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Volume-preserving and volume-expanding synchronized chaotic systems

Louis M. Pecora, Thomas L. Carroll, Gregg Johnson, and Doug Mar
Code 6343, Naval Research Laboratory, Washington, D.C. 20375

~Received 10 February 1997!

Many schemes for synchronizing chaotic systems have emerged in recent years. Several of them have been
suggested for use in communications. In this paper we pay special attention to communications issues. We
show that one can use dynamical systems techniques to produce synchronized, chaotic systems that have
features that are desirable in private and secure communications systems. These features are~i! less structure
or pattern to the attractor,~ii ! very low time correlations,~iii ! more than one positive Lyapunov exponent
~hyperchaotic!, ~iv! synchronizable with one transmitted~scalar! signal,~v! rapid synchronization in few time
steps,~vi! the ability to add information to the chaotic carrier in a nonlinear fashion, and~vii ! easy to make and
analyze. We accomplish this by introducing a simple expanding-folding view ofn-dimensional maps which
leads to volume-preserving and volume-expanding maps in many cases whose trajectories cover a large
nonzero volume of phase space and which have the desired properties.@S1063-651X~97!14710-9#

PACS number~s!: 05.45.1b, 84.30.2r, 47.52.1j
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I. INTRODUCTION

Many early papers on chaotic synchronization sugges
that such behavior might be useful for secure or at le
private communications@1–15#. All of these schemes in
volved some type of masking of small information signals
the chaotic carrier or parameter modulation in the dr
~transmitter! by a small information signal. Unfortunately, a
demonstrated by Short@16# and Pe´rez and Cerderia@17#
these schemes are not secure and really not very priv
They are susceptible to prediction techniques for unmask
the information signals.

Other problems plague the use of ‘‘standard’’ chaotic s
tems. One is that the attractors occupy well-defined sub
in phase space causing the signals to have a high degr
patterning which will aid in their detection. Time correla
tions may be quite long, which also aid detection and
masking. Related to time correlations is the spectra of c
otic systems that typically has a ‘‘1/f ’’ fall-off or other peaks
and features. With only a few recent exceptions~see below!,
all the systems have only one positive Lyapunov expon
which also aids prediction. Some of the standard chaotic
tems are difficult to construct in circuitry. The Lorenz syste
is a good example of this@10,18#. Some systems also hav
rather long synchronization times where the response~re-
ceiver! goes through a long transient before achieving go
synchronous behavior.

If we examine the requirements of communications s
tems @19# we see that many of the above problems are
actly what secure communications systems try to avoid.
desire is to generate signals and systems that have little o
patterning, short correlation times, flat spectra, rapid s
chronization rates, low predictability, ease of design, e
implementation, and a signal mixing technique that ma
extracting information difficult by someone intercepting t
transmission.

We show that it is possible to achieve many of the
features using concepts from dynamics. We develop a sim
technique for synthesizing hyperchaotic, volume-preserv
and volume-expanding maps which we will label as VP
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VE maps. The geometric view of the systems are that
have several directions of expansion and simply ‘‘fold’’ th
trajectory back into a confined region of phase space wh
ever it leaves. These systems have little or no structure
phase space~there are no attractors! and hence, very little or
no patterning. They are also easy to implement in circui
A few recent papers have shown that it is possible to s
chronize hyperchaotic systems in a drive-response scen
by using only a scalar signal@20–23#. We use the technique
of synchronous substitution@24# to achieve similar results so
that we can communicate with the hyperchaotic, VP, and
systems. This approach also allows us to ‘‘tune’’ the syst
so that synchronization rates are very high~often as rapid as
a few iteration steps! and correlations times are low~again, a
few steps!. Finally, we show that one can use other, mo
complex methods to mix information with chaotic carrier
these methods appear in some cases to be immune to pr
tive attempts to extract the information. Here we use a v
sion of the exclusive-or~XOR! function and show that syn
chronization is still possible, but simple, predictive sign
extraction is not.

We note that there are some other relevant studies
similar approaches to the one we present here. A recent
per by Xiao, Hu, and Qu@25# has also made an attempt
use dynamical systems in a fashion compatible with
needs of communications. In that work they found that th
could develop arrays of coupled maps that had very low ti
correlations with each other. That addresses an impor
feature of private communications.

The use of self-synchronizing shift registers in cryptolo
was introduced with the paper by Savage@26# and is still
mentioned in modern cryptographical books@27#. We note
that this scheme is not exactly like the one we propose
Savage’s scheme the information signal is mixed with
keystream. The output from that mixing is the input into t
shift register and is simultaneously transmitted to the
ceiver where it is input to the receiver’s shift register. Thu
the shift registers on both ends are eventually filled with
same bits. This causes the synchronization. This type of s
chronization does not depend on a stability requirement
5090
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56 5091VOLUME-PRESERVING AND VOLUME-EXPANDING . . .
will work only for exactly transmitted bits. Dynamical syn
chronization can often tolerate some degradation in trans
ted signals and retain a near synchronous state. Obvio
each approach can have advantages. Comparisons of
need to be done in more detail to determine which would
more appropriate for certain circumstances.

II. VOLUME PRESERVING, LINEAR MAPS

A. Geometric view

We approach producing a VP, chaotic map, by first sho
ing how to make a simplen-dimensional chaotic map, the
adjusting the parameters so it is VP or nearly so. We us
linear view of the usual quality of chaotic systems: there
stretching~expansion! and then folding back into a region o
past dynamical trajectories. We will see that we can relax
constraint of VP and allow volume expanding~VE! to occur
with no loss of generality.

Let L be a linear transformation on then-dimensional
spaceRn. We supposeL has at least one eigenvalue of ma
nitude greater than 1 and at least one eigenvalue of ma
tude less than 1~these will be adjustable!. ThenL applied to
an arbitrary vector inRn will cause it to expand in some
direction~s! and contract in others. The linear mappingL will
define theexpansion functionpart of our chaotic map. Thu
given a point in our phase space, sayx(n), we get the next
point in time by applyingL, thus x(n11)5Lx(n). Now
how about the folding part?

We define a region of phase space (Rn) around the origin
where we want to confine the dynamics. For simplicity w
use ann-dimensional box region: a vectorx is in the region
if xiP@2ki ,ki # for each i 51, . . . ,n. We define afolding
function F such that when any componentxi of x goes be-
yond the region boundaries@2ki ,ki # for that component,F
moves the system point back into the region so that thei th
component is again between2ki , andki , otherwiseF does
nothing. We can think ofF as being applied componentwis
since the components are folded independently.

For simplicity we choose all the region boundaries to
at the sameki values, which we just callk. Obviously, other
shaped regions can be used as well as other expansion
ping, e.g., nonlinear ones. We chose the above s
it would be easier to implement in a circuit and eas
to analyze.

Here are some examples of foldin
functions. The simplest is the modulus function, as
the Bernoulli shift map in one dimension, whereF(x)
5(x1modk,x2modk,...,xnmodk). Another linear folding
function is the triangular function~much like the tent map!,
whereF(x)5„F(x1),F(x2),...,F(xn)… andF is defined as

F~x!5„21)q~x22 sgn~x!q…, ~1!

whereq5Int@(uxu11)/2k# and Int@ # means integer part o
the argument. The function in Eq.~1! just causes the trian
gular behavior seen in Fig. 1. We can also use trigonome
functions to fold the phase space point back into the des
region: F(x)5k sin(px/k) ~cf. Gershenfeld and Grinstei
@28#!. In general any function whose values are bounded
6k will work, but obviously some may not give desire
behavior. We have stayed with periodic functions that
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bounded by6k. These seem to avoid clustering points
certain areas of phase space and they give the other desi
features we want for communications.

The Lyapunov multipliers will emerge from the ergod
average of the Jacobian of the map. Since the map is lin
almost everywhere, we can get a good estimate of those
ponents. The Jacobian is given by

J5DF•L ~2!

In Eq. ~2! the factor ofDF will be diagonal. For the modulus
version ofF it is just the identity. For the triangular versio
we will have 61 on the diagonals depending on the ‘‘ou
put’’ components fromL. And for the sine version we will
have factors of cos(xi), wherexi is the value of thei th com-
ponentafter the linear transformationL. For the modulus
map the Lyapunov multipliers are just the eigenvalues ofL.
We can always adjust these so that the map is VP. For
triangular and trigonometric versions we need to calcul
the multipliers; however, we find that a good approximati
comes from just using the eigenvalues ofL.

All of the above follows through if we eliminate the con
straint on the eigenvalues to preserve the volume and a
the volume to expand locally.

B. Attaining a stable response: Synchronous substitution

Very often simply applying our original drive-respons
technique@1# of transmitting one of the drive dynamical var
ables and substituting it for its counterpart in the respo
will not lead to a stable driven subsystem. We therefore
troduced a form of synchronous substitution@24# to allow us
the freedom to transform to variables in which the respo
will be stable. We show how to do this in general with line
transformations which fit in well with the maps used in th
paper and which show the relation of synchronous subs
tion using linear transformations to standard control the
approaches. We go on to show the stability-variational eq
tion that results in the general case of nonlinear transfor
tions. In the next section we show a particular exam
which we apply to a circuit to test for the characteristics
desire in a communications system.

The idea of synchronous substitution is simple. We s
with the observation that if two systems are in synchro
then knowing the dynamical variables in one will give th
values of the dynamical variables in the other. This is sim
to the control theory concept of a state observer. The con
is useful in the case when we can synchronize two syst
by sending only one~scalar! variable. This is similar to the

FIG. 1. Triangular folding function.
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5092 56PECORA, CARROLL, JOHNSON, AND MAR
control theory problem of observing a system by using
other system@29#. We send only one signal, but we know th
values of all variables.

We can make use of this by noting that we can apply
invertible transformation to the (n) drive variablesxd, say
w5T(xd), and transmitw1 , the first component ofw ~we
can actually transmit any component, but this is just a re
dering!. The transmission is just a scalar. On the receiv
end with response variablesxr , if we are near a synchronou
state, we can recover one~or more! of thexd components by
using the inverseT21 to the transformationT even though
we have transmitted only one component ofw. This is pos-
sible because we are near synchrony,xd'xr . The new vari-
ables u5T(xr) must be close tow. Hence,ui'wi for i
51,2, . . . ,n. We havew1 from the transmission, so we us
ui or i 52, . . . ,n in place of the remainingwi to form a new
vector w̃5(w1 ,u2 ,u3 ,...,un)'w. Then we have at the re
ceiver an estimatex̃d5T21(w̃) of the drive variablesxd

which is continually updated by the reception ofw1 . We can
now use one or more components ofx̃d to drive the response
~receiver!.

Of course, we are not guaranteed synchronization w
any T we choose. However, if we choose to drive the
sponse with any of thex̃d components, we will change th
stability of the response sincex̃d depends implicitly onxr .
This means we can use stability of the response as a crite
and adjustT so that we get synchronization. A simpler for
of this synchronous substitution was shown in@24# where
various linear and nonlinear transformationsT were used to
stabilize response systems.

In order to simplify our search for good transformatio
we chooseT to be a linear, invertible transformation. Thi
along with our choice of driving schemes will lead direct
to a standard control-theory feedback approach with spe
cases which yield our original drive-response technique.

We choose to modify the response by adding a feedb
term to one or more of the response systems,

xd~m11!5F@Lxd~m!# drive,
~3!

xr~m11!5F@Lxr~m!1C~ x̃d2xr !# response,

whereC is a coupling matrix. We can rewrite the couplin
term asCT21(w̃2u). Now, recall thatw̃ andu differ only in
their first component, hence the remaining components
their difference are zero. Because of this it is easy to sh
that (w̃2u)5„KT(xd2xr),0,0, . . . ,0…, whereK is the first
row vector of the matrixT. Similarly we can now write the
coupling term asBKT(xd2xr), whereB is the first column
vector in T21. We have just derived the standard form f
linear feedback control@29#. The form of the coupling in Eq
~3! has been suggested as a control technique for sync
nizing chaotic systems@30–32# and has recently been used
synchronize hyperchaotic systems@20#. In our case it is easy
to show that this coupling modifies the Jacobian in Eq.~2! to
give a new Jacobian,

J85J1BKT, ~4!

We show in the next section a specific example of using
approach.
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As an aside we note that the control theory approach
special version of synchronous substitution. We are in g
eral not limited to using linear transformationsT, but any
invertible function fromRn to Rn or even another dynamica
system@33# is a valid candidate. In addition we can coup
the variablesx̃d into the response in many ways other th
linear feedback. In the general case we would have a n
map, sayG(xr ,x̃d) dependent on bothxr and x̃d, where the
latter is implicitly dependent onxr . This leads to a new Jaco
bian

J85DxrG1D x̄ dG•DwT21$DxrT%, ~5!

where $DxrT% means the Jacobian of the transformationT
with the first row replaced by zeroes. The zero row com
about from our replacement of the first component ofT(xr)
with w1 , the drive variable. For linear, feedback couplin
Eq. ~5! reduces to Eq.~4! In this paper we adhere to linea
transformations, but there most certainly will be cases wh
nonlinear functions are more appropriate. The reader sho
see Ref.@24# for examples of these.

Finally, we must admit that although we can optimize t
linear stability by our choice ofT we have not dealt with the
‘‘end points’’ where the folding takes place. The use of m
or tent functions will occasionally cause loss of synchro
zation when the drive and response are slightly differ
~which can occur because of noise or parameter mismatc
analog systems!. One system~drive or response! may be
folded when the other is not. This will be most severe w
the mod function, less so with the tent function. The use
smooth folding functions like the sine will not cause su
sudden loss of synchronization. At this point we have
remedy for this problem, except to note that by running o
chaotic map system faster than the information signal we
average out the occasional glitches. Other averaging
error-correcting techniques used in spread spectrum com
nication may also be applicable. We have not yet exami
these possibilities. We do note that by optimizing the line
stability we do guarantee rapid resynchronization of
transmitter and receiver, usually in a few steps. Nonethel
these problems deserve more study.

III. SYSTEM CHARACTERISTICS

We show here that such a VP or VE map system d
indeed have many of the properties that we require, nam
nearly homogeneous phase space trajectories~no attractors!,
very short time correlations, short times to achieve synch
nization from arbitrary initial conditions, broad-band, nea
white spectra, and some robustness to noise. We use
system described in@34# which we derive here using th
above approach.

We choose a specific map given by

xn11
d 5axn

d1bzn
d

yn11
d 5cyn

d1zn
d

zn11
d 5xn

d1yn
d

J mod2, ~6!

wherea,21, b'1, anducu,1 are chosen to make the ma
hyperchaotic. In order to drive our response system we
B5(b,1,0) andK5(G,0,1) and we have
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56 5093VOLUME-PRESERVING AND VOLUME-EXPANDING . . .
wn
d5zn

d1Gxn
d ,

z̃n
d5wn2Gxn

r ,

xn11
r 5axn

r 1bz̃n
d

yn11
r 5cyn

r 1 z̃n
d

zn11
r 5xn

r 1yn
r

J mod2,

or

xn11
r 5axn

r 1bzn
r 1b~zn

d1Gxn
d2zn

r 2Gxn
r !

yn11
r 5cyn

r 1zn
r 1~zn

d1Gxn
d2zn

r 2Gxn
r !

zn11
r 5xn

r 1yn
r

J mod2, ~7!

where we have written everything out to make explicit t
dependence of the coupling on the response variables. U
Eq. ~7! or Eq.~4! we can calculate the Jacobian of the syst
and the eigenvalues. It is easy to show that the eigenva
of the response area2bG, c, and 0. Sinceucu,1 we need
only concern ourselves with the first eigenvalue to determ
stability. Obviously the condition is thatua2bGu,1. We see
that if G50 we will have instability and sincez̃n

d5zn
d this

case corresponds to trying to use our original drive-respo
approach which won’t work. However, since we haveb'1
an obvious choice isG5a. This gives a stable respons
hence a good candidate for a signal to send iswn

d5zn
d

1axn
d . This is what we use in our tests and our circuit.

More details are given on this system in Ref.@24#. Below
we also show some results with other folding functions l
the triangular and the sine function. We examine the s
tem’s characteristics for the particular parameter valuesa5
2 4

3 , b51, andc5 1
3 . These parameters lead to a VP hyp

chaotic system with Lyapunov exponents~0.683, 0.3,
20.986!. But similar behavior is also seen for a wide ran
of parameters that we’ve investigated21.a.24, c,1,
and 1<b,2.

A. Phase space structures

Figure 2 shows two projections and a three-dimensio
~3D! view of the system trajectory~a52 4

3 , b51, andc5
1
3!. The behavior is indeed not localized on an attractor,
spread out over much of the space. For these parameter
3D structure still has some striations@Fig. 2~c!#. Figure 3
was done with the parametersa522, b51, andc5 1

2 and,
presumably because of the larger expansion~governed by the
parametera! the phase space structure is more uniform. O
object is not to find the optimum form here, but to show th
relatively structureless trajectories are possible with little
fort. Similar results ensue with the triangular folding fun
tion. The sine folding function retains some phase sp
structure because of its nonlinearity, namely the traject
points are most dense near the boundaries and least d
near the origin, although the structure remains spread o
most of the phase space region.

B. Time correlations

Figure 4 shows the linear correlation as a function of ti
shift h calculated simply from
ing
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N (
i

N

@x~ i !2mx#@x~ i 1h!2mx#

sx
2 , ~8!

wheremx is the mean andsx is the standard deviation of th
x( i ) time series. We see that the correlation falls quickly
zero within one time step. This type of behavior is qu
common in the VP systems we have studied. The expan
and folding functions quickly cause the trajectories to lo
memory of their initial conditions.

FIG. 2. Trajectories for parameter values~a52
4
3 , b51, and

c5
1
3!. ~a! x-y plane projection of trajectory.~b! x-z plane projec-

tion of trajectory. ~c! Three-dimensional view of the full phas
space trajectory.
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5094 56PECORA, CARROLL, JOHNSON, AND MAR
C. Spectra

Figure 5 shows a typical Fourier amplitude spectrum
they coordinate for the parameter values~a522, b51, and
c5 1

3!. The spectrum is broad band and nearly white. We
no discernible features in any of the spectra for this sys
for a wide range of parameters, although as the ‘‘expand
coefficient,’’ a, is decreased toward 1, the spectra begin
look more like a ‘‘1/f ’’ type.

D. Time to synchronization

We used the triangular version of the VP and V
maps to test the time to synchronization. We used pa
meters for VP and set to guaranteex synchronization
in one step ~see above! ~a52 4

3 , b51, and c5 1
3! and

x synchronization in several steps~a52 4
3 , b51.1, and

c5 1
3! and parameters for VE for immediatex synchroniza-

tion ~a52 4
3 , b51, and c5 1

3! and x synchronization
in several steps~a52 4

3 , b51.1, and c5 1
3!. All cases

were similar, so we report on one~VP!. We tracked the de-
cay of the ‘‘distance’’ between the drive and respon
Dr 5A(xr2xd)21(yr2yd)21(zr2zd)2. Because the map
is, for the most part, linear, we get exponential decay
Dr;e2lt, wherel'1.827. This gives a decay of a factor
1000 in about four steps on average. Hence, if we had 10
of accuracy in a communications line, we would be down
1 bit difference between drive and response in four st
even if both were initially different by the maximal amou
(210). Tests for the modulus map give similar results.

FIG. 3. Three-dimensional view of the full phase space traj
tory for parameter values~a522, b51, andc5

1
3!.

FIG. 4. Linear correlation as a function of iteration step (n) shift
for the x variable for parameter values~a52

4
3 , b51, andc5

1
3!.

The correlation drops to zero after one time step.
f

e
m
g
o

a-

e

f

its
o
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E. Influence of noise

We tested, numerically, the addition of noise on the s
chronization process. This presumably also gives an ind
tion of robustness to parameter mismatch, although we
not test that directly. We again used the triangular map w
folding function bounds at61 for all components. The pa
rameters were~a52 4

3 , b51, andc5 1
3!.

Figure 6 shows the phase plots ofxr versusxd and yr

versusyd for 1% and 2% peak amplitude noise levels~rms
noise levels correspond to 0.67 and 0.134, respectively! for
uniform, bounded random noise added toxr andyr simulta-
neously. We see that the maps are sensitive to noise.
dependence of the amount of synchronization loss,^Dy& rms
versus the rms noise levelh is linear from small noise levels
to about 20% noise to signal ratios. The relation is appro
mately ^Dy& rms52.9h. That is, for each percent noise w
add we throw the system out of synchronization in they
component by a percentage that is almost three times

-

FIG. 5. Fourier amplitude spectrum of they variable for param-
eter values~a522, b51, andc5

1
3!.

FIG. 6. Phase plots of synchronization betweenx andy compo-
nents for the triangular map version for~a! 1% rms noise and~b!
2% rms noise.
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56 5095VOLUME-PRESERVING AND VOLUME-EXPANDING . . .
large. They components show the most sensitivity to no
as can be seen from Fig. 6. Despite the apparent sensitivi
noise in the numerical models these maps can be bui
electronic circuits.

F. Other drive-response combinations

In order to apply chaotic synchronization to communic
tions, it is necessary to have many different drive-respo
circuit pairs. If one puts the drive and response in the form
Eq. ~2! as Penget al. @20# do for hyperchaotic systems, w
are able to find many stable response systems. Penget al.
found stable response systems by estimating what param
combinations would lead to stability and then searching n
these parameters: we were able to automate this proce
find many response systems.

We are able to generate other drive-response comb
tions by using the techniques of Penget al. @20# as shown in
Eqs. ~3! and ~4!. For the map of Eq.~6! with a52 4

3 , b
51, andc5 1

3 , the Jacobian is constant. To apply the meth
of Peng et al., we must choose three components for t
vector B and three components for the vectorK . We used
existing numerical routines for optimization@35# to find the
B and K vectors that minimized the modulus of the large
Lyapunov exponent of the response map. Starting from
arbitrary point in the six-dimensionalBKT parameter space
we determined the largest value of the magnitude of the
genvalues of the response Jacobian, which we shall
ummaxu. We then allowed the components ofB and K to be
varied in a manner that seeks out the nearest local minim
of ummaxu. Repeating the procedure with a dense array
starting points revealed dozens of combinations that redu
ummaxu to zero, even though we limited the range ofB andK
to ensure small feedback signals. The optimized comb
tions can significantly enhance the convergence of the
sponse system to the drive. In Fig. 7 we show the vec
difference between the two systems as the coupling is in
ated at t50. Here K5(1.559,1.030,0.6531)T and B5
(20.9067,20.1176,0.8645)T corresponding to mmax5
9.831023.

With multiple combinations ofB and K vectors that en-
sure synchronization, one could conceivably design a tra
mitter that could be tuned to exclusively synchronize a c
tain receiver with fixed coupling parameters. T
components ofK at the receiver constitute a ‘‘synchroniz
tion address’’ in the sense that the only receiver that w

FIG. 7. Plot of average synchronization error versus iterat
step (n) for optimized synchronization scheme.
to
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synchronize to the transmitter is the one with the sameK .
With multiple receivers, each with unique parameters,
transmitter’sK could be tuned to switch from one specifi
receiver to another. For example, if a second response
tem was built withK5(21.285,20.7682,20.2000)T and
B5(0.8957,0.0528,21.022)T, this system would synchro
nize with the drive system above only whenK of the drive is
switched to the same values, at which point the respo
would converge according tommax54.231023.

IV. VOLUME-PRESERVING CIRCUIT

A. Circuit description

We built a circuit to simulate the map of Eq.~6! with a
52 4

3 , b51, andc5 1
3 . Our modulus function for the circui

is symmetric about the origin, and we show this modu
function in Fig. 8. Figure 9 is a block diagram of the circu
The math block in the circuit is actually fairly simple, con
sisting only of operational amplifier adders and subtracto
The sample and hold blocks of the circuits consist of t
cascaded sample and hold amplifiers. The sample and
amplifiers are alternately clocked, so one amplifier is sa
pling while the other is holding, making an analog memo
The modulus blocks, which perform the mod function sho
in Fig. 8, were the most complicated part of the circuit
build and match because they produce a discontinuous f
tion. The clock for this circuit ran at 6 KHz.

B. Circuit tests

Figure 10 is a plot ofyd versusxd from the map circuit.
The plot fills the phase space, showing no obvious corre
tion betweenxd andyd. A power spectrum ofxd is shown in
Fig. 11. The power spectrum is quite flat. The autocorre
tion function ofxd drops to 0 in three clock cycles. Since th

n

FIG. 8. Modulus function used for the map of Eq.~7!.

FIG. 9. Block diagram of the map circuit.
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output of the circuit changes only once every 2 clock cycl
the autocorrelation function ofxd is almost a delta function

We also built a response circuit with the same parame
as the drive circuit. Figure 12 showsxr ~from the response
circuit! versusxd ~from the drive circuit!. The circuits are
synchronized most of the time. There are many desync
nized points visible in Fig. 12. The discontinuity in th
modulus functions is difficult to match, so that synchroniz
tion in the circuits is not perfect.

V. COMMUNICATIONS

In order to test communications possibilities with the V
and VE maps we chose a method for mixing the chaos
information signal that can still preserve perfect synchro
zation in the case of no noise and no parameter misma
This type of signal mixing can be attained by mixing t
signal with a dynamical variable and reinjecting that varia
into the map on the next time step. This type of mixing w
proposed by Volkovkii and Rul’kov@8#, Wu and Chua@14#,
and Kocarev and Parlitz@36#. This is shown schematically in
Fig. 13. Equations~6! and ~7! are modified as follows:

xn11
d 5axn

d1bzn*
d

yn11
d 5cyn

d1zn*
d

zn11
d 5xn

d1yn
d

J mod2,

~9!

FIG. 10. Theyd signal from the map circuit vs.xd signal from
the map circuit.

FIG. 11. Power spectrumS of the transmitted signalw from the
map circuit with a clock frequency of 6 kHz. The frequency
plotted as a fraction of the clock frequency.
,

rs

o-

-

d
i-
h.

e
s

xn11
r 5axn

r 1bz̃n*
d

yn11
r 5cyn

r 1 z̃n*
d

zn11
r 5xn

r 1yn
r

J mod2,

wherezn*
d is thezn

d dynamical variable with the information
mixed in andz̃n*

d is the z variable extracted from the syn
chronous substitution fromwn* , viz.

zn*
d5q~zn

d ,i n!,

wn* 5T~xn
d ,zn*

d!5axn
d1zn*

d , ~10!

z̃n*
d5wn* 2axn

r .

In Eq. ~10! q is the invertible mixing function. At the re-
ceiver when the systems are in synchrony we reprod
zn11

d 5zn11
r the value of thez component before signal mix

ing. We save this value until the next time step and use i
recover the information,

i n
r 5q21~zn

d ,z̃n*
d! ~11!

and in synchronizationi n5 i n
r .

FIG. 12. xr from the response circuit vsxd from the drive circuit
showing that the response circuit does synchronize to the drive

FIG. 13. Block diagram showing the method for mixing th
information signal into the drive as part of the system dynamic
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We examine two methods for mixing chaos and inform
tion. One is a simple addition of signals known as sig
masking@9–11,14,37,38# in which z* 5z1 i . The other mix-
ing function is one which, to our knowledge, has not be
tried before in chaotic circuits, but is common in the co
munications field, an exclusive-or~XOR! function, in which
z* 5 lz XOR l i , where l is a normalization factor which
determines the number of bits we use to represent the
nals. We subject both methods to predictive attempts to
tract the information signals@16,17#.

A. Chaotic masking and signal extraction

One simple way to send information on a chaotic signa
to add the information signal to one of the dynamical va
ables in the chaotic system. We added the information sig
i 50.5 sin(2pfit) to the second equation in Eqs.~6!,

yn115~ 1
3 !yn1zn1 i . ~12!

We decoded the information signal by looking at the sy
chronization errorD in the receiving circuit,

D5 z̄n2xn218 2yn218 mod2. ~13!

We found the signal to noise ratio at the information fr
quency f i from the power spectrum of a 16 384 point tim
series ofD digitized at 20 kHz. The signal to noise rat
when f i5700 Hz was 33 dB. The signal to noise ratio atf i
was essentially the same as we variedf i from 10 Hz to 3
kHz. The information signalf i was not visible in the powe
spectrum of the transmitted signalw.

We checked the security of this encoding method by
ing a predictive algorithm to extract the encoded informat
signal. The predictive algorithm was based on the work
Short@16#. We embedded the chaotic signal in a phase sp
using the method of delays and fit local linear maps to
resulting phase space plot. We then used the maps to pr
the chaotic time series. The small information signal mix
with the chaos-caused errors in the prediction. We used
Fourier spectrum of the prediction errors to create a fi
which we then applied to the chaotic time series to extr
the information signal. The method for Short@16# was essen-
tially the same, but Short used more sophisticated fitting.
found that the Short signal extraction method had no trou
extracting the periodic information signal when the sign
was simply added to a variable.

B. Nonlinear signal mixing, XOR

The XOR function test is implemented on a triangu
map with the variables kept between61 and choosing the
level of digitization through the normalization factorl where
q(z,i )5 lz XOR l i accomplished by taking the integer par
of lz and l i , using a bitwise exclusive-or and rescaling t
output by 1/l . The XOR function is its own inverse and t
accomplish this we use the same normalization, integer p
bit-wise exclusive-or, and rescaling by 1/l . In all our dem-
onstrations here we usel 51024. This means a one-bit erro
corresponds to approximately a 0.001 absolute error in
signal.
-
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We ran several tests usingi 5A sin(vt). The first test was
with a small amplitude sine wave,A50.1 and a frequency o
10p, so the sine wave repeats every 20 points. Figure
shows the extracted information signal,i n

r , at the response
We see a clean extraction as shown by the black line aga
the background of the transmittedwn* shown in grey, al-
though there are occasional ‘‘glitches’’ in the sine wav
These occur because we are using a limited resolution~1024
bits! and the XOR function is nearly discontinuous, hen
occasionally we get a 1 bit error that causes a substant
jump in the extracted signal that isnot there in the original
sine wave.

Figure 15 shows the extracted information signal,i n
r , in

the case we have 1% additive noise in the response sys
while Fig. 16 show the Fourier amplitude spectrum of t
result of the XOR of thez variable and the sine wave. Th
noise corrupts the sine wave. This is because of the disc
tinuous nature of the XOR function: small changes can ca
large errors for certainz and sine-wave combinations. How
ever, in Fig. 17 we see from the Fourier spectrum of
extracted sine-wave that the single frequency peak rem
large ~approximately 30 dB above the noise floor! and we

FIG. 14. Sine wavei (A50.1) extracted from XOR mixed trans
mitted signal~black line!. The simultaneously transmitted XOR sig
nal (zn*

d) is shown in dotted lines in the background.

FIG. 15. Similar to Fig. 14 except 1% noise added to the tra
mitted signal. Sine wavei R(A50.1) extracted from XOR mixed
transmitted signal~bold black line!. The simultaneously transmitte
XOR signal (zn*

d) is shown in dotted lines in the background an
the original sine wavei in thin solid line.
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could restore much of the sine wave’s characteristics w
standard signal processing techniques.

In Fig. 18 we see the recovery of a large amplitude s
wave, A51.0, both without and with 1% noise. Figure 1
shows the quality of synchronization when there is 1% no
The spectrum of the recovered sine wave is shown in Fig
in the case of the added noise. We do some simple si
processing on the recovered signal using a bandpass filt
isolate the main peak. Figure 21 shows the results of t
There is only a small modulation added to the original s
wave.

We used the small (A50.1) and large (A51.0) ampli-
tude sine wave signals to test whether we could extract
signals from the transmitted signalzn*

d using the usual pre
dictive strategies. When the sine wave was small, the in
mation signal did not greatly change the chaotic signal. T
Short@16# predictive algorithm was able to extract the info
mation signal forA50.1.

When A51.0, then the transmitted signal no long
looked like the original chaotic signal with a small amount
noise. The chaotic signal was greatly altered by the inform
tion signal. It was not possible to get a good delay emb
ding of the original chaotic system, so we could not fit loc
maps as we could when the information signal was sm

FIG. 16. The Fourier amplitude spectrum of the transmitted s
nal zn*

d (A50.1) with 1% noise.

FIG. 17. The Fourier amplitude spectrum of the extracted s
wave (A50.1) with 1% noise. The original peak is clearly prese
with some higher frequency noise and harmonics.
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We were not able to extract the information signal from t
chaotic signal using a simple version of the predictive alg
rithm.

VI. CONCLUSIONS AND REMARKS

The simple stretch and fold approach to linear ma
yields synchronizable systems that enjoy characteris
more appropriate for communications than do most cha
systems that possess an attractor that has a low volume
high degree of patterning in phase space. The map appr
should be significantly better since it is discrete and sho

-

e
t

FIG. 18. Sine waves (A51.0) extracted from XOR mixed trans
mitted signal~black line!, ~a! with no noise and~b! with 1% noise.
The simultaneously transmitted XOR signal (zn*

d), is shown in grey
lines in the background.

FIG. 19. Synchronization phase plots of the drive and respo
variables when the XOR mixing function is used and there is
additive noise present in the channel.
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56 5099VOLUME-PRESERVING AND VOLUME-EXPANDING . . .
match better with digital systems, as well as remain eas
design and analyze.

The use of synchronous substitution allows us to tune
transmitted signal and the response so that synchronizati
more robust and can occur in a short time period. The us
such synchronous transformations is good from ano
standpoint. Producing unique chaotic systems en masse
difficult challenge. However, we can present the same c
otic transmitter in many different guises simply using inve
ible transformations.

We see by the use of our nonlinear mixing~XOR! that
this method is probably preferred to simple chaotic sig
masking, although the XOR is not a panacea since there

FIG. 20. Fourier amplitude spectrum of the extracted sine w
(A51.0) with 1% noise. The sine peak is obviously much clea
in here than in Fig. 16.
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be other ways to attacks XOR encryption@39#. Whether
these attacks, which depend on a finite key length m
sense for a chaotic keystream in which there is no key len
apparantly, is not clear. Another problem with the XOR
also one of its good features: it has extreme variations
values with only slightly different arguments~it is continu-
ous, but not differentiable!. This makes loss of synchroniza
tion easier and decreases the robustness of the system i
presence of noise or parameter mismatch. Much more w
needs to be done to either find robust maps or to replace
XOR with a highly nonlinear, secure mixing function, b
one which will not cause as much trouble in the presence
noise and parameter mismatch.

e
r

FIG. 21. Resulting sine wave from a bandpass filter applied
the spectrum in Fig. 19 to allow only the main peak to remain.
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