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Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates
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and Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
~Received 23 June 1997!

An approach is developed for the description of isolated Fermi systems with finite numbers of particles, such
as complex atoms, nuclei, atomic clusters, etc. It is based on statistical properties of chaotic excited states
which are formed by the interaction between particles. A type of ‘‘microcanonical’’ partition function is
introduced and expressed in terms of the average shape of eigenstatesF(Ek ,E), whereE is the total energy of
the system. This partition function plays the same role as the canonical expression exp(2E(i)/T) for open
systems in a thermal bath. The approach allows one to calculate mean values and nondiagonal matrix elements
of different operators. In particular, the following problems have been considered: the distribution of occupa-
tion numbers and its relevance to the canonical and Fermi-Dirac distributions; criteria of equilibrium and
thermalization; the thermodynamical equation of state and the meaning of temperature, entropy and heat
capacity; and the increase of effective temperature due to the interaction. The problems of spreading widths
and the shape of the eigenstates are also studied.@S1063-651X~97!01811-4#

PACS number~s!: 05.45.1b, 05.30.Fk
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I. INTRODUCTION

As is known, quantum statistical laws have been deriv
for systems with infinite numbers of particles, or for syste
in a heat bath; therefore, their applicability to isolated fin
systems of a few particles is, at least, questionable. Howe
the density of many-particle energy levels increases
tremely fast~typically, exponentially!, both with an increase
of number of particles and excitation energy. For this reas
even a weak interaction between particles can lead t
strong mixing between large numbers of simple ma
particle states, resulting in so-calledchaotic eigenstates. If
the components of such eigenstates can be treated as ra
variables~the onset ofquantum chaos!, statistical methods
are expected to be valid even for an isolated dynamical
tem.

One should stress that a statistical description of such
lated systems can be quite different from that based on s
dard canonical distributions; therefore, application of the
mous Fermi-Dirac or Bose-Einstein formulas may gi
incorrect results. Moreover, for isolated few-particle sy
tems, a serious problem arises in the definition of tempe
ture, or other thermodynamic variables like entropy and s
cific heat. ~This contrasts with infinite systems for whic
different definitions give the same result.!

The aim of this paper is to develop a statistical theory
finite quantum systems of interacting particles, based on
neric statistical properties of chaotic eigenstates~the ‘‘micro-
canonical’’ approach!. Typical examples of such systems a
compound nuclei, complex atoms, atomic clusters, isola
quantum dots, etc.

The structure of the paper is as follows. In Sec. II, a ty
of ‘‘microcanonical’’ partition function is introduced for fi-
nite isolated systems, which is directly related to the aver
shape of chaotic eigenstates. Based on this partition func
a general expression for the occupation numbers is g
which is valid for any number of interacting particles. Th
relation of this ‘‘microcanonical’’ expression~F distribu-
tion! to that of standard canonical distribution for occupati
561063-651X/97/56~5!/5144~16!/$10.00
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numbers is the subject of Sec. III. Also, a form of the c
nonical distribution is suggested which can be convenien
applications to open systems in thermal equilibrium li
quantum dots.

The transition to the standard Fermi-Dirac distribution f
large systems is analyzed in Sec. IV. Specific attention
paid to the accuracy of this distribution in applications
isolated systems with few particles.

In Sec. V an analytical derivation of theF distribution of
occupation numbers is given. For this, the model ofn ran-
domly interacting Fermi-particles distributed overm single-
particle levels has been used. An analytical formula for
occupation numbersns(E), with E being the total energy o
the system, was found to be in excellent agreement with
numerical experiment.

In Sec. VI the influence of the finite width of single
particle states~‘‘quasiparticles’’! on the distribution of occu-
pation numbers is considered. An expression for the occu
tion numbers is discussed which takes into account the fi
spreading width of quasiparticles. It is demonstrated that
an isolated system with a fixed total energyE, the incorpo-
ration of spreading widths decreases the effective temp
ture; however, it does not change the occupation numbe

Section VII deals with the important problem of a the
modynamical description of small systems consisting of
nite number of interacting particles. Specifically, differe
definitions of both temperature and entropy have been a
lyzed, and the equation of state for finite systems has b
derived.

In Sec. VIII we show that statistical effects of the inte
action can be imitated by an increase of the effective te
perature. This fact allows one to use the standard Fer
Dirac expression for the occupation numbers~with
renormalized parameters! in the application to both isolated
and open~in the thermal bath! systems of interacting Ferm
particles. This interaction may be strong; however, the
sumption of randomness for residual interaction matrix e
ments is essential.

In Sec. IX the conditions for chaos, equilibrium, an
5144 © 1997 The American Physical Society



n
he
te
fo
n
th
Th
ie

r
x
ta
ic

ot
ea
th
r-

d

ce
a

n
n
ad
th

ed
r-

nd
en

th

-

y
e
o

tri
n-

s

-
-
-

n

e
es
ar-

an

n
n by

that

r-

ith
-
e

n a
rm

odel
f

e

the
the

the

d
on.
of
ed

56 5145STATISTICAL THEORY OF FINITE FERMI SYSTEMS . . .
‘‘thermalization’’ have been analyzed for an isolated qua
tum system with a finite number of particles in terms of t
interaction strength, number of particles, and other rela
parameters. Depending on these conditions, there are
different regions with different distributions of occupatio
numbers, which are discussed in detail. In this section,
transition to mesoscopic systems is briefly discussed.
question of particular interest is how statistical propert
depend on the dimensionality of a system.

Since the approach developed in this paper is entirely
lated to the structure of chaotic eigenstates, in Appendi
the analytical expression for the average shape of eigens
is given and discussed in more detail. This expression, wh
also describes the local spectral density of states~LDOS!,
essentially depends on two different widths and is valid b
for weak and strong interactions between particles. For w
interaction the shape is close to the Lorentzian form, with
half-width given by the Fermi golden rule. For larger inte
action the shape is characterized by exponential tails, an
a width which is linear in the interaction strength~contrary to
the Fermi golden rule, which gives a quadratic dependen!.
Transition between these two regimes occurs when the h
width is comparable to the root-mean-square width~the ef-
fective bandwidth of the Hamiltonian matrix!. In Appendix
B the moments of the distributions of the basis compone
~LDOS! and energy levels are calculated. Finally, in Appe
dix C, a calculation of the density of final states and spre
ing widths of the LDOS have been performed using
Fermi golden rule.

II. MICROCANONICAL PARTITION FUNCTION

In this section we derive the partition function for clos
~isolated! systems with finite numbers of interacting pa
ticles. This function allows one to perform analytical a
numerical calculations of statistical mean values of differ
operators, for example, occupation numbers.

We follow the standard approach which is based on
separation of a total Hamiltonian into two parts,

H5H01V5( esas
†as1

1
2 ( Vpqrsap

†aq
†aras . ~1!

The ‘‘unperturbed’’ HamiltonianH0 should incorporate the
effect of a mean field~if any!, es are the energies of single
particle states~‘‘orbitals’’ ! calculated in this field,as

† andas

are creation-annihilation operators, andV stands for the re-
sidual interaction. For simplicity, here we neglect any d
namical effects of the interaction like pairing, collectiv
modes, etc. Instead, we will study the statistical effects
interaction; therefore, in what follows we assume that ma
elementsVpqrs of the two-body residual interaction are ra
dom variables.

Exact ~‘‘compound’’! eigenstatesu i & of the Hamiltonian
H can be expressed in terms of simple ‘‘shell-model ba
states’’ uk& ~eigenstates ofH0!:

u i &5(
k

Ck
~ i !uk&, uk&5ak1

† . . . akn

† u0&. ~2!
-
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These compound eigenstatesu i &, characterized by the corre
sponding energiesE( i ), are formed by the residual interac
tion V; in complex systems they typically contain large num
berNpc@1 of the so-called principal componentsCk

( i ) which
fluctuate ‘‘randomly’’ as a function of indicesi andk.

Our main interest is in the occupation numbersns of
single-particle states~orbitals!. They can be represented i
terms of components of the exact eigenstatesu i &,

ns5^ i un̂su i &5(
k

uCk
~ i !u2^kun̂suk&. ~3!

Here n̂s5as
†as is the occupation number operator. Th

knowledge of the distribution of occupation numbers giv
the possibility of calculating mean values of any single p
ticle operator̂ M &5(snsMss. Moreover, the variance of the
distribution of nondiagonal elements ofM , describing tran-
sition amplitudes between ‘‘chaotic’’ compound states, c
also be expressed through the occupation numbersns @1–3#.

As one can see from Eq.~3!, mean values of occupatio
numbers depend on the shape of exact eigenstates, give
the ‘‘spreading function’’F ~in what follows, theF func-
tion!,

Fk
~ i ![uCk

~ i !u25F~Ek2E~ i !!. ~4!

The last equality in the above expression reflects the fact
the residual interactionV mainly mixes close componentsk
in some energy intervalG ~‘‘spreading width’’! nearby the
eigenstate energyE( i ) ~more accurately, nearby the unpe
turbed energyEk for k5 i ; see below!.

Typically, this spreading function rapidly decreases w
an increase ofuEk2E( i )u ~since an admixture of distant com
ponent is very small!. Recently, in numerical studies of th
Ce atom@2#, the s-d nuclear shell model@4#, and random
two-body interaction model@3,5#, it was found that typical
shapeF of exact eigenstates practically does not depend o
particular many-body system, and has a universal fo
which essentially depends on the spreading widthG. The
latter can be expressed in terms of parameters of the m
~the intensityV of the residual interaction, the number o
particlesn, the excitation energy, etc.! and can be calculated
analytically ~see Appendixes A–C!. One can also measur
the width of theF function ~4! via the number of principal
componentsNpc;G/D, whereD is the local mean energy
spacing for compound states. In many-body systems
value of D exponentially decreases with an increase of
number of ‘‘active’’ ~valence! particles. As a result,Npc is
very large, ;104– 106 in excited ~compound! nuclei and
;100 in excited rare-earth or actinide atoms.

The starting point of our approach is an expression for
occupation numbers which stems from Eqs.~3! and ~4!,

ns~E!5
(kns

~k!F~Ek2E!

(kF~Ek2E!
, ~5!

wherens
(k)[^kun̂suk& equals 0 or 1 for Fermi particles, an

the sum in the denominator stands for the normalizati
This way of averaging of occupation numbers is a kind
microcanonical averaging, since it is defined for the fix
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5146 56V. V. FLAMBAUM AND F. M. IZRAILEV
total energyE of a system. One can see that, in fact, relat
~5! is equivalent to the introduction of a new kind of partitio
function,

Z~E!5(
k

F~Ek2E!, ~6!

which is entirely determined by the shape of chaotic eig
functions. In what follows, we term Eq.~5! the F distribu-
tion.

The above expression~5! gives insight into the problem
of a statistical description of complex systems. Indeed,
was mentioned above, the shape of theF function has uni-
versal features and can often be described analytically; th
fore, in practice there is no need to diagonalize a hu
Hamiltonian matrix of a many-body system in order to fi
statistical averages. One should stress that the summatio
Eq. ~5! is carried out over unperturbed energiesEk defined
by the mean field, rather than over the energies of ex
eigenstates in the standard canonical distribution. As a re
the distribution of occupation numbers can be derived a
lytically ~see Sec. V! even for few interacting particles, in th
situation when the standard Fermi-Dirac distribution is n
valid.

III. TRANSITION TO THE CANONICAL DISTRIBUTION

It is instructive to compare ourF distribution ~5! with
occupation numbers obtained by making use of the stan
canonical distribution

ns~T!5
( ins

~ i !exp~2E~ i !/T!

( iexp~2E~ i !/T!
, ~7!

whereT is the temperature and the indexi stands for exact
eigenstates. The important difference between theF distri-
bution ~5! and the canonical distribution~7! is that in Eq.~5!
the occupation numbers are calculated for a specific en
E of a system unlike the specific temperatureT in Eq. ~7!.
However, results of calculations based on Eqs.~7! and ~5!
can be compared with each other using the relation betw
the energyE and the temperatureT,

E5^E&T5
( iE

~ i !exp~2E~ i !/T!

( iexp~2E~ i !/T!
. ~8!

The comparison of Eqs.~7! and ~5! also shows that the ca
nonical distribution corresponds to the averaging of the ‘‘m
crocanonical’’F distribution over some energy intervalDT .
To demonstrate this, let us substitutens

( i ) and uCk
( i )u2 from

Eqs.~3! and~4! into Eq.~7!, and replace the summation ov
i by the integration overr(E( i ))dE( i ), wherer(E( i )) is the
density of exact energy levels,

(
i

ns
~ i !exp~2E~ i !/T!'E ns

~ i !FT~E~ i !!dE~ i !. ~9!

Here we have introduced the ‘‘canonical~thermal! averag-
ing’’ function

FT~E!5r~E!exp~2E/T!, ~10!
n
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which is discussed below. As a result, we can transform
canonical distribution~7! into a form similar to theF distri-
bution ~5!,

ns~T!5
(kns

~k!F~T,Ek!

(kF~T,Ek!
, ~11!

where the functionF(T,Ek) is the canonical average ofFk
( i ) ,

F~T,Ek!5E Fk
~ i !FT~E~ i !!dE~ i !. ~12!

Note that this form of the canonical distribution can
convenient for a calculation of the occupation numbers a
other mean values in quantum dots which are in therm
equilibrium with an environment~with no particle ex-
change!.

In large many-body systems the canonical averag
functionFT(E) has a narrow maximum, since the density
statesr(E( i )) typically grows very fast. The positionEm of
its maximum is defined by the expression

d lnr~E!

dE
5

1

T
, ~13!

and the width is given by

DT5Ud2lnr~E!

dE2 U21/2

. ~14!

As an example, let us consider the system ofn interacting
particles distributed overm orbitals. In Refs.@6,7# it was
shown that in the casem@n@1 the density of states is of th
Gaussian form

r~E!5
1

sA2p
expS 2

~E2Ec!
2

2s2 D , ~15!

whereEc is the center of the spectrum ands2 is its variance.
According to recent numerical data@5,3#, the Gaussian form
for the densityr(E) also occurs for few particles (n>4).
This fact easily allows us to find the form ofFT(E) which
appears to be quite generic,

FT~E!; expS 2
~E2Em!2

2s2 D , ~16!

where

Em5Ec2
s2

T
. ~17!

One can see that the widthDT of the thermal averaging func
tion equals the root-mean-square~rms! width of the spec-
trum, DT5s. Now, it is easy to show that the thermal ave
aging widthDT is always larger than the rms widthDE of
the ‘‘microcanonical’’F function, or the same as the mea
width of exact eigenstates in the energy representation.
deed, there is a simple relation between the widthss ands0
of the energy spectrum with and without interaction, resp
tively ~see Appendix A!,
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s25s0
21~DE!2; ~18!

therefore, we haveDT5s.DE. One should stress that th
latter widthDE, in fact, is due to statistical effects of inte
action. The difference between the widthsDT andDE is not
important when the number of particlesn is large. This is
because with an increase ofn the width s0 of the unper-
turbed spectrum increases asAn, unlike the width DE,
which increases asn. One should also note that in this ca
both widthsDT and DE are much smaller than the typica
energy interval,s/uE2Ecu;1/An. Therefore, for a large
number of particles the functionFT can be regarded as thed
function at E5Em , and theF distribution is close to the
canonical distribution, see Eq.~12!.

To conclude this section, the canonical distribution~7! is
not correct when describing isolated systems with a sm
number of particles; instead, one should use theF distribu-
tion ~5!. This was recently confirmed by numerical expe
ments with the model of few Fermi particles with a two-bo
random interaction@5,8#.

IV. TRANSITION TO THE FERMI-DIRAC DISTRIBUTION

It is now instructive to show how the standard Ferm
Dirac distribution stems directly from theF distribution ~5!
in the limit of a large number of particles. By performin
explicitly the summation overns50 and 1, expression~5!
can be rewritten in the form

ns~E!5
01Zs~n21,E2 ẽs!

Zs~n21,E2 ẽs!1Zs~n,E!
5

1

11
Zs~n,E!

Zs~n21,E2 ẽs!

.

~19!

Here, two ‘‘partial’’ partition functionsZs(n,E) and Zs(n
21,E2 ẽs) are introduced. In the first one, the summation
taken over all single-particle states ofn particles with the
orbital s excluded, Zs(n,E)5(k8F(Ek2E). Correspond-
ingly, the sum inZs(n21,E2 ẽs) is taken over the states o
n21 particles with the orbitals excluded. The latter sum
appears from the terms for which the orbitals is filled (ns
51); thus we should add the energyẽs[Ek(n)
2Ek(n21) of this orbital to the energyEk(n21) of the
basis stateuk& defined byn21 particles. Since theF func-
tion depends on the differenceEk1 ẽs2E only, the adding
term ẽs to Ek(n21) is the same as its subtraction from t
total energyE. Note that this term is defined by

ẽs5es1(
pÞs

uspnp
~k! , ~20!

wherees is the energy of a single-particle state andusp is the
diagonal matrix element of the two-body residual interacti
By taking ẽs independent ofk, we assume that the averagin
over the basis states near the energyE is possible; in fact,
this is equivalent to a local~at a given energy! mean-field
approximation.

One should stress that this approximation is the most
portant when applying model~1! to realistic systems. Fo
example, for Ce atom there are orbitals from different op
subshells~e.g., 4f and 6s! which are quite close in energie
ll

.

-

n

however, they have very different radii. As a result, the Co
lomb interaction between the corresponding electrons is v
different @9#. In this case the interaction terms in Eq.~20!
depend strongly on the occupation numbers of other p
ticles, which means that there is no good mean-field appr
mation. As a result, the equilibrium distribution for occup
tion numbers is very different from the Fermi-Dira
distribution @9#. However, theF distribution ~5! for occupa-
tion numbers is valid. In other cases like the random tw
body interaction model@5,3,8# or nuclear shell model@4#,
such a local mean-field approximation is quite accurate.

For a large numbern@1 of particles distributed overm
@1 orbitals, the dependence ofZs on n andẽs is very strong,
since the number of termsN in the partition functionZs is
exponentially large,N5 m!/(m2n)!n!. Therefore, to make
the dependence on arguments smooth, one should con
ln Zs instead ofZs . In this case, one can obtain

lnZs~n2Dn,E2 ẽs!' lnZs~n,E!2asDn2bsẽs ,
~21!

as5
] lnZs

]n
, bs5

] lnZs

]E
, Dn51.

This leads to a distribution of Fermi-Dirac type,

ns5
1

11exp~as1bsẽs!
. ~22!

If the number of substantially occupied orbitals in the de
nition of Zs is large, the parametersas andbs are not sen-
sitive as to which particular orbitals is excluded from the
sum, and one can assumeas5a[2m/T andbs5b[1/T as
in the standard Fermi-Dirac distribution. Then the chemi
potentialm and temperatureT can be found from the condi
tions of a fixed number of particles and a fixed energy,

(
s

ns5n, (
s

esns1(
s.p

uspnsnp5(
s

ns~es1 ẽs!/25E.

~23!

Note that the sums in Eqs.~23! and ~20! containing the re-
sidual interactionusp can be substantially reduced by
proper choice of the mean-field basis~for instance, the terms
usp can have different signs in such a basis!. In practice, the
valueses and ẽs may be very close. Since in the above e
pressions~23! the nondiagonal matrix elements of the inte
action are not taken into account, one can expect that
distribution of occupation numbers defined by these eq
tions gives a correct result if the interaction is weak enou
~the ideal gas approximation!. However, we can show~see
Sec. VIII! that, in fact, even for strong interaction the Ferm
Dirac distribution can be also valid if the total energyE is
corrected in a proper way, by taking into account the
crease of the temperature due to statistical effects of inte
tion.

One should also note that a somewhat similar proced
transforms the canonical distribution~7! into the Fermi-Dirac
distribution ~see, e.g., Ref.@10#! in the case of many nonin
teracting particles~ideal gas!. It is curious that the Fermi-
Dirac distribution is very close to the canonical distributio
~7! even for a very small number of particles (n52), pro-



rg

n

th
t
ex
-

l
m

th
-
io

be
e
th
le
i-
le

er
ic

s
s

b

,

ig

the

n the
er
re

f
n

we

ed

m

f a
m-

i-
r-

5148 56V. V. FLAMBAUM AND F. M. IZRAILEV
vided the number of essentially occupied orbitals is la
~which happens forT@e or m@e!. In fact, this is a result of
a large number of ‘‘principal’’ terms in the partition functio
Zs which allows us to replaceas by a in the term
Zs(n,T)/Zs(n21,T)[exp(as1bes) in the canonical distri-
bution ~7! @compare with Eq.~19!#.

More accurate consideration shows, however, that
temperatureT in the Fermi-Dirac distribution is differen
from that in the canonical distribution. Indeed, using the
pansionas5a(eF)1a8(es2eF), one can obtain the rela
tion between the Fermi-Dirac (bFD) and canonical~b! in-
verse temperatures,bFD5b1a8eF . Concerning the
chemical potential, its definition also changes,2m/T
5a(eF)2a8eF . This fact is confirmed by our numerica
simulations for an isolated system with few interacting Fer
particles@5,3,8#. Namely, for the same total energyE of the
system, the canonical and Fermi-Dirac distributions give
same distributionns , defined, however, by different tem
peratures, since they are determined by different equat
~8! and ~23!.

The closeness of these two distributions for any num
of particles is not so surprising in the presence of the th
mostat, where even one particle is in the equilibrium. On
contrary, for isolated systems with small number of partic
the applicability of the Fermi-Dirac distribution is not obv
ous. To answer this question, one needs to analyze the ro
interaction in the creation of an equilibrium distribution.

V. ANALYTICAL CALCULATION OF OCCUPATION
NUMBERS IN FINITE SYSTEMS

The advantage of the approach developed in this pap
that if we know the shape of eigenstates in the many-part
basis of noninteracting particles~theF function! and the un-
perturbed density of statesr0(E), one can analytically cal-
culate the distribution of the occupation numbersns .

In order to calculate the occupation numbersns , we use
expression~19! containing two partial partition function
Zs(n,E) and Zs(n21,E2es) which correspond to system
with n andn21 particles, with the orbitals is excluded from
the set of single-particle states. The partition function can
found from the relation

Z5(
k

F~Ek2E!'E r0~Ek!F~Ek2E!dEk . ~24!

The density of unperturbed statesr0(Ek) in a system ofn
particles distributed overm single-particle states~orbitals!
was shown to be close to the Gaussian~see, for example
Refs.@6,7,11#!:

r0~Ek!5
N

A2ps0
2

expS 2
~Ek2Ec!

2

2s0
2 D , ~25!

with Ec as the center of the energy spectrum andN as the
total number of states. Let us assume that the shape of e
statesF is also given by the Gaussian:

F~Ek2E!5
1

A2p~DE!2
expS 2

~Ek2E!2

2~DE!2 D . ~26!
e

e
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Here the variance (DE)2 is defined by Eqs.~55! and ~56!,
andE5E( i )1D1

( i )5Hii ~see Appendix A!.
As was found, a Gaussian shape of eigenstates~apart from

long tails! occurs in realistic systems like the Ce atom@2#
and heavy nuclei@4#. Recently, the form of theF function as
it depends on the perturbation was studied in detail@12# in
the model of Wigner band random matrices, as well as in
random two-body interaction model@8#. In particular, it was
discovered that the Gaussian-type shape happens whe
interaction is large enough, that is, when the Breit-Wign
width G52prV2 is comparable to the root-mean-squa
width DE ~an effective bandwidth of a Hamiltonian matrix!.

By performing the integration in Eq.~24!, one obtains

Z~E!5
N

A2ps2
expS 2

~E2Ec!
2

2s2 D , ~27!

wheres25s0
21(DE)2 ~this coincides with the variance o

the perturbed spectrum!. In order to calculate the occupatio
numbersns , we use expression~19!. For this, one needs to
find the partial partition functionsZs(n,E) and Zs(n21,E
2es) corresponding ton andn21 particles with the orbital
s is excluded from the set of single-particle states. Now
have to calculate the number of statesNs and the centerEcs
for these truncated systems,

Ns~n,m21!5
~m21!!

~m212n!!n!
,

Ns~n21,m21!5
~m21!!

~m2n!! ~n21!!
,

Ecs~n!5e2sn, Ecs~n21!5~e2s!~n21!,

e2s5
(pÞsep

m21
,

The variances0s of the energy distributions can be estimat
as

s0s
2 ~n!'s1s

2 n, s0s
2 ~n21!'~s1s

2 !~n21!,

where s1s
2 is the variance of the single-particle spectru

with the excluded orbitals. Here, for simplicity, we ne-
glected the Pauli principle, which is valid form@n. A more
accurate calculation can be easily done with the use o
calculator. As a result, the distribution of occupation nu
bers has the form

ns~E!5
1

11R
,

~28!

R5
m2n

n

ss~n21!

ss~n!
expF2

@E2Ecs~n!#2

2ss
2~n!

1
@E2es2Ecs~n21!#2

2ss
2~n21! G ,

wheress
25ss0

2 1(DE)2.
It is instructive to compare this result with the Ferm

Dirac distribution which is valid for a large number of pa
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ticles. In this caseR5exp@(es2m)/Tth# where Tth5s2/(Ec
2E) is the thermodynamic temperature which is discus
below; see Eq.~33!. The chemical potentialm in this case
should be calculated numerically to fix the total number
particlesn. The data are reported in Fig. 1. One can see
Eq. ~28! predicts occupation numbers in perfect agreem
with the numerical experiment.

Finally, note that the same method can be used to s
another problem: to find the distribution of the occupati
numbersns(T) in finite systems of interacting particles in th
thermal bath with the temperatureT. For such a case, it is
enough to replace theF function by the canonical averag
F(T,Ek); see Eq.~12!. In fact, this is the method for taking
into account the ‘‘random’’ interaction in the canonical di
tribution. The result for the occupation numbersns(T) can
be obtained from Eq.~28! by replacing ss

2→2ss
2 and

E→Em1D1(Em), whereEm5Ec2s2/T and D1 is a small
correction; see Appendix A.

VI. PARTICLES AND QUASIPARTICLES, ROLE OF
SINGLE-PARTICLE SPREADING WIDTH

In previous sections we discussed the distribution of
cupation numbers for real particles distributed over giv
orbitals. At the same time, there exists a traditional appro
which is based on the notion of ‘‘quasiparticles.’’ It allow
us to incorporate the effects of interaction in terms of sing
particle states, and goes beyond the mean-field approx
tion. As is well known, the interaction leads to the spread
width gs for single-particle orbitals. It also results in the sh
of average energies,ẽs5es1des . According to our numeri-

FIG. 1. Analytical description of the occupation numbers. D
are given for the two-body random interaction model~1! of n54
Fermi particles distributed overm511 orbitals withV50.20 and
d051 in the definition of single-particle energies,es5d0@s
1(1/s)#; see Refs.@5,3,8#. The histogram is obtained according
Eq. ~3! by the averaging over eigenstates with energies taken f
small energy window centered atE517.33 and over 20 Hamil-
tonian matrices~1! with different realization of the random interac
tion. Stars represent the analytical expression~28! with s0s found
from single-particle energy spectrum. Diamonds correspond to
Fermi-Dirac distribution with thermodynamical temperature~33!
and chemical potential found from the standard condition for
total number of particles,n5(sns .
d

f
at
t

ve

-
n
h

-
a-
g

cal data@5# for the random two-body interaction model, th
shiftsdes turn out to be, on average, smaller thangs , and for
this reason one can take into account the effect of sprea
widths gs only.

Here we would like to analyze the role of the spreadi
widths for the distribution of occupation numbers, and co
pare with our approach where the interaction is taken i
account in terms of many-body states. For this, let us aver
the standard Fermi-Dirac occupation numbersns over the
energy intervalgs :

ns5E
es2gs/2

es1gs/2

n~e!
de

gs
512

T

gs
lnF 11exp

S es1
gs

2
2m D

2T

11exp
S es2

gs

2
2m D

2T

G ,

~29!

n~e!5
1

11expS e2m

T D . ~30!

It seems that this is the simplest form of the Fermi-Dir
distribution for quasiparticles with finite spreading width
One can check that in the limitgs50 the Fermi-Dirac ex-
pression~30! with ns5n(es) is recovered.

To test the sensitivity of the occupation numbers to
values of the spreading widthsgs , we solved equations~23!
for chemical potential and temperature~for a given energy of
our isolated system! using the standard expression~30!, and
compared the result with that obtained by using express
~29!; see details in Ref.@5#. The data have revealed that th
chemical potential practically does not change, while ther
a noticeable decrease of the temperature,T(gÞ0)
,T(g50). The striking result is that the two curve
for the occupation numbers~29! and ~30! coincide with a
high accuracy, namely,ns(es ,g,T)'ns(es ,g50,T1DT)
[ns(es ,T̃). This means that the temperature mimics the
fect of the spreading widths, the phenomenon which is
from being trivial. The shift of the temperature forg!m can
be estimated analytically asDT'g2/16T. The above result
indicates that one should not worry about the finite width
single-particle orbitals~quasiparticles! when calculating the
occupation numbers.

VII. THERMODYNAMICS OF SMALL SYSTEMS

One of the important questions is about thermodynam
description of isolated systems of interacting particles. In a
thermodynamical approach one needs to define, in a con
tent way, such quantities as entropy, temperature, and
equation of state. Different definitions of the entropy a
temperature have recently been discussed@13# in applica-
tions to shell models of heavy nuclei. In particular, it w
found that for a realistic residual interaction, different de
nitions of temperatures lead to the same result. Below,
analyze a few definitions of the temperature and entropy,
show that for small number of interacting particles they m
give quite different results.

m

e

e
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Standard thermodynamical definitions of the entropySth
and temperature are based on the density of statesr(E),

Sth5 lnr~E!1const, ~31!

1

Tth
5

dSth

dE
5

d lnr

dE
. ~32!

In fact, such a definition of the temperature follows from
estimate of the position of maximum of the canonical av
aging functionFT(E); see Eqs.~10! and ~13!. It is usually
assumed that the position of its maximumEm coincides with
the energyE of a system. One should stress that in the ab
definitionsr(E) is the perturbed density of states; therefo
the interaction is essentially taken into account.

However, for finite isolated systems with a fixed ener
E, the definition of the temperature given by the relati
^E&T5E @see Eq.~8!# seems to be more natural. Here t
averaging is performed over the canonical distribution~7!.
Since the widthDT of the canonical averaging functio
FT(E) is not zero, the two definitions of the temperatu
Eqs.~32! and~8! give, in principal, different results. Indeed
in the case of the Gaussian form ofr(E) the value ofTth
given by Eq.~32! takes the form~see also Ref.@13#!

Tth5
s2

Ec2E
, ~33!

whereEc ands are the center and the width of the distrib
tion r(E).

On the other hand, direct evaluation of relation~8! leads
to the following definition of the temperature:

Tcan5
s2

Ec2E1D
. ~34!

Here the shiftD is given by the expression

D5
s

K FexpS 2
~Emin2Em!2

2s2 D2expS 2
~Emax2Em!2

2s2 D G ,
~35!

where

K5E
xmin

xmax
expS 2

x2

2 Ddx'A2p, x5
E2Em

s
,

Em5Ec2
s2

Tcan
. ~36!

One can see that the shiftD itself depends on the temperatu
and is proportional to the widthDT5s of the function
FT(E). In the above relations,Emin andEmax are the low and
upper borders of the energy spectrum. Note that the rela
D50 occurs at the center of the spectrum; therefore,
temperature in the upper part of the spectrum is negativ~it
is typical for systems with bounded spectrum, for examp
for spin systems!. In fact, our model~1! with finite numberm
of orbitals can be treated as a model of one open she
atoms, nuclei, clusters, etc. However, in realistic many-bo
systems there are always higher shells which contribute
the density of states for higher energy. Thus the density
-

e
,

,

n
e

,

in
y
to
of

statesr(E) is a monotonic function which results in positiv
temperature. For such physical applications, model~1! with
finite number of orbitals is reasonable in the lower part of
energy spectrum where the influence of higher shells can
neglected.

One can also see that the difference between the
equations of stateT(E) defined by Eqs.~33! and~34! disap-
pears for highly excited eigenstates~for which Em2Emin
@s!, or in large systems withn@1. Indeed, one can obtain
Ec2E;ns1 , wheres1 is the width of the single-particle
spectrum. On the other hand, according to the central li
theorem, the variance of the total-energy spectrum can
estimated ass0

2'(ns1
25ns1

2; therefore, the ratios/(Ec

2E);1/An tends to zero atn→`. Note that, in finite sys-
tems ~atom, nucleus, etc.! the number of valence particle
~particles in an open shell! is not large. For example, for th
Ce atom we haven54 @2# and, in the nuclear shell mode
@4#, n512, therefore, the corrections to the thermodynami
temperature~32! can be significant, especially for low ene
gies. Here we do not take into account particles from de
closed shells since their excitation energy is high, and t
do not contribute to the thermodynamical and statisti
properties of systems@though they renormalize parameters
the Hamiltonian~1! describing the interaction between v
lence particles#.

The energy dependence of temperaturesTth and Tcan is
shown in Fig. 2. The data are given for the model ofn54
interacting Fermi particles distributed overm511 orbitals.
The two-body interaction is taken to be completely rando
given by the Gaussian distribution of two-body matrix e
ments withV50.12; this value should be compared with th
mean energy distanced051 between the orbitals~single-
particle energies!, see details in Refs.@5,3,8#. The compari-
son of the thermodynamical temperatureTth defined by Eq.
~33! with the ‘‘canonical’’ temperature~34! reveals quite
strong difference in all the range of the rescaled energx

FIG. 2. Different temperatures vs the rescaled energyx5(E
2Efermi)/(Ec2Efermi) for the two-body random interaction mode
with n54 Fermi particles andm511 orbitals. Triangles stand fo
the thermodynamical temperatureTth defined by Eq.~33!, and
should be compared to the canonical temperatureTcan ~circles!; see
Eq. ~34!. The widths of the perturbed density of states is defin
by the residual interactionV50.12 according to Eqs.~18! and~A4!,
with s0 found numerically from the unperturbed many-particle e
ergy spectrum~the mean level spacingd0 between single-particle
levels is set tod051!.
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56 5151STATISTICAL THEORY OF FINITE FERMI SYSTEMS . . .
5(E2Efermi)/(Ec2Efermi). To test our analytical expressio
for the canonical temperatureTcan, we performed a direc
numerical calculation of the temperature according to Eq.~8!
with the actual spectrumE( i ) of the two-body random inter
action@instead of the Gaussian approximation ofr(E)#. Nu-
merical results well agree with the analytical expression~34!.

The knowledge of the equation of stateE(T) gives the
possibility to examine heat capacity of closed systems w
finite number of interacting particles,

C5
dE

dT
5

s2

T2 S 11
]D

]Em
D . ~37!

The second term in the above expression is a correc
which vanishes for highly excited states or in large syste
however, it may be important in other situations.

Following Ref.@13#, we can also compare different defi
nitions of entropy. A natural definition of the entropy in is
lated systems can be directly related to the number of p
cipal componentsNpc in exact eigenfunctions.,

SEF5 lnNpc. ~38!

In such a definition the entropy characterizes the comple
of a system~note, that for unperturbed ‘‘simple’’ statesNpc
51 andSEF50!. There are several definitions ofNpc, one of
which is the so-called ‘‘entropy localization length’’ define
via the information entropySinf of eigenstates,

Npc5exp~Sinf!, ~39!

where

Sinf~E!52(
k

Fk~E!lnFk~E!

'2E dEkr~Ek!F~Ek2E!lnF~Ek2E!. ~40!

Here we used theF function instead ofuCk
( i )u2 in order to

have a smooth dependence of the entropySinf on the energy
E. Another possibility is to findNpc from the ‘‘inverse par-
ticipation ratio,’’

Npc
215(

k
„Fk~E!…2. ~41!

One more definition isNpc
215max@Fk(E)#'F(Ek5E) which

was used in Ref.@2#. The difference between the above de
nitions of Npc depends on a specific shape ofFk(E); how-
ever, the values ofNpc differ from each other by some coe
ficient which is typically close to 1.

On the other hand, the estimate forNpc can be obtained
simply from the relation

Npc'
G

D
5Gr~E!, ~42!

whereG is the spreading width of the functionFk(E) andD
is the local mean spacing between many-particle energy
els. Thus one can directly relate the number of princi
componentsNpc to the density of statesr(E),
h

n
s;

-

ty

v-
l

SEF5 lnNpc' lnr~E!1 lnG. ~43!

One can see that the entropySEF found from exact eigen-
states coincides with the thermodynamical entropySth if the
second term in Eq.~43! does not depend on the energy. As
shown in Appendixes A–C, the spreading widthG only
weakly depends on the energy, in contrast to a very str
energy dependence ofr(E). The fact that the information
entropySinf contains the term lnr was mentioned for the firs
time in Ref.@13#. One should stress that the above relatio
~42! and~43! are valid ifNpc is smaller than the sizeN of the
many-particle basis,Npc,N/2. One has also to remind tha
systems under consideration are assumed to be in equ
rium; see the discussion in Sec. IX.

VIII. INCREASE OF EFFECTIVE TEMPERATURE DUE
TO STATISTICAL EFFECTS OF INTERACTION

In Sec. IV we showed that in the case of a large num
of particles, the distribution of occupation numbers is of t
Fermi-Dirac form~22! if the local mean-field approximation
is valid. However, if one uses expression~23! in order to find
the chemical potentialm and temperatureT, one can obtain
inaccurate results. To demonstrate this, we computed the
tribution of occupation numbersns for the two-body random
interaction model directly from exact eigenstates of t
Hamiltonian matrix~1! defined on the basis of many-partic
unperturbed states~see also Refs.@5, 8#!. These data for the
‘‘experimental’’ values ofns are shown in Fig. 3 by a histo
gram which is obtained by the average over a small ene
window in order to smooth the fluctuations~also, an addi-
tional averaging over different realizations of the rando
two-body interaction has been done!. To compare with the
standard Fermi-Dirac distribution, we have numerica
solved Eqs.~23! in order to find the temperature and chem
cal potential. The resulting distribution of the occupati
numbers ns is shown in Fig. 3 by circles. One shoul

FIG. 3. Fermi-Dirac distribution for strongly interacting pa
ticles. The data are given for two-body random interaction mo
~1! with the parameters of Fig. 1~the rescaled energy isx50.55!.
Circles stand for the Fermi-Dirac distribution with the total ener
E corresponding to the energy of eigenstates; see Eq.~23!. Dia-
monds correspond to the shifted energy according to expres
~47!.
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5152 56V. V. FLAMBAUM AND F. M. IZRAILEV
stress that the value of the energyE in Eq. ~23! was taken the
same as for the exact eigenstates from which actual distr
tion of ns was computed, namely,E'E( i ). The comparison
of the actual distribution~histogram! with the theoretical one
@see Eq.~23!# reveals a large difference for a chosen~quite
strong! perturbationV50.20.

This discrepancy is due to the fact that the off-diago
interaction is not taken into account in Eq.~23!. In Ref. @5# it
was pointed out that one can take into account statist
effects of interaction and to correct the total energy in E
~23! in the following way. Let us first consider the therm
dynamical temperatureTth defined by Eq.~33!. As was men-
tioned above@see Eq.~18!#, one can represent the width o
perturbed density, of statesr(E) in the form s25s0

2

1(DE)2, wheres0 relates to the unperturbed density a
DE is an increase of the width of the energy spectrum du
the interaction. Thus the temperature at a given energE
increases due to the interaction as follows:

T5T01DT'
s0

2

Ec2E
1

~DE!2

Ec2E
, ~44!

resulting in the relation

DT/T05~DE!2/s0
2. ~45!

The explanation of this increase of the temperature w
given in Ref.@8#, and reads as follows. Since the density
states rapidly increases with the energyE, the number of
higher basis states admixed to an eigenstate by the inte
tion is larger than the number of lower basis states. An
treme example is the ground eigenstate, which contains b
components of higher energies only. As a result, the m
energy

^Ek& i5(
k

EkFk
~ i !'E EkFk

~ i !r0~Ek!dEk ~46!

of the components in an exact eigenstateu i & is higher than
the eigenvalueE( i ) corresponding to this eigenstate~we con-
sider here eigenstates in the lower part of the spectrum on!.
There is another effect which gives the increase of^Ek& i

2E( i ) even if the density of states does not depend on
energy. Due to repulsion between the energy levels, the
genvalues move down for this part of the spectrum; the
fore, the difference between̂Ek& i andE( i ) increases due to
the interaction. This second effect shifts the ‘‘center’’ of t
functionFk

( i )5F(Ek2E( i )). One should stress that all effec
leading to the above shift of the energy are automatic
taken into account in relation~46!. Thus, one can analytically
calculate this shiftDE5^Ek& i2E( i ) from Eq. ~46!. For this,
one needs to know the unperturbed density of states and
form of theF function. The evaluation of the shiftDE was
done in Ref.@8# by assuming some form for theF function
which is valid in a wide range of the interaction strengthV,

DE5^Ek& i2E~ i !5
d lnr0

dE
~DE!25

1

T0
~DE!2
u-

l

al
.

to

s
f

c-
-

sis
n

e
i-
-

y

the

5
~DE!2

s0
2 ~Ec2E!. ~47!

Now, in order to obtain the corresponding increase of
temperature, one should insert the shifted energyE[^Ek& i

5E( i )1DE into the equation for the temperature,

T5T01DT5
s0

2

Ec2E~ i !2DE
'

s0
2

Ec2E~ i ! 1
~DE!2

Ec2E~ i ! .

~48!

One can see that Eq.~48! is consistent with Eq.~44! for
(DE)2!s0

2.
Thus, to find correct values for the occupation numbers

the Fermi-Dirac distribution, we should substitute the
creased energyE5E( i )1DE5^Ek& i into Eqs. ~23! for the
chemical potential and temperature. The resulting shift of
temperature and chemical potential leads to the distribu
of the occupation numbers shown in Fig. 3 by diamonds.
one can see, such a correction gives a quite good corres
dence to the numerical data.

To check the analytical prediction~47! for the shiftDE ,
we have calculated this shift directly by comparing the e
ergy E( i ) of exact eigenstates with the energy^Ek& i . The
latter has been computed from the exact relation^Ek& i

5(kEkuCk
( i )u2 @compare with Eq.~46!#. The comparison of

these data~circles in Fig. 4! with Eq. ~47! ~straight full line!
shows a good agreement, if to neglect strong fluctuati
around the global dependence. These fluctuations are du
fluctuations in the components of specific exact eigenst
u i & ~note that the presented data correspond to the individ
eigenstates, without any additional averaging!.

Finally, we would like to note that the described abo
method can be also used to solve the ‘‘canonical’’ probl
of finding the distribution of the occupation numbers for
system of interacting particles in the thermal bath. Inde

FIG. 4. Shift of the total energy for the corrected Fermi-Dir
distribution. The data are given for model~1! with n54, m511,
d051, andV50.12; see the explanation in the text. The straig
line is the analytical expression~47!; the dotted line~circles!
present a direct computation of the shift based on the diagona
tion of Hamiltonian ~1! with the following computation of the
^Ek& i . On the horizontal axes the rescaled energyx ( i )5(E( i )

2Efermi)/(Ec2Efermi) is plotted.
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56 5153STATISTICAL THEORY OF FINITE FERMI SYSTEMS . . .
the distributionns(T) for the ‘‘ideal’’ gas is given by the
canonical distribution, or, more simply, by the Fermi-Dir
distribution if the number of particlesn@1 ~in practice,n
.2 is enough!. The increase of ‘‘kinetic’’ energy due to th
random residual interaction is given byDE5(DE)2/T; see
Eq. ~47!. Then one can find the effective temperature wh
corresponds to the same increase of the average ‘‘kine
energy in the ideal gas. It can be done by the differentiat
of T215dS/dE, where S is the entropy,S5 lnr01const.
The result reads

DT52T
d2lnr0

dE2 ~DE!2. ~49!

For the Gaussian shape of the level densityr0(E), this co-
incides with Eq.~45!. Thus we can use the Fermi-Dirac di
tribution with the effective temperatureTeff5T1DT in order
to describe ‘‘randomly’’ interacting particles~for DT!T! in
the heat bath.

IX. CRITERIA FOR THE ONSET OF CHAOS,
EQUILIBRIUM, AND THERMALIZATION

The theory presented above is based on the notion
chaos in terms of statistical properties of compound eig
states. Typically, the onset of quantum chaos is associ
with a large number of components in the eigenstates. H
ever, as we can see below, this condition is not enough
the emergence of equilibrium distributions and, in essen
there are different regimes of ‘‘chaos.’’ Here we analyze
conditions under which the possibility of a statistical descr
tion of isolated systems of interacting particles can be
rectly related to statistical properties of eigenstate com
nents.

Let us start with the condition of a large number of pri
cipal componentsNpc, provided there is an equilibrium dis
tribution of the components of eigenstates. For the relativ
small interaction, the distribution of the components has
Breit-Wigner form

Fk
~ i ![uCk

~ i !u25
1

Npc

GBW
2 /4

~Ek2E~ i !!21GBW
2 /4

. ~50!

Here, the valueNpc5 pGBW/2D is defined by the normaliza
tion condition,D5r21(E) is the mean spacing between e
ergy levels, and the spreading width is given by

GBW52p
V2

df
, ~51!

whereV2 is the mean squared value of matrix elements
the two-body interaction; see Eq.~1!. In the denominator,df
stands for the mean energy spacing of those basis com
nents to which a particular basis stateuk& can ‘‘decay’’ due
to direct two-body interaction; see details in Appendix
Thus the conditionNpc@1 reads

Npc5
p2V2

dfD
@1

or
h
’’
n

of
-

ed
-

or
e,
e
-
i-
-

ly
e

f

o-

.

V@
1

p2 AdfD. ~52!

However, as pointed out in Ref.@14# ~see further devel-
opments in Ref.@15#!, there is a phenomenon of ‘‘localiza
tion in the Fock space’’ which means that states with diff
ent numbers of excited particles do not mix with each oth
This situation occurs whenV,df ~with some logarithmic
corrections!. This means that in order to have an ergod
distribution for the eigenstate coefficients resulting in
equilibrium distribution of occupation numbers for ind
vidual eigenstates, one needs both the conditionsV.df and
Eq. ~52!. Sincedf is typically much larger thanD, the con-
dition V.df is stronger than Eq.~52!.

Let us now discuss the properties of eigenstates and
tribution of occupation numbers in dependence on two ab
parameters,V/df andNpc. Since the value ofNpc increases
with an increase ofV, we first start with a very weak inter
action for which exact eigenstates have only a few relativ
large components (Npc;1). In such a case the eigenstat
are strongly localized in the unperturbed basis and, theref
can be described by conventional perturbation theory. T
situation is quite typical for the lowest eigenstates~where the
density of states is small! even if for higher energies the
eigenstates can be considered very ‘‘chaotic’’ (Npc@1). We
term this region~I! a region of strong~perturbative! localiza-
tion.

The second region~II ! is characterized by an ‘‘initial
chaotization’’ of exact eigenstates and corresponds to a r
tively large Npc@1 number of principal components andV
,df . The latter condition is essential since it results in ve
strong ~non-Gaussian! fluctuation of componentsCk

( i ) @16#
for the fixed energyE( i ) of compound stateu i &. Such a type
of fluctuation reflects itself in a specific character of eige
states, namely, they turn out to be ‘‘sparsed.’’ As a result,
number of principal components can not be estimated
Npc'G/D, as is typically assumed in the literature. Let
note that the energy widthG of eigenstates is still close to
expression~51!.

The above specific properties of compound states can
explained by the perturbation theory in the parameterV/df .
Indeed, in the zero-order approximation an eigenstateu i & co-
incides with a basis stateuk0& for which the particles occupy
definite orbitals. In first order inV/df the eigenstateu i & is
constructed by those basis statesuk1& which can be obtained
from uk0& by moving one or two particles~due to the two-
body character of the interaction!. As a result, the coeffi-
cients of the state u i & can be estimated asCk1

( i )

5Vk0 ,k1
/(E( i )2Ek1

). If the matrix elementsVk0 ,k1
are

Gaussian variables, for the fixed spacinguE( i )2Ek1
u the co-

efficientsCk
( i ) are also distributed according to the Gaussi

The situation is completely different in higher orders. F
example, in second order we haveC[Ck2

( i )

5(k1
Vk0 ,k1

Vk1 ,k2
/@(E( i )2Ek1

)(E( i )2Ek2
)#, and the distri-

butionP(C) ~for the fixeduE( i )2Ek2
u! is close to the Lorent-

zian, namely, P(C);Ccr /C
2 for Ccr,C,1 where Ccr

;V2/df
2 @17,16#. Long tails in the distributionP(C) are due

to the possibility of small values of the denominatorE( i )
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2Ek1
in intermediate states. The higher ordersr of the per-

turbation theory give stronger fluctuations@with an addi-
tional logarithm inP(C)# because of the large number
small denominators. Another type of even stronger fluct
tions result from very different nature of many-body ba
states with close energies. That is, states with nearly
same energy can differ by a large number of moved parti
in order to obtain the corresponding states. Therefore,
transition into close~in energies! states appears in differen
orders of the perturbation. Therefore, the fluctuations of
componentsC appear to be abnormal, without obeying t
standard central limit theorem. In particular, the above eff
leads to very large fluctuations in the distribution of the o
cupation numbersns , as a function of the energyE of com-
pound states. Specifically, the fluctuations do not decreas
Npc

21/2; for example, ifP(C);1/C2 the fluctuations ofns(E)
do not depend onNpc at all for Npc,1/Ccr ~see, for example
Ref. @17#!.

As an example, one can take the two-body random in
action model~1! with n54 particles andm511 orbitals and
very weak perturbationV/d0'0.02, whered0 is the mean
level spacing between single-particle energy levels; see
5. One can see that the ‘‘experimental’’ distribution of occ
pation numbers has nothing to do with the Fermi-Dirac d
tribution ~full diamonds!, it turns out to be even the non
monotonic function of the energyes of orbitals~see also Ref.
@5#!. Note that the averaging procedure used in Fig. 5 did
wash out the fluctuations inns .

With further increase of the interaction, whereNpc@1 and
V.df , the region~III ! of the equilibrium for theF distribu-

FIG. 5. Distribution of the occupation numbers for small inte
action. The histogram is obtained in the same way as in Figs. 1
2, for the very weak interactionV50.02 which corresponds to re
gion II of the ‘‘initial chaotization’’; see Sec. X. The total energ
~center of the small energy window! is E( i )517.33. Diamonds cor-
respond to the theoretical expression~28! which is not valid in this
region due to absence of equilibrium. Stars are obtained by d
numerical computation ofns according to theF distribution ~5!
with theF function taken in the form of Eq.~A5!; see Appendix A
and Ref.@8#. The latter values are closer to the ‘‘experimenta
ones, since we performed the summation over real unpertu
spectrum@instead of the integration with the Gaussian approxim
tion for r0 used to derive Eq.~28!#.
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tion ~5! emerges. In this region the fluctuations of the eige
state componentsCk

( i ) are of Gaussian form@16#, which leads
to small fluctuations of the occupations numbersns in accor-
dance with the central limit theorem for the sum~3!,
Dns /ns;Npc

21/2!1 for ns;1. One should stress that in th
region the value ofNpc is given by the common estimat
Npc;G/D. As a result, the distribution of occupation num
bers changes slightly when changing the energy of a sys
Such a situation can be naturally associated with the onse
thermal equilibrium, though the form of the distributionns

can be quite different from the Fermi-Dirac distribution.
this case, theF distribution~5! gives a correct description o
an actual distribution of occupation numbers in isolat
quantum systems of interacting particles. One can see
the equilibrium distribution for the occupation numbe
arises for much weaker condition compared to that nee
for the Fermi-Dirac distribution. Since the energy intervaldf

between two-particle–one-hole energy levels is small, i
enough to have a relatively weak residual interactionV.df

in order to have the equilibrium distribution~note that the
value ofdf decreases rapidly with the excitation energy; s
Appendix C!.

The next region~IV ! is that where the canonical distribu
tion ~7! occurs; for this case, in addition to the equilibrium
one needs to have large number of particles,n@1. If, also,
the conditionG!nd0 is fulfilled, the standard Fermi-Dirac
distribution is valid, with a proper shift of the total energ
due to the interaction; see Sec. VIII. Typically, this region
associated with the onset of the canonical thermaliza
~see, for example, Ref.@13#!.

In practice, condition IV of the canonical thermalizatio
is not easy to satisfy in realistic systems like atoms or nuc
since n in the above estimates is, in fact, the number
‘‘active’’ particles ~number of particles in a valence she!
rather than the total number of particles. Thus, the desc
tion based on theF distribution ~5! which does not require
the canonical thermalization condition IV, is more accura

The above statements are confirmed by a direct nume
study of the two-body random interaction model@5,8#, with
few particles when changing the interaction strengthV/d0 .
If, instead, we increase the number of particles keeping
interaction small,V!d0 , the distribution~5! tends to the
Fermi-Dirac, one as is expected for the ideal gas; see
@8#.

Finally, we discuss the transition to mesoscopic syste
One can show that the result strongly depends on the dim
sionality d of a system. Let us consider the case when
number of particlesn is fixed; however, the sizel of a sys-
tem increases. Then the interval between single-particle
ergy levels decreases asd0; l 22. Since relative interaction
between two particles decreases likeV; l 2d, one can obtain
V/d0; l 2(d22). Thus ford51 one hasV@d0 , which means
that strong mixing~chaos! starts just from the ground state
This is in accordance with the absence of a gap in the dis
bution of occupation numbers in the one-dimensional~1D!
case~the so-called Luttinger liquid!. On the contrary, in the
3D case we haveV!d0 ; this means that an admixture of th
higher states to the ground state can be considered pertu
tively, which is consistent with the nonzero gap atT50. One
can see that the transition between regular region~region I!
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and the equilibrium~region III! in the 3D case occurs fo
high states whenV>df . Recently, the question of this tran
sition was studied in Refs.@14,15#.

X. CONCLUSION

In this paper, we have developed a statistical approac
isolated finite systems of interacting particles, which pla
the same role as the canonical approach for systems in e
librium with the thermal bath. It can be applied to compl
many-body systems like compound nuclei, rare-earth or
tinide atoms, atomic clusters, quantum dots, etc. The
point of this approach is a partition function which is defin
as the shape of compound states~F function! in the many-
particle basis of a system without residual interaction~Slater
determinants!. It allows us calculate mean values of differe
operators as a function of the total energyE of a system. As
an example, we calculated the occupation numbersns(E),
which may be compared with the standard canonical
proach, givingns(T), whereT is the temperature of an ope
system. In large systems~thermodynamical limit! the distri-
bution of occupation numbersns tends to the canonical dis
tribution with the temperatureT215d(lnr)/dE, wherer(E)
is the energy level density.

Another important area of applications of our approach
the calculation of nondiagonal matrix elements~transition
amplitudes! between the eigenstates of complex many-bo
systems. We would like to point out that the approach c
also be used for solving the traditional problem of calcu
tions of mean values of operators in open systems of in
acting particles in the thermostat.

The suggested approach is entirely based on the statis
properties of chaotic compound states which are due to
two-body interaction between the particles. For a relativ
strong interaction the number of components of compo
states is typically, large, and these components can be tre
as random variables, provided the two-body interaction m
trix elements are ‘‘complex’’ enough.

The essential question is under which conditions
above approach is valid in systems with two-body rand
interaction. Note that the randomness of the matrix eleme
itself is not enough for the onset of the equilibrium in t
system, since statistical properties of compound eigenst
essentially depend on such parameters as the relative stre
of the interaction, excitation energy, number of particles a
orbitals ~single-particle states participating in the energy e
change!, etc. In particular, even if the number of princip
components in compound states is large, for insufficien
strong interactions the statistics of the components can
abnormal, leading to huge~non-Gaussian! fluctuations in the
structure of the eigenstates. In such a case, there is no
librium in the system, and standard statistical description
not valid. In this regime, our numerical data show that
distribution of the occupation numbers strongly fluctua
when slightly changing the total energy of the system. The
fore, the transition to the statistical equilibrium is far fro
being trivial in systems with finite numbers of interactin
particles. However, for larger interaction the fluctuations
the eigenstate component becomes normal~Gaussian!, and
equilibrium occurs. In this situation the fluctuations of t
occupation numbersns(E) are relatively small, and theF
to
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function gives a correct result for the isolated finite syste
even for small number of interacting particles~provided the
number of principal components in the eigenstates is lar!.

The advantage of our approach, in comparison with dir
calculations of complex quantum systems, is that we do
need to diagonalize huge Hamiltonian matrices in order
perform calculations of observables for excited states.
deed, for a full statistical description of such systems, o
needs to know the average shape of the compound s
~rather than the eigenstates themselves! and the unperturbed
energy spectrum. Therefore, the problem of an analytical
scription of the shape of eigenstates is the central point in
technical implementation of the approach. One should n
that the average shape of eigenstates is the same as th
the local spectral density of states~LDOS!, if the interaction
is not extremely strong.

For small interaction the shape of the chaotic eigensta
is known to be well described by the Breit-Wigner form
However, in practice, this region is small if the number
particles is not very large. With an increase of the interact
strength, the average shape of the eigenstates~F function!
changes from the Breit-Wigner one to that close to
Gaussian with the exponential tails. As we have found~Ap-
pendix A!, the correct description of the shape requires t
essential parameters. The first one is, in fact, the half-wi
of the F function which is close to the Breit-Wigner half
width, and for weak interaction is given by the Fermi gold
rule. Another parameter is defined by the root-mean-squ
width of the F function, ~an effective bandwidth of the
Hamiltonian matrix in the energy representation!.

In this paper we suggest a phenomenological expres
for the F function which is valid in a large region of th
interaction strength and other parameters. This expres
allows for analytical and numerical calculations of differe
mean values and transition amplitudes. As one example
derived analytical expression for the distribution of the o
cupation numbersns(E) in isolated systems ofn interacting
Fermi particles distributed overm orbitals ~we used the
simple Gaussian approximation of theF function; see Sec.
V!.

By making use of theF function, we have also studied th
validity of the standard Fermi-Dirac distribution for the d
scription of finite systems of interacting Fermi particles. A
was found, the Fermi-Dirac distribution can provide a re
sonable approximation for both isolated and open~in the
thermal bath! systems. However, the parameters of t
Fermi-Dirac distribution have to be redefined by taking in
account the increase of the effective temperature which
due to the effects of the interaction. We calculated this
crease of the temperature analytically, and compared w
the numerical experiments for the two-body random inter
tion model; the data show very good agreement.

One should stress that our approach gives more accu
result forns and has much wider region of the applicabilit
compared to the Fermi-Dirac distribution. Specifically, it
valid even in the region where the Fermi-Dirac distributi
fails; for example, due to the small number of particles.

To conclude, we would like to point out that a simila
approach may be also used for classical chaotic syste
Indeed, let us consider the system described by the Ha
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tonianH5H01V, whereH0 is the unperturbed~‘‘simple’’ !
Hamiltonian andV stands for ‘‘complex’’ interaction be-
tween particles. Assume that we know the distribution
some variable in the system described byH0 , for example,
the statistical average for the energy distribution of a sin
particlen(e,E0), wheree is the energy of the particle andE0
is the total energy of the system. Then one can calculate
effect of the interactionV by averagingn(e,E0) over the
unperturbed energyE0 using the F function, n(e,E)
5*n(e,E0)F(E,E0)dE0 . HereF(E,E0) gives the probabil-
ity of different values ofE0 for a given value ofE. As
indicated in Ref.@20# and checked numerically in Refs.@21,
22#, this classicalF distribution coincides with the shape o
quantum eigenstates in the semiclassical region which t
out to be very wide. Thus a knowledge of the shape of qu
tum eigenstates can be used for the classical calculations
vice versa.
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APPENDIX A: STRUCTURE OF CHAOTIC EIGENSTATES
AND SPREADING FUNCTION

For practical implementation of the above approach, o
needs to know the average shape of compound eigens
~the F function!. One should stress that there is no simp
analytical expression valid in a large range on the interac
strengthV. For example, the popular Breit-Wigner expre
sion ~Lorentzian! is not good for obvious reasons: it has
infinite second moment. The question of an appropriate
scription of chaotic eigenstates in realistic many-body s
tems has been studied in detail for a Ce atom@2#. In particu-
lar, it was found that good correspondence to the numer
data is given by two phenomenological expressions. The
one isF(x);exp(2A114x2), wherex5(Ek2E)/G, with
Ek as the energy of a basis stateuk& and G as the effective
width of the distribution. This expression is close to t
Gaussian at the central part and is exponential in the
~see similar conclusions in Ref.@13#, where a nuclear shel
model was studied!.

Another expression, which is more convenient for t
analytical study, is the so-called ‘‘squared’’ Lorentzian@2#

F~Ek2E!;
1

F ~Ek2E!21
G2

4 G2 , E5E~ i !1D1
~ i ! .

~A1!

Here D1
( i )!G is some small shift~see below! which in the

zero approximation can be neglected, andEk is defined by
r

e

he

ns
n-
nd

.

.
n-
-

e
tes

n

e-
-

al
st

ils

Ek5Hkk5(
s

ns
~k!es1(

s.p
uspns

~k!np
~k! . ~A2!

Since the ‘‘resonant’’ dependenceEk2E( i ) of the spread-
ing functionFk

( i ) for not extremely strong interaction is sym

metric in indexesi andk, the value ofG52A(DE)2 can be
expressed in terms of the second moment ofF using the
following exact relation for the basis components~see Ap-
pendix B!

~DE!2[(
i

uCk
~ i !u2~Ek2E~ i !!25 (

pÞk
Hkp

2 ~A3!

with Hkp standing for nondiagonal Hamiltonian matrix el
ments defined by the residual interactionV. This allows us to
find the second moment of the spreading functionF(E). For
example, in the case ofn particles distributed overm orbit-
als, we have@3#

S G

2 D 2

5~DE!25
V2

4
n~n21!~m2n!~31m2n!. ~A4!

HereV25uVst→pqu2 is the mean-squared value of nondiag
nal matrix elements of the two-body residual interaction.

Our detailed study of the two-body random interacti
model @3,5,8# has revealed that the shape of the eigenfu
tions ~as well as the local spectral density of states! strongly
depends on the relative strength of the interaction. Tha
with an increase of the interactionV, the shape of theF
function changes its form from the Breit-Wigner one to t
nearly Gaussian~see also Ref.@12#!. It was found that for
small residual interaction the shape of eigenstates has a m
complicated form, compared to Eq.~A1!, and should be
characterized by two different widths. Indeed, the half-wid
of the F distribution is given by the Fermi golden rul
GBW52pv2/df , wherev is the matrix element of the re
sidual interaction coupling a particular basis component w
other basis statesu f & directly coupled by the two-body inter
action, anddf is the energy spacing between these ba
states~see details in Appendix C!. On the other hand, there i

relation~A4! which defines another widthG52A(DE)2 via
the second moment. One should stress that these two w
are parametrically different in the interaction,GBW;V2, and
G;V. There is also the ‘‘nonresonant’’ energy dependen
F}r21 @a slow variation of theF function due to the change
of the density of statesr(E)# which should be taken into
account. This dependence follows from the estimateFmax

;Npc
21;Gr.

The above arguments allow us to find more universal
pression for the spreading functionF whenGBW,G @8#,

Fk
~ i !;

„r0~Ek!r~E~ i !!…21/2

F ~Ek2E!21
G1

2

4 GF ~Ek2E!21
G2

2

4 G . ~A5!

Here we take into account the shift of the maximum of theF
function by the relationE5E( i )1D1

( i ) . The two parameters
G1 and G2 are directly related to the above two widths,G1
5GBW andG25G2/G1 . The value ofG2 is found from the
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relation( iFk
( i )(E( i )2Ek)

25(DE)25G2/4 @see Eq.~A4! and
Appendix B# by integration of Eq.~A5! in the approximation
r5const. Here and below we assume that theF function is
normalized,Z51. In expression~A4!, r0(Ek) is the density
of basis ~unperturbed! states andr(E( i )) is the density of
compound states. We assume they are smooth function
the energy, and that this energy dependence is slow in c
parison with the ‘‘resonant’’ energy dependence on the sc
G. Symmetric dependence onr0 and r has been chosen i
order to keep symmetry in indexesk andi in theF function.

For very smallV we haveG1!G2 ~also D1
( i )!G1 ; see

below!, therefore, in the central part theF distribution ~A5!
has the Breit-Wigner shape with the widthGBW . Concerning
the meaning ofG2 , it is the effective energy band width o
the Hamiltonian matrixH, which is due to the two-body
nature of the interaction. Indeed, the expression forG2 is
given by the estimate

G25
G2

GBW
'

df

2p
n~n21!~m2n!~m2n13!'d0~m2n!,

~A6!

which is independent of the interaction strengthV. Here we
used expression~A5! and the estimate of the average val
df[d0 /M f for high excited states~M f here is the normal-
ized density of those basis states which are directly c
nected to the chosen state; see details in Appendix C!. On the
other hand, the typical bandwidthDH[2bd0 of the two-
body interaction Hamiltonian matrix is about four time
DH'4(m2n)d0 , of the energy needed to transfer the p
ticle from the Fermi leveleF5nd0 to the highest available
orbital em5md0 . Therefore, the estimate forG2 reads as
G2'DH/4.

Now, we can easily explain the form of theF function
~A5! using the perturbation theory in the interactionV. First,
let us consider the energy intervalGBW,uEk2E( i )u,DH .
Within this interval, the basis stateuk& can be coupled to the
principal components of the stateu i & in the first order ofV,
uCk

( i )u2;(Vik /Ek2E( i ))2. This quadratic decay agrees wi
the Breit-Wigner shape of theF function. Outside the energ
bandDH , for DH,uEk2E( i )u,2DH , the basis stateuk& can
be coupled to the principal components of the stateu i & in the
second order ofV, resulting in the dependenceuCk

( i )u2

;(Vik /Ek2E( i ))4. This corresponds to the tails of th
squared Lorentzian shape~A5!. Therefore, our expressio
~A5! seems to be good in a large energy interval, and
second moment is finite which is important for application
Finally, longer tails are described by higher ordersn
5 uEk2E( i )u/DH of the perturbation theory,

uCk
~ i !u2;S Vik

Ek2E~ i !D 2n

5expX2 2uEk2E~ i !u
DH

lnS uEk2E~ i !u
V D C.

~A7!

This explains the exponential tails of theF function, see
details in Ref.@2#.

Numerical calculations@2,4,13,12# demonstrate that, fo
stronger interactionV, the width of the spreading functionF
rapidly becomes linear inV ~instead of the quadratic depen
of
m-
le

-

-

e
.

dence inGBW!, and it is better to use Eq.~A1!. One can write
the extrapolation expression both for small and large val
of V ~see also Ref.@13#!:

G15
GBWG

GBW1G
. ~A8!

As a result, for smallV, we haveGBW!G and G15GBW

;V2, and for larger valuesG1'G2'G;V@D1
( i ) . The criti-

cal value for this transition is given by the relationGBW
5G5G2;DH , and reads asVcr'dfn(m2n)/(2p); see
also Eq. ~A4!. The estimate of the average value ofdf
[d0 /M f ~see Appendix C! far from the ground state give
Vcr;d0 /n. As discussed in Sec. IX, the equilibrium distr
bution occurs forV.df ; this results in a quite unexpecte
conclusion. That is, the validity of the standard Breit-Wign
shape turns out to be very strongly limited since the reg
1,V/df!Vcr /df'n(m2n)/(2p) is practically absent for
small number of particlesn and orbitalsm.

The shiftD1
( i ) in Eq. ~A5! stands due to the level repulsio

which forces eigenvaluesE( i ) in the lower half of the spec-
trum to move down. The mean-field energiesEk5Hkk do not
include the nondiagonal interaction which leads to the rep
sion; therefore, the ‘‘center’’ of theF function is shifted by
the valueD1

( i )5Hii 2E( i ), whereHii is the diagonal matrix
element of the Hamiltonian matrix. This shiftD1

( i ) can be
estimated from general arguments. Indeed, the shape o
density of states is the same for both interacting and no
teracting particles@6,7#, with the same positionEc of the
centers ofr0(E) and r(E) ~due to the conservation of th
trace of the HamiltonianH!. However, the variances ofr0
andr are different. This means that one can use the sca
relation (D→KD) for the energy intervalsD, and find the
scaling coefficientK from the relation between the variance
s25s0

21(DE)25K2s0
2, where (DE)2 is defined by Eq.

~A4!. Since the centerEc for the energy-level densityr(E)
does not shift, one can obtain the following shift of the le
els:

D1
~ i !5~Ec2E~ i !!F S 11

~DE!2

s0
2 D 1/2

21G . ~A9!

The value of(DE)2 is typically much less thans0
2; there-

fore, one obtains

D1
~ i !.~Ec2E~ i !!

~DE!2

2~s0!2 . ~A10!

Another way to obtain the shiftD1
( i ) is related to the exac

relation for the first moment ofF ~see Appendix B!,

Ek5(
i

E~ i !Fk
~ i !'E Fk

~ i !r~E~ i !!E~ i !dE~ i !. ~A11!

The substitution of the expression~A5! into Eq. ~A11! re-
sults in the following value of the shift@8#:

D1
~ i !.

1

2

d~ lnr!

dE
~DE!2. ~A12!
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According to Refs.@6,7# ~see also Ref.@11#!, the shape of the
density of states form@n@1 is close to the Gaussian bo
for noninteracting and interacting particles withEc ands0

2 as
the center and the variance of the energy distributionr0(E)
@respectively,s2 for r(E)#. In this case relation~A12! gives
the same estimate~A9! for the shiftD1

( i ) .
The fact that the two different derivations of the shiftD1

( i )

lead to the same result is far from being trivial, since t
assumptions for the two derivations ofD1

( i ) are different. In-
deed, the second derivation of Eq.~A10! is based on the
specific dependence of the eigenstate shape on the den
r0 and r, unlike the general derivation of Eq.~A9!. One
should stress that the specific form of the ‘‘resonant’’ ene
dependence of theF function ~the denominator in Eq.~A5!
defined by the squared Lorentzian, Gaussian, etc.! is not im-
portant for Eq.~A12! provided (DE)2 is fixed. The only
assumption in the above derivation is the possibility to
pand the densityr(E) near the maximum of theF function.
In fact, above we have demonstrated that the nonreso
‘‘distortion’’ factor j[„r0(Ek)r(E( i ))…21/2 in ~A5! is neces-
sary.

Thus, the phenomenological expression for the shap
the F function ~A5! is self-consistent. Note that one can u
other expressions for theF function ~see, for example, Ref
@12#!; however, it should contain both the resonance te
depending onEk2E( i ) and the density distortion factorj.

APPENDIX B: MOMENTS OF THE F FUNCTION AND
ENERGY SPECTRUM

Here we calculate the first and the second moments of
functionFk

( i ) over the perturbed spectrumE( i ). Note that the
dependence ofFk

( i ) on the energyE( i ) is known as the loca
spectral density of states~LDOS!, or the ‘‘strength func-
tion.’’ On definition,

^E~ i !&k5(
i

E~ i !Fk
~ i !'(

i
z^ku i & z2E~ i !

5(
i , j

^ku i &^ i uHu j &^ j uk&5Hkk5Ek , ~B1!

where the relation̂ i uHu j &5d i j ^ i uHu i & is used for the exac
eigenstates. The variance can be obtained using the m
elements ofH2,

~DE!k
25(

i
Fk

~ i !~Ek2E~ i !!2'(
i

uCk
~ i !u2~Ek2E~ i !!2

5 (
pÞk

Hkp
2 . ~B2!

For example, in the two-body random interaction model w
n particles distributed overm orbitals the sum in Eq.~B2!
can be evaluated exactly@see Eq.~A4!#.

Now, we calculate the first moment and variance of
energy spectrum. The trace conservation ofH gives the first
moment,
e
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e

Ec5
1

N (
k

Hkk2S 1

N (
k

HkkD 2

.

The conservation of TrH2 gives

E25
1

N (
k

^kuH2uk&5
1

N (
k,p

uHkpu2,

which results in the relation

s2[E22Ec
25

1

N (
p,k

HpkHkp2Ec
2

5
1

N (
k

Hkk
2 1

1

N (
pÞk

Hpk
2 2Ec

2

5
1

N (
k

Ek
22Ec

21
1

N (
k

~DE!k
25s0

21~DE!2,

wheres0
2 is the variance of the unperturbed spectrum, a

we used Eq.~B2!.

APPENDIX C: CALCULATIONS OF SPREADING WIDTHS

To start with, we stress that there are different definitio
of the spreading widths. One of the natural definitions

Gk[2A(DE)k
2 where (DE)k

2 is the variance of the distribu
tion of the componentsFk

( i ) @see Eq.~B2!#. In Ref. @3# it was
shown that in the model of random two-body interaction t
quantity is constant,Gk5G @see Eq.~A5!#, i.e., it does not
depend on a particular basis state~therefore, on excitation
energy, number of excited particlesn* corresponding to this
state, etc.!. Note that it has a linear dependence on the int
action strengthV.

Unlike the latter, the commonly used definition of th
spreading width is related to the Breit-Wigner distributio
and is defined as its half-widthGBW . However, this defini-
tion is reasonable only for relatively small interaction, wh
the form of theF function is indeed close to the Breit
Wigner form. In this case, the spreading width is given
the Fermi golden rule

GBW
~k! 52p

Vk f
2

df
, ~C1!

wheredf is the mean spacing between corresponding b
statesu f &, and Vk f is the matrix element of the interactio
between the basis statesuk& andu f & @18#. As one can see, the
spreading widthGBW

(k) is proportional toV2 and differs from
G. Note that the second moment of the Breit-Wigner sha
diverges; however, its actual form always has a cutoff in
tails which is reflected by the finite value ofG.

If the interactionV is not small, the form of theF func-
tion significantly differs from the Breit-Wigner shape~see
Appendix A!. The critical value ofV for this transition can
be estimated from the conditionGBW

(k) 'Gk .
Contrary to the spreading widthG, the half-width of the

Breit-Wigner shape depends on the basis stateuk&. Let us
start with the estimate of the mean value of the spread
width GBW

(k) . According to definition~C1!, one needs to cal-
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culate the density of squared transition matrix eleme
Vk f

2 /df5(( fVk f
2 )/D, where the sum is taken over transitio

from a given basis stateuk& to other basis statesu f & in the
energy intervalD. One should stress that the number of ‘‘a
lowed’’ transitions~due to the two-body interaction! is much
less than the total number of basis states in this intervaD.
Let us assume, for simplicity, that the spacingsd0 between
single-particle energy levels is constant, and consider a
of particles which occupy the orbitalss andq. If we move
one particle to a higher orbital and another particle to a low
orbital by the same energy interval, the total energy of p
ticles does not change. The total number of such move
M'@min(m2s,q)1min(m2q,s)#/2, wherem@1 is the num-
ber of orbitals. By averaging over all valuess andq, one can
obtain M'm/3. The Pauli principle reduces the number
available orbitals; therefore, in the system withn particles
we haveM'(m2n)/3. The number of possible pairs
given byn(n21)/2, thus, the total number of basis statesu f &
which have the same energy and connected with the ch
basis stateuk& is defined by

M f'~m2n!n~n21!/6. ~C2!

Other basis states are separated by, at least, the energ
tanced0 . As a result, we obtain

^GBW&'2pM f

V2

d0
'

p

3
~m2n!n~n21!

V2

d0
. ~C3!
n
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It is interesting to note that the simple estimate involvi
the total strength of transitions(DE)2 @see Eq.~A4!# divided
by the bandwidthD;d0(m2n) gives a close result. The
above estimate~C3! can be used when studying the shape
the F function in the regime of weak interaction. Note th
the value ofM f , defining the mean spacing between t
‘‘allowed’’ final states, is

df5d0 /M f . ~C4!

One should stress that the above estimate ofM f has been
obtained for the spreading width averaged over all ba
states. Near the ground state, the actual value ofM f is much
smaller due to the limitation of the available phase spa
Also, the spreading width depends on the number of exc
particles in the basis state. For example, one can calculate
spreading widthGBW

1 of the basis states with one excite
particle only,

M f5~s2n!2, GBW
1 'p

~s2n!2V0
2

d0
for s<2n,

~C5!

M f5n~2s23n!, GBW
1 'p

n~2s23n!V0
2

d0
for s.2n.

~C6!

Heres is the position of a particle corresponding to the e
ergy es'sd0 .
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