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Many schemes for synchronizing chaotic systems have emerged in recent years. Several of them have been
suggested for use in communications. In this paper we pay special attention to communications issues. We
show that one can use dynamical systems techniques to produce synchronized, chaotic systems that have
features that are desirable in private and secure communications systems. These fea(yrEssargructure
or pattern to the attractofji) very low time correlations(iii) more than one positive Lyapunov exponent
(hyperchaotig, (iv) synchronizable with one transmittéscalaj signal,(v) rapid synchronization in few time
steps/(vi) the ability to add information to the chaotic carrier in a nonlinear fashion(@ndeasy to make and
analyze. We accomplish this by introducing a simple expanding-folding viem+dimensional maps which
leads to volume-preserving and volume-expanding maps in many cases whose trajectories cover a large
nonzero volume of phase space and which have the desired prope3fi€63-651X97)14710-9

PACS numbeps): 05.45+b, 84.30-r, 47.52+j

[. INTRODUCTION VE maps. The geometric view of the systems are that we
have several directions of expansion and simply “fold” the
Many early papers on chaotic synchronization suggestettajectory back into a confined region of phase space when-
that such behavior might be useful for secure or at leastver it leaves. These systems have little or no structure in
private communication$1—-15. All of these schemes in- phase spacéhere are no attractgrand hence, very little or
volved some type of masking of small information signals byno patterning. They are also easy to implement in circuitry.
the chaotic carrier or parameter modulation in the driveA few recent papers have shown that it is possible to syn-
(transmittey by a small information signal. Unfortunately, as chronize hyperchaotic systems in a drive-response scenario
demonstrated by Shoftl6] and Peez and Cerderid17] by using only a scalar signf20—23. We use the technique
these schemes are not secure and really not very privatef synchronous substitutidr24] to achieve similar results so
They are susceptible to prediction techniques for unmaskinthat we can communicate with the hyperchaotic, VP, and VE
the information signals. systems. This approach also allows us to “tune” the system
Other problems plague the use of “standard” chaotic sysso that synchronization rates are very higften as rapid as
tems. One is that the attractors occupy well-defined subsetsfew iteration stepsand correlations times are lol@gain, a
in phase space causing the signals to have a high degree fefv step$. Finally, we show that one can use other, more
patterning which will aid in their detection. Time correla- complex methods to mix information with chaotic carriers;
tions may be quite long, which also aid detection and unthese methods appear in some cases to be immune to predic-
masking. Related to time correlations is the spectra of chative attempts to extract the information. Here we use a ver-
otic systems that typically has a “ft/ fall-off or other peaks  sion of the exclusive-o(XOR) function and show that syn-
and features. With only a few recent exceptigese below,  chronization is still possible, but simple, predictive signal
all the systems have only one positive Lyapunov exponentextraction is not.
which also aids prediction. Some of the standard chaotic sys- We note that there are some other relevant studies and
tems are difficult to construct in circuitry. The Lorenz systemsimilar approaches to the one we present here. A recent pa-
is a good example of thigl0,18. Some systems also have per by Xiao, Hu, and QUi25] has also made an attempt to
rather long synchronization times where the respofmee use dynamical systems in a fashion compatible with the
ceiven goes through a long transient before achieving goodheeds of communications. In that work they found that they
synchronous behavior. could develop arrays of coupled maps that had very low time
If we examine the requirements of communications sys<orrelations with each other. That addresses an important
tems[19] we see that many of the above problems are exfeature of private communications.
actly what secure communications systems try to avoid. The The use of self-synchronizing shift registers in cryptology
desire is to generate signals and systems that have little or eas introduced with the paper by Savd@8] and is still
patterning, short correlation times, flat spectra, rapid synmentioned in modern cryptographical bodi&¥]. We note
chronization rates, low predictability, ease of design, easyhat this scheme is not exactly like the one we propose. In
implementation, and a signal mixing technique that make$Savage’s scheme the information signal is mixed with the
extracting information difficult by someone intercepting the keystream. The output from that mixing is the input into the
transmission. shift register and is simultaneously transmitted to the re-
We show that it is possible to achieve many of theseceiver where it is input to the receiver’s shift register. Thus,
features using concepts from dynamics. We develop a simplihe shift registers on both ends are eventually filled with the
technique for synthesizing hyperchaotic, volume-preservingame bits. This causes the synchronization. This type of syn-
and volume-expanding maps which we will label as VP orchronization does not depend on a stability requirement and
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will work only for exactly transmitted bits. Dynamical syn-
chronization can often tolerate some degradation in transmit-
ted signals and retain a near synchronous state. Obviously,
each approach can have advantages. Comparisons of both F(x)
need to be done in more detail to determine which would be

more appropriate for certain circumstances.

+k

Il. VOLUME PRESERVING, LINEAR MAPS

A. Geometric view

X

We approach producing a VP, chaotic map, by first show-
ing how to make a simpla-dimensional chaotic map, then FIG. 1. Triangular folding function.
adjusting the parameters so it is VP or nearly so. We use a
linear view of the usual quality of chaotic systems: there isbounded by+k. These seem to avoid clustering points in
stretching(expansioh and then folding back into a region of certain areas of phase space and they give the other desirable
past dynamical trajectories. We will see that we can relax théeatures we want for communications.
constraint of VP and allow volume expandifigE) to occur The Lyapunov multipliers will emerge from the ergodic
with no loss of generality. average of the Jacobian of the map. Since the map is linear

Let L be a linear transformation on th&dimensional almost everywhere, we can get a good estimate of those ex-
spaceR". We supposé. has at least one eigenvalue of mag- ponents. The Jacobian is given by
nitude greater than 1 and at least one eigenvalue of magni-
tude less than lthese will be adjustableThenL applied to J=DF-L @)
an arbitrary vector inR" will cause it to expand in some
directior(s) and contract in others. The linear mapplogyill
define theexpansion functiompart of our chaotic map. Thus
given a point in our phase space, sdy), we get the next
point in time by applyingL, thusx(n+1)=Lx(n). Now
how about the folding part?

We define a region of phase spad¥'( around the origin
where we want to confine the dynamics. For simplicity we
use am-dimensional box region: a vectaiis in the region
if x;e[—k;,ki] for eachi=1,... n. We define afolding
function F such that when any componextof x goes be-
yond the region boundarigs-k; ,k;] for that component-
moves the system point back into the region so thatithe
component is again betweenk; , andk;, otherwiseF does
nothing. We can think ofF as being applied componentwise,
since the components are folded independently.

For simplicity we choose all the region boundaries to be
at the samé; values, which we just cak. Obviously, other Very often simply applying our original drive-response
shaped regions can be used as well as other expansion mapehniqud1] of transmitting one of the drive dynamical vari-
ping, e.g., nonlinear ones. We chose the above sincables and substituting it for its counterpart in the response
it would be easier to implement in a circuit and easierwill not lead to a stable driven subsystem. We therefore in-
to analyze. troduced a form of synchronous substitut{@4] to allow us

Here are some examples of folding the freedom to transform to variables in which the response
functions. The simplest is the modulus function, as inwill be stable. We show how to do this in general with linear
the Bernoulli shift map in one dimension, whefg(x)  transformations which fit in well with the maps used in this
= (x,modk,x,modK, ... x,modk). Another linear folding paper and which show the relation of synchronous substitu-
function is the triangular functiofmuch like the tent mgp  tion using linear transformations to standard control theory
whereF (x) = (F(X;),F(X,),...,F(x,)) andF is defined as  approaches. We go on to show the stability-variational equa-

tion that results in the general case of nonlinear transforma-

F(x)=(—1)%(x—2 sgr(x)q), (1)  tions. In the next section we show a particular example

which we apply to a circuit to test for the characteristics we
whereq=Int[(|x|+1)/2k] and Inf ] means integer part of desire in a communications system.
the argument. The function in E¢l) just causes the trian- The idea of synchronous substitution is simple. We start
gular behavior seen in Fig. 1. We can also use trigonometrigvith the observation that if two systems are in synchrony,
functions to fold the phase space point back into the desirethen knowing the dynamical variables in one will give the
region: F(x)=k sin(mx/k) (cf. Gershenfeld and Grinstein values of the dynamical variables in the other. This is similar
[28]). In general any function whose values are bounded byo the control theory concept of a state observer. The concept
+k will work, but obviously some may not give desired is useful in the case when we can synchronize two systems
behavior. We have stayed with periodic functions that areéby sending only ondscalaj variable. This is similar to the

In Eqg. (2) the factor ofDF will be diagonal. For the modulus
version ofF it is just the identity. For the triangular version
we will have =1 on the diagonals depending on the “out-
put” components fronL. And for the sine version we will
have factors of cog(), where; is the value of théth com-
ponentafter the linear transformatioh.. For the modulus
map the Lyapunov multipliers are just the eigenvaluek of
We can always adjust these so that the map is VP. For the
triangular and trigonometric versions we need to calculate
the multipliers; however, we find that a good approximation
comes from just using the eigenvaluesLof

All of the above follows through if we eliminate the con-
straint on the eigenvalues to preserve the volume and allow
the volume to expand locally.

B. Attaining a stable response: Synchronous substitution
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control theory problem of observing a system by using an- As an aside we note that the control theory approach is a
other systeni29]. We send only one signal, but we know the special version of synchronous substitution. We are in gen-
values of all variables. eral not limited to using linear transformatiofls but any

We can make use of this by noting that we can apply annvertible function fromR" to R" or even another dynamical
invertible transformation to then) drive variablesx?, say  system[33] is a valid candidate. In addition we can couple
w=T(x%, and transmitw,, the first component ofv (we  the variables® into the response in many ways other than
can actually transmit any component, but this is just a reorlinear feedback. In the general case we would have a new
dering. The transmission is just a scalar. On the receivingmap, sayG(x",X%) dependent on botk" andx¢, where the
end with response variables, if we are near a synchronous latter is implicitly dependent or". This leads to a new Jaco-
state, we can recover oifer more of thex® components by  bian
using the inversd@ ! to the transformatio even though

we have transmitted only one componentofThis is pos- J'=DyG+DxaG-D,, T YD T}, (5)
sible because we are near synchradfisx". The new vari-

ablesu=T(x") must be close tov. Hence,u;~w; for i where {D, T} means the Jacobian of the transformatibn
=1,2,...n. We havewl from the transmission, so we use with the first row replaced by zeroes. The zero row comes
ujori=2,...nin place of the remaininw; to form a new about from our replacement of the first component ¢£")

vector W= (W;,U,,Us,...,.u,)=~W. Then we have at the re- With w,, the drive variable. For linear, feedback coupling
ceiver an estimat&?=T"1(W) of the drive variablesx! ~ Ed. (5 reduces to Eq(4) In this paper we adhere to linear
which is continually updated by the receptiorvef. We can transformations, but there most certainly will be cases where
now use one or more componentsxdfto drive the response nonlinear functions are more appropriate. The reader should
(receivey. see Ref[24] for examples of these.

Of course, we are not guaranteed synchronization with Finally, we must admit that although we can optimize the
any T we choose. However, if we choose to drive the re-linear stability by our choice of we have not dealt with the
sponse with any of th&’ components, we will change the “end points” where the folding takes place. The use of mod
stability of the response siné& depends implicitly orx™. ~ Or tent functions will occasionally cause loss of synchroni-
This means we can use stability of the response as a critericgfion when the drive and response are slightly different
and adjusfl so that we get synchronization. A simpler form (Which can occur because of noise or parameter mismatch in
of this synchronous substitution was shown[24] where ~analog systems One system(drive or responsemay be
various linear and nonlinear transformatiohsvere used to ~folded when the other is not. This will be most severe with
stabilize response systems. the mod function, less so with the tent function. The use of

In order to simplify our search for good transformations Smooth folding functions like the sine will not cause such
we chooseT to be a linear, invertible transformation. This, Sudden loss of synchronization. At this point we have no
along with our choice of driving schemes will lead directly rémedy for this problem, except to note that by running our
to a standard control-theory feedback approach with speci@naotic map system faster than the information signal we can
cases which yield our original drive-response technique. ~@verage out the occasional glitches. Other averaging and

We choose to modify the response by adding a feedbacITor-correcting techniques used in spread spectrum commu-

term to one or more of the response systems, nication may also be applicable. We have not yet examined
these possibilities. We do note that by optimizing the linear
xd(m+1)=F[Lx%m)] drive, stability we do guarantee rapid resynchronization of the
3) transmitter and receiver, usually in a few steps. Nonetheless,
X" (m+1)=F[LX (m)+C(X¢—x")] response, these problems deserve more study.
whereC is a coupling matrix. We can rewrite the coupling Ill. SYSTEM CHARACTERISTICS

term asCT~}(W—u). Now, recall thafv andu differ only in
(w=u) W ud y! § We show here that such a VP or VE map system does

their first component, hence the remaining components 0 deed h f th ties that 4 |
their difference are zero. Because of this it is easy to shoy/¢€€d have many ol the properties that we require, namely,

that @—u)=(KT(x{—x'),0,0 0), whereK is the first nearly homogeneous phase space traject¢niesattractory

row vector of the matrixT’ ’Sirﬁillé;ly ’vve can now write the Very short time correlations, short times to achieve synchro-
coupling term asBKT(xd—.xr) whereB is the first column nization from arbitrary initial conditions, broad-band, near-
vector inT~1, We have just’derived the standard form forWhlte spectra, and_ some rpbustness {0 noise. We use the
linear feedback contrgR9]. The form of the coupling in Eq. system described i§34] which we derive here using the

(3) has been suggested as a control technique for synchr<‘F51—b0Ve approach. - .
nizing chaotic system80—32 and has recently been used to We choose a specific map given by
synchronize hyperchaotic systefi@9]. In our case it is easy 4 _adip
to show that this coupling modifies the Jacobian in @jto x3+1—ax3+ ng
give a new Jacobian, Yn+1=CY¥nt2Z, ( mod2, (6)
Zni1=XatYh
J'=J+BKT, (4
wherea< —1, b~1, and|c|<1 are chosen to make the map
We show in the next section a specific example of using thistyyperchaotic. In order to drive our response system we use
approach. B=(b,1,0) andKk=(I",0,1) and we have
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wil=z3+1xd, (a) y

Z=w,—TI'x",

X, =ax +bZ

r _ r,=d
Yn+1=CYntZ, mod2,
ro_ r
Zn+1_Xn+yn

X
or

X, =axi+bZ +b(z8+Txd— 2z —I'x")

Vhe1=CYatzn+(Zp+Ixi—2,— X))t mod2, (7)

Zh41=Xn T Yn
where we have written everything out to make explicit the  (b) 2z

dependence of the coupling on the response variables. Using
Eq. (7) or Eq.(4) we can calculate the Jacobian of the system
and the eigenvalues. It is easy to show that the eigenvalues
of the response ara—bl’, c, and 0. Sincdc|<1 we need
only concern ourselves with the first eigenvalue to determine
stability. Obviously the condition is thga—bI'|<1. We see
that if '=0 we will have instability and sincei=2z" this
case corresponds to trying to use our original drive-response
approach which won't work. However, since we hdve 1
an obvious choice id'=a. This gives a stable response,
hence a good candidate for a signal to sendwfs=z°
+axd. This is what we use in our tests and our circuit.
More details are given on this system in Re¥4]. Below
we also show some results with other folding functions like
the triangular and the sine function. We examine the sys-  (¢) 4
tem’s characteristics for the particular parameter vahres
—3, b=1, andc=3%. These parameters lead to a VP hyper-
chaotic system with Lyapunov exponent§.683, 0.3,
—0.986. But similar behavior is also seen for a wide range
of parameters that we've investigatedl>a>—4, c<1,
and I1sb<2.

A. Phase space structures

Figure 2 shows two projections and a three-dimensional
(3D) view of the system trajectorfa=—3, b=1, andc=
1). The behavior is indeed not localized on an attractor, but
spread out over much of the space. For these parameters the

3D structure still has some striatiofBig. 2c)]. Figure 3 FIG. 2. Trajectories for parameter valugs=—3, b=1, and
was done with the parametess= —2, b=1, andc=3 and,  c=1). (3 x-y plane projection of trajectoryb) x-z plane projec-
presumably because of the larger expanggmverned by the tion of trajectory.(c) Three-dimensional view of the full phase
parameten) the phase space structure is more uniform. Oukpace trajectory.
object is not to find the optimum form here, but to show that

relatively structureless trajectories are possible with little ef- N
fort. Similar results ensue with the triangular folding func- > Ix(i)—m[x(i +h)—m,]

tion. The sine folding function retains some phase space i

structure because of its nonlinearity, namely the trajectory r(h)= Ui ' ®
points are most dense near the boundaries and least dense

near the origin, although the structure remains spread over . . i
most of the phase space region. wherem, is the mean and-, is the standard deviation of the

x(i) time series. We see that the correlation falls quickly to
zero within one time step. This type of behavior is quite
common in the VP systems we have studied. The expansion

Figure 4 shows the linear correlation as a function of timeand folding functions quickly cause the trajectories to lose
shift h calculated simply from memory of their initial conditions.

y

Zl -

B. Time correlations
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S(w)

y

FIG. 3. Three-dimensional view of the full phase space trajec- ®
tory for parameter value@=—2, b=1, andc=3).

FIG. 5. Fourier amplitude spectrum of tlgevariable for param-
eter valuefa=—2, b=1, andc=13).

C. Spectra
Figure 5 shows a typical Fourier amplitude spectrum of E. Influence of noise
they coordinate for the parameter values= —2,b=1, and We tested, numerically, the addition of noise on the syn-

c=3). The spectrum is broad band and nearly white. We se@hronization process. This presumably also gives an indica-
no discernible features in any of the spectra for this systenfon of robustness to parameter mismatch, although we did
for a wide range of parameters, although as the “expandingot test that directly. We again used the triangular map with
coefficient,” a, is decreased toward 1, the spectra begin tGolding function bounds at-1 for all components. The pa-

look more like a “1f" type. rameters weréa=—3, b=1, andc=3).
Figure 6 shows the phase plots xf versusx® and y"
D. Time to synchronization versusy® for 1% and 2% peak amplitude noise levéims

We used the triangular version of the VP and VE noise levels correspond to 0.67 and 0.134, respeciivety
. . R
maps to test the time to synchronization. We used paradniform, bounded random noise addedtoandy’ simulta-
meters for VP and set to guarantee synchronization neously. We see that the maps are sensitive to noise. The

in one step(see above (a=-%, b=1, andc=1%) and dependence of the amount of synchronization 1043/)rms
4 versus the rms noise levelis linear from small noise levels

X synchronization in several stega=-—3, b=1.1, and o ) ) X S .

c=1) and parameters for VE for immediatesynchroniza- to about 20% rlmse to S|gngl ratios. The relation is approxi-

tion (a=—2%, b=1, and c=2) and x synchronization mately (Ay)ms=2.97. That is, for each per_cen.t noise we
add we throw the system out of synchronization in the

in several stepsa=—3, b=1.1, andc=3). All cases , :
were similar, so we report on or®P). We tracked the de- component by a percentage that is almost three times as

cay of the “distance” between the drive and response
Ar=(x"— x99+ (y"—y9 2+ (z"— z%?. Because the map @)
is, for the most part, linear, we get exponential decay of
Ar~e M, where~1.827. This gives a decay of a factor of
1000 in about four steps on average. Hence, if we had 10 bits
of accuracy in a communications line, we would be down to x4 ' y
1 bit difference between drive and response in four steps
even if both were initially different by the maximal amount
(219). Tests for the modulus map give similar results.

xr yr

r(x) 1 time step
0 /
—t
-30 20 -10 O 10 20 30
n
FIG. 4. Linear correlation as a function of iteration step §hift FIG. 6. Phase plots of synchronization betwaesmdy compo-
for the x variable for parameter valuda= — % b=1, andc= %). nents for the triangular map version f@) 1% rms noise andb)

The correlation drops to zero after one time step. 2% rms noise.
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n

synchronize to the transmitter is the one with the same
FIG. 7. Plot of average synchronization error versus iterationWith multiple receivers, each with unique parameters, the

step 1) for optimized synchronization scheme. transmitter'sK could be tuned to switch from one specific
receiver to another. For example, if a second response sys-

large. They components show the most sensitivity to noisetem was built withK = (—1.285,-0.7682;-0.2000) and

as can be seen from Fig. 6. Despite the apparent sensitivity 8= (0.8957,0.0528; 1.022)", this system would synchro-

noise in the numerical models these maps can be built imize with the drive system above only whiknof the drive is

electronic circuits. switched to the same values, at which point the response
would converge according 1@ m,=4.2X 10 3.

F. Other drive-response combinations

In order to apply chaotic synchronization to communica- IV. VOLUME-PRESERVING CIRCUIT

tions, it is necessary to have many different drive-response A. Circuit description
circuit pairs. If one puts the drive and response in the form of : o . .
: We built a circuit to simulate the map of E(f) with a
Eq. (2) as Penget al. [20] do for hyperchaotic systems, we . -
a.(2) gt al. [20] yp y =—1%,b=1, andc=%. Our modulus function for the circuit

are able to find many stable response systems. Reayy . e about th L q how thi qul
found stable response systems by estimating what parametgy SYMMEtric about the origin, and we show this modu'us

combinations would lead to stability and then searching ne nction in Fig. 8. Figure 9 is a block diagram of the circuit.

these parameters: we were able to automate this process He. math block in th? circuit is 'allctually fairly simple, con-
find many response systems sisting only of operational amplifier adders and subtractors.

We are able to generate other drive-response combina e sample and hold blocks of the circuits consist of two
tions by using the techniques of Pegigal. [20] as shown in cascaded sample and hold amplifiers. The sample and hold
Egs. (3) and (4). For the map of Eq(6) with a=—%, b amplifiers are alternately clocked, so one amplifier is sam-

. . 3

=1, andc= %, the Jacobian is constant. To apply the methocf?lk"ng Wr:j'lel thilothker IS thLdmg’f makt|rr]19 an (??alo% mer;:ory.
of Penget al, we must choose three components for the. € modulus blocks, which perform the mod function snown

vector B and three components for the vectér We used in _Fig. 8, were the most complicated part_of the_z circuit to
existing numerical routines for optimizatidB5] to find the puﬂd and match bec?‘“S‘? thgy produce a discontinuous func-
B andK vectors that minimized the modulus of the Iargestt'on' The clock for this circuit ran at 6 KHz.

Lyapunov exponent of the response map. Starting from an
arbitrary point in the six-dimension&@K "™ parameter space,
we determined the largest value of the magnitude of the ei- Figure 10 is a plot ofyd versusx? from the map circuit.
genvalues of the response Jacobian, which we shall caithe plot fills the phase space, showing no obvious correla-
| 4mad- We then allowed the components BfandK to be  tion betweenx® andy?. A power spectrum o%? is shown in
varied in a manner that seeks out the nearest local minimurpig. 11. The power spectrum is quite flat. The autocorrela-
of |umaf- Repeating the procedure with a dense array ofion function ofx? drops to 0 in three clock cycles. Since the
starting points revealed dozens of combinations that reduced
| tmas tO ZeTO, even though we limited the rangeBaindK

to ensure small feedback signals. The optimized combina-

tions can significantly enhance the convergence of the re- L

B. Circuit tests

sponse system to the drive. In Fig. 7 we show the vector Xno Xn+d —I_:zamf = modulus
difference between the two systems as the coupling is initi- ! !
ated att=0. Here K=(1.559,1.030,0.6531) and B= Yn  Yn# —{——Zahmﬁf |_s|modulus
(—0.9067,-0.1176,0.8645) corresponding t0 pma= math > o -
9.8x10 3. 5 | [sample | |

With multiple combinations oB andK vectors that en- Zn n+1 T3} &hold  [—H*| modulus
sure synchronization, one could conceivably design a trans- | ! “

1 |

mitter that could be tuned to exclusively synchronize a cer-
tain receiver with fixed coupling parameters. The | clock | | bounds |
components oK at the receiver constitute a “synchroniza-
tion address” in the sense that the only receiver that will FIG. 9. Block diagram of the map circuit.
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yd(n)

-2 -1 0 1 2
x9(n)
T T T T
FIG. 10. They® signal from the map circuit vsx® signal from -2 ! xdo( n) 1 2

the map circuit.

FIG. 12.x" from the response circuit v from the drive circuit

output of the circuit changes only once every 2 clock CyCIes"showing that the response circuit does synchronize to the drive.

the autocorrelation function of¢ is almost a delta function.
We also built a response circuit with the same parameters

as the drive circuit. Figure 12 shows$ (from the response o

circuit) versusx® (from the drive circuit. The circuits are Yn+1=C¥nt 73" » mod2,

synchronized most of the time. There are many desynchro- PANPED U RV

nized points visible in Fig. 12. The discontinuity in the

modulus functions is difficult to match, so that synchroniza-Wherez;“ is thezj, dynamical variable with the information

tion in the circuits is not perfect. mixed in andz}? is the z varlable extracted from the syn-

chronous substitution from};

*x d
n+1 aX +bzn

V. COMMUNICATIONS .
*d_ d

. . T . n —Q(Zn,ln),

In order to test communications possibilities with the VP

and VE maps we chose a method for mixing the chaos and wr=T(x4,z¢N=axd+ 219, (10)
information signal that can still preserve perfect synchroni-
zation in the case of no noise and no parameter mismatch. ZH9=w* —ax].

This type of signal mixing can be attained by mixing the

signal with a dynamical variable and reinjecting that variableln Eq. (10) q is the invertible mixing function. At the re-
into the map on the next time step. This type of mixing wasceiver when the systems are in synchrony we reproduce
proposed by Volkovkii and Rul'koy8], Wu and Chud14], 2%, =7 .. the value of the component before signal mix-
and Kocarev and Parlif86]. This is shown schematically in ing. We save this value until the next time step and use it to
Fig. 13. Equationg6) and (7) are modified as follows: recover the information,

n+l =ax +b2nd ir—=q Lz 7*9 (11)
yn+1 Cyn+z mod2,

d and in synchronization,=i"
Zn41™ X3 +yn y no'n

9
d d S d 1
Xt 1=Fs) —{ X = i 1=F(sD)
)
T
»
i d r
information Sn+1 m Xn+1
-
T T T T T "
0.0 0.2 0.4 06 08 1.0 i
fl(clock 1) omon

FIG. 11. Power spectrui8 of the transmitted signal from the
map circuit with a clock frequency of 6 kHz. The frequency is  FIG. 13. Block diagram showing the method for mixing the
plotted as a fraction of the clock frequency. information signal into the drive as part of the system dynamics.
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We examine two methods for mixing chaos and informa-
tion. One is a simple addition of signals known as signal
masking[9-11,14,37,3Bin which z* =z+i. The other mix-
ing function is one which, to our knowledge, has not been
tried before in chaotic circuits, but is common in the com-
munications field, an exclusive-¢KOR) function, in which i,
z*=lz XOR li, wherel is a normalization factor which
determines the number of bits we use to represent the sig-
nals. We subject both methods to predictive attempts to ex-
tract the information signalgl6,17].

A. Chaotic masking and signal extraction

One simple way to send information on a chaotic signal is time
to add the information signal to one of the dynamical vari-

ables in the chaotic system. We added the information signal F!G- 14. Sine wavé(A=0.1) extracted from XOR mixed trans-
i =0.5 sin(2rf 1) to the second equation in Eq§) mitted signal(black line. The simultaneously transmitted XOR sig-
: ’ nal (z*%) is shown in dotted lines in the background.

. .
Ynea=(3)¥nt 2o tl. (12 We ran several tests usimg A sin(wt). The first test was
with a small amplitude sine wavé&,=0.1 and a frequency of
“10m, so the sine wave repeats every 20 points. Figure 14
shows the extracted information signg], at the response.
We see a clean extraction as shown by the black line against
the background of the transmitted; shown in grey, al-
though there are occasional “glitches” in the sine wave.
We found the Signal to noise ratio at the information fre'These occur because we are using a limited resollqmeﬁ4
quencyf; from the power spectrum of a 16 384 point time pits) and the XOR function is nearly discontinuous, hence
series ofA digitized at 20 kHz. The signal to noise ratio pccasionally we ¢ea 1 bit error that causes a substantial
whenf;=700 Hz was 33 dB. The signal to noise ratiofat jump in the extracted signal that i®t there in the original
was essentially the same as we varfedrom 10 Hz to 3 gjne wave.
kHz. The information signaf; was not visible in the power Figure 15 shows the extracted information signil, in
spectrum of the transmitted signal _ the case we have 1% additive noise in the response system,
We checked the security of this encoding method by uswhijle Fig. 16 show the Fourier amplitude spectrum of the
ing a predictive algorithm to extract the encoded informationiesyit of the XOR of thez variable and the sine wave. The
signal. The predictive algorithm was based on the work ofygise corrupts the sine wave. This is because of the discon-
Short[16]. We embedded the chaotic signal in a phase spacgnyous nature of the XOR function: small changes can cause
using the method of delays and fit local linear maps to thgarge errors for certaia and sine-wave combinations. How-
resulting phase space plot. We then used the maps to predig{er, in Fig. 17 we see from the Fourier spectrum of the
the chaotic time series. The small information signal mixedaytracted sine-wave that the single frequency peak remains

with the chaos-caused errors in the prediction. We used thgge (approximately 30 dB above the noise flp@nd we
Fourier spectrum of the prediction errors to create a filter

which we then applied to the chaotic time series to extract
the information signal. The method for Shft6] was essen-
tially the same, but Short used more sophisticated fitting. We
found that the Short signal extraction method had no trouble
extracting the periodic information signal when the signal
was simply added to a variable.

We decoded the information signal by looking at the syn
chronization errorA in the receiving circuit,

A=z,—Xx/_,—Y,_, mod2. (13

B. Nonlinear signal mixing, XOR

The XOR function test is implemented on a triangular
map with the variables kept betweenl and choosing the
level of digitization through the normalization factowhere
d(z,i)=1z XOR li accomplished by taking the integer parts
of Iz andli, using a bitwise exclusive-or and rescaling the
output by 1. The XOR function is its own inverse and to
accomplish this we use the same normalization, integer part, F|G. 15. Similar to Fig. 14 except 1% noise added to the trans-
bit-wise exclusive-or, and rescaling byl 1in all our dem-  mitted signal. Sine wavé?}(A=0.1) extracted from XOR mixed
onstrations here we ude=1024. This means a one-bit error transmitted signalbold black ling. The simultaneously transmitted
corresponds to approximately a 0.001 absolute error in th&OR signal ¢*% is shown in dotted lines in the background and
signal. the original sine wave in thin solid line.

time
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S(®)

FIG. 16. The Fourier amplitude spectrum of the transmitted sig-
nal z:% (A=0.1) with 1% noise. 7%

could restore much of the sine wave’s characteristics with
standard signal processing techniques.

In Fig. 18 we see the recovery of a large amplitude sine
wave, A=1.0, both without and with 1% noise. Figure 19
shows the quality of synchronization when there is 1% noise.
The spectrum of the recovered sine wave is shown in Fig. 20
in the case of the added noise. We do some simple signal

processing on the recovered signal using a bandpass filter to F|G. 18. Sine wavesX=1.0) extracted from XOR mixed trans-
isolate the main peak. Figure 21 shows the results of thismitted signal(black line, (a) with no noise andb) with 1% noise.
There is only a small modulation added to the original sineThe simultaneously transmitted XOR signaf f), is shown in grey
wave. lines in the background.

We used the smallA=0.1) and large A=1.0) ampli-

tsl:dr?alssm; ovr\;a\t/r?es'[lrg’annﬂfn:t?et(deZﬁ v;/];;aghl?;xve tﬁg”&if;tri(:_th%e were not able to extract the information signal from the
9 9 9 P chaotic signal using a simple version of the predictive algo-

dictive strategies. When the sine wave was small, the inforfithm
mation signal did not greatly change the chaotic signal. The '
Short[16] predictive algorithm was able to extract the infor-

mation signal forA=0.1.

When A=1.0, then the transmitted signal no longer the simple stretch and fold approach to linear maps
quked like the or_lgln_al chaotic signal with a small am_ount Ofyields synchronizable systems that enjoy characteristics
noise. The chaotic signal was greatly altered by the informag,qre appropriate for communications than do most chaotic
tion signal. It was not possible to get a good delay embedg, ioms that possess an attractor that has a low volume and
ding of the original chaotic system, so we C(_Juld not fit Iocalhigh degree of patterning in phase space. The map approach
maps as we could when the information signal was smallghoyid pe significantly better since it is discrete and should

VI. CONCLUSIONS AND REMARKS

o v Vi
/
S(® F.
(®) | Yy,
\ £
® xd yd

FIG. 17. The Fourier amplitude spectrum of the extracted sine FIG. 19. Synchronization phase plots of the drive and response
wave (A=0.1) with 1% noise. The original peak is clearly present variables when the XOR mixing function is used and there is 1%
with some higher frequency noise and harmonics. additive noise present in the channel.
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FIG. 20. Fourier amplitude spectrum of the extracted sine wave time
(A=1.0) with 1% noise. The sine peak is obviously much cleaner . . i .
in here than in Fig. 16. FIG. 21. Resulting sine wave from a bandpass filter applied to

the spectrum in Fig. 19 to allow only the main peak to remain.

match better with digital systems, as well as remain easy tbe other ways to attacks XOR encrypti¢89]. Whether
design and analyze. these attacks, which depend on a finite key length make

The use of synchronous substitution allows us to tune theense for a chaotic keystream in which there is no key length,
transmitted signal and the response so that synchronization &parantly, is not clear. Another problem with the XOR is
more robust and can occur in a short time period. The use adlso one of its good features: it has extreme variations in
such synchronous transformations is good from anothevalues with only slightly different argumentd is continu-
standpoint. Producing unique chaotic systems en masse isoais, but not differentiabje This makes loss of synchroniza-
difficult challenge. However, we can present the same chation easier and decreases the robustness of the system in the
otic transmitter in many different guises simply using invert- presence of noise or parameter mismatch. Much more work
ible transformations. needs to be done to either find robust maps or to replace the

We see by the use of our nonlinear mixiGgOR) that XOR with a highly nonlinear, secure mixing function, but
this method is probably preferred to simple chaotic signabne which will not cause as much trouble in the presence of
masking, although the XOR is not a panacea since there camise and parameter mismatch.
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