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Lyapunov exponents from geodesic spread in configuration space
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The exact form of the Jacobi—Levi-CivitdLC) equation for geodesic spread is here explicitly worked out
at arbitrary dimension for the configuration space manifdig={q e RN|V(q)<E} of a standard Hamiltonian
system, equipped with the Jacadloir kinetic energy metric g;. As the Hamiltonian flow corresponds to a
geodesic flow on¢,g;), the JLC equation can be used to study the degree of instability of the Hamiltonian
flow. It is found that the solutions of the JLC equation are closely resembling the solutions of the standard
tangent dynamics equation which is used to compute Lyapunov exponents. Therefore the instability exponents
obtained through the JLC equation are in perfect quantitative agreement with usual Lyapunov exponents. This
work completes a previous investigation that was limited only to two degrees of freedom systems.
[S1063-651%97)03010-9

PACS numbgs): 05.45:+b, 02.40-k, 05.20-—y

In recent paperEl,2] we have investigated the dynamical enlarged configuration space-time endowed with the Eisen-
stability properties of two-degrees of freedom Hamiltonianshart metric(see below In this framework, the mentioned
(N=2) within the framework of a geometric formulation of improvements can hardly be imagined and a richer geometric
dynamics that makes use of Riemannian geometryNAt Structure, as is the case olMg,g;), is neededwe shall
=2 the phase space structure of a system can be investigategtter explain why in the seqyelTherefore it is of primary
in great detail. In fact the use of Poincanarfaces of section importance to check whether the JLC equation bh:(g;)
makes it possible to identify the initial conditions that origi- fully accounts for the degree of chaoticity of the dynamics at
nate regular and chaotic motions in the system, so that thigrbitraryN. In principle this might not be the case: the JLC
qualitative description as well as the measurement of chacgquation only describesocal instability, whereas chaos
by Lyapunov exponents can be thoroughly compared witteould crucially depend upon somgiobal property of phase
the outcome of the Riemannian based approach. Howevegpace. As a simple example, let us think of the Bunimovich
the N=2 case is a very special case, at least from the gecstadium(a portion of the plane, bounded by two half-circles
metric point of view; in fact there is only one curvature func- joined by two parallel lines, where a free particle bounces
tion that—at each point—plays the role of scalar curvaturewhere the shape of the boundary, being responsible for the
Ricci curvature, and sectional curvature. Therefonethe ~ mismatch between focusing and defocusing of trajectories,
absence of any rigorous resut extend at arbitraryN the =~ makes the system chaotic. In the case of Hamiltonian flows
validity of what we found atN=2, we have explicitly stud- at N=2, something similar happens when a trajectory ap-
ied the largeN case and the results are given in the presenproaches the conditiow(q) = E: the curvature function be-
paper. There is also another motivation for the present workcomes very large because it contains powers of the quantity
We have recently exploited the Riemannian geometrizatiohE—V(q)]1~* and, correspondigly, the configuration space
of Newtonian dynamics tanalytically compute the largest trajectories look as if they were reflected by théq)=E
Lyapunov exponents in largd-Hamiltonian system§3—5] boundary. At largeN such a stadiumlike effect iso longer
and, despite some necessary approximation, the analytic reresent andE—V(q)] fluctuates around an average value
sults are in strikingly good agreement with the numericalwith a negligible probability of getting close to zero, there-
results. However, while applying this theory to lattigé- fore “global” effects—if any—should work in a subtler
models[6] we have encountered some difficulties that areway.
now demanding adequate improvements. For the sake of We consider those systems that are described by the La-
simplicity, all the analytic computations were done in angrangian functior(all the indexes run from 1 tbl=dimMg)
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aq'g“=2(E—V)=2W. (20 where R!‘jr are the components of the Riemann-Christoffel
curvature tensor. In previous papers we have investigated the
Maupertuis’ least action principle relationship between geometry and chaos mainly using the

Eisenhart metric described above. The JLC equation has
been used in its exact form with Jacobi metric, only in the
5J 2W dt= 5J {2[E—V(q)]ajdqdg<}?= 5J ds=0 case of two degrees of freedom systefis?]: a perfect
Y Y Y agreement between the description of instability provided by
©) the JLC equation and the description of instability provided

variationally defines the natural motions among all the isoenpy more conventional methodsyapunov exponents, Poin-

. o . : caresurfaces of sectigrhas been found. Let us now extend
ergetic asynchronous pathsjoining two fixed end points. our investigation to arbitraryN. To this purpose we use a
Hence the arc length of configuration space is expressed b|¥ gatio : ) purp
d<?=2[E—V(q)Jagdq dg¥, whenceg, = 2[E —V(q)]a; atural chart (in previous vyorks we adopted parallely

. ik ’ ; ik = A1k Hasported framgsLet us begin by computing the left-hand
In local coordinates the geodesics on a Riemannian manifold. K K Ky J-
are solutions of the equations side of Eq.(8). From (VJ*/ds)=dJ"/ds+I'j;(dq/ds)J’ we

have
d’q" . dg dg : _
S 1 B S (4) V2 d [dJK dq dg [(dJ dq
ds® kds d ' —Jk=— | —— 4Tk —27i k22 | 22 4t 22 g
s @8 a2 “as | as Tl gs Y T lngs [ gs Tligs?
wheres is the proper time andi“jk are the Christoffel coef- ©

ficients of the Levi-Civita connection associated wif . o

- trivial algebra and the use of E() leads to
By direct computation, using;,=2[E—V(q)]dix, }k v g . @
= (L/12W) 8"™(9, WS+ AW Spmj— dmW3j),  and  ds

=4W?3dt?, it can be easily verified that the geodesic equa- V2 o d2K  dd' dJ

k_ K kot
tions yield a2) — g2 Tiigs gs Tl
A dg dq' .
ﬂ_ _ ﬂ/, ) _Fi(jrﬁi) as EJJ, (10)
v g

) , ) ) WhereaiEa/aqi. Then, we use the expression for the com-
i.e., Newton's equations derived from the Lagrangi@h  ponents of the Riemann-Christoffel tensor to obtain
These equations of motion can be also seen as geodesics of

other manifoldq7] besides Mg ,g;). Among the others, we , :
mention a structure, defined by Eisenhi@}, that we have RK d_q'de_qr_(rt KTtk e ok — g Fk) d_q’de_q'
considered with particular emphasis in our previous papers " ds~ ds = foit Sttt T o0 il g gg
[3-6,9. In this case the ambient space is an enlarged con- (12
figuration space-time M xR?, with local coordinates

(a°,qt, ... gVNgN*tY), where @', ....gV)eM, q°cR is  and by substituting Eq$10) and(11) into Eq.(8) we finally
the time coordinate, andN"'eR is a coordinate closely get

related to Hamilton action; Eisenhart defines a pseudo-

Riemannian nondegenerate metgic on M X R? as g2k dg dJ (arﬁ) dq’ dq

k-4 77 1 ji=
a2 "2ligs as ds as? 0 (12

o aqT
dst=g,,d9*®dg’=a;dg®dg —2V(q)dg®®dq’+dg’
N+1 N+l 0 which has general validitindependentlyf the metric of the
®dg™+dgT @dd. ©) ambient manifold. Let us now derive its explicit form in the
Natural motions are now given by the canonical projection case of Jacobi metric. This metric is a conformal deformation
of the pure kinetic energy metric, i.e.g);; =e‘2faij . As

f th i £\ X R? n configuration - TR . . >
gm;_i_gﬁidﬁzsjslwig H ov(/g\E/)eroanfgng %LIJI ?r:eo ge?)%aé(:s?cs we are mainly interested in studying standard Hamiltonian
o N ' systemsa;; = §; is assumed. For a conformal metrig;J;;

of ge the natural motions belong to the subset of those geo-’ ~21g dilv obtains the followi on f
desics along which the arclength is positive definite -€ ij One readily obtains the following éxpression for

the Christoffel coefficients: I'fj = — 5 ; — 51F j+ & f 1,
i wheref ;=g;f=0f/9q'. Hence Eq(12) is transformed into
ds?’=g,,dg*dq"=2C%dt% 7)

The stability of a geodesic flow is studied by means of the ~ d23“ _df dJ*  dd* d dg _ dJ

N, D, MRS 2 | 5 —
Jacobi-Levi-Civita(JLC) equation for geodesic spread. In ds® 2ds ds 2 ds ds(f'J‘] J+2 1 ds 9 ds
local coordinates the JLC equation reads P o
+f'kj‘.]]e =0 (13)
V23k+Rk_ d_ded_qrzo ) and, using the relatiomis=e~2'dt, we can express it in
ds ds™ ds terms of the physical timé instead of the proper timg:
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d23k+2 s dql f qu dJ L e B A e e
dt? KAde e dt L ]
dg dg*| 10"5* ]

e—2f_ | )= E E

+ f,kJe 2f,J| dt dt JI=0, (14 1072,_ E

wheref j; =ai2jf. Finally, as the Jacobi metric correspondsto & 10 —
f=1 In[1/2(E-V)], itis

ol vl 1l

10 E :
Vv 107° — —
f,i—m, (15 . _ H
(ﬂv EAVAYE:AYS -7 E..‘..‘r Lo o e v e vl vl el LE
fi :2(E”—V) + (ZEE)—( \})2) , (16 N 10t 100 12‘ 10° 10° 10* 10°
e 2f=2(E—-V), (17) FIG. 1. A\j*(¢) computed atN=128 is represented by full

circles and computed aN=256 by full triangles. The largest

so that the final expression for the JLC equation fdi=(,g;) Lyapunov exponent\,(e) is represented by open circlesN (
is =256) and open square8l &2000). The solid line is the analytic

prediction for\,(e) given in Ref.[4].
d2Jk 1 dq' dg\ dJ
a2 " m( IV Gij E‘ajvﬁ) at Numerical computations have been performed for a flow
described by the Hamiltonian

1
+E_V|:(E V)akJV—'—(&kV)(C?JV) N 1 , N 1 , w .
. HP.a)=2 5P+ 2 |5 (G a)*+ 7 (A=)
dql qu i=1 i=1

ON)GV)) dg —}Jj =0. (18) (20

E-V

—(aﬁv+

This is the well-known Fermi-Pasta-Ulag model [10], a
eparadigmatic model of nonlinear classical many-body sys-
tems extensively studied over the last decades and at the
origin of remarkable developments in nonlinear dynamics
(for instance, the transition between weak and strong chaos

Let us now give the explicit form of Eq12) in the case of
(MXR?,gg), the enlarged configuration space-tim
equipped with Eisenhart metric. One easily fifdg that

only the following Christoffel coefficients do not vanish:

i ) N+1_ i H
og= (9VI9g;) and I'q""=(—0V/4q)), hence, using also was discovered in this modgl1,12).

— 0\2 __ 42 2_
ds’=(dg")*=dt” (as we can set@’=1), we get The numerical integration of the equations of moti{@h
d23k 2V derived from the Hamiltoniari20) has been performed by
F+ WJJZO (199 means of a third order bilateral symplectic algoritfitr8],
a9k and the integration of the two stability equatiofi®) and
(18) has been done by means of the same bilateral algorithm

i 0 N+1
fork,j=1,... N. The two other componentd, andJ™ -, and of a fourth-order Runge-Kutta scheme, respectively.

do not contribute to the norm af and do not enter the
evolution equatior(19), therefore they can be neglected.
Itis a very interesting fact that the JLC equati@yields T
the usual tangent dynamics equatiti®) when explicitly 107 F.
worked out for the Eisenhart metric oé X R?. On one 13_ *.
hand, we can expect that at leagtalitatively Eq. (18) will )
give similar results to those obtained with equati@8), i.e., 2
the usual Lyapunov exponents. On the other hand, the tw — 2,
equations(18) and (19) are so different that it is unclear % L
. . ~ E
whether aquantitativeagreement also has to be expected. F s,
Geodesics of f1 X R?,gg) project themselves onto geodesics 102k LA
of (Mg,qg;): for this reason unstabléstable geodesics of fiae
(M X R?,gg) must correspond to unstablstablé geodesics 10k ‘
of (Mg,g;). However, no theoretical result guarantees that i
the average growth rates of the solutions of Ed®) and 107 = s 1:) 1;)2 1:)3 1‘0 1:)5 11)6 -
(19 must coincide. We have addressed this point by numeri t
cally computing the average growth rates of the solutions o
Egs. (19) and (18—let us denote them by; and A7, FIG. 2. The relaxation patterns-(t) and\ ,(t) are compared
respectively—for a given Hamiltonian flow with a large at different values of the energy density. Full symbols denote
number of degrees of freedom; is the conventional largest \J“(t) and open ones denoig (t). From top to bottoms =392,
Lyapunov exponent. e=1, £=0.075.
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Both 1 (€) and\J"“(¢) have been obtained by means of adifferent forms. As a matter of fact, E¢L9) is contained in
standard algorithnfil4], i.e., computing Eqg. (18) so that one could think that in some nontrivial way

the extra terms cancel out. This is not the case. There are two

1 N J 2413 2 distinct equations to describe the same phenomenon. They
19t [*+ 1 9(t)l , _
Nty = E In 5 5. (21 areequivalentfor what concerns the computation of the av-
NAE A= 3t DI+ 3t o)l erage instability growth rates of Hamiltonian flows, but they

i . , , , can benot equivalenfor the further development of the the-
wheret,=nAt, At is some time intervak,is the final time  retical approach where the average curvature properties of
such that\; has attained a good “asymptotic” value. the “mechanical” manifolds are linked to the average chao-

In Fig. 1 the values oky"“(e) are compared to the values ticity of the dynamics through an effective stability equation
of \;(€) and to an analytically predicted curve far(e)  independent of the dynamics itséd]. In fact Eq. (18) is
(see Ref[4]); e=E/N is the energy density. As the numeri- valid on (Mg ,g,), a manifold which has better mathematical
cal effort to integrate Eq(18) is heavier than that required to properties with respect ta{ X R?,gg): (Mg,g;) is a proper
integrate Eq.(19), we computed\; for N=256 andN  Riemannian manifold, it is compact, all of its geodesics are
=2000 coupled oscillators, whereas we computgf” for  in one-to-one correspondence with mechanical trajectories,
N=128 andN=256; atN=256 we have only two points its scalar curvature does not identically vanish as is the case
that have been computed just as a stability check. The excebf (M XR?,gg), it can be naturally lifted to the tangent
lent agreement between the outcomes of the two stabilithundle where the associated geodesic flow on the submani-
equations is evident. folds of constant energy coincides with the phase space tra-

In Fig. 2 the relaxation patterns aff-“(t) and of\,(t) jectories.
are also displayed. These are very similar at high energy In conclusion, we have seen that the results found for the
density, whereas they show some separation at low energy=2 case[1,2] generalize to arbitraryN, hence the phe-
density: the final values are nevertheless always in very goodomenological information given by Lyapunov exponents
agreement. These results mean that Efj8) and (19) are  can be retrieved on the manifolM,g;) at arbitrary di-
not—loosely speaking—the “same” equation written in two mension by means of the JLC equation for geodesic spread.
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