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Influence of the fluctuations of polarization in molecular chains
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We analyze the influence of the fluctuations of polarization on the soliton transfer in one-dimensional
biexciton molecular chains. Important modifications appear on the model Hamiltonian with different exciton-
phonon coupling constants. The parameters of the solitary excitatemgth and energyare calculated. We
show that the fluctuations of dipoles will increase the soliton width and its rest energy. Finally, a brief study of
the statistical propertie@artition function and specific hgas done.[S1063-651X97)00710-1

PACS numbd(s): 03.40.Kf, 05.60+w

I. INTRODUCTION Here the exciton energy is

Theoretical investigations carried out by many authors in
the fields of nonlinear physics have shown that localized
excitations that are self-consistent combinations of intramo-
lecular excitations and longitudinal deformation may exist in
molecular structures. Studies have been made in both one
and two dimension§l—-6]. Such excitations are assumed to
exist in a-helical protein molecules and other quasi-one-A; (Bx) and A, (B,) are boson creation and annihilation
dimensional polymeric structur¢8-5,7. They play a major  operators, respectively, for quanta of excitons of Aheype
role in the transfer of energy and/or information and other(B type) with energyJ, (jo) at siten. These operators sat-
vital process¢$4,5,7]: The above studies did npt take into isfy the Bose commutation relatioM (Mo) is the energy
accloun} the |gterhact|on petw.e((ejn thg r:jgturlal dipole of eﬁc f the resonant dipole-dipole interaction between the nearest-
molecuie dan i tﬂ? excnon-l? ucef th PO e’t rtr_mmelnt t t?]li'neighbor intramolecular excitations of the type (B type
emerges due to the propagation ot the excitation along e, 4y~ g is the anharmonicity constant of the intramolecular

chain. . . .
In this paper we analyze the influence of the quctuationsV'bratlons' The phonon energy operator is

H o= ; (JoATA,+J30BIB,) + Z Mo(ATA, 1+ H.C)

+> Mo(B!B,, 1 +H.c)—4IATABIB,. (2.2
n

of the polarization on the different components of the Hamil- 2 M2
tonian describing the dynamics of the system. We also Hon= >+ -0 (Qns1—Qn)2l, (2.3
present changes that these fluctuations might introduce in the 2M 2

parameters of the solitary wave. We consider one- ) o ] ]
dimensional molecular chains where longitudinal displaceWhere g is the characteristic frequency a}, is the dis-
ments of the molecules from their equilibrium positions arePlacement operator, with the conjugate momentum operator
nonlinearly coupled with the intramolecular vibratiojexci- ~ Pn- Finally, the exciton-phonon interaction energy is given
tons. In real nonlinear molecular chains there exist, in fact,8S
many different types of excitons. Thus it is not appropriate to
consider only one type as in the previous wofks,6]. We Hi= =31 (Qn:1— Q. 1)AA -3 (Qni1—0n 1)
investigate in this paper the case of two exciton evolutions 14 St en= et H L el
leading to equations of motion that we can solve exactly. In
Sec. Il we show that fluctuations do not affect the phonon’s XB!By—M1Y, (Qns1—Qn)(AIA, 1 +H.C)
Hamiltonian, whereas important modifications occur in the n
exciton and exciton-phonon Hamiltonians. In Sec. Il we
show that the system admits a soliton solution and we pro- ~M1> (Qni1— Q) (BB, 1+ H.C). (2.4
pose a qualitative analysis of the parameters of the soliton. In n
Sec. IV we calculate the energies, the partition function, and _ _
the specific heat of the system under consideration. The nonlinear coupling constanig,J;,M,M, arise from
modulation of the on-site energy by the molecular displace-
ments.
We are now interested in the energy of the polarization
fluctuations of dipoles. When it travels along the chain, the
The model’'s Hamiltonian of nonlinearly coupled excitons solitary wave generates an electric dipole due to an intramo-
and phonons, investigated by various authidr8—10, is  lecular excitation. Then we might introduce an extra contri-

Il. INFLUENCE OF THE FLUCTUATIONS
OF POLARIZATION ON THE MODEL HAMILTONIAN

composed of three distinct contributions bution to the Hamiltoniari2.1) to describe the coupling be-
tween this dipole moment and the intrinsic mompraf each
H=Hg+HpntHint. (2.2 molecule. Let us represent loy(d) the dipole that emerges
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resulting from the intramolecular excitation of thetype (B Let us note in passing that;,; contains four terms. The
type). We assume that the two excitons have their dipol€first two terms describe a mixing of exciton and phonon
moments approximately directed along the one-dimensionalibrations, the last two terms are higher-order terms that
molecular system. The interaction energy between théave the effect of changing the propagation of intramolecular
exciton-induced dipoled andd at the siten and the dipole excitations as theQ, amplitudes change. The additional

p of the molecule at site 1 can take the form terms are also mixing terms. The Hamiltonilahi‘ﬁt) now ex-
— hibits two forms of interactions. The first formQg. 4,
pdK —Qn_l)AlAn is the one used by Davydov, Eremko, and

—Z E 73 B B/B,, (2.5

Sergienko[11] to investigate solitons im-helical protein
molecules. The second fornQ.;—Q,)A'A,, which ap-
wherer ,, is the distance between thth andnth sites anK pears due to the fluctuations of the dipoles, has been pre-
(K) is the average value of caﬂs(cosa) in which ¢ (9) is  sented by Scoftl2] as more appropriate to describe phonon

|rnl|3 |rnl

the angle between the direction pfandd (d) coupling of the amide-I mode in the helix because this
In the case of only nearest-neighbor interactions the extode interacts primarily with the adjacent hydrogen bond.
pression of the Hamiltoniahi; is simplified to Thus new constants of mixing appear for the two types of
L excitons, i.e., GfdK/a%) and 6pdK/a%), respectively.
pdK + pdK + Therefore, it is clear from the above analysis that the fluc-
Hi=2—3 En: AlA+2—3 2 BlB tuations of polarization modify the mixing of exciton and

phonon vibrations.

pdK : pdK The second part ofl;,; preserves its form. We can then
—6—7 > (Qn+1=Qn)ArA— 67~ conclude that the fluctuations do not affect the direction of
A the propagation of excitons along the chain as@eampli-
tudes change.
X2 (Qus1~Qn)BIBy, (2.5)

IIl. INFLUENCE ON THE PARAMETERS

a being the lattice constant. To account for this new interac- OF THE SOLITARY WAVE

tion HamiltonianH; the basic Hamiltonian2.1) must be
replaced by To determine the basic equations governing the system,
we introduce the coherent state ansatz
HW=HE+HRP+H. (2.6
The form of the phonon’s Hamiltonian remains the same [D())=|¥(t))exd — S(t)1/0)pn, 3.
(H{Y=H,y. But important modifications appear in the ex-
pression of the excitons’ Hamiltonian and the exciton-

phonon Hamiltonian. Indeed, to obta " the parameters where
Jo andJ, of Eq. (2.2) have been replaced by
dK 2 [n(DAE Ba(DB I O)es (32
JB”)=J0+22—3 (2.73 )= " (DBn]0)ex
and i
— S(t)= 3 2 [un(t)Py— my(1)Qul, (33
Sm_73 ., PdK "
3" =Jo+2—5. (2.7b

nd|0>, and|0>;, are the exciton and phonon vacuums,
As one can see, the energy of an isolated wbranonaf1 espectively.

quantumS of the A3 type (B typ® is increased by Minimizing the expectation value of the total Hamiltonian
2(pdK/a”)[2(pdK/a”)] by the fluctuation of the dipoles. within the coherent state yields a set of coupled ordinary
On the other handH( is obtained by adding té4;, the differential equations for the classical excitons and phonon

term wave functionsy,(t), Ba(t), andu,(t),
pdK pHIZ
Hi'= =6 —7 20 (Qnea= QuAA 6~ A
if T:Jo IntMo(nprtn-1)—J1
X2 (Qus1~Qn)BIBy, (2.9 X (Uns 1= Un—1) =Myl (Uns 1= Up) thn 1
. pdK
such that +(Up—Up_1) ¢n—1]_4|:8nﬁn Un—6—7
HiR = Hip+ Hi® (2.9 X (U s 1—Un) (3.4)
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B~ - ~ o 72 )
i% ot =J0BntMo(Bnr1t Bn-1)—J1(Upr1—Un—1)Bn i 5i=(Jy " +2Mg) B+ Moa Bxx_M_ﬁ |:8|
vo(1—s9)
_Ml[(unJrl_un),—‘irfl"'(un_unfl)ﬂnfl] +%|¢|2 B. (3‘12)
pdK
_4|‘/’n¢::8n_6?(un+l_un)ﬂna (35) Here
d ~ o~ paR
J2u,(t) _ P ~_
M (9:2 :ng(un+1+un—1_2Un)_Ml[‘ﬁ:(lﬂnﬂ x=(MytJy)a+3 a (MytJy)a+3 a’
(3.133
— -1+ (P a— - D)1= Ml B (Bnsa and
= Bn-)+ Ba(Bhea= B D)1= il )
- _ o~ 204 _ 2 _v
_|¢n71|2]_‘]1[|ﬁn+1|2_|Bn71|2] “ KK+IMUO(1 ). s UO. (3.136

pdK pER
—6— [|‘/’n|2_|¢n71|2]_6?

X[|ﬁn|2_|ﬂn—l|2]- (3-6)

In the continuum approximation, the system of equations

(3.4—(3.6) becomes

i7iy= (35" +2M o) g+ M@ i,y

pdK

—2[(M1+Jl)a+3? ugr— 41812y, (3.7

ihB=(I"+2Mg) B+ Ma2B,y

~ pdK
—2[(M1+ Jl)a+3? uB—41|y4|%B, (3.9

2 pdK 2
Muy=M wguy—2 (M1+31)a+3? (141%)x

~ o~ pdK )
-2 (M1+J1)a+3? (181)x - (3.9

In Egs. (3.7—(3.9), higher nonlinear terms have been ne-

glected.
We are seeking the solution of EqR.7)—(3.9), which
corresponds to propagating waves of constant form,

s=x—ut.

(3.10

ux,H)=u(x—ovt), [¥(x,H)]*=pu(x—ot),

v is the soliton velocity. In addition, the set of equations
(3.7 and (3.8) can be reduced to a system of coupled non-

linear Schrdinger equations

2

X K
i7i =I5V +2Mg) h+ M a2y — MuZ(1-5) [yl?

(3.1)

+a 2
=3 |BI*| ¢,

The basic equation&3.11) and (3.12 can be derived from
Hamilton’s canonical equations for Hamiltonian density

Hg= (35" +2Mg)| 42+ (35" + 2M )| 812 = Mga?| i1/

_ 2
—Moa?| B2 —4l|y|? B>~ MoZ(1=s)

X (k|92 +k| Bl (3.19

The above nonlinear cubic equatiof811) and(3.12 have
the soliton solutiorf13]

X—uvt
w(x,t)=¢osec+ A exdi(kx—wt)], (3.195
Xx—ut L~
ﬁ(x,t)zﬁosec+ A exgi(kx—wot)], (3.1
with
_ ho pll hv (3174
2IMola®’ "~ 2|Mga?’ '
homJM om0 Met
eI Mo g A B0
he=I"+2M i +M°a2 (3.170
w= - =t 0, .
0 O 4Mylaz A2
MF2+M K2—(M +M ala
o M Mo’ (Mot Mgada
[(a+ kk)
lﬂzzi Moa_M0;2 (3 18k)
O 2A (Mg+Mo)a—Mgr2—Mok2
a M a—m K2
B2 0 . (3.189

" 2A (Mg+Mg) a— Mgr2— M gk?

The analysis of Eq(3.18 shows that the amplitudes and the
soliton width are positive provided that
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IM Ug(l_sz)>(M0';_ MOK)%/MO for Mo/K>Mo/7<' IV. ENERGY CALCULATIONS: PARTITION FUNCTION
(3.19 The exact expression of the energy per pulse is obtained
and through the formuld17]
) ) - _ ~ (12N
IMvg(1—s%)>(Mgk—Mgk)x/Mg for Mg/k>Mq/lk Ep:f Hq(s)ds. 4.2
(3.20 —(L2)x
are satisfied. The parametek is the dimensionless pulse period. For the

If we considera-helix proteins, which are examples of Sech-soliton solution\ =<. Then we find by substituting q
one-dimensional molecular systems, the numerical valueRY its expressior(3.14)
usually used in the case of only one type of exciton are

- ~ A
[14-14 Ep=2[(35"+2Mo) g+ (Jg"+2Mo) 53]
Jo=0.205 eV, My=-7.8 cm'}, d=0.3 D, L L
0=5 D. —[Mo¢§(k2+p a+M0,8§(k2+P alA
M;=—10"2 N, J;=(-3.4)x10 1 N, L4 Mo¢§a+ MoB3a 2 A
3| A A Mu3(1-5?) a
a=4.5 A,
2 |~ n2\2 A 2 02
M=114m,, vo=(4.6)x10° mis, X (kipg+ KBy —4l a oBo |- (4.2)
v=(4.5)x10° m/s. (32D There is an increase of each term of F412). According to

For the matter of calculations. we assume that the paramc_v-helix parameters, in the second set of square brackets with

eters concerning the second coordinediffer from those a minus sign are less important than all the positive contri-
of the first, as indicated in Ref10], such that we can set butions. Finally, these fluctuations increase the energy per

pulse.

R=x(1l+e), (3.22 On the other hand, the pont_inuum limit of the Hamiltonian

(2.6) leads to the determination of the total energy of the

with e<1. This latter constraint avoids the hypothesis ofsSystem
important fluctuations between both types of excitons and

_ 1 2

allows a better cohesion of the system. In this context the E=Eo+2Msop”, (4.3
expression ofA takes the form with

A=t 3.2 T o -

=7, (23 B[+ 2Mogi+ B+ 2R 83 <

here 8135’ [My+Jd;+a(My+3,) 2A g

_ AN 201 o2 1T T alVigTJdy 0

. (Mo+Mg)IMv3(1—8?)—g«? - 3Muv§(1—s?)2
()= 2k%(1+e)+IMv5(1—5?) (3.2 (4.4
In the absence of fluctuational termsjs reduced to and
kr=(M;+J))a. (3.25 16y2a? -~

r sol= W[M1+J1+a(M1+J1)]2
From the above numerical values, we obtain vo(1-5%)
k,=(—15.75X10 2 N m and k=(—2.25)x10 2! N m. w22 B
Then it is clear thai?> «? andf(«,)<f(«). Consequently, — [ 2220 A, (4.5
we haveA>A, . It follows from Egs.(3.23 and(3.24 that a’ \My Mg
the fluctuations of polarization lead to an increase of the
solitary width A. It appear that the expression presented invhere
previous works, without account for these effects, was un- 2
derestimated. = Bo (4.6

From Egs.(3.1809 and (3.189, one can notice that the _3' '

amplitudesy, and B, of the soliton are inversely propor-

tional to its widthA. In the same vein, we can demonstrateHereEy is the rest energy of the soliton and is its effec-
that these amplitudes will decrease if the above influencetive mass. Accounting for the above analysisfofy?, 52,
are included in the model of the system. Let us mention imwg, andA,BS, it is straightforward to demonstrate thag
passing that the producrs:,/;g and Aﬂg also increase. and mg, increase in such a situation.
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V4 model of one-dimensional molecular chains. We have intro-
s duced two excitonic coordinates and have analyzed the in-
fluence of these fluctuations on the model’s Hamiltonian and
on the parameters of the solitary wave. In order to gain a
better understanding of the changes that appear due to these
effects, we have calculated the energies, the partition func-
tion, and the specific heat. The above investigations show
Floc that the results obtained in previous works relevant to mo-
— Graph A lecular chains needed some improvements. Indeed, the soli-
ton width was underestimated, its amplitude was overesti-
mated, the rest energy of the soliton was underestimated,
T etc., because these fluctuations were ignored.
We conclude with a few remarks concerning the applica-

« Fltﬁ ﬁ ttplgltl'Of the partmog “t’“i::o’z Vers“ﬁ te":ﬁe’;‘t“i@ oo of our two-excitonic model theory to the transfer of
(K): the dotted line corresponds to the case where the fluctuationg, o and/or information in biomolecular systems. We note
are taken into account and the solid line is obtained in the absen

of fluctuations. We have usd=0.1,1=0.01 eV, ands = 0.001. Fhat this application shpuld be ylewed very cautiously untll'
more complete theoretical studies are available. The possi-

We are now interested in the statistical properties of thellity of exciton self-trapping phenomenon to biophysics that
system. It is worth noting that the soluti¢8.15 and(3.16  9ive rise to the standard Davydov soliton, where only one
is obtained on the assumption that the length of the molecunode of the exciton has been considered, tends to be very
lar chain is infinitely long. On the other hand, it is well idealized. The inclusion of effects that are present in more
known that the thermodynamic influence of solitary wavesrealistic biophysical systems, especially various forms of dis-
depends critically on the length of the systgh7]. In large  sipation, fluctuations, lattice discreteness, or several modes
systems, sech solitons play a relevant role in the evaluationf intramolecular vibrations, leads to exciton-phonon prob-
of the partition function. In this case, the partition function lems that differ from the standard Davydov problems.
and the specific hed are expressed, respectively, as A very serious open question for the transfer of energy in

biomolecular systems is to propose realistic models with
-E, lower energy. In the present work, solitons created by the
ZZGXF< KeT ) (4.7) coupling between the exciton of the chain corresponding to
simultaneous excitations of two modes of intramolecular vi-
and brations and the longitudinal phonon have higher energy
than the standard Davydov’s soliton. However, there are sev-
dIn(Z) 3 In(2) eral Iings of investigation to decrease t'his ener@y.The

0T T2 ) (4.8 generalized Fulton-GoutermdRG) transcription and the to-

pological property of the FG equation can be used to estab-
E, is defined in relatior(4.2) andk is the Boltzmann con-  lish improved forms of the vibrational wave functiof3].
stant. The calculations yield= 0, whatever the case. There- These solutions are shown to yield lower ground-state ener-
fore, the fluctuations do not modify the specific heat of thegies than the previous Davydov soliton theofi#g]. (ii) For
system under consideration. the particlelike properties of solitary waves, the stability ap-

We have plotted the partition functich as a function of pears to be a necessary condition. This stability is related to
the temperaturé-ig. 1). Both pictures have been considered: the complete integrability of the corresponding wave equa-
when the fluctuations of polarization are absent and whetion. The integrability permits an analytical study of the mul-
they are taken into account. The following results have beefisoliton interactions. Thus the integrability of the system of
obtained: In all the cases the partition function grows as théwo coupled nonlinear Schdinger equations based on the
temperature increases, but it grows very rapidly in the abconcept of the degenerative dispersion laws has been estab-

0.05 -

0.025 |-

= L L L 1 n L . 1
0 100 200 300 400

C:kBT 2

sence of the fluctuations. lished[20] and multisoliton solutions have been obtained by
using Hirota’s method21]. Thus one should pay particular
V. CONCLUDING REMARKS attention to the solitonic ground-state energy when such

models are applied to biomolecular systems. This question

Our intention in this paper was to seek evidence for con . o
must be left to further investigation.

tributions to fluctuations of polarization of the dipoles in a
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