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Bifurcations and chaos for the quasiperiodic bouncing ball
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We investigate the influence of a second frequency on the classical periodic bouncing-ball problem, and call
it the quasiperiodic bouncing ball. We indicate how to compute the Lyapunov exponent for implicit maps and
confirm the presence of chaos for the periodic bouncing ball. We have numerically found a series of nontrivial
bifurcations for the quasiperiodic bouncing ball. We have also found several cases of nonperiodic attractors
with negative Lyapunov exponen{sS1063-651X97)02710-4

PACS numbdps): 05.45+b, 03.20+i

The standard bouncing-ball problem consists of a particle, In the case of periodic oscillating table
in a constant gravitational field, falling down vertically on a m(t)=A[ 1+ sin(wt)], A=0, the impact map takes the form
periodically oscillating table. This model is naturally con- [1]
nected to a series of physical and engineering problems; fur-
ther details and references can be found in the book by Tu-  Un+1=(1+ @)®A €0y, 1~ alvn=g(th+1—th)];
fillaro et al. [1]. It seems that the periodic bouncing-ball
problem(PBB) was first proposed by Zaslavskg] in rela-
tion to the Fermi-Ulam model. The main goal of this work is
to investigate the influence of a second frequency on the
bouncing-ball motion. On+1= 0lp(MOd2r);

In many opportunities the quasiperiodicity has been re-
sponsible for rather exotic behaviors, mainly in quantum mewe have just introducedf=wt(mod2r), so that 6,
chanics. Consider, for example, the appearance of singular wt,(mod2r). Notice that, by using the variables{, 8,),
continuous spectra for tight-binding ScHioger operators the motion due to the impact map, in this case, becomes
[3], and N-level systems driven by quasiperiodic forcesrestricted to a cylinder.
whose generalized Floguet operators have continuous spectra Although this impact map is exact, it is an implicit func-
[4]. tion and this puts some difficulties in its theoretical and nu-

From the point of view of nonlinear dynamics the PBB is merical investigations. For instance, in theoretical studies
very interesting since it presents a cascade of period downe usually assumes that the maximum height the ball travels
bling bifurcations, strange attractors, under certain limitingbetween impacts is much larger than the amplitude of oscil-
conditions it is described by a classical kicked rotator-likelations of the tabld8], and we are not aware of any calcu-
model, and, finally, it is relatively easy to study experimen-lations of the largest Lyapunov exponent for this model. One
tally. In fact, it became one of the standard models for ex-of the goals of this work is to use the implicit function theo-
periments on nonlinear effects in dynami&. In general, rem to calculate the Lyapunov exponent for the bouncing-
the control parameter is the amplitude of the oscillatingball model.
table. We fix g=980 andw= 120z, in most calculations we set

More recently, quantum calculations on the PBB havea=0.5, and the control parameter is the amplitddeNow
been reported6] (in the case of elastic bouncindn [6] the  we summarize the classical behavior of the PBB problem in
authors focused on the level statistics of the quasienergies; way that is convenient for later referer{dd. In the dissi-
see also[7], for different quantum approaches of related pative case there is an upper bound for the ball velocity, i.e.,
models. From now on we only consider the classical bouncthere is a trapping region in phase spdcef). There are
ing ball. sticking solutions which, we simply discard. For some values

Let m(t) be the time dependence of the oscillating tableof the amplitude 0.04£ A<0.0105 there is a stable equilib-
andm’(t) its velocity. If t,, is the instant of thenth impact  rium solution, so that it is a periodic attractor of period 1.
and v(t,), u(t,) are, respectively, the departing and ap-Increasing the value of the amplitude, a pitchfork bifurcation
proaching ball velocities, we havé¢l] v(t,)—m’(t,) occurs and a stable orbit of period 2 appgéne equilibrium
=a[m'(t,) —u(t,)], where 0<a<1 denotes the coefficient point becomes unstablehen a period doubling cascade—in
of restitution (we shall not consider the elastic bouncing which one sees only orbits of period-2follows. For still
case, i.e.@=1). Between two consecutive impacts the ball larger values ofA one sees nonperiodic motions represented
moves under the action of the constant gravitational figld by the well-known strange attractors.
it is also assumed that the impacts do not affect the motion of According to the accepted classification of strange attrac-
the table. By using Newton’s law of motion and imposing astors as chaotic or nonchaot[®], in order to characterize
the condition for impact that the difference in position be-those bouncing ball strange attractors as chaotic we need to
tween the ball and the table vanishes, one gets the so-calledmpute the largest Lyapunov exponent in each case, and
impact map. check whether they are actually greater than zero. The largest

NP g
A(siNG,—sind, ;1) T vp(thr1—th) — 5 (the1—t)?=0;
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FIG. 1. The projection o, i.e., the spacey, #), of the attrac- 104
tor for the QBB withA=0.01; this value corresponds to a stable J\
equilibrium point(+) in the PBB case, i.e5=0. The value of the
perturbation parameteris indicated in the figure.
8__
>
Lyapunov exponent measures the exponential rate of separa-
tion of close initial conditions as a function of time. Let us
describe the procedure for a more general set of implicit 61 \+
equations
f(Un,Uns1,¢0n,@n+1)=0 h(Uy,Uni1,0n,0n41)=0. 0.0 01 0.2
(b) 6/(2w)

An effective way to compute the largest Lyapunov expo-
nentX\ is through

A= lim % In|J(n)I(n—1)---I(1)V|,

n—oo

whereV is a(almost arbitrary choice dfnormalized vector
and

Up+1  dUpty

. u. e 0 0.1 oom 0.2
- _ o
IPnt1 IPn+1 ©
4+
n  Ien 1o+ Ty e=0.07

The goal now is to compute those partial derivatives. This
can be accomplished by deriving both functidrendh with

respect tou, and ¢,, taking into account thatu,,; > 87

=Up+1(Un,¢n) and en.1=¢ns1(Un,¢pn), and then solving

the linear system of equations that resiuithose variables +
are exactly the partial derivatives we are interestedlfrone 61 n

first iterates the implicit equations and h (we used the
bisection methodone is able to obtain the required partial
derivatives, and then the Jacobiam). Notice this proce-
dure can be seen as an immediate application of the implicit
function theorem.

For the impact map, given an initial condition {, 6), FIG. 2. The projections oz, of some attractors for the QBB
we iterated the equations and discarded the first 3000 iterat&gth A=0.0116; this value corresponds to a stable periodic orbit of
in order to reach the attractaidiscarding eventual tran- Period 4(+) in the PBB case. The values of the perturbation pa-
sienty, and then used fOiterates to compute the attractor fametere are indicated in each figure. The inset @ shows a
and its largest Lyapunov exponent For A=0.0116 the at- magnification of the second small curve presentethin

tractor of the impact map for the PBB is a stable periodic  Now we investigate the influence of a second frequency
orbit of period 4, and we obtained=—0.54. We have also 4 the bouncing ball problem. IfL0] the case of two fre-

confirmed the presence of chaotic strange attractors for thgencies was also considered, but from different approaches.
PBB, for example, in the casA=0.012 we obtainec\ For definiteness we take

=0.34. We present in Fig.(8 the geometric shape of part
of this chaotic attractor. M(t)=A[1+(1—¢)sinwt)+¢ sin(Twt)],

0.0 0:1 O:Z
(d) 0/(2w)
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As usual when quasiperiodic terms are presérdre is a
supplementary degree of freedom for each fundamental fre-
quency, we enlarge the phase space by introducing a new
phase variableé = rwt(mod2r), with &,= 7wt,(mod2r).

The phase space of the QBB is described by,6,,¢,).
and the impact map is given by

V1= (1+a)wA[(1—¢&)coshy 1+ &7 COEp 4]

—afv,—9(ths1—ty)];

0 o1 02 AL(1—&)(sind,—sing, , 1) + & (sing, — sinéy . 1)]
(a) 0/(2w)

g
Fon(thei—tn)— E (tn+1_tn)2
:0'
On+1= oty (Mod2m);

£ni1= 700ty 1(MOd2r).

In Fig. 1 we show the projection of the attractor onto the
y spaceX = (v, ) (it is just the projection, not the Poincare
4 : = section for the caseA=0.01 (stable equilibrium point for
) 0 0.1 o2 0.2 the PBB casewith ¢=0.1. As soon ag is taken different

from zero the stable equilibrium point becomes unstable and
the projection of the attractor onf assumes the shape of
ol €=0.08 closed simple curvetsometimes with “whirls”); since the
projection of these attractors seems to lie on closed curves
we have an indication that the motion on them are quasiperi-
81 odic. We call this kind of attractor @uasiperiodic limit cycle
(QLC). We then applied the above described procedure to
compute the largest Lyapunov exponent. Here we have our
67 first example of nonperiodic attractor with negative
Lyapunov exponents since we have fourd —0.30 in this
. . case(see also the discussion at the end of this work
0 04 0.2 If we consider values of parameters such that the attractor
(c) 6/(2m) in the PBB case is a periodic orbit and increaseom zero,
each point of the periodic orbit takes the shape of a closed
curve; those curves grow with, intersect themselves, and
eventually become a unique strange attractor. For larger val-
ues ofe the strange attractor disappears and we get a QLC.
We indicate this process féx=0.0116 in Fig. 2, which cor-
responds to a stable periodic orbit of period 4 in the PBB
case. We have found that this behavior is typical; but if we
start with an orbit of period 1in the cases =0) no strange
attractor was found in the range®<0.1.

We remark that when each point of a periodic orbit pro-
jection on3 becomes a closed curyby turning the pertur-
bation on), the orbits on the attractor keep the original order-
ing of the periodic orbit while jumping among these curves.
Generally, in such cases we have also got negative values of

FIG. 3. The projections oB, of the main branch of some attrac- \; e.g., in the case oA=0.0116 we have.= —0.54 fore
tors for the QBB withA=0.012; this value corresponds to a chaotic =0, A= —0.21 for £e=0.003, and\=—0.23 for e=0.07,
strange attractor in the PBB case. The values of the perturbatiogee Fig. 2.
parametere are indicated in each figure. In facg) refers to the We have also checked that, in some cases, the strange
PBB problem. attractor that arises from this process is chaotic, e.g.Afor

=0.0116 andc =0.04 we found\ =0.06[see Fig. Zc)]. Al-
with 7= (\/5— 1)/2. We restrict the values of the parameter though we have shown only the projection of the attractors
to the range &e=<0.1 in order to keep the second frequencyon X, it is worth mentioning that all strange attractors we
as a perturbation of the PBB motion. We call this model withhave found on3 appeared also as strange attractors in the
nonzeroe the quasiperiodic bouncing bdlDBB). three-dimensional phase spaee{,¢).

0 0.1 0.2
(d) 0/(2m)
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In order to check possible artificial effects of particular Lyapunov exponents can be periodic orbits of a very long
parameter values, we have changed slightly the valugs of period, this is not the case in the spaced, £) for 7being an
ande for the cases with chaotic attractors as well as QLCirrational number the sequencé,(£,) cannot be periodic.
with negative values of. All reported cases have presented Also, there are examples of nonanalytic maps whose attrac-
stable values of the Lyapunov exponent; indeed, it seemgy is an equilibrium point with positive Lyapunov exponents
that\ is a continuous function of. [11]. Itis a theorem thax <O implies the attractor is a stable

Our last point is the influence of the second frequency Oheriodic orbit[11,12 for C1*# maps, but the QBB impact
the chaotic motion of the PBB. We concentrated ONmap has a nonautonomous character, so one can not
A=0.012. In Fig. 3 we indicate the typical behavior we yiscarq on basis of known results—the possibility of non-
found by showing the projection ob of the attractor for periodic attractors with <O.
some values ok with A_ZO'Ol_Z' We founch = 0.18 for the In summary, we have indicated how to compute the larg-
case of_F|g. ), ie., a—O.QS, then the attractor turns to a est Lyapunov exponentfor systems given by implicit maps
QLC [Fig. 3c)] with negative Lyapunlov exponentfor e and applied that procedure to the cases of PBB and QBB.
=0.08 we have found = —0.29). For still larger values o We checked that, in fact, chaotic attractors occur for the
a chaotic strange attractor reappe@sg., fore=0.093 we  ppp \we have found a series of bifurcations when a second
found A =0.15; see Fig. @l)]. We remark that in all cases frequency perturbs the PBB, with transitions from regular
we analyzed the al_)solute value)oﬂecreases as soon as themotion to chaotic attractors and vice versa. We have found
second frequency is taken into account. robust cases of nonperiodic attractors with negative values of

Although we have presented results for- (5 1)/2 X\, and no case of nonchaotic strange attractor.
with the coefficient of restitutiom = 0.5, similar results were
found for other values ofr and also forr=1#2. Of course C.R.O. was partially supported by CNFBrazil). P.S.G.
one can argue that such cases of QLC with negativecknowledges the support of CNPg-PIBIC-UFS(®razil).
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