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Landauer diffusion coefficient: A classical result
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Using the classical version of ti&matrix scattering theory, we develop a stochastic process called persis-
tent random walk. We show that the one-channel Landauer diffusion coefficient can be obtained from a purely
incoherent classical theory. The time dependent mesoscopic diffusion current satisfies a Maxwell-Cattaneo
relation. Therefore the time dependent mesoscopic diffusion process is described by the telegrapher’s equation.
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. INTRODUCTION sorption is requested ther,) can be substituted bgt(1

) ] . —7),r(1— 7)) where 7 is the probability of absorption at

Since the pioneering work by Landaidf, who showed  each potential barrier. Usuallyr and this expresses the
the relationship between the diffusion of a noninteractinginertial memory of particles under scattering.
quantum mechanical system and an associated scattering aossuming the particles to be described only at the mid-
problem, several authors have given different quantum meya|ieys between potential barriers, the classical 1D-PRW
chanical derivations of the mesoscopic diffusion coefficientequations may be written relating, at tine the classical
[2,3]. Landauer’s great insight, that diffusidand conduc-  jncoming probabilitiesP; (x,t) andP,(x+ 1,t) with the cor-
tion) in solids can be thought of as a scattering problem, hagesponding outgoing oné®, (x+ 1t+1) andP,(x,t+1), at
certainly been of great practical importance in guiding oury |ater timet+ 1. The subscripts in the above probabilities
intuition to an understanding of quantum transport in Mesoyenote the directions of motiofd. is right, 2 is lefi. Using

scopic systems. , , the classical version oB-matrix scattering theory, the evo-
For a one-dimensionalD) solid, the corresponding Lan- |,tion of the 1D-PRW process becomes defined by the fol-
dauer diffusion coefficienD can be written as lowing pair of recurrence relations:
T
D=cL 3R, () Pi(x+1t+1))

. (2

Pz(x,t+ 1) r t Pz(X+ 1,t)

t r)( Pi(x,t)

wherec is the velocity of the particled, is the length of the
s_o_hd, andT andR are the transmission and reflection coef- Equation(2) describes a succession of elastic scattering
ficients of the conductor treated as a single complex scattefsyents where all particles have the same average speed

ing center. . . =Ax/At. In calculations of conductance in mesoscopic sol-
Lamentably, the transport community has failed to recogys the speed is chosen to be the Fermi velocit=vp .

nize that Eq.(2) is a purely incoheremlassicql r.esult. In- Having constant energy in 1D, the velocity has only two
Qeed, mdependently_ of the f?Ct thatl t.he coefflc[@'andR values:*c. P1(x,t) andP,(x,t) describe the joint probabil-

in Eq. (1) may be given a classical interpretatidiorward i, o finding the particle at a midvalley positionat timet

and backward transition probabilitieshe algebraic structure .., positive and negative velocities, respectively. Thus the

T/2R in the diffusion coefficientl) is a very well-known 15 ppw procesg?) describes a classical Markov process
consequence of a diffusion process described by a randoi, internal degrees of freedom.

walk with inertial memory. This stochastic process, called  \gtice that inelastic collisions cannot be included in this

one-dimensional persistent random wallD-PRW in the 1,46 The reason is that for describing diffusion in a crystal

literature 4], is in f‘?‘Ct an inqoheren(tclassica) version ,Of lattice, with therecursivePRW model(2), the jump timeAt
the quantumS-matrix scattering theory5]. Next, we will has to be the same in every scattering process.
show this.

Il. THE CLASSICAL 1D-PRW PROCESS Ill. LANDAUER’S DIFFUSION COEFFICIENT

. . . AND THE TELEGRAPHER EQUATION
The 1D-PRW is a random process which describes a suc-

cession of 1D elastic aneicoherentscatterings in a crystal To find the diffusion coefficienD we have to derive
lattice. All particles, incident upon any arbitrary lattice po- Fick’s law. Let us keep constant the discrete values\gf
tential barrier, are scattered with forwafilansmissionand =I andAt=r, wherel and r are the lattice constaritnean

backward (reflection classical probabilities t(r), respec- free path and jump timeg(mean collision timg respectively.
tively. Conservation of particles demandsr =1, and if ab-  The velocityc=Ax/At=I1/7 becomes a constant too. Next,
consider the first row in Eq(2) for all P(x*=AX, t+=At).
After a first order Taylor series expansion in both variables
*Electronic address: sgs@hp.fciencias.unam.mx around k,t) we may rewrite such an equation as
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P, Py 1 scribed by the usual hydrodynamic diffusion equation
i tte - -=—(P2—Py). (3 a9plat=Da%pl dx2. In fact, it can be proved that in the weak
scattering limit €,r)—(1,0), (r,1)—(0,0) keeping constants
Next, from Eq.(2), the second row can also be similarly I/7=c and7/r =286, then the classical mesoscopic diffusion

expanded, namely, regime is described by the telegrapher equaftiin
IPy 9P, T 16 lap Pp
T—tc a—X:;(Pl—PZ). (4) CZ 07t2+D 5t_3X2, D=c6. (9)

Subtracting Eq(4) from Eq. (3) and substituting the prob- This equation can be obtained by combining the conserva-
abilities (P;,P,) for a new set §,J) wherep=P,+P, is tion of mass law with the Maxwell-Cattaneo relation. The

the mass concentration, adeé=c(P;— P,) is the diffusion  hyperbolic diffusion equatior(9) describes at all times a

current, we get, after some simplifications, that finite-velocitypropagation of density signals, in striking con-
trast with the infinite speed of signals that the hydrodynamic
t dgp 7 4 ap aJ solution allows.
= — 2. __ T = — _— _
J CTorax 2r at Dﬁx aﬁt' ©)
IV. COMMENTS

Equation(5), which describes a classical mesoscopic diffu- . )
sion current, is called the Maxwell-Cattaneo relation in the The origin of the confusion about the quantum nature of
literature [6,7]. The mathematical hallmark of mesoscopic Landauer’s diffusion coefficient has at least two sources:

diffusion is the substitution of Fick's law by the Maxwell- first, in Landauer's original derivation in Ref1] explicit
Cattaneo relation. mention of the wordwave functionfor the reflected and

By inspection, the first term in the right hand side of Eq.transmitted densities is made. What is more, Landauer ex-
(5) is just Fick's law, and the diffusion coefficient is given Plicitly states that those densities are calculated at a distance

by of severalwavelengthof the solid to avoidnterferenceef-
fects. So, a casual reader may get the wrong impression that
, t t a quantum calculation was carried out, and the derived dif-
D=cr EZCl o 6)  fusion coefficientD in Eq. (1) has to be a quantum result.

Second, and more important, is Landauer’s brilliant calcula-
Equation(6) looks very similar to the one reported by Lan- tion of the single-channel conductance
dauer. The difference is that E(p) is local, that is, it has 5
microscopic scattering coefficientst(r) due to scattering _e_I
with individual atoms in the lattice, and Landauer’s equation 9= wh R’
(1) has coefficientsT,R) of the whole solid. The ratid/r
(Landauer's resistangdas only a technical meaning and is To get Eq.(10) Landauer used the Einstein relation between
not a physically accessible quantity. However, foriaco-  conductivity and diffusiorf1],

(10

herentprocesgwe add probabilities not amplitudeshe mi- )
croscopic coefficientst(r) are easily related to the meso- o= ne” (11)
scopic coefficientsT,R) of a sample made of a sequence of keT '

N incoherentscatterers with a total length=NI, by ) ] ]
wherene?/kgT was derived, for conduction electrons, with a

t Nr full quantum theory, and the diffusion coefficiebtwas just
=N Nione (7)  substituted from the classical E¢l). The validity of Eq.
(10) has been independently confirmed several times using
Taking the ratio of both equationd), we getNT/R=t/r.  quantum linear response theofB—10. The confusion
Substituting this ratio into E(6), we have comes, then, from the fact that if ELO) is a valid quantum
result, therefore, the diffusion coefficiebt used in Eq(11)
T T has to be also a valid coherent quantum result. One clear
D=c(NI) SR cL 2R’ 8 example of this confusion can be seen in the excellent review
article of Beenakker and van Houtghl]. Describing ballis-
Eq. (8) is the exact Landauer equation, and there was absdic transport and the Landauer formula they mention “We
lutely nothing quantum going on there. will discuss corrections to the classical Drude conductivity
Since the Maxwell-Cattaneo relati@B) substitutes Fick's that follow from correlations in the diffusion process due to
law, it is very important to notice that mesoscopic diffusion quantum interference(p. 22, Ref[11]).
is associated to a diffusion process which is described in a On the other hand, the knowledge that Landauer’s diffu-
very small time regiméthe mesoscopic regimeindeed, Eq. sion coefficient, given by EdJ), is a classical result is not
(5) describes a diffusive current with a relaxation tile entirely new in the literature. Beginning with Landauer’s
= 7/2r. In the long-time limit (> @) the Maxwell-Cattaneo original discussion presented in Rgt], where the incoher-
relation relaxes into Fick’s law and we recover the hydrody-ence of his derivation is self-evident, this subject has been
namic regime(in agreement with the central limit theorgm repeatedly suggested several timé$: The Landauer and
Therefore Landauer’s diffusion coefficie(f) is associated Blittiker revision of the problem of a sequenceMfncoher-
to a classical mesoscopic diffusion process whichasde-  ent barriers[12]. They calculated a classical transmission
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and reflection diffusion probabilitiesT(R) using a classical the well-knownt/2r expression. This suggests that, in a time
technique similar to persistent random walk presented in oudependent quantum diffusion current, Fick’s law must be an
Sec. Il. They used the steady sta®(i,t)=P4(i) and incoherentcontribution. In fact, it can be proved that the
P,(i,t)=P,(i), with emphasis on the case=t=0.5,to cal- whole Maxwell-Cattaneo relation E@5) is the incoherent
culate the electrical resistan@®=(74/€*)R/T and the dif- contribution[16]. Clearly, the time dependent quantum dif-
fusive traversal timerr=(L/3c)R/T. (ii) The same classical fusion current also has an interference term which is intrinsic
ideas are used by Landauer to calculate the resistance tf the quantum wave description

planar barrierg13]. (iii) Laikhtman and Luryi made use of

the Boltzmann gquatlon to calculate the resstapce, due _to Jquard X t) = Jinco(X, ) + Jinged X, 1)

guantum reflection, of a planar heterostructure interface in )

three-dimensional bulk systeni44]. In fact, the interface -.D M_ 0 3Jquan+J ol
boundary condition they usddEq. (10) of Ref.[14]] is just, B X at inter 4,941 9%).
once again, the steady-state case of our PRW. Kunze

treats the transport problem through a planar barrier using

classical kinetic equatior4.5].

(12

Therefore as far as Fick’s law is concerned, being an inco-
V. CONCLUSIONS herent result, any suitable mcohergéulasglca) theory such .
as a Boltzmann or a master equation will give the same dif-
Both classical and quantum mechanical approaches leddsion coefficient without the burden of quantum calcula-
to the same 1D Landauer diffusion coefficient E@). with  tions.
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