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Bifurcations and chaos for the quasiperiodic bouncing ball

César R. de Oliveira and Paulo S. Gonc¸alves
UFSCar, Departamento de Matema´tica, Caixa Postal 676, Sa˜o Carlos, SP, 13560-970 Brazil

~Received 21 January 1997!

We investigate the influence of a second frequency on the classical periodic bouncing-ball problem, and call
it the quasiperiodic bouncing ball. We indicate how to compute the Lyapunov exponent for implicit maps and
confirm the presence of chaos for the periodic bouncing ball. We have numerically found a series of nontrivial
bifurcations for the quasiperiodic bouncing ball. We have also found several cases of nonperiodic attractors
with negative Lyapunov exponents.@S1063-651X~97!02710-4#

PACS number~s!: 05.45.1b, 03.20.1i
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The standard bouncing-ball problem consists of a parti
in a constant gravitational field, falling down vertically on
periodically oscillating table. This model is naturally co
nected to a series of physical and engineering problems;
ther details and references can be found in the book by
fillaro et al. @1#. It seems that the periodic bouncing-ba
problem~PBB! was first proposed by Zaslavsky@2# in rela-
tion to the Fermi-Ulam model. The main goal of this work
to investigate the influence of a second frequency on
bouncing-ball motion.

In many opportunities the quasiperiodicity has been
sponsible for rather exotic behaviors, mainly in quantum m
chanics. Consider, for example, the appearance of sing
continuous spectra for tight-binding Schro¨dinger operators
@3#, and N-level systems driven by quasiperiodic forc
whose generalized Floquet operators have continuous sp
@4#.

From the point of view of nonlinear dynamics the PBB
very interesting since it presents a cascade of period d
bling bifurcations, strange attractors, under certain limit
conditions it is described by a classical kicked rotator-l
model, and, finally, it is relatively easy to study experime
tally. In fact, it became one of the standard models for
periments on nonlinear effects in dynamics@5#. In general,
the control parameter is the amplitude of the oscillat
table.

More recently, quantum calculations on the PBB ha
been reported@6# ~in the case of elastic bouncing!. In @6# the
authors focused on the level statistics of the quasienerg
see also@7#, for different quantum approaches of relat
models. From now on we only consider the classical bou
ing ball.

Let m(t) be the time dependence of the oscillating ta
andm8(t) its velocity. If tn is the instant of thenth impact
and v(tn), u(tn) are, respectively, the departing and a
proaching ball velocities, we have@1# v(tn)2m8(tn)
5a@m8(tn)2u(tn)#, where 0,a,1 denotes the coefficien
of restitution ~we shall not consider the elastic bouncin
case, i.e.,a51!. Between two consecutive impacts the b
moves under the action of the constant gravitational fieldg;
it is also assumed that the impacts do not affect the motio
the table. By using Newton’s law of motion and imposing
the condition for impact that the difference in position b
tween the ball and the table vanishes, one gets the so-c
impact map.
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In the case of periodic oscillating tabl
m(t)5A@11sin(vt)#, A>0, the impact map takes the form
@1#

vn115~11a!vA cosun112a@vn2g~ tn112tn!#;

A~sinun2sinun11!1vn~ tn112tn!2
g

2
~ tn112tn!250;

un115vtn11~mod2p!;

we have just introducedu5vt~mod2p!, so that un
5vtn~mod2p!. Notice that, by using the variables (vn ,un),
the motion due to the impact map, in this case, becom
restricted to a cylinder.

Although this impact map is exact, it is an implicit func
tion and this puts some difficulties in its theoretical and n
merical investigations. For instance, in theoretical stud
one usually assumes that the maximum height the ball tra
between impacts is much larger than the amplitude of os
lations of the table@8#, and we are not aware of any calcu
lations of the largest Lyapunov exponent for this model. O
of the goals of this work is to use the implicit function the
rem to calculate the Lyapunov exponent for the bounci
ball model.

We fix g5980 andv5120p, in most calculations we se
a50.5, and the control parameter is the amplitudeA. Now
we summarize the classical behavior of the PBB problem
a way that is convenient for later reference@1#. In the dissi-
pative case there is an upper bound for the ball velocity,
there is a trapping region in phase space~v,u!. There are
sticking solutions which, we simply discard. For some valu
of the amplitude 0.01,A,0.0105 there is a stable equilib
rium solution, so that it is a periodic attractor of period
Increasing the value of the amplitude, a pitchfork bifurcati
occurs and a stable orbit of period 2 appears~the equilibrium
point becomes unstable!; then a period doubling cascade—
which one sees only orbits of period 2k—follows. For still
larger values ofA one sees nonperiodic motions represen
by the well-known strange attractors.

According to the accepted classification of strange attr
tors as chaotic or nonchaotic@9#, in order to characterize
those bouncing ball strange attractors as chaotic we nee
compute the largest Lyapunov exponent in each case,
check whether they are actually greater than zero. The lar
4868 © 1997 The American Physical Society
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Lyapunov exponent measures the exponential rate of sep
tion of close initial conditions as a function of time. Let u
describe the procedure for a more general set of imp
equations

f ~un ,un11 ,wn ,wn11!50 h~un ,un11 ,wn ,wn11!50.

An effective way to compute the largest Lyapunov exp
nentl is through

l5 lim
n→`

1

n
lniJ~n!J~n21!•••J~1!Vi ,

whereV is a ~almost arbitrary choice of! normalized vector
and

J~n!5S ]un11

]un

]un11

]wn

]wn11

]un

]wn11

]wn

D .

The goal now is to compute those partial derivatives. T
can be accomplished by deriving both functionsf andh with
respect to un and wn , taking into account thatun11
5un11(un ,wn) andwn115wn11(un ,wn), and then solving
the linear system of equations that result~whose variables
are exactly the partial derivatives we are interested in!. If one
first iterates the implicit equationsf and h ~we used the
bisection method! one is able to obtain the required parti
derivatives, and then the JacobianJ(n). Notice this proce-
dure can be seen as an immediate application of the imp
function theorem.

For the impact map, given an initial condition (v0 ,u0),
we iterated the equations and discarded the first 3000 iter
in order to reach the attractor~discarding eventual tran
sients!, and then used 105 iterates to compute the attracto
and its largest Lyapunov exponentl. For A50.0116 the at-
tractor of the impact map for the PBB is a stable perio
orbit of period 4, and we obtainedl520.54. We have also
confirmed the presence of chaotic strange attractors for
PBB, for example, in the caseA50.012 we obtainedl
50.34. We present in Fig. 3~a! the geometric shape of pa
of this chaotic attractor.

FIG. 1. The projection onS, i.e., the space (v,u), of the attrac-
tor for the QBB withA50.01; this value corresponds to a stab
equilibrium point~1! in the PBB case, i.e.,«50. The value of the
perturbation parameter« is indicated in the figure.
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Now we investigate the influence of a second frequen
on the bouncing ball problem. In@10# the case of two fre-
quencies was also considered, but from different approac
For definiteness we take

m~ t !5A@11~12«!sin~vt !1« sin~tvt !#,

FIG. 2. The projections onS of some attractors for the QBB
with A50.0116; this value corresponds to a stable periodic orbi
period 4 ~1! in the PBB case. The values of the perturbation p
rameter« are indicated in each figure. The inset in~a! shows a
magnification of the second small curve presented in~a!.
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with t5(A521)/2. We restrict the values of the paramete«
to the range 0<«<0.1 in order to keep the second frequen
as a perturbation of the PBB motion. We call this model w
nonzero« the quasiperiodic bouncing ball~QBB!.

FIG. 3. The projections onS of the main branch of some attrac
tors for the QBB withA50.012; this value corresponds to a chao
strange attractor in the PBB case. The values of the perturba
parameter« are indicated in each figure. In fact,~a! refers to the
PBB problem.
As usual when quasiperiodic terms are present~there is a
supplementary degree of freedom for each fundamental
quency!, we enlarge the phase space by introducing a n
phase variablej5tvt(mod2p), with jn5tvtn(mod2p).
The phase space of the QBB is described by (vn ,un ,jn),
and the impact map is given by

vn115~11a!vA@~12«!cosun111«t cosjn11#

2a@vn2g~ tn112tn!#;

A@~12«!~sinun2sinun11!1«~sinjn2sinjn11!#

1vn~ tn112tn!2
g

2
~ tn112tn!2

50;

un115vtn11~mod2p!;

jn115tvtn11~mod2p!.

In Fig. 1 we show the projection of the attractor onto t
spaceS5(v,u) ~it is just the projection, not the Poincar´
section! for the caseA50.01 ~stable equilibrium point for
the PBB case! with «50.1. As soon as« is taken different
from zero the stable equilibrium point becomes unstable
the projection of the attractor ontoS assumes the shape o
closed simple curves~sometimes with ‘‘whirls’’!; since the
projection of these attractors seems to lie on closed cu
we have an indication that the motion on them are quasip
odic. We call this kind of attractor aquasiperiodic limit cycle
~QLC!. We then applied the above described procedure
compute the largest Lyapunov exponent. Here we have
first example of nonperiodic attractor with negativ
Lyapunov exponents since we have foundl520.30 in this
case~see also the discussion at the end of this work!.

If we consider values of parameters such that the attra
in the PBB case is a periodic orbit and increase« from zero,
each point of the periodic orbit takes the shape of a clo
curve; those curves grow with«, intersect themselves, an
eventually become a unique strange attractor. For larger
ues of« the strange attractor disappears and we get a Q
We indicate this process forA50.0116 in Fig. 2, which cor-
responds to a stable periodic orbit of period 4 in the P
case. We have found that this behavior is typical; but if
start with an orbit of period 1~in the case«50! no strange
attractor was found in the range 0,«<0.1.

We remark that when each point of a periodic orbit pr
jection onS becomes a closed curve~by turning the pertur-
bation on!, the orbits on the attractor keep the original orde
ing of the periodic orbit while jumping among these curve
Generally, in such cases we have also got negative value
l; e.g., in the case ofA50.0116 we havel520.54 for «
50, l520.21 for «50.003, andl520.23 for «50.07,
see Fig. 2.

We have also checked that, in some cases, the stra
attractor that arises from this process is chaotic, e.g., foA
50.0116 and«50.04 we foundl50.06 @see Fig. 2~c!#. Al-
though we have shown only the projection of the attract
on S, it is worth mentioning that all strange attractors w
have found onS appeared also as strange attractors in
three-dimensional phase space (v,u,j).

on
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In order to check possible artificial effects of particul
parameter values, we have changed slightly the valuesA
and « for the cases with chaotic attractors as well as Q
with negative values ofl. All reported cases have present
stable values of the Lyapunov exponent; indeed, it see
that l is a continuous function of«.

Our last point is the influence of the second frequency
the chaotic motion of the PBB. We concentrated
A50.012. In Fig. 3 we indicate the typical behavior w
found by showing the projection onS of the attractor for
some values of« with A50.012. We foundl50.18 for the
case of Fig. 3~b!, i.e., «50.05; then the attractor turns to
QLC @Fig. 3~c!# with negative Lyapunov exponents~for «
50.08 we have foundl520.22!. For still larger values of«
a chaotic strange attractor reappears@e.g., for«50.093 we
found l50.15; see Fig. 3~d!#. We remark that in all case
we analyzed the absolute value ofl decreases as soon as t
second frequency is taken into account.

Although we have presented results fort5(A521)/2
with the coefficient of restitutiona50.5, similar results were
found for other values ofa and also fort51/&. Of course
one can argue that such cases of QLC with nega
s.
s

n

e

Lyapunov exponents can be periodic orbits of a very lo
period, this is not the case in the space (v,u,j) for t being an
irrational number the sequence (un ,jn) cannot be periodic.
Also, there are examples of nonanalytic maps whose att
tor is an equilibrium point with positive Lyapunov exponen
@11#. It is a theorem thatl,0 implies the attractor is a stabl
periodic orbit@11,12# for C11m maps, but the QBB impac
map has a nonautonomous character, so one can
discard—on basis of known results—the possibility of no
periodic attractors withl,0.

In summary, we have indicated how to compute the la
est Lyapunov exponentl for systems given by implicit maps
and applied that procedure to the cases of PBB and Q
We checked that, in fact, chaotic attractors occur for
PBB. We have found a series of bifurcations when a sec
frequency perturbs the PBB, with transitions from regu
motion to chaotic attractors and vice versa. We have fou
robust cases of nonperiodic attractors with negative value
l, and no case of nonchaotic strange attractor.
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tt.
L.

s,

,

@1# N. B. Tufillaro, T. Abbot, and J. Reilly,An Experimental Ap-
proach to Nonlinear Dynamics and Chaos~Addison-Wesley,
New York, 1992!.

@2# G. Z. Zaslavsky,Chaos in Dynamic Systems~Harvard Aca-
demic, New York, 1985!.
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