anthave also been compared to our calculations. The deviations
thus different symmetries. On the other hand, if the succeshetween the 4 numbers they give and ours are, respectively,
sive increasing eigenvalues for eathhad been presented, 0.3, 3, 2, and 6%; the agreement can thus be considered as
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TABLE lll. Comparison between our resul(. et al) and those of Vrentast al. (V. et al) [25]. The
first lines give the critical Marangoni number when=R@ and for different Biot numbers; the bottom of the
table presents the critical Rayleigh number for & Note that the values of Vrentat al. have been
multiplied by Bi/(Bi+1) in order to correspond to our notation.

a=1 a=2 a=4
Ma, Ma, Ma, Ma, Ma, Ma,
Bi(Ra=0) (D. et al) (V. etal) (D. et al) (V. etal) (D. et al) (V. etal)
0.01 164.55 164.40 84.638 84.635 82.486 82.483
0.1 168.34 168.35 88.344 88.264 86.263 86.582
1 206.16 206.00 125.01 125.0 120.63 120.65
Ra, Ra, Ra Ra, Ra, Ra,
Bi(Ma=0) (D. et al) (V. etal) (D. et al) (V. etal) (D. et al) (V. etal)
0.01 1419.47 1558.3 712.667 712.466 695.668 695.548
0.1 1426.24 1565.9 726.704 726.482 709.457 709.336
1 1482.12 1628.2 836.072 835.85 799.735 799.5

satisfactory since the numbers given by Wagaeal. are  case of rectangular boxes, a similar behavior was also ob-
obtained by interpolating the bifurcation points from the served in[24].
nonlinear regime.

The agreement between our work and that of Zaman and VI. COMPARISON WITH EXPERIMENTS
Narayanan can be tested by comparing our Tabl#oH in- _ _
sulating side walls with their Table II. For aspect ratios  2a@man and Narayana25] have already considered in
equal to 1 or 2, the difference between both approaches maifteil the comparison between experiments and a linear ap-
reach 13% or 12% but it is important to stress that the azi roe}ch to the stability problem with conducting side quls. In
muthal wave number of the most unstable mode is the sa ariicular, they propose several arguments to explain why
in both paperdm=1 for a=1 andm=0 for a=2). Fora the calculated critical values of the control parameters are

o i ;
— 4 ora—8, the deviations are far legss than 29but the usually 20% higher than the experimental measurements of

o , . ) Koschmieder and Pralib]. Let us add that this difference
critical m’s are different in both approaches. More generally,Can be slightly decreased by considering insulating side

we have checked that the succession of the eigenmodes whgp, |5 (Koschmieder and Prahl used bakelite for the side

ais incregged is not the same in bqth approaches. In particq\-,ans)’ which make the system more unstable but the im-
lar, the criticalm=2 zone in the neighborhood @=1.2in  provement is minor. Note also that the assumption of a pas-
Fig. 3 of Zaman and Narayanan’s paper does not appear ijve gas above the fluid may have some influence on the
our Fig. 2. discrepancy between theoretical predictions and experimen-
It is not easy to guess the reason for this disagreement. Il measurements of the thresho[&8]. This point will not
their paper, Zaman and Narayanan do not discuss the regbe discussed in more detail here but we would like to add
larity conditions atr =0, but these seem to be satisfied by some comments on the convective patterns. The main point
their trial functions, at least fom+ 1. Probably, the differ- we want to stress now is that, in most cases, the linear study
ence between our work and those of Vrentisl. and of  of the pattern does not provide a good description of what is
Zaman and Narayanan originate in the numerical method€xperimentally observed, whatever the insulating or conduct-
which are not exactly similar and which could be more oring character of the side walls. Actually, the comparison of
less efficient, depending on the aspect ratio or on the type dfig. 1 in[6] with our Fig. 3 shows that the observed patterns
the problem under consideratigMarangoni, Rayleigh, or are different from the structures we deduced from our analy-
coupled problem([28,37. sis, except perhaps the axisymmetric pattern of Fg) ih
Comparison with the work of Rosenblat al.[13] is not  [6], which is the one-circular roll solution depicted in our
easy since the lateral vorticity-free wall assumption used byig. 2(b). In fact, we already stressed this disagreement be-
these authors is quite different from our more realistic modetween linear theory and experiments in a previous work on
of no-slip boundaries. It is, however, worth noting that theconfined thermoconvection in rectangular vesd@4]. It
artifact that some finite containers have the same criticalvas shown in this work that the convective pattern in the
value for the control parameter as infinite layers disappearsonlinear regime may be quite different from the pattern pre-
with rigid side walls. Moreover, the succession of the criticaldicted at the threshold, especially for large containers. The
modes when the aspect ratio is increase(dLB] is also quite  reason is twofold. First, the modes that are generated by the
different and many critical modes predicted in slippery con-self-interactions of the critical mode in the nonlinear regime
tainers are never observed at the threshold with a no-slido not always have a small amplitude so that their presence
condition. This reduction of the possible patterns observed anay deeply influence the final pattern, which is actually the
criticality is due to the continuous variation of the structuresuperposition of the linearly unstable structure and these
along a curve with a fixed azimuthal wave numberin the  nonlinearly generated modes. Second, and this was also
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mentioned by Zaman and Narayanan, some stable, and thus ul,=f(ra,9¢2), wh=a *u(r)gyz), (A1)
observable, solutions in the nonlinear regime correspond to
branches that do not emanate from the lowest bifurcation

point on the Ma axis. This is particularly true in large boxes vl =mfi(ra,9¢2), wi=m2a ;(1gdz), (A2
in which the successive eigenmodes bifurcate quite near the

threshold: Fig. 2 shows indeed that the curves are quite near W=F(ra,g92), vi=—F(r)d,g2),

each other on the right side of the picture. In small boxes, the

curves for the successive eigenmodes are well separated and w‘,Z=a*1U(r)gk(z) (A3)

the secondary modes should not be observed in the neigh-
borhood of the threshold. B c=mi(r)N(2), (A4)

Vil SUMMARY whered, denotes derivatives with respectaoThe functions

By using a spectral tau method, we have analyzed théi. Ui, vi, F, U, m;, gy, andny are selected in order that
linear Benard-Marangoni problem in circular rigid contain- (A1)—(A4) form a complete set but also in such a way that
ers. We have shown that the principle of exchange of stabilmost of the boundary and regularity conditions are satisfied
ity is valid so that the linear instability is stationary. The priori. Here, we consider products of shifted Chebyshev
numerical convergence of our method has been analyzed. fplynomials(defined on[0,1]) and other polynomials that
particular, we have checked that the critical parameters fo@llow one to take the boundary and regularity conditions into
confined geometries remain always larger than in infinite doaccount. The trial functiongy andn,, which depend on the
mains and tend to Nield’s values for large vessels. We hav¥ertical coordinatez, are independent of the value of the
also verified that the system is more stable with conductingzimuthal wave number. Thesefunctions are written for
lateral boundaries than with insulating side walls. k=1,...N;as

The main results are summarized in Figs 2 and 3. Figure
2 describes the succession of the possible patterns when the
aspect ratio is increased. This succession differs slightly for 5
insulating and conducting side walls but is independent of 9(2)=2(z=1)T\-1(2), n(2)=2zT 1(2), (A5)
the Biot number and of the ratio of the Rayleigh and Ma-
rangoni numbers. Figure 3 gives pictures of the convectivavhere T,'s are the shifted Chebyshev polynomials defined
motions, which generally take the form of either concentricon [0,1].
or “transverse” cells. Eventually, comparisons with previ-  With this choice for thez functions, it is easy to check
ous analyses and with experiments are also discussed. that the zero velocity and the fixed temperature conditions on

the rigid bottom wall are identically satisfied. The nonde-
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APPENDIX With the above choice for the trial functions, it is easy to
In this Appendix, we present some details on the numeriverify that the zero velocity condition is automatically en-

cal method used to solve the linear eigenvalue problem. sured as well as the regularity conditions. Indeed, the tem-
First we present the trial functions to be used in the specperature perturbations actually vanisir &0; the terms pro-

tral method. The undefined symbols in E8.1) are given by  portional toA;, and B;, vanish for the three components of
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the velocity while the terms proportional ¥, allow one to  Except for the Marangoni and Biot relations, the boundary

satisfyu= —v; w=0 atr=0. So, all the boundary and regu- conditions are directly satisfied as well as the regularity con-

larity conditions area priori satisfied, except for the Ma- ditions.

rangoni and Biot conditions. The particular casen=0 is obtained from Eqs(Al)—
The horizontal trial function$; andm; for m>1 take the (A4) by canceling terms proportional %, and toB;,. In

same from(A7), but the terms inX, are canceled in Egs. order to fulfill the natural boundary conditions and the regu-

(A1)—(A3) (the functionsF andU are no longer necessary larity conditions, the function$; andm; are selected as

my(r)=1
fi(r)=r(r—=1)%T;_4(r), mi>1(r)=Jr(f_1)Ti—2(f)d§ (ISW), mi(r)=(r—1)T;_4(r) (CSW). (A8)
0

The spectral tau method consists in introducing the genESSL routinedDGEGV. Note eventually that all singularities at
eral expressiongAl)—(A4) with Egs. (A5)—(A8) in Egs. r=0 due to factors " orr 2in (2.2—(2.6), (2.10, (2.11),
(2.3 —(6) and the boundary conditioni®.9—(11). The alge- or (A6) disappear from the final projected equations as a
braic equations are obtained by projection on the trial funcresult of the regularity conditions, which agepriori satis-
tions, that is, by multiplying the equations by the trial func- fied by our trial functions.
tions and integrating the products over the fluid volume. The Note also that the normalization condition used to deter-
method is similar to that used {124] and will not be com- mine the algebraic eigenvectors is the following. The tem-
mented upon in detail. The whole set of equations forms amperature perturbation is calculated at mid-depth of the layer
algebraic eigenvalue problem for Ma and/or Ra. The dimenfor r equal to 0.25, 0.5, 0.75, and 1. The point for whjéh
sion of the eigenvalue problem isXAaN, XN, for an azi- is maximum is then chose to fig=1. This normalization
muthal wave numbem larger than 1. Fom=1 andm=0, condition is of importance for the nonlinear analysis to be
the dimensions are respectively X®,+1)XN, and 2 developed in a future work but is of no concern in a linear-
XN, XN,. The calculations have been carried out using thézed approach.
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