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Pattern formation in intracavity second-harmonic generation
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We consider transverse effects in a planar resonator with a quadratically nonlinear medium where the
incident field is at the fundamental frequency. The resonator is assumed to be resonant for both the fundamen-
tal and second harmonics. Different scenarios of destabilization of the plane-wave solutions are investigated in
dependence on the driving field and the detunings from the resonances. Numerical simulations demonstrate the
existence of dynamical and stationary pattef®4.063-651X97)11110-3

PACS numbeps): 42.65.5f, 42.65.Ky, 42.65.Pc

[. INTRODUCTION propagating fields, this simplifies the analysis considerably.
Pl tors filled with i di basi It was shown that the modal theory decribes the response of
anar resonators Tiied with noniinear media are basig, , arbitrary planar resonator appropriately, provided the fi-

configurations in nonlinear optics. Due to their inherent feed'nesse is sufficiently high and thus the response is governed

back, they exhibit dynamical instabilities leading to funda-by a single resonance.

mental spatiotemporal effects such as bistability, self-* Thjs paper is organized as follows. After the introduction

oscillations, or pattern formatiofl—4]. Planar resonators of the basic equations in Sec. Il we consider the stability of

provide a considerable field enhancement within the cavity|ane-wave solutions against spatially homogeneous and

that reduces the power requirements as far as the experimefodulated pertubations in Sec. Ill. The formation of patterns

tal verification of above-mentioned effects is concerned. s examined in Sec. IV. Finally, Sec. V concludes the paper.
Various types of nonlinearities, which manifest them-

selves by the material placed in the cavity, were considered Il. BASIC EQUATIONS
(see, e.g.[1-4] and references therginMost extensively . . _ _
studied was the local and instantaneous ciirr) nonlin- We consider a Fabry-Pet resonator with a quadratically

earity [1-3]. In the defocusing case optical plane-wave pi-nonlinear medium. Here the frequency of the incident funda-

stability can be observef]. In the focusing case the field mental field should be close to a resonance. Also, the gener-

tends to collapse in two-dimensional geometries. To obtaiIfflted second harmonic should interact with another resonance

stationary patterns a saturation has to be included into th@! approximately twice the fundamental frequency. Thus the

model[6]. system is resonant for both fields qnd a modal.theory can be
In the case of a second-order nonlinearity phase and an"f‘pp“ed' ”.1 this way the field proﬂle perpendicular to thg

plitude modulation are induced by the interaction of the fun-resonator is assumed to be stationary and enters the evolution

damental and second-harmonic waves. In the limiting case 0gquations for the transmitted fields only via overlap integrals

a weak second harmonic the problem can be reduced to t the effective nonlinear coefficients. The absolute value of

evolution of the fundamental with an effective cubic nonlin- et or:/ebrlr;\p mte?r:alsf dgpendst ?”“C(?"y on (tjhﬁ phasg m|s—d
earity. Thus similar effects are expected to be found. But th atch between the fundamental and second harmonics an

second field introduces additional degrees of freedom an eir mode profiles. The appropriately scaled evolution equa-

new effects evolve. For instance, the nonlocal interactiorjfIonS for the slowly varying envelopes, and A, of the

saturates for strong focusing due to the enhanced diffractioHansmltted fields of the fundamental and second harmonics

of the second harmonic and no collapse occurs even for fre ire derived analogously to the case of a cubic nonlinearity as

space propagatidir]. Furthermore, the competition between 14]

the fundamental and second harmonics may give rise to ad- A PA. PA

ditional dynamical instabilitie$Hopf bifurcatior) [8]. | —— 4+~ + ——r + (A1 +D)A+ATAL=E, (18
The aim of this work is to study the instabilities that occur ar — ax= Y

in a planar resonator in the course of second-harmonic gen-

eration and their consequences. In contrast to the optical . A2 Ay 9*Ag ; 2

parametric oscillatofOPO) [4,9-11, we focus on incident 'IT “(a_fo’ vz | T (B2t i)AFAI=0, (1)

fields at the fundamental frequency. Stable states are then

characterized by mutually locked solutions at both frequenwhereA; andA, are the detunings of the two fields from the

cies(e.g., dichromatic patterhsFor the fundamental the part corresponding resonances. Though they have nothing to do

of the total energy that is in the second harmonic plays th&vith the common phase mismatch, they play a similar role in

role of a nonlinear loss that corresponds to two-photon abEgs.(1). The timeT is scaled in terms of the photon lifetime

sorption in the case of a cubic nonlinearity with a complex-at the fundamental frequency and the spatial varialesd

valued coefficienf12]. The optical response of the resonator Y in terms of the square root of the product of the velocity of

is described by the well-established modal theptg,14. light, photon lifetime, and fundamental wavelength. Thus

Compared with models based on forward- and backwardis the ratio of the photon lifetimes ana half the ratio
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of the refractive indices corresponding to the fundamental 50 — @ "
and second harmonics. Throughout the analysis we assume . :/
a=1/2, which is a very good approximation for realistic 40 — I
configurations. The input field of the fundamental Es i A
where an arbitrary phase can be transformed away. 20 | ” i
The fields are scaled in terms of the effective nonlinear o A
coefficients arising from the above-mentioned overlap inte- < ] S
grals and the nonlinear material coefficients. For large abso- 20 — S
lute values of the detuning of the second harmonic different m .
signs result in effective focusingA(<<0) or defocusing 10 — il
(A,>0) behavior. This is evident from neglecting the de- - | I
rivatives in Eq.(1b) for large A, and substituting foA, in 0 : - : :
Eq. (1a), leading to a cubic term thefsee below ! |
-5 0 5
A2
IIl. HOMOGENEOUS STEADY-STATE SOLUTIONS
AND THEIR STABILITY 50 () o
[ 4
As a prerequisite for the formation of patterns we con- 40 — E .
sider the homogeneous steady-state or plane-wave solutions .
Ang, N=1,2, of Egs.(1) and their stability against spatially ]
homogeneous and modulated perturbations. The plane-wave o 30 —
solutions are obtained by equating the derivatives in Egs. < .
to zero[15]. This yields for the fields 20 —
_ ) 10—
A1+|—W|A1o| A=E, (28) i
T T T T ]
(Aptiy)Ayp=—A%,. (2b) 0 10 20 30 40
E

From this the equations for the moduli of the fields are FIG. 1. (a) Loci of limit points (solid line) and Hopf bifurcations
(dashed ling in the (A,,]A.d?) plane for plane-wave solutions
(A;=4 andy=0.6) and (b) bifurcation diagram corresponding to

[[A1d*+2(y—A145) A >+ (AT +1)(AS+ ¥ ]| Ad : 1d (b) gra
the vertical dashed line ifa) (A,=4, solid lines correspond to

= (A§+ VZ)EZ, (39 homogeneously stable and dashed lines to homogeneously unstable
plane-wave solutions; filled circles mark the maxima of stable pe-
5 riodic solutions and the square a Hopf bifurcajion
| Agd VAS+ ¥*=1]Aqd?. (3b)

a;=2(1+7),
For certain parameter ranges E8a) has three real solutions
for |A1¢|2, which is a prerequisite for bistable behavieee
below). Equation(2a) is reminiscent of the case of a cubic
nonlinearity with a complex-valued nonlinear coefficient, the
imaginary part of which describes two-photon absorption 1=
[12]. Here it corresponds to a nonlinear loss of the funda-
mental due to the part of the total energy that is carried by
the second harmonic and leaks out of the cavity because of
radiation dampindproportional toy).

a,=4(|Ad*+y)— |A20|2+A§+1+A§+ Y2,
2[2(1+9)|Aggl2— ¥ A2+ y(AF+1) + AS+ 9],

ap=4(|A1d %+ y—A14,)|A1d?— (A5+ ¥P)|Axg?
+(AZ+1)(A5+9P).

N Thus a plane-wave solution is unstable if E4). has a solu-
A. Homogeneous stability tion with Re\>0. A solution R& =0, with either Imx\=0 or
To determine the stability against spatially homogeneousm A#0, marks a critical point in parameter space. Here
perturbations, i.e., omitting the spatial derivatives in Efjs.  there may be a transition from stable to unstable behavior.
we substituteA,= Ao+ 5A,e"" into Egs.(1) and linearize Equation(4) has a solutioh =0 if
with respect todA,. This leads to an eigenvalue problem
for the propagation constant with the characteristic equa-
tions

2 1
|A10|2=§(A1A2_ ?’)i§ V(A1A,— )2 =3(yA;1+A,)%

5
M+ag\i+aN?+a\+ag=0, (4) ©
This corresponds to a pair of limit points, which mark the

where boundaries of a bistable domain, given that
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FIG. 3. Loci of critical points Rex(k®)=0] in the (A,,|A;9?)
plane for plane-wave solution&\,;=4 and y=0.6). Solid lines,
ImA(k¥)=0; dashed lines, li(k?)#0; thin lines,k=0; bold lines,
k#0.

FIG. 2. (a) Re\ and(b) square root of the total relative intensity
[Al =_f§d§(|A1—,2Am|2+|A2—A20|2), P period of traveling-wave  certain range of, the homogeneous steady-state solutions
solutions versuk® for various values of [A;=2,4,=2,y=0.6,  show bistable behavior, destabilizing at the first limit point

andk=2m/P in (a)]. and stabilizing at the second. They destabilize again at a
Hopf bifurcation[cf. Fig. 1(b) and dashed line in Fig.(&)].
|A5|(|A4]—Vv3) The plane-wave solutions are then stable in domain | of Fig.
W Y, A14,>0. (6) 1(a) and are unstable due to limit points in domain Il and due

to a Hopf bifurcation in domain Ill. The stability behavior of

From Eq.(6) an additional condition is obvious ;| >v3. _the periodic solutions bifurca_ting from the Hopf bifurcation
Furthermore, the plane-wave solutions destabilize via a Hopff Very complex and not considered hégé If Egs. (3) yield
bifurcation, which corresponds to a solution of the character®nly one real solution for alE, the homogeneous steady
istic equation with Re=0, Im\#0. Thus substituting States destabilize via a Hopf bifurcation.

A= *iw. into the characteristic equation and separating real

and imaginary parts, the Hopf bifurcation is determined B. Modulational instabilities

through Here we determine the stability of the homogeneous

steady-state solutions against perturbatios,=A,g

|A10|2:%2 |Asd2—[(1+ 7)2+ (Ay+Ap)?] +§Ane”e‘k><x“kYY, i.e., taking into account spatial modu-
(1+y lations. We proceed in the same way as in Sec. lll A, linear-
+4A (A +A,) izing .Eqs.(l) with respect tosAg. The corresponding char-
acteristic equation can be obtained from Edd) by
aA? (1+9)2+ (A1 +A,)? replacing A; and A, by A;—k? and A,—ak? with

AP -1+ 92+ (A, 12,7 | (78 k2=Kk24+ k2. Thus the coefficients become functionskdf

wi=a,las, (7b) 20 . ,
where the square of the frequeney with which the peri- ]
odic solutions emanate from the Hopf bifurcation must be 15 —
positive. Note that above condition is independent of _

whether the resonator is driven by the fundamental or second L

harmonic. Thus it holds also for the case of the OPO. In our < 107
case we have from E@3b) |A1g%=|Ag VAZ+12. Thus the .
Hopf bifurcation can be obtained as an intersection point of 5 —|

the two curves defined by Eq&b) and(7a). From this we

always found(numerically two intersection points with one

yielding a positivewﬁ, thus leaving one Hopf bifurcation. 0
A typical example of the loci of critical points, i.e., limit

points and Hopf bifurcations, in parameter spdae the

(A5,]A1d?) plane, which can be directly transformed to the

(A3,E) plane by means of Eq3a)] is displayed in Fig. 1 FIG. 4. Loci of critical points Rex(k)=0] in the (A,,|Ad?)

together with a bifurcation diagram in terms of the Contl’0|p|ane for plane-wave solutiorfd ; =2 andy=0.6). Graphical con-

parameterE. If Egs. (3@ yield three real solutions for a ventions are as in Fig. 3.
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FIG. 5. Loci of Hopf bifurcations of Eq910) (a) in the (E,v)
plane andb) in the (E,P) plane forA;=2, A,=2, andy=0.6.

i.e., a,=a,(k?. Correspondingly, the solutions of the char-

acteristic equation ar& =\(k?). We consider destabiliza-
tion of the plane-wave solutions at finite As for k=0 there
are two cases: Rgk®)=0 with either Im\(k®)#0 or
Imx(k?)=0.

Asymptotically, fork?— o, the solutions of the character-
istic equation are

a(al+

Ar)

A12(k2)=—1ii(k2+—2 +0(1/K3),
' 2—«
)
2 X Z_CYA1+A2 P
)\3’4(k )— ’yi|(k +—1_2a2 +O(1/k ),
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FIG. 6. Amplitude gray scale plots of th@) fundamental and
(b) second harmonics foh;=2, A,=2, y=0.6, andE=3.6 dis-
playing a traveling-wave solution.

d
%% _,,

2\
aO(k )—O, dk2

9

solving for (real) |A;¢? andk? after substitution of Eq(3b)

and keeping the system parameters fixed. The first condition
arises fromi (k%) =0 [remember Im(k?)=0] and the second
refers to the destabilization at the maximum mentioned
above. Concerning Fig. 3, it should be noted that the plane-
wave bistability is prevented due to a modulationally un-
stable upper branch.

IV. PATTERN FORMATION

i.e., the plane-wave solutions are stable for sufficiently large

k. Thus a plane-wave solution that is stable ket O [i.e.,

Where the homogeneous steady states become modula-

Re\(0)<0] destabilizes or becomes modulationally unstabletionally unstable we expect patterns to develope: either trav-

where a local maximum of the corresponding\R€) be-
comes positive[Fig. 2(@)]. Adding the loci in parameter
space of these points to the example of Fi(p) Xesults in

eling waves or roll patterns described by one veckgr,ky)
or hexagons described by two linearly independent vectors
(kx,ky). Stable traveling waves may develop where the

Fig. 3, leaving the plane-wave solutions stable in domain Iplane-wave solutions destabilize with Xii?)+0 (cf. bold

An example for a smaller value af; is displayed in Fig. 4. dashed lines in Figs. 3 and 4nd stable stationary patterns
Here the domain of bistability is at large, and thus outside where they destabilize with Ingk?)=0 (cf. bold solid lines
the figure. Figures 3 and 4 depict typical situations in paramin Figs. 3 and 4

eter space. The critical points where the modulational insta- We first consider the case of traveling waves and roll
bility sets in with Im\(k?)=0 (bold solid line$ can easily be patterns, assumink=k andky=0. Traveling waves ema-
calculated from nate from a critical point Regk®)=0 with velocity
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FIG. 8. Bifurcation diagram displaying the amplitude of the fun-
damental versus the control paramdiefor A;=2, A,=—1, and
y=0.6. The rhombs represent the maximum available amplitude of
hexagon patterns and the square marks the point where the modu-
lational instability sets in.

degenerate branches. This becomes obvious if the p&iod
of the periodic solutions of Eqg10) is used instead of
[Fig. 5(b)].

Fixing all parameters of Eqsl), for v #0 the two Hopf
bifurcations beyond the limit point are connected by a branch

of traveling-wave solutiongthe control parameter along the
X branch isv, each value ob corresponding to a certain pe-
riod P of the traveling waves They bifurcate from these

FIG. 7. Amplitude gray scale plots of th@) fundamental and
(b) second harmonics fak;=2, A,=—1, y=0.6, andE=6 dis-
playing a hexagon pattern.

v=ImA(Q)/K  (remember A=A+ A, KX+ IMEKT)

points with periodP=2x/k [k from Rex(k?)=0; cf. Fig.
5(b) with the velocity replaced by the peribdExamples of
branches of traveling waves are shown in Fith)Zor dif-
ferent values oE, together with Re(k?) in Fig. 2(a). Here,
for periodic solutions we defindd=2/P. For roll patterns

Roll patterns are included as a special case and correspondtife situation is similar. For fixef each of the degenerate

v=0. Introducing the velocity of traveling waves, they can
be calculated as periodic solutions from

PA; | A _
—— —iv——+ (A +i)A;+ATA,=E,
23 23
(10
PA,  IA, _ 5
@G e +(Ax+iy)A+AT=0,

which derives from Egs.(1) assuming solutions with
&=X—vT. With respect to Eqq10), the bifurcation behav-
ior of traveling-wave solutions can be treated in terms of
Hopf bifurcations in the usual wagas fork=0 in Sec. Il
replacing the former timé& by £). Such a Hopf bifurcation of
Egs. (10) corresponds to a critical point R&?)=0 of the
original equations. Figure(8) displays the loci of Hopf bi-
furcations in the E,v) plane. As pointed out above, at these
points the velocity i$ =Im\(k?)/k [in Fig. 5a) only positive
velocities are displayddThe points where a local maximum
of the corresponding R&€k®) becomes positive are limit
points in Fig. %a), i.e., if the control parameteE is in-

creased beyond the limit point first encountered, the plane-

(@)
40

(b)

wave solutions destabilize there. This happens with either FIG. 9. Amplitude gray scale plots of tHe) fundamental and

ImA(k?)#0 (v#0) or Im\(k®)=0 (v=0). Note that in the

(b) second harmonics forA;=-4, A,=-1.8, y=0.6, and

case of roll patternsy(=0) we have a limit point of two E=5.25 displaying a hexagon pattern
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branches corresponds to a bifurcation point with differentA;<0. For sufficiently negativés, (case of effective focus-

periodP [Fig. 5b)]. The Hopf bifurcations described in Sec. ing) we find strongly localized hexagonal patterns that have

Il (k=0, homogeneous solutionsorrespond tov =<, finite amplitude just beyond the point where the plane-wave

P=o (cf. vertical dashed lines in Fig)5 solutions become modulationally unstabiiég. 9). The peak
Equations(10) do not yield the stability of the periodic intensity of the second harmonic is considerably larger in

solutions. This was tested by solving Eq$) numerically.  this case.

For the numerical simulations of pattern formation a split-

step fast Fourier transform algorithm with periodic boundary

conditions was used. Typical grid sizes were X228 V. CONCLUSION
points. In the example of Fig(& we found stable traveling- '
wave solutions around the maximum of X¢&?) in k space. We determined the stability behavior in parameter space

Increasing the control paramet& further, all traveling- of the homogeneous steady-state solutions. Neglecting spa-
wave solutions are unstable beyond a critical valuE.oAn  tial modulations, we found them always destabilizing via a
example of a stable traveling-wave solution is displayed inHopf bifurcation. Oscillating instabilities seem to play an
Fig. 6. In the case of Fig. 3 there seem to be no stablessential role in resonators with a quadratically nonlinear
traveling-wave solutions. medium. Taking into account spatial modulations, the Hopf

Concerning roll patterns, they seem to be unstable. Inbifurcations lead to traveling-wave solutions. Increasing the
stead we found stable hexagonal pattéfosan example see input power, they destabilize, resulting in more complicated
Fig. 7) beyond the points where the plane-wave solutionamotion. Roll patterns were always found to be unstable. In-
destabilize with Im(k?)=0. Figure 8 displays an example of stead hexagons evolve. In the case of effective focusing they
a branch of hexagonal patterfglotted are the maximum are extremely localized and have finite amplitude just be-
amplitudes availab)e Here the hexagonal patterns seem toyond the point where the modulational instability sets in. The
bifurcate with infinitesimal amplitude from the point where existence of the stable spatially modulated structures was
the plane-wave solutions become modulationally unstabledemonstrated by means of two-dimensional numerical simu-
The intervals ink space where we find stable haxagonallations. Modulational instabilities influence the plane-wave
patterns are shifted from the point where NR€)  solutions considerably. There is no plane-wave bistability
[Re\(k®)>0] has its local maximum and are outside the in-because we always found the upper branch of the bistable
terval with Rev(k?)>0 close to the point where the modula- curve to be modulationally unstable. Thus switching from
tional instability sets in. This seems to be similar to the find-one homogeneous steady-state solution to another is not pos-
ings for roll patterns if11]. The situation is different for sible.
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