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An approach is developed for the description of isolated Fermi systems with finite numbers of particles, such
as complex atoms, nuclei, atomic clusters, etc. It is based on statistical properties of chaotic excited states
which are formed by the interaction between particles. A type of “microcanonical” partition function is
introduced and expressed in terms of the average shape of eigefgtaie&), whereE is the total energy of
the system. This partition function plays the same role as the canonical expressierEEXp( for open
systems in a thermal bath. The approach allows one to calculate mean values and nondiagonal matrix elements
of different operators. In particular, the following problems have been considered: the distribution of occupa-
tion numbers and its relevance to the canonical and Fermi-Dirac distributions; criteria of equilibrium and
thermalization; the thermodynamical equation of state and the meaning of temperature, entropy and heat
capacity; and the increase of effective temperature due to the interaction. The problems of spreading widths
and the shape of the eigenstates are also stuidd63-651X97)01811-4

PACS numbds): 05.45+b, 05.30.Fk

I. INTRODUCTION numbers is the subject of Sec. Ill. Also, a form of the ca-
nonical distribution is suggested which can be convenient in
As is known, quantum statistical laws have been derivedapplications to open systems in thermal equilibrium like
for systems with infinite numbers of particles, or for systemsquantum dots.
in a heat bath; therefore, their applicability to isolated finite The transition to the standard Fermi-Dirac distribution for
systems of a few particles is, at least, questionable. Howevelarge systems is analyzed in Sec. IV. Specific attention is
the density of many-particle energy levels increases expaid to the accuracy of this distribution in applications to
tremely fast(typically, exponentially, both with an increase isolated systems with few particles.
of number of particles and excitation energy. For this reason, In Sec. V an analytical derivation of tife distribution of
even a weak interaction between particles can lead to accupation numbers is given. For this, the modehafan-
strong mixing between large numbers of simple many-domly interacting Fermi-particles distributed ovarsingle-
particle states, resulting in so-calletiaotic eigenstatedf particle levels has been used. An analytical formula for the
the components of such eigenstates can be treated as randortupation numbersg(E), with E being the total energy of
variables(the onset ofqjuantum chaogs statistical methods the system, was found to be in excellent agreement with the
are expected to be valid even for an isolated dynamical sysiumerical experiment.
tem. In Sec. VI the influence of the finite width of single-
One should stress that a statistical description of such isgarticle stateg"quasiparticles”) on the distribution of occu-
lated systems can be quite different from that based on stagpation numbers is considered. An expression for the occupa-
dard canonical distributions; therefore, application of the fation numbers is discussed which takes into account the finite
mous Fermi-Dirac or Bose-Einstein formulas may givespreading width of quasiparticles. It is demonstrated that for
incorrect results. Moreover, for isolated few-particle sys-an isolated system with a fixed total energy the incorpo-
tems, a serious problem arises in the definition of temperaration of spreading widths decreases the effective tempera-
ture, or other thermodynamic variables like entropy and speture; however, it does not change the occupation numbers.
cific heat. (This contrasts with infinite systems for which  Section VII deals with the important problem of a ther-
different definitions give the same reshilt. modynamical description of small systems consisting of fi-
The aim of this paper is to develop a statistical theory fornite number of interacting particles. Specifically, different
finite quantum systems of interacting particles, based on gedefinitions of both temperature and entropy have been ana-
neric statistical properties of chaotic eigenstdthe “micro-  lyzed, and the equation of state for finite systems has been
canonical” approach Typical examples of such systems are derived.
compound nuclei, complex atoms, atomic clusters, isolated In Sec. VIII we show that statistical effects of the inter-
quantum dots, etc. action can be imitated by an increase of the effective tem-
The structure of the paper is as follows. In Sec. Il, a typeperature. This fact allows one to use the standard Fermi-
of “microcanonical” partition function is introduced for fi- Dirac expression for the occupation numbefsvith
nite isolated systems, which is directly related to the averageenormalized parametgrs1 the application to both isolated
shape of chaotic eigenstates. Based on this partition functio@nd open(in the thermal bathsystems of interacting Fermi
a general expression for the occupation numbers is giveparticles. This interaction may be strong; however, the as-
which is valid for any number of interacting particles. The sumption of randomness for residual interaction matrix ele-
relation of this “microcanonical” expressiofF distribu-  ments is essential.
tion) to that of standard canonical distribution for occupation In Sec. IX the conditions for chaos, equilibrium, and
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“thermalization” have been analyzed for an isolated quan-These compound eigenstaiés characterized by the corre-
tum system with a finite number of particles in terms of thesponding energieg("), are formed by the residual interac-
interaction strength, number of particles, and other relatetion V; in complex systems they typically contain large num-
parameters. Depending on these conditions, there are fOIb"eer?l of the so-called principal componer(téi) which
different regions with different distributions of occupation flyctuate “randomly” as a function of indiceisandk.
numbers, which are discussed in detail. In this section, the Qur main interest is in the occupation numbers of
transition to mesoscopic systems is briefly discussed. Thgingle-particle stateorbitals. They can be represented in

question of particular interest is how statistical propertieserms of components of the exact eigenstéites
depend on the dimensionality of a system.

Since the approach developed in this paper is entirely re- R _ ~
lated to the structure of chaotic eigenstates, in Appendix A ne=(i|gi)=2> |C{|*(k|Agk). )
the analytical expression for the average shape of eigenstates .
is given and discussed in more detail. This expression, whicp|ere h.=ala, is the occupation number operator. The
s .

also describes the local spectral density of stétd30S), Lo . .
essentially depends on two different widths and is valid botjﬁnOWIedge of the distribution of occupation numbers gives

+

f . . : he possibility of calculating mean values of any single par-
or weak and strong interactions between particles. For wea icle operatoM) =S .n;M... Moreover, the variance of the
interaction the shape is close to the Lorentzian form, with th distribﬂtion of nondias ?)naslls.elements M describing tran-
half-width given by the Fermi golden rule. For larger inter- ition amplitudes bet\?veen “chaotic” co’m ound st%tes can
action the shape is characterized by exponential tails, and b P mp ’

a width which is linear in the interaction strendtiontrary to Iso be expressed through the occupation numiefs—3].

the Fermi golden rule, which gives a quadratic dependence As one can see from E¢3), mean value_s of occupat_lon
Transition between these two regimes occurs when the hal _umPers depend on Fheﬂshape of exact eigenstates, given by
width is comparable to the root-mean-square widtre ef- he spreading function”F (in what follows, theF func-
fective bandwidth of the Hamiltonian matjixin Appendix tion),
B the moments of the distributions of the basis components () T2 0
(LDOS) and energy levels are calculated. Finally, in Appen- Fi'=[C|*=F(Ex—EY). (4)
dix C, a calculation of the density of final states and spread-

ing widths of the LDOS have been performed using thel he last equality in the above expression reflects the fact that
Fermi golden rule. the residual interactioly mainly mixes close componenks

in some energy intervdl (“spreading width”) nearby the
eigenstate energg() (more accurately, nearby the unper-
Il. MICROCANONICAL PARTITION FUNCTION turbed energyg, for k=i; see below.
Typically, this spreading function rapidly decreases with
. P . . an increase dfg,— E("| (since an admixture of distant com-
(isolated systems with finite numbers of interacting par ponent is very small Recently, in numerical studies of the

ticles. This function allows one to perform analytical and Ce atom[2], the s-d nuclear shell modef4], and random
numerical calculations of statistical mean values of differentt ' '

. wo-body interaction mod€]3,5], it was found that typical
operators, for example, occupation numbers.

We follow the standard approach which is based on theshapeF of exact eigenstates practically does not depend on a

) A particular many-body system, and has a universal form
separation of a total Hamiltonian into wo parts, which essentially depends on the spreading withThe

latter can be expressed in terms of parameters of the model
(the intensityV of the residual interaction, the number of
particlesn, the excitation energy, ejcand can be calculated
analytically (see Appendixes A—C One can also measure
the width of theF function (4) via the number of principal
componentsN,.~I'/D, whereD is the local mean energy
spacing for compound states. In many-body systems the
value of D exponentially decreases with an increase of the
number of “active” (valence particles. As a resultiN, is

In this section we derive the partition function for closed

H=Ho+V=2 ealas+ 3> Vpgataiaas. (1)

The “unperturbed” HamiltoniarH, should incorporate the
effect of a mean fieldif any), €, are the energies of single-
particle stateg“orbitals” ) calculated in this fielda;r andag

are creation-annihilation operators, avidstands for the re-

sidugl interaction. For si_mplicity, here we _n_eglect any _dy'very large, ~10'~ 1% in excited (compound nuclei and
namical effects of the interaction like pairing, collective ~100 in excited rare-earth or actinide atoms

_modes,_etc. Instead, we will study the stafistical effects 9f The starting point of our approach is an expression for the
interaction; therefore, in what folloyvs we assume that matr'xoccupation numbers which stems from E¢®.and (4),
elementsV s of the two-body residual interaction are ran-
dom variables.

Exact (“compound”) eigenstatesi) of the Hamiltonian ny(E)= ,
H can be expressed in terms of simple “shell-model basis 2R (BE—E)
states”|k) (eigenstates ofi):

> nYF(E,—E) -

wheren{¥=(k|nJk) equals 0 or 1 for Fermi particles, and

the sum in the denominator stands for the normalization.
V=S clk), |ky=al ...all|0). 2 This way of averaging of occupation numbers is a kind of
I Ek Ik, 1K) ky kn' ) @ microcanonical averaging, since it is defined for the fixed
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total energ)E of a system. One can see that, in fact, relationwhich is discussed below. As a result, we can transform the
(5) is equivalent to the introduction of a new kind of partition canonical distributior(7) into a form similar to theF distri-
function, bution (5),

> nYE(T,EY

Z(E):Ek F(Ek_ E): (6) nS(T)Zw,

(11

which is entirely determined by the shape of chaotic eigenwhere the functior (T,E,) is the canonical average B,
functions. In what follows, we term E@5) the F distribu-
tion.

The above expressiofd) gives insight into the problem
of a statistical description of complex systems. Indeed, as
was mentioned above, the shape of Ehéunction has uni- Note that this form of the canonical distribution can be
versal features and can often be described analytically; ther@onvenient for a calculation of the occupation numbers and
fore, in practice there is no need to diagonalize a hug@®ther mean values in quantum dots which are in thermal
Hamiltonian matrix of a many-body system in order to find equilibrium with an environment(with no particle ex-
statistical averages. One should stress that the summation @hange.
Eq. (5) is carried out over unperturbed energis defined In large many-body systems the canonical averaging
by the mean field, rather than over the energies of exadunction®(E) has a narrow maximum, since the density of
eigenstates in the standard canonical distribution. As a resulstatesp(E(") typically grows very fast. The positioB,, of
the distribution of occupation numbers can be derived anaits maximum is defined by the expression
lytically (see Sec. Yeven for few interacting particles, in the

F(T,Ek)=f FUD(EV)dED, (12

situation when the standard Fermi-Dirac distribution is not d Inp(E) _ 1 13
valid. dE T’
IIl. TRANSITION TO THE CANONICAL DISTRIBUTION and the width is given by

It is instructive to compare ouf distribution (5) with | d®Inp(E)| Y2 14
occupation numbers obtained by making use of the standard T dE? ' (14)

canonical distribution
_ _ As an example, let us consider the systemnahteracting

zinexp(—EV/T) particles distributed ovem orbitals. In Refs[6,7] it was

S.exp—EV/T) () shown that in the case>n>1 the density of states is of the

Gaussian form

whereT is the temperature and the indestands for exact
eigenstates. The important difference betweenRhaistri- 1 (E—E)?
bution (5) and the canonical distributiof?) is that in Eq.(5) p(E)= exp — T)’ (15
the occupation numbers are calculated for a specific energy
E of a system unlike the specific temperatdreén Eq. (7). whereE, is the center of the spectrum and s its variance.
However, results of calculations based on E@S.and(5)  According to recent numerical daf8,3], the Gaussian form
can be compared with each other using the relation betweeg, ine densityp(E) also occurs for few particlesne4).
the energyE and the temperature, This fact easily allows us to find the form df(E) which

e 3 EVex— EVT) appears to be quite generic,
=(E)r= sexp(—EWV/T)

ng(T)=

o2

)

_ 2
(E-Em) ) (16)

(I)T(E)’V ex;{ - T
The comparison of Eq47) and(5) also shows that the ca-
nonical distribution corresponds to the averaging of the “mi-\where
crocanonical”F distribution over some energy interval .
To demonstrate this, let us substitut€) and|C{’|? from
Egs.(3) and(4) into Eq.(7), and replace the summation over
i by the integration ovep(EM)dE®, wherep(E®") is the
density of exact energy levels, One can see that the width; of the thermal averaging func-
tion equals the root-mean-squafmens) width of the spec-
trum, Ar=o0. Now, it is easy to show that the thermal aver-
aging width A+ is always larger than the rms widthE of
the “microcanonical” F function, or the same as the mean
Here we have introduced the “canonidgherma) averag- Width of exact eigenstates in the energy representation. In-
ing” function deed, there is a simple relation between the widtlend o

of the energy spectrum with and without interaction, respec-

& (E)=p(E)exp —E/T), (100  tively (see Appendix A

o
-7 (17)

Ei ng”exp(—E“UT)~J nDo(ED)AED. (9



56 STATISTICAL THEORY OF FINITE FERMI SYSTENS . .. 5147

g’= g§+ (AE)?; (18) however, they have very different radii. As a result, the Cou-
lomb interaction between the corresponding electrons is very
therefore, we haveAt=0>AE. One should stress that the different[9]. In this case the interaction terms in EQO)
latter width AE, in fact, is due to statistical effects of inter- depend strongly on the occupation numbers of other par-
action. The difference between the widthg andAE is not  ticles, which means that there is no good mean-field approxi-
important when the number of particlesis large. This is mation. As a result, the equilibrium distribution for occupa-
because with an increase ofthe width o, of the unper- tion numbers is very different from the Fermi-Dirac
turbed spectrum increases a®, unlike the width AE, distribution[9]. However, theF distribution (5) for occupa-
which increases as. One should also note that in this case tion numbers is valid. In other cases like the random two-
both widthsAt and AE are much smaller than the typical body interaction model5,3,8 or nuclear shell modef4],
energy interval,o/|E—E.|~1/\Jn. Therefore, for a large Such a local mean-field approximation is quite accurate.

number of particles the functioh; can be regarded as tiée For a large numben>1 of particles distributed ovem
function atE=E,,, and theF distribution is close to the > 1 orbitals, the dependencefonn ande; s very strong,
canonical distribution, see E(L2). since the number of terml¥ in the partition functionZ is

To conclude this section, the canonical distributi@nis ~ €xponentially largeN= m!/(m—n)!n!. Therefore, to make
not correct when describing isolated systems with a smafihe dependence on arguments smooth, one should consider
number of particles; instead, one should useRhdistribu- N Zs instead ofZ,. In this case, one can obtain
tion (5). This was recently confirmed by numerical experi- - -
ments with the model of few Fermi particles with a two-body InZy(n=An,E—€)~InZy(n,E) — asAn—fses, 21)

random interaction5,8§]. - .
n n
as: S ﬁ — S

’ ’ An: l
IV. TRANSITION TO THE FERMI-DIRAC DISTRIBUTION an s JE

It is now instructive to show how the standard Fermi- This leads to a distribution of Fermi-Dirac type,
Dirac distribution stems directly from the distribution (5)
in the limit of a large number of particles. By performing 1
. . _ : n.= -, (22
explicitly the summation oveng=0 and 1, expressiofb) ST 1+ expast Beey)
can be rewritten in the form

If the number of substantially occupied orbitals in the defi-

nyE)= 0+Zs(”:1'E_ €) _ 1 ) nition of Z is large, the parameters; and 85 are not sen-
s Z{(n—1E—€)+Zy(n,E) Zy(n,E) sitive as to which particular orbitad is excluded from the
Z(n—1E—€) sum, and one can assumg= o= —u/T andBs=B=1/T as

(19  in the standard Fermi-Dirac distribution. Then the chemical
potentialu and temperatur& can be found from the condi-

Here, two “partial” partition functionsZ4(n,E) and Zs(n tjons of a fixed number of particles and a fixed energy,
—1E—€,) are introduced. In the first one, the summation is

taken over all single-particle states ofparticles with the -
orbital s excluded, Zy(n,E)=3,F(E,—E). Correspond- ES: Ns=n, ES: GS”SJFSZp “spnsnp:z Ny(€st €5)/2=E.
ingly, the sum inZy(n—1E—'¢,) is taken over the states of (23)
n—1 particles with the orbitak excluded. The latter sum
appears from the terms for which the orbitals filled (ng  Note that the sums in Eq$23) and (20) containing the re-
=1); thus we should add the energ¥.=E,(n) sidual interactionug, can be substantially reduced by a
—Ex(n—1) of this orbital to the energ¥,(n—1) of the  proper choice of the mean-field bagisr instance, the terms
basis statgk) defined byn—1 particles. Since th& func-  ug, can have different signs in such a basls practice, the
tion depends on the differendg +es— E only, the adding valueses ande; may be very close. Since in the above ex-
term’es to E(n—1) is the same as its subtraction from the pressiong23) the nondiagonal matrix elements of the inter-
total energyE. Note that this term is defined by action are not taken into account, one can expect that the
distribution of occupation numbers defined by these equa-
(20) tions gives a correct result if the interaction is weak enough
(the ideal gas approximatipnHowever, we can shousee
Sec. VIII) that, in fact, even for strong interaction the Fermi-
wheree; is the energy of a single-particle state angis the  Dirac distribution can be also valid if the total enerByis
diagonal matrix element of the two-body residual interaction.corrected in a proper way, by taking into account the in-
By taking'e; independent ok, we assume that the averaging crease of the temperature due to statistical effects of interac-
over the basis states near the enelgis possible; in fact, tion.
this is equivalent to a localat a given energymean-field One should also note that a somewhat similar procedure
approximation. transforms the canonical distributi¢r) into the Fermi-Dirac
One should stress that this approximation is the most imdistribution (see, e.g., Ref.10)) in the case of many nonin-
portant when applying moddll) to realistic systems. For teracting particledideal gas. It is curious that the Fermi-
example, for Ce atom there are orbitals from different operDirac distribution is very close to the canonical distribution
subshellge.g., 4 and 6s) which are quite close in energies; (7) even for a very small number of particles=2), pro-

~ k
€s= €T E usp”ig ) )
p#s
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vided the number of essentially occupied orbitals is largeHere the variance AE)? is defined by Eqs(55) and (56),
(which happens fo > e or u> e). In fact, this is a result of andE=E®+A{)=H;; (see Appendix A
a large number of “principal” terms in the partition function As was found, a Gaussian shape of eigensi@gart from
Zs which allows us to replacens by « in the term |ong tail§ occurs in realistic systems like the Ce at¢fi
Zy(n,T)/Zy(n—1,T)=explas+Pe) in the canonical distri- and heavy nucldi4]. Recently, the form of th& function as
bution (7) [compare with Eq(19)]. it depends on the perturbation was studied in d¢t] in
More accurate consideration shows, however, that théhe model of Wigner band random matrices, as well as in the
temperatureT in the Fermi-Dirac distribution is different random two-body interaction modg8]. In particular, it was
from that in the canonical distribution. Indeed, using the ex-discovered that the Gaussian-type shape happens when the
pansionas= a(eg)+ a'(es— €g), one can obtain the rela- interaction is large enough, that is, when the Breit-Wigner
tion between the Fermi-DiracBgp) and canonicalB) in-  width I'=2mwpV? is comparable to the root-mean-square
verse temperatures,Brp=8+a’e. Concerning the width AE (an effective bandwidth of a Hamiltonian mairix

chemical potential, its definition also changes,u/T By performing the integration in Eq24), one obtains
=a(eg)—a’ep. This fact is confirmed by our numerical

simulations for an isolated system with few interacting Fermi N (E-E)?
particles[5,3,8. Namely, for the same total energyof the Z(E)= ol exy{ - —202_)* (27)

system, the canonical and Fermi-Dirac distributions give the
same distributionns, defined, however, by different tem- \here g2= g2+ (AE)? (this coincides with the variance of

peratures, since they are determined by different equationg,e perturbed spectrymin order to calculate the occupation

(8) and(23). o numbersng, we use expressiofl9). For this, one needs to
The closeness of these two distributions for any numbefing the partial partition function@.(n,E) and Zy(n—1,E

of particles is not so surprisi_ng ip t.he preser']c.:e.of the ther-_ e5) corresponding tm andn—1 particles with the orbital
mostat, where even one particle is in the equilibrium. On the; is"excluded from the set of single-particle states. Now we

contrary, for isolated systems with small number of particles, ;e to calculate the number of stadsand the centeE
the applicability of the Fermi-Dirac distribution is not obvi- ¢ these truncated systems e

ous. To answer this question, one needs to analyze the role of

interaction in the creation of an equilibrium distribution. (m—1)!
Ng(n,m—1)= ——F——F—,
(m—=1-n)!n!
V. ANALYTICAL CALCULATION OF OCCUPATION
NUMBERS IN FINITE SYSTEMS (m—-1)!
Ng(n—1m—-1)= ———————,

The advantage of the approach developed in this paper is (m—n)!(n—1)!
that if we know the shape of eigenstates in the many-particle — —
basis of noninteracting particléthe F functior) and the un- Ecdn)=e_gn, E{n—1)=(e_5)(n—1),
perturbed density of statges,(E), one can analytically cal-
culate the distribution of the occupation numbags —_ Zp=s€p

€_.= ,
In order to calculate the occupation humbats we use S m-1

expression(19) containing two partial partition functions ) o )
Z(n,E) and Z(n—1,E—e,) which correspond to systems The variancergg of the energy distributions can be estimated
with n andn—1 particles, with the orbita is excluded from S
the set of single-particle states. The partition function can be

found from the relation oos(M=01N,  og(n—1)=~(075)(n—1),

where cris is the variance of the single-particle spectrum
z=>, F(EK_E)AN,f po(ExF(E,—E)dE,. (24)  With the excluded orbitak. Here, for simplicity, we ne-
k glected the Pauli principle, which is valid for=>n. A more
accurate calculation can be easily done with the use of a

The density of unperturbed statpg(E,) in a system o cajculator. As a result, the distribution of occupation num-
particles distributed ovem single-particle stategorbital9  pers has the form

was shown to be close to the Gaussiaee, for example,
Refs.[6,7,11)):

n{(E)=11 g
e N, p( <Ek—EC>2) 5 Y
PolEy)= XA ~—F5 =2 | m—n og(n—1) [E—E{(n)]
2 — _
V2T 70 R_TW“{ “25An)

with E. as the center of the energy spectrum &has the [E— e E(n—1)]?
total number of states. Let us assume that the shape of eigen- S }
statesF is also given by the Gaussian: 204(n—1)

whereo?= 02+ (AE)2.
)_ (26) It is instructive to compare this result with the Fermi-
Dirac distribution which is valid for a large number of par-

(Ex—E)?

1
B \/2W(AE)ZeXp( " 2(AE)?

F(Ex—E)
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cal data[5] for the random two-body interaction model, the
shifts eg turn out to be, on average, smaller thany and for

this reason one can take into account the effect of spreading
widths y, only.

Here we would like to analyze the role of the spreading
widths for the distribution of occupation numbers, and com-
pare with our approach where the interaction is taken into
account in terms of many-body states. For this, let us average
the standard Fermi-Dirac occupation numbagsover the
energy intervaly;:

Vs
€S+ 7 — M
+
2 de 1texp—o7
ng= n(e)—=1——In ,
€s— ¥5/2 Vs s Vs
€™ 5 M
FIG. 1. Analytical description of the occupation numbers. Data 1+exp
are given for the two-body random interaction modBl of n=4 L 2T -
Fermi particles distributed oven=11 orbitals with\VV=0.20 and (29

do=1 in the definition of single-particle energiegs=dg[s
+(1/s)]; see Refs[5,3,8. The histogram is obtained according to _

) . . : n(e)y= ——.
Eq. (3) by the averaging over eigenstates with energies taken from €e—u
small energy window centered &=17.33 and over 20 Hamil- 1+ex T
tonian matriceg1) with different realization of the random interac-

tion. Stars represent the analytical expressg@s) with o found |+ seems that this is the simplest form of the Fermi-Dirac

from single-particle energy spectrum. Diamonds correspond to thgyisiripution for quasiparticles with finite spreading widths.
Fermi-Dirac distribution with thermodynamical temperatyBs) One can check that in the limig,=0 the Fermi-Dirac ex-
S

and chemical potential found from the standard condition for thepression(30) with n.=n(e,) is recovered.
total number of particle:y=X=.ns.

To test the sensitivity of the occupation numbers to the
) ) ) values of the spreading widthg,, we solved equation&@3)
ticles. In this caseR=exd(e&—u)/Tin] where Tyw=0/(Ec  for chemical potential and temperatufer a given energy of
—E) is the thermodynamic temperature which is discussegy jsolated systejrusing the standard expressit80), and
below; see Eq(33). The chemical potentigk in this case  compared the result with that obtained by using expression
should be calculated numerically to fix the total number of(2g). see details in Ref5]. The data have revealed that the
particlesn. The data are reported in Fig. 1. One can see thagnhemical potential practically does not change, while there is
Eq. (28) predicts occupation numbers in perfect agreemeny noticeable decrease of the temperatufE|y+0)
with the numerical experiment. <T(y=0). The striking result is that the two curves

Finally, note that the same method can be used to SOlVgy the occupation number9) and (30) coincide with a
another problem: to find the distribution of the occupationhigh accuracy, namelyng(es,y,T)~ny(es,y=0T+AT)

numberag(T) in finite systems of interacting particles in the —ny(e.,T). This means that the temperature mimics the ef-

thermal bath with the tempe.ratuﬂ'e For such a case, it is fect of the spreading widths, the phenomenon which is far
enough to replace the function by the canonical average from being trivial. The shift of the temperature fgr< i can

F(T'Ek); see Eq(12). In faqt, this iS. th? method for_taking be estimated analytically a§T~ y?/16T. The above result
into account the “random” interaction in the canonical dis- indicates that one should not worry about the finite width of

tribution.. The result for the occupation nurr;berg{'l;) can single-particle orbital§quasiparticleswhen calculating the
be obtained from EQq.28) by replacing o5—20% and occupation numbers.

E—E,+A(Ey), WhereE,=E.—c¢?T andA; is a small
correction; see Appendix A.

(30

VIl. THERMODYNAMICS OF SMALL SYSTEMS

VI. PARTICLES AND QUASIPARTICLES, ROLE OF On.e Qf the _important questions_ is abogt therm_odynamical
SINGLE-PARTICLE SPREADING WIDTH description of _|solated systems of interacting p_artlc_les. In any
thermodynamical approach one needs to define, in a consis-
In previous sections we discussed the distribution of octent way, such quantities as entropy, temperature, and the
cupation numbers for real particles distributed over givenequation of state. Different definitions of the entropy and
orbitals. At the same time, there exists a traditional approactemperature have recently been discusgk®] in applica-
which is based on the notion of “quasiparticles.” It allows tions to shell models of heavy nuclei. In particular, it was
us to incorporate the effects of interaction in terms of singlefound that for a realistic residual interaction, different defi-
particle states, and goes beyond the mean-field approximatitions of temperatures lead to the same result. Below, we
tion. As is well known, the interaction leads to the spreadinganalyze a few definitions of the temperature and entropy, and
width vy, for single-particle orbitals. It also results in the shift show that for small number of interacting particles they may
of average energieg,= e+ de,. According to our numeri- give quite different results.
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Standard thermodynamical definitions of the entr&y
and temperature are based on the density of sidte$,

Si=1Inp(E) + const, (3D T

1 d dIn 10
1 _dSh_dinp (32
Ty dE dE

In fact, such a definition of the temperature follows from an
estimate of the position of maximum of the canonical aver-
aging function®(E); see Eqs(10) and(13). It is usually
assumed that the position of its maximiy coincides with L L
the energ)E of a system. One should stress that in the above 0 0.2 0.4 0.6 0.8 1.0
definitionsp(E) is the perturbed density of states; therefore, X
the interaction is essentially taken into account.

However, for finite isolated systems with a fixed energy FIG. 2. Different temperatures vs the rescaled eneygy(E
E, the definition of the temperature given by the relation—Eemi)/(Ec—Efem) for the two-body random interaction model
(E)r=E [see Eq.(8)] seems to be more natural. Here thewith n=4 Fermi particles anth= 11 orbitals. Triangles stand for
averaging is performed over the canonical distributigh ~ the thermodynamical temperatuil, defined by Eq.(33), and
Since the widthA of the canonical averaging function should be compared to the canonical temperaliygg(circles; see
®(E) is not zero, the two definitions of the temperature,Eq' (34). T_he W_ldtho- o_f the perturbed d_ensnty of states is defined
Egs.(32) and(8) give, in principal, different results. Indeed, Y the residual interactiow=0.12 according to Eq¢18) and(A4),
in the case of the Gaussian form pfE) the value ofTy, with oy found numerically from the unperturbed many-particle en-

given by Eq.(32) takes the form(see also Ref[13)) leer\g/gé/lss%ecs:tertughf 1n)1ean level spacind, between single-particle
07 .

OON#O\OO

2
T (33 statesp(E) is a monotonic function which results in positive

“E.—FE’ temperature. For such physical applications, mddgwith
) o finite number of orbitals is reasonable in the lower part of the
whereE. ando are the center and the width of the distribu- ¢nergy spectrum where the influence of higher shells can be

Tin

tion p(E). _ _ ] neglected.
On the other hand, direct evaluation of relati@ leads One can also see that the difference between the two
to the following definition of the temperature: equations of stat@(E) defined by Eqs(33) and (34) disap-
o2 pears for highly excited eigenstat¢®r which E,,— En
Too=—— 34 >g), or in large systems with>1. Indeed, one can obtain,
can E E A ( ) . . . .
cTEF E.—E~noy, whereo, is the width of the single-particle

spectrum. On the other hand, according to the central limit
theorem, the variance of the total-energy spectrum can be
(Epin—Epn)? (Eppa— Ern)?2 estimated asrg~3,02=no?; therefore, the ratioo/(E,
exy{ - —202—) —ex;{ - —202—” —E)~1/yn tends to zero ah—o. Note that, in finite sys-
tems (atom, nucleus, etgthe number of valence particles
(39 (particles in an open sheglis not large. For example, for the
where Ce atom we have=4 [2] and, in the nuclear shell model
[4], n=12, therefore, the corrections to the thermodynamical
Xmax x? E-En temperaturé32) can be significant, especially for low ener-
K:J exr{ - ?)dx = gies. Here we do not take into account particles from deep
closed shells since their excitation energy is high, and they
do not contribute to the thermodynamical and statistical
 Tean (36) properties of systerrishough they renormalize parameters of
the Hamiltonian(1) describing the interaction between va-
One can see that the shiftitself depends on the temperature lence particlek
and is proportional to the widtlAt=o0 of the function The energy dependence of temperatufgsand T, is
®+(E). In the above relationg,;, andE 5 are the low and  shown in Fig. 2. The data are given for the modeinef 4
upper borders of the energy spectrum. Note that the relatioimteracting Fermi particles distributed over=11 orbitals.
A=0 occurs at the center of the spectrum; therefore, thdhe two-body interaction is taken to be completely random,
temperature in the upper part of the spectrum is negdiive given by the Gaussian distribution of two-body matrix ele-
is typical for systems with bounded spectrum, for examplements withV=0.12; this value should be compared with the
for spin systems In fact, our mode(1) with finite numbemm  mean energy distancd,=1 between the orbital§single-
of orbitals can be treated as a model of one open shell iparticle energies see details in Ref$5,3,8]. The compari-
atoms, nuclei, clusters, etc. However, in realistic many-bodyon of the thermodynamical temperatdig defined by Eq.
systems there are always higher shells which contribute t@33) with the “canonical” temperaturg34) reveals quite
the density of states for higher energy. Thus the density o$trong difference in all the range of the rescaled eneygy

Here the shiftA is given by the expression

A_O'
K
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=(E—Eserm)/ (Ec— Etermi) - TO test our analytical expression
for the canonical temperaturg,,,, we performed a direct
numerical calculation of the temperature according to(B. ng Fermi-Dirac
with the actual spectrurg() of the two-body random inter-
action[instead of the Gaussian approximationo¢€) ]. Nu-
merical results well agree with the analytical expres$i®.

The knowledge of the equation of stai€T) gives the
possibility to examine heat capacity of closed systems with
finite number of interacting particles,

dE o2

=TT

(37

+<9A
OEm/

The second term in the above expression is a correctior
which vanishes for highly excited states or in large systems;
however, it may be important in other situations.

Following Ref.[13], we can also compare different defi-
nitions of entropy. A natural definition of the entropy iniso-  FIG. 3. Fermi-Dirac distribution for strongly interacting par-
lated systems can be directly related to the number of prinﬁdes. The data are given for two-body random interaction model

Cipa' ComponenthC in exact eigenfunctionS.’ (1) with the parameters of Flg Ghe rescaled energy ;$2055)
Circles stand for the Fermi-Dirac distribution with the total energy

(38 E corresponding to the energy of eigenstates; see(Eg). Dia-
monds correspond to the shifted energy according to expression

In such a definition the entropy characterizes the complexity47).

of a system(note, that for unperturbed “simple” statéé,.

SEF: lanC'

=1 andSge=0). There are several definitions Nf,;, one of Ser=INNyc=Inp(E) +Inl". (43
which is the so-called “entropy localization length” defined
via the information entrop,; of eigenstates, One can see that the entrof: found from exact eigen-
states coincides with the thermodynamical entr&gif the
Npc=expl(Sin), (39 second term in Eq43) does not depend on the energy. As is
shown in Appendixes A—C, the spreading widkh only
where weakly depends on the energy, in contrast to a very strong
energy dependence @fE). The fact that the information
S(E)=— >, FW(E)INFy(E) entropyS;¢ contains the term jmwas mentioned for the first
k time in Ref.[13]. One should stress that the above relations

(42) and(43) are valid if N is smaller than the sizisl of the
~_f dEwp(E)F(E,—E)INF(E,—E). (40)  many-particle basisN,<N/2. One has also to remind that
systems under consideration are assumed to be in equilib-

o N2 rium; see the discussion in Sec. IX.
Here we used th& function instead of C{|? in order to

have a smooth dependence of the entrBgyon the energy
E. Another possibility is to find\,. from the “inverse par-
ticipation ratio,”

VIIl. INCREASE OF EFFECTIVE TEMPERATURE DUE
TO STATISTICAL EFFECTS OF INTERACTION

In Sec. IV we showed that in the case of a large number
-1_ 2 of particles, the distribution of occupation numbers is of the

Npe _Ek: (P B (41) Fermi-Dirac form(22) if the local mean-field approximation

is valid. However, if one uses expressi@3) in order to find
One more definition isl\lrjclzma>{Fk(E)]%F(Ek=E) which  the chemical potentiglk and temperaturd@, one can obtain
was used in Ref.2]. The difference between the above defi- inaccurate results. To demonstrate this, we computed the dis-

nitions of N, depends on a specific shapeFf(E); how-  tribution of occupation numbers; for the two-body random

ever, the values df . differ from each other by some coef- interaction model directly from exact eigenstates of the

ficient which is typically close to 1. Hamiltonian matrix(1) defined on the basis of many-particle
On the other hand, the estimate fdp. can be obtained unperturbed statesee also Refd5, 8]). These data for the
simply from the relation “experimental” values ofng are shown in Fig. 3 by a histo-
gram which is obtained by the average over a small energy
r window in order to smooth the fluctuatiorialso, an addi-
NPC%BZFP(E)’ (42) tional averaging over different realizations of the random

two-body interaction has been don&o compare with the
wherel is the spreading width of the functidf(E) andD standard Fermi-Dirac distribution, we have numerically
is the local mean spacing between many-particle energy levsolved Eqs(23) in order to find the temperature and chemi-
els. Thus one can directly relate the number of principakcal potential. The resulting distribution of the occupation
components\, to the density of states(E), numbersng is shown in Fig. 3 by circles. One should
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stress that the value of the enefigyn Eq. (23) was taken the

same as for the exact eigenstates from which actual distribu- A
tion of ng was computed, namelfg~E("). The comparison E10 i ]
of the actual distributiorfhistogram with the theoretical one N
[see Eq.23)] reveals a large difference for a chosguite 08k J
strong perturbationV=0.20. .

This discrepancy is due to the fact that the off-diagonal 0.6 §
interaction is not taken into account in EG3). In Ref.[5] it
was pointed out that one can take into account statistical 04r 1
effects of interaction and to correct the total energy in Eq. oa b |
(23) in the following way. Let us first consider the thermo- '
dynamical temperatur€,, defined by Eq(33). As was men- 0.0 ! s . hd
tioned abovdsee Eq.(18)], one can represent the width of 0.0 0.2 0.4 0.6 o8 10
perturbed density, of statep(E) in the form o?=o3 x?

+(AE)?, whereoy relates to the unperturbed density and

AE is an increase of the width of the energy spectrum due to  FIG. 4. Shift of the total energy for the corrected Fermi-Dirac
the interaction. Thus the temperature at a given en&gy distribution. The data are given for modd)) with n=4, m=11,

increases due to the interaction as follows: do=1, andV=0.12; see the explanation in the text. The straight
line is the analytical expressiofd7); the dotted line(circles
U% W present a direct computation of the shift based on the diagonaliza-
T=Tg+ AT~ ——+ ——, (49 tion of Hamiltonian (1) with the following computation of the
Ec—E E.-E (EWi. On the horizontal axes the rescaled enengy=(E"

. . . - Efermi)/(Ec_ Efermi) is pIOtted-
resulting in the relation

S (AE)?
ATITo=(AE)?a}. (45) = —U%—(EC—E). (47)

The explanation of this increase of the temperature was Now, in order to obtain the corresponding increase of the
given in Ref.[8], and reads as follows. Since the density oftemperature, one should insert the shifted endggy(E,);
states rapidly increases with the energy the number of =E(®+ AL into the equation for the temperature,
higher basis states admixed to an eigenstate by the interac-
tion is larger than the number of lower basis states. An ex- 0'3 Ug (AE)?
treme example is the ground eigenstate, which contains basis T=To+AT= E_EO_A- E_ED + E_ED

; ; E
components of higher energies only. As a result, the mean ¢ ¢ ¢ (48)
energy

One can see that Eq48) is consistent with Eq(44) for
. . 2 2
Ei=> E F<'>~fE F(po(E)dE 46y (AE)"<ayp.
(B ; Kk Ficpo(B)dE (48 Thus, to find correct values for the occupation numbers in
the Fermi-Dirac distribution, we should substitute the in-

of the components in an exact eigenstajeis higher than creased energ'ﬁ:E(i)JfAE:(Ek)i into Egs. (23) for the

the eigenvalu€ corresponding to this eigenstatee con- chemical potential and temperature. The resulting shift of the
sider here eigenstates in the lower part of the spectrum.onlytémperature and chemical potential leads to the distribution
There is another effect which gives the increase(sf);  ©f the occupation numbers shown in Fig. 3 by diamonds. As
—EW even if the density of states does not depend on th@n€ can see, such a correction gives a quite good correspon-
energy. Due to repulsion between the energy levels, the efeénce to the numerical data. _

genvalues move down for this part of the spectrum; there- 10 check the analytical predictio@?) for the shiftAe,

fore, the difference betwes(,); andE(" increases due to W€ ha\(/ic)a calculated this shift directly by comparing the en-
the interaction. This second effect shifts the “center” of the €rdy E™" of exact eigenstates with the energfi,); . The
functionF{) = F(E,— E™). One should stress that all effects 'atter has(i)k;een computed from the exact relati@);
leading to the above shift of the energy are automatically= >kE|Ci’|” [compare with Eq(46)]. The comparison of
taken into account in relatiof@6). Thus, one can analytically these datdcircles in Fig. 4 with Eq. (47) (straight full ling
calculate this shiftg=(E,);—E® from Eq. (46). For this, shows a good agreement, if to neglect strong fluctuations
one needs to know the unperturbed density of states and tfgound the global dependence. These fluctuations are due to
form of the F function. The evaluation of the shiftg was fluctuations in the components of specific exact eigenstates
done in Ref[8] by assuming some form for tHe function li) (note that the presented data correspond to the individual

which is valid in a wide range of the interaction strength ~ €igenstates, without any additional averaging
Finally, we would like to note that the described above

dl 1 method can be also used to solve the “canonical” problem
AE:<Ek>i_E(i): Npo (AE)%2= — (AE)? of finding the distribution of the occupation numbers for a
dE To system of interacting particles in the thermal bath. Indeed,
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the distributionng(T) for the “ideal” gas is given by the 1

canonical distribution, or, more simply, by the Fermi-Dirac V>3 Vd;D. (52
distribution if the number of particles>1 (in practice,n

>2 is enough The increase of “kinetic” energy due to the

random residual interaction is given = (AE)?%/T; see However, as pointed out in Refl14] (see further devel-
Eq. (47). Then one can find the effective temperature whichopments in Ref[15]), there is a phenomenon of “localiza-
corresponds to the same increase of the average “kinetiction in the Fock space” which means that states with differ-
energy in the ideal gas. It can be done by the differentiatiorent numbers of excited particles do not mix with each other.
of T"'=d9dE, where S is the entropy,S=Inp,+const.  This situation occurs whei<d; (with some logarithmic
The result reads corrections. This means that in order to have an ergodic
distribution for the eigenstate coefficients resulting in an
equilibrium distribution of occupation numbers for indi-
vidual eigenstates, one needs both the conditvrsl; and

Eq. (52). Sinced:; is typically much larger tha®, the con-

For the Gaussian shape of the level dengyE), this co-  dition V>d; is stronger than E¢52).

incides with Eq.(45). Thus we can use the Fermi-Dirac dis-  Let us now discuss the properties of eigenstates and dis-
tribution with the effective temperatufe,s=T+AT in order tribution of occupation numbers in dependence on two above
to describe “randomly” interacting particleor AT<T) in  parametersy/d; andN. Since the value oN increases

dzlnpo

dEZ(AEF. (49

AT=-T

the heat bath. with an increase of/, we first start with a very weak inter-
action for which exact eigenstates have only a few relatively
IX. CRITERIA FOR THE ONSET OF CHAOS, large componentsNy.~1). In such a case the eigenstates
EQUILIBRIUM, AND THERMALIZATION are strongly localized in the unperturbed basis and, therefore,

) ) can be described by conventional perturbation theory. This
The theory presented above is based on the notion dfjtyation is quite typical for the lowest eigenstatesere the
chaos in terms of statistical properties of compound eigengensity of states is smalleven if for higher energies the
states. Typically, the onset of quantum chaos is associates|genstates can be considered very “chaotibl,&1). We

with a large number of components in the eigenstates. HoWerm this regior(1) a region of strongperturbative localiza-
ever, as we can see below, this condition is not enough fofign

the emergence of equilibrium distributions and, in essence, The second regiorll) is characterized by an “initial

there are different regimes of “chaos.” Here we analyze theghaotization” of exact eigenstates and corresponds to a rela-
conditions under which the possibility of a statistical descrlp—tive|y large N, 1 number of principal components aivd

tion of isolated systems of interacting particles can be di-—q." The latter condition is essential since it results in very
rectly related to statistical properties of eigenstate COMPOgtrong (non-Gaussianfluctuation of component@ff) [16]

nents. , i )
. . . for the fixed energ)E(™ of compound statéi ). Such a type

_Letus start with the condmon of a'large ““’T‘.be.r of PN of fluctuation reflects itself in a specific character of eigen-

cipal component®,., provided there is an equilibrium dis- states, namely, they turn out to be “sparsed.” As a result, the

tribution of the components of eigenstates. For the relativel)ﬁumber of principal components can not be estimated as
small interaction, the distribution of the components has th?\lpﬁF/D, as is typically assumed in the literature. Let us

Breit-Wigner form note that the energy width' of eigenstates is still close to

1 2 ia expression51).
Fi=|c]2= — ,BV\é — (50) The above specific properties of compound states can be
Npc (Ex— EW)?+ gy l4 explained by the perturbation theory in the param¥tt; .

] . ) Indeed, in the zero-order approximation an eigenstateo-
Here, the_Yalue\‘pczquBw/ZD is defined by the normaliza- jncides with a basis staté) for which the particles occupy
tion condition,D=p"*(E) is the mean spacing between en- gefinite orbitals. In first order iv/d; the eigenstatéi) is

ergy levels, and the spreading width is given by constructed by those basis stafleg) which can be obtained
V2 from |koy) by moving one or two particle&ue to the two-
T o= 27— 51 body character of the interactibpnAs a result, the coeffi-

BW ™ d.’ ( ) . . . (i)

f cients of the state|i) can be estimated asCy;

whereV? is the mean squared value of matrix elements of Vig i [(EV—Ey). If the matrix elementsV, , are
the two-body interaction; see E€L). In the denominatord; ~ Gaussian variables, for the fixed spac|&g’ —E, | the co-
stands for the mean energy spacing of those basis compefficientsC{") are also distributed according to the Gaussian.
nents to which a particular basis st@ke can “decay” due The situation is completely different in higher orders. For
to direct two-body interaction; see details in Appendix C.example, in second order we haveCEC(kiZ)
Thus the conditioiN,>1 reads IEleko,lekl,kz/[(E(i)—Ekl)(E(i)—Ekz)], and the distri-
w2\/2 butionP(C) (for the fixed|E®")— E, |) is close to the Lorent-
P~ 4,D >1 zian, namely, P(C)~C,/C? for C,<C<1 where C,,
~V?/d? [17,16). Long tails in the distributioP(C) are due
or to the possibility of small values of the denominatf’

N
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tion (5) emerges. In this region the fluctuations of the eigen-
state componenl@(k') are of Gaussian forifiL6], which leads

to small fluctuations of the occupations numbegsn accor-
dance with the central limit theorem for the su(B),
Ang/ng~N,?<1 for ng~1. One should stress that in this
region the value ol is given by the common estimate
No~T'/D. As a result, the distribution of occupation num-
bers changes slightly when changing the energy of a system.
Such a situation can be naturally associated with the onset of
thermal equilibrium, though the form of the distributiog

can be quite different from the Fermi-Dirac distribution. In
this case, thé& distribution(5) gives a correct description of

an actual distribution of occupation numbers in isolated
quantum systems of interacting particles. One can see that
the equilibrium distribution for the occupation numbers
arises for much weaker condition compared to that needed

FIG. 5. Distribution of the occupation numbers for small inter- for the Fermi-Dirac distribution. Since the energy interdal
action. The histogram is obtained in the same way as in Figs. 1 andetween two-particle—one-hole energy levels is small, it is
2, for the very weak interactiol’=0.02 which corresponds to re- enough to have a relatively weak residual interactibnd;
gion Il of the “initial chaotization”; see Sec. X. The total energy in order to have the equilibrium distributiomote that the
(center of the small energy windgus E)=17.33. Diamonds cor- yajue ofd; decreases rapidly with the excitation energy; see
respond to the theoretical expressi@8) which is not valid in this Appendix O.
region_due to absen_ce of equilibriu_m. Stars are _obt_ainc_ed by direct The next regior(IV) is that where the canonical distribu-
nL_JmencaI computation O.hs according to theF distribution .(5) tion (7) occurs; for this case, in addition to the equilibrium,
with the F function taken in the form of EqA5); see“Apper_1d|xA . one needs to have large number of partictes,1. If, also,
and Ref.[8]. The latter values are closer to the “experimental " . . g
ones, since we performed the summation over real unperturbet _e (_:on(_jltlo_nf‘<r_1do 'S. fulfilled, the s_tandard Fermi-Dirac
spectrum[instead of the integration with the Gaussian approxima- |Str|butlon. IS Va“d’ with a proper shift (.)f the toj[al energy
tion for p, used to derive Eq28)]. due to the interaction; see Sec. VIII. Typ|cally, this region is

associated with the onset of the canonical thermalization

o . ) (see, for example, Ref13]).

—E,, in intermediate states. The higher ordersf the per- In practice, condition IV of the canonical thermalization
turbation theory give stronger fluctuatiofith an addi- is not easy to satisfy in realistic systems like atoms or nuclei,
tional logarithm inP(C)] because of the large number of sincen in the above estimates is, in fact, the number of
small denominators. Another type of even stronger fluctua“active” particles (number of particles in a valence shell
tions result from very different nature of many-body basisrather than the total number of particles. Thus, the descrip-
states with close energies. That is, states with nearly th#on based on thé& distribution (5) which does not require
same energy can differ by a large number of moved particlethe canonical thermalization condition 1V, is more accurate.
in order to obtain the corresponding states. Therefore, the The above statements are confirmed by a direct numerical
transition into closein energiey states appears in different study of the two-body random interaction mod®|8], with
orders of the perturbation. Therefore, the fluctuations of théew particles when changing the interaction strendgti,.
componentsC appear to be abnormal, without obeying thef, instead, we increase the number of particles keeping the
standard central limit theorem. In particular, the above effecinteraction small,V<d,, the distribution(5) tends to the
leads to very large fluctuations in the distribution of the oc-Fermi-Dirac, one as is expected for the ideal gas; see Ref.
cupation numbersg, as a function of the enerdy of com-  [8].
pound states. Specifically, the fluctuations do not decrease as Finally, we discuss the transition to mesoscopic systems.
N;C”z; for example, ifP(C)~ 1/C? the fluctuations ohg(E) One can show that the result strongly depends on the dimen-
do not depend ol at all for N,.<1/C,, (see, for example, sionality d of a system. Let us consider the case when the
Ref. [17]). number of particles is fixed; however, the sizeof a sys-

As an example, one can take the two-body random intertem increases. Then the interval between single-particle en-
action model1) with n=4 particles andn= 11 orbitals and ergy levels decreases dg~| 2. Since relative interaction
very weak perturbatiotv/dy~0.02, whered, is the mean between two particles decreases like 1 ¢, one can obtain
level spacing between single-particle energy levels; see Fig//dy~1~ (2. Thus ford=1 one had/>d,, which means
5. One can see that the “experimental” distribution of occu-that strong mixing(chao$ starts just from the ground state.
pation numbers has nothing to do with the Fermi-Dirac dis-This is in accordance with the absence of a gap in the distri-
tribution (full diamonds, it turns out to be even the non- bution of occupation numbers in the one-dimensioib)
monotonic function of the energa of orbitals(see also Ref. case(the so-called Luttinger liquid On the contrary, in the
[5]). Note that the averaging procedure used in Fig. 5 did no8D case we hav¥ <d,; this means that an admixture of the
wash out the fluctuations ing. higher states to the ground state can be considered perturba-

With further increase of the interaction, whedg>1 and tively, which is consistent with the nonzero gaplat 0. One
V>d;, the region(lll) of the equilibrium for the- distribu-  can see that the transition between regular regiegion )
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and the equilibrium(region IIl) in the 3D case occurs for function gives a correct result for the isolated finite systems
high states wheW=d;. Recently, the question of this tran- even for small number of interacting particlggovided the
sition was studied in Ref$14,15. number of principal components in the eigenstates is Jarge
The advantage of our approach, in comparison with direct
calculations of complex quantum systems, is that we do not
need to diagonalize huge Hamiltonian matrices in order to
In this paper, we have developed a statistical approach tperform calculations of observables for excited states. In-
isolated finite systems of interacting particles, which playsdeed, for a full statistical description of such systems, one
the same role as the canonical approach for systems in equieeds to know the average shape of the compound states
librium with the thermal bath. It can be applied to complex (rather than the eigenstates themsehaxl the unperturbed
many-body systems like compound nuclei, rare-earth or acenergy spectrum. Therefore, the problem of an analytical de-
tinide atoms, atomic clusters, quantum dots, etc. The ke¥cription of the shape of eigenstates is the central point in the
point of this approach is a partition function which is definedtechnical implementation of the approach. One should note
as the shape of compound statesfunction) in the many-  that the average shape of eigenstates is the same as that of

particle_ basis of a system without residual interactiBlater  {he |ocal spectral density of statdsDOS), if the interaction
determinantg It allows us calculate mean values of different is not extremely strong.

operators as a function of the total enefgyf a system. As
an example, we calculated the occupation numing(g),
which may be compared with the standard canonical ap
proach, givingng(T), whereT is the temperature of an open
system. In large systen{thermodynamical limjtthe distri-
bution of occupation numbers tends to the canonical dis-
tribution with the temperatur& ~*=d(Inp)/dE, wherep(E)

is the energy level density.

X. CONCLUSION

For small interaction the shape of the chaotic eigenstates
is known to be well described by the Breit-Wigner form.
However, in practice, this region is small if the number of
particles is not very large. With an increase of the interaction
strength, the average shape of the eigenstdekinction)
changes from the Breit-Wigner one to that close to the
Gaussian with the exponential tails. As we have fou#p-

Another important area of applications of our approach ig?€ndix A, the correct description of the shape requires two
the calculation of nondiagonal matrix elemeriteansition ~ €SSential parameters. The first one is, in fact, the half-width
amplitude$ between the eigenstates of complex many-body?f the F function which is close to the Breit-Wigner half-
systems. We would like to point out that the approach canyvidth, and for weak interaction is given by the Fermi golden
also be used for solving the traditional problem of calcula-"ule. Another parameter is defined by the root-mean-square
tions of mean values of operators in open systems of intewidth of the F function, (an effective bandwidth of the
acting particles in the thermostat. Hamiltonian matrix in the energy representajion

The suggested approach is entirely based on the statistical In this paper we suggest a phenomenological expression
properties of chaotic compound states which are due to théor the F function which is valid in a large region of the
two-body interaction between the particles. For a relativelyinteraction strength and other parameters. This expression
strong interaction the number of components of compoundllows for analytical and numerical calculations of different
states is typically, large, and these components can be treatétean values and transition amplitudes. As one example, we
as random variables, provided the two-body interaction maderived analytical expression for the distribution of the oc-
trix elements are “complex” enough. cupation numbersg(E) in isolated systems ai interacting

The essential question is under which conditions thé~ermi particles distributed ovem orbitals (we used the
above approach is valid in systems with two-body randorrsimple Gaussian approximation of tikefunction; see Sec.
interaction. Note that the randomness of the matrix element¥).
itself is not enough for the onset of the equilibrium in the By making use of th& function, we have also studied the
system, since statistical properties of compound eigenstatesilidity of the standard Fermi-Dirac distribution for the de-
essentially depend on such parameters as the relative strengitription of finite systems of interacting Fermi particles. As
of the interaction, excitation energy, number of particles andvas found, the Fermi-Dirac distribution can provide a rea-
orbitals (single-particle states participating in the energy ex-sonable approximation for both isolated and ogdéen the
change, etc. In particular, even if the number of principal thermal bath systems. However, the parameters of the
components in compound states is large, for insufficientlyFermi-Dirac distribution have to be redefined by taking into
strong interactions the statistics of the components can baccount the increase of the effective temperature which is
abnormal, leading to hug@mon-Gaussianfluctuations in the due to the effects of the interaction. We calculated this in-
structure of the eigenstates. In such a case, there is no equirease of the temperature analytically, and compared with
librium in the system, and standard statistical description ishe numerical experiments for the two-body random interac-
not valid. In this regime, our numerical data show that thetion model; the data show very good agreement.
distribution of the occupation numbers strongly fluctuates One should stress that our approach gives more accurate
when slightly changing the total energy of the system. Thereresult forng and has much wider region of the applicability,
fore, the transition to the statistical equilibrium is far from compared to the Fermi-Dirac distribution. Specifically, it is
being trivial in systems with finite numbers of interacting valid even in the region where the Fermi-Dirac distribution
particles. However, for larger interaction the fluctuations offails; for example, due to the small number of particles.
the eigenstate component becomes nor(@dussiajn and To conclude, we would like to point out that a similar
equilibrium occurs. In this situation the fluctuations of the approach may be also used for classical chaotic systems.
occupation numbergg(E) are relatively small, and the Indeed, let us consider the system described by the Hamil-
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tonianH=Hy+V, whereH, is the unperturbed‘simple” ) @ .

Hamiltonian andV stands for “complex” interaction be- Ev=Hi=> nFet+ > Uspng "Ny (A2)

tween particles. Assume that we know the distribution for ® 7P

some variable in the system describedHby, for example,

the statistical average for the energy distribution of a singl

particlen(e,Eg), wheree is the energy of the particle arig, —

is the total energy of the system. Then one can calculate thaetric in indexes andk, the value off =2V (AE)? can be

effect of the interactionV by averagingn(e,E;) over the expressed in terms of the second momentFofising the

unperturbed energyE, using the F function, n(e,E) following exact relation for the basis componefsgge Ap-

= n(e,Eo)F(E,Eq)dE,. HereF(E,E,) gives the probabil- pendix B

ity of different values ofg, for a given value ofE. As

indicated in Ref[20] and checked numerically in Ref1, 2_ M2e _pEiy2_ 2

22], this classicaF distribution coincides with the shape of (AE) _Ei: G B ED) Z’k Hico A3)

guantum eigenstates in the semiclassical region which turns

out to be very wide. Thus a knowledge of the shape of quanwith Hy, standing for nondiagonal Hamiltonian matrix ele-

tum eigenstates can be used for the classical calculations, anents defined by the residual interactdnThis allows us to

vice versa. find the second moment of the spreading functdi). For
example, in the case of particles distributed ovem orbit-
als, we havd 3]

Since the “resonant” dependené&g—E" of the spread-
qng functionF(k') for not extremely strong interaction is sym-
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2058 from INTAS. tions (as well as the local spectral density of statssongly
depends on the relative strength of the interaction. That is,
with an increase of the interactiov, the shape of thé&
APPENDIX A: STRUCTURE OF CHAOTIC EIGENSTATES function changes its form from the Breit-Wigner one to the
AND SPREADING FUNCTION nearly Gaussiarisee also Ref[12]). It was found that for
small residual interaction the shape of eigenstates has a more
needs to know the average shape of compound eigenstat%omplicat.ed form, compared to EgAL), and should b.e
(the F function). One should stress that there is no Simplegﬁaracterlzed by two different widths. Indeed, the half-width
. C D : .~of the F distribution is given by the Fermi golden rule
analytical expression valid in a large range on the interactio

—n 2 : ; }
SrengiV. For exampl, the popula BreicWigner expres: 2701, whereu i the matix slement of e e
sion (Lorentzian is not good for obvious reasons: it has an piing a p P

infinite second moment. The question of an appropriate de(—)ther basis state$) directly coupled by the two-body inter-

scription of chaotic eigenstates in realistic many-body Sysgcnon, andd; is the energy spacing between these basis

tems has been studied in detail for a Ce af@iIn particu- stategsee details in Appendix)COn the other hand, there is
lar, it was found that good correspondence to the numericaielation (A4) which defines another width =2 V(AE)? via

data is given by two phenomenological expressions. The firshe second moment. One should stress that these two widths
one isF(x)~exp(—1+4x?), wherex=(E,—E)/T', with  are parametrically different in the interactidng,,~ V2, and

E, as the energy of a basis stdi® andT as the effective I'~V. There is also the “nonresonant” energy dependence
width of the distribution. This expression is close to theFxp~![a slow variation of thé= function due to the change
Gaussian at the central part and is exponential in the tail§f the density of statep(E)] which should be taken into
(see similar conclusions in Ref13], where a nuclear shell account. This dependence follows from the estim@jgy

model was studied ~Noi~Tp.
Another expression, which is more convenient for the The above arguments allow us to find more universal ex-
analytical study, is the so-called “squared” Lorentzig pression for the spreading functiéghwhenI'g<I" [8],
_ F) (po(E)p(E1)) 2 (A5)
F(Ex—E)~ 5, E=EV+A{), k ! 5

r
_py24 1
(Ex E)+4

2
{(EK—E)2+Z BB+

(A1) Here we take into account the shift of the maximum of Ehe

' function by the relatiorE=E" +A{) . The two parameters,
Here A(1')<1“ is some small shif{see below which in the TI'; andI', are directly related to the above two widtHs,
zero approximation can be neglected, &ndis defined by =T'gw andI',=T"?/T';. The value ofl', is found from the
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relation=;F)(EM — E,) 2= (AE)?=T'%4 [see Eq(A4) and  dence in['gy,), and it is better to use E¢A1). One can write
Appendix B] by integration of Eq(A5) in the approximation the extrapolation expression both for small and large values
p=const. Here and below we assume thatEh&unction is  of V (see also Ref.13]):
normalized,Z=1. In expressionfA4), po(E,) is the density
of basis (unperturbeyl states andp(E(") is the density of ~ Tewl’
compound states. We assume they are smooth functions of Y Tewt I
the energy, and that this energy dependence is slow in com-
parison with the “resonant” energy dependence on the scaléds a result, for smalV, we havel'gy<I" andI';=T"gy
I'. Symmetric dependence gy and p has been chosen in ~V?2, and for larger value51~F2~F~V>A(1‘)_ The criti-
order to keep symmetry in index&sandi in the F function.  cal value for this transition is given by the relatidiyy
For very smallV we havel';<T', (also A{)<T;; see =I'=T,~A,, and reads as/,~dn(m—n)/(27); see
below), therefore, in the central part the distribution (A5)  also Eq. (A4). The estimate of the average value of
has the Breit-Wigner shape with the widfh,y,. Concerning =d,/M; (see Appendix Cfar from the ground state gives
the meaning of’,, it is the effective energy band width of V. ~dy/n. As discussed in Sec. IX, the equilibrium distri-
the Hamiltonian matrixH, which is due to the two-body bution occurs forv>d;; this results in a quite unexpected
nature of the interaction. Indeed, the expressionlIfgris  conclusion. That is, the validity of the standard Breit-Wigner

(A8)

given by the estimate shape turns out to be very strongly limited since the region
1<V/di<V/di=~n(m—n)/(27) is practically absent for
rz d small number of particlea and orbitalsm.
Fzzm” 5, N(N=1(m=n)(m—n+3)~de(m-n), The shiftA{" in Eq. (A5) stands due to the level repulsion

(A6)  Which forces eigenvalueg” in the lower half of the spec-
trum to move down. The mean-field energigs= H,, do not

which is independent of the interaction strenfthHere we ‘”_C'“de the nondiag("_?nal int?raction which quds t(.) the repul-
used expressiofA5) and the estimate of the average valueS'om theref((i))re, the c(ie)nter of th§.funct|0r.1 is shifted b,y
di=do/M; for high excited stateM; here is the normal- the valueAj’=H;—E", whereH; is the diagonal matrix
ized density of those basis states which are directly con€lement of the Hamiltonian matrix. This shift{” can be
nected to the chosen state; see details in Appenglio@the  estimated from general arguments. Indeed, the shape of the
other hand, the typical bandwidth,=2bd, of the two- density of states is the same for both interacting and nonin-
body interaction Hamiltonian matrix is about four times, teracting particleg6,7], with the same positiorE; of the
Ay~4(m—n)d,, of the energy needed to transfer the par-centers ofpg(E) and p(E) (due to the conservation of the
ticle from the Fermi levek-=nd, to the highest available trace of the HamiltoniarH). However, the variances gf,

orbital e,,=md,. Therefore, the estimate fdf, reads as andp are different. This means that one can use the scaling
T,~A/4. relation © —KD) for the energy interval®, and find the

Now, we can easily explain the form of tie function scaling coefficienK from the relation between the variances,
(A5) using the perturbation theory in the interactiénFirst, ~ 02= 04+ (AE)2=K?a5, where (AE)? is defined by Eq.
let us consider the energy intervBk,,<|E,—E®W|<A,.  (A4). Since the centeE, for the energy-level density(E)
Within this interval, the basis statk) can be coupled to the does not shift, one can obtain the following shift of the lev-
principal components of the stalie in the first order ofv, els:
|CO2~ (Vi /Ex—EW)2. This quadratic decay agrees with
the Breit-Wigner shape of the function. Outside the energy
bandA,, for Ay <|E,—EW|<2A,, the basis statfk) can
be coupled to the principal components of the s$tatie the
second order ofV, resulting in the dependenckC{’|>  The value of(AE)? is typically much less thaw?; there-
~(Vie/Ex—EM)4. This corresponds to the tails of the fore, one obtains
squared Lorentzian shag@5). Therefore, our expression
(Ab) seems to be good in a large energy interval, and the . . (AE)?
second moment is finite which is important for applications. AP =(E.~EW) 7 (A10)

. : : h 2(09)
Finally, longer tails are described by higher orders
= |Ex—EW|/Ay of the perturbation theory,

. 2v —gM —gM®
o Vi :exp(_zmk L E'|)
k E,—EW Ay Y :

1+

AY=(E.—~EY) (A9)

(AE)?| ¥
(2)) |
(4G

Another way to obtain the shifi{" is related to the exact
relation for the first moment df (see Appendix B

Ekzz E(i)F(ki)%f F(ki)p(E(i))E(i)dE(i)_ (All)
i

(A7)
This explains the exponential tails of tfe function, see The substitution of the expressi@A5) into Eq. (A11) re-
details in Ref[2]. sults in the following value of the shif8]:
Numerical calculation$2,4,13,12 demonstrate that, for
stronger interactioV, the width of the spreading functidn A~ E d(Inp) (AE)Z (A12)

rapidly becomes linear i (instead of the quadratic depen- 172 dE
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According to Refs[6,7] (see also Ref11]), the shape of the 1 2
density of states fom>n>1 is close to the Gaussian both Ee=N > Hkk_<N > Hkk) :
. . . . . 2 k k

for noninteracting and interacting particles wighQ ando as
the center and the variance of the energy distributigfE)  The conservation of Fi? gives
[respectively g2 for p(E)]. In this ca?? relatiofA12) gives
the same estimat@\9) for the shiftAj"”. 1
The fact that the two different derivations of the shiff’ = E (kIH*k)= N kz [Hicol”,
lead to the same result is far from being trivial, since the
assumptions for the two derivations &f are different. In-  which results in the relation
deed, the second derivation of EGA10) is based on the

specific dependence of the eigenstate shape on the densities o2=E2 l 2 H H., —E2

po and p, unlike the general derivation of E4A9). One N §% Pk e

should stress that the specific form of the “resonant” energy

dependence of thE function (the denominator in EqA5) :E 2 H2 + i 2 H2, _ 2

defined by the squared Lorentzian, Gaussian) &aot im- N < KON gF PR T

portant for Eq.(A12) provided (AE)? is fixed. The only

assumption in'the above derivatiqn is the possibility to ex- :i E Eﬁ—E§+ i z m: USJFW,
pand the density(E) near the maximum of thE function. N < N

In fact, above we have demonstrated that the nonresonant
“distortion” factor &= (po(Ey)p(E™)) 2in (A5) is neces- Where o5 is the variance of the unperturbed spectrum, and

sary. we used Eq(B2).

Thus, the phenomenological expression for the shape of
the F function (A5) is self-consistent. Note that one can useAPPENDIX C: CALCULATIONS OF SPREADING WIDTHS
other expressions for the function (see, for example, Ref.
[12]); however, it should contain both the resonance term
depending orE,— E(") and the density distortion factdt

To start with, we stress that there are different definitions
of the spreading widths. One of the natural definitions is

FkEZ\/(AE)k where W’E)k is the variance of the distribu-
APPENDIX B MOMENTS OF THE F FUNCTION AND tion of the c_omponentE(k') [see Eq(B2)]. In Ref.[3] it was
: ENERGY SPECTRUM showr_l th.at in the model of random two-quy |nteract|on this
guantity is constantl’,=I" [see Eq.(A5)], i.e., it does not
Here we calculate the first and the second moments of théepend on a particular basis stdtberefore, on excitation

function F{") over the perturbed spectruf). Note that the ~ €nergy, number of excited pa_rticleé corresponding to this
dependence dg(ki) on the energie™ is known as the local state, etg. Note that it has a linear dependence on the inter-

spectral density of state@ DOS), or the “strength func- action strengthV. .
tion.” On definition, Unlike the latter, the commonly used definition of the

spreading width is related to the Breit-Wigner distribution,
and is defined as its half-widthg,,. However, this defini-
E(i)>k:2 E“F%E |<k|i>|2E<i> tion is reasonable only fpr re_latllvely small interaction, wr_len
i i the form of theF function is indeed close to the Breit-
Wigner form. In this case, the spreading width is given by

= (Kli)i|H[j)(j[k)=H=Ey, (B1) the Fermigolden rle
1) R
2

ka
ron=2m—, C1
where the relatior(i|H|j)=&;;(i|H]i) is used for the exact BW dq €Y
eigenstates. The variance can be obtained using the matrix
elements oH?, whered; is the mean spacing between corresponding basis

states|f), andVy; is the matrix element of the interaction
between the basis statdy and|f) [18]. As one can see, the
(AE)izz FE)(EK E())2~ 2 |C(' (E,—E™)2 spreading Widtﬂ“g\,)\, is proportional tov? and differs from
i I'. Note that the second moment of the Breit-Wigner shape
diverges; however, its actual form always has a cutoff in the
= 2 H (B2) tails which is reflected by the finite value bf
p#k If the interactionV is not small, the form of thé& func-
tion significantly differs from the Breit-Wigner shafeee

For example, in the two-body random interaction model withAppendix A). The critical value ofv fOf this transition can

n particles distributed ovem orbitals the sum in Eq(B2)  be estimated from the conditidhi),~

can be evaluated exactlgee Eq(A4)]. Contrary to the spreading W|dtﬁ the half-width of the
Now, we calculate the first moment and variance of theBreit-Wigner shape depends on the basis sfi}e Let us

energy spectrum. The trace conservatiomogives the first ~ start with the estimate of the mean value of the spreading

moment, width T'§),. According to definition(C1), one needs to cal-
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culate the density of squared transition matrix elements It is interesting to note that the simple estimate involving
Vi /di=(Z¢VZ)/A, where the sum is taken over transitions the total strength of transitiof& E)? [see Eq(A4)] divided
from a given basis statik) to other basis statg$) in the by the bandwidthA ~dy(m—n) gives a close result. The
energy intervalA. One should stress that the number of “al- above estimatéC3) can be used when studying the shape of
lowed” transitions(due to the two-body interactipis much  the F function in the regime of weak interaction. Note that
less than the total number of basis states in this intetval the value ofM;, defining the mean spacing between the
Let us assume, for simplicity, that the spacinfysbetween *“allowed” final states, is
single-particle energy levels is constant, and consider a pair

of particles which occupy the orbitatsandq. If we move di=do/My.

one particle to a higher orbital and another particle to a lower one should stress that the above estimatis! phas been
orbital by the same energy interval, the total energy of paryptained for the spreading width averaged over all basis
ticles does not change. The total number of such moves igiates. Near the ground state, the actual valud pfs much
M=~[min(m—s,g)+min(m—q,s)}J/2, wherem>1 is the num-  smaller due to the limitation of the available phase space.
ber of orbitals. By averaging over all valugsndg, one can  Also, the spreading width depends on the number of excited
obtainM~m/3. The Pauli principle reduces the number of particles in the basis state. For example, one can calculate the

(C4

available orbitals; therefore, in the system withparticles
we have M~(m—n)/3. The number of possible pairs is
given byn(n—1)/2, thus, the total number of basis stdtes

which have the same energy and connected with the chosen

basis statek) is defined by

M:~(m—n)n(n—1)/6. (C2

Other basis states are separated by, at least, the energy dism;=n(2s—3n),

tanced,. As a result, we obtain
2 T VZ

V
<FBW>~27TMfd—~ —(m—n)n(n—l)d—. (C3
0 0

3

spreading width'g,, of the basis states with one excited
particle only,

s—n)2Vv2
M;=(s—n)?, I‘éw~7r(d—0 for s<2n,
0
(CH
n(2s—3n)V3
Féwmwd—o for s>2n.
0
(Co)

Heres is the position of a particle corresponding to the en-
ergy es~sd,.
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