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Effects of off-diagonal nonlinearity on the time evolution of an initially localized mode
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A modified one-dimensional nonlinear ScHiager equation which includes off-diagonal nonlinearity is
proposed to describe the behavior of electrons via electron-phonon couplings in the Su-Schrieffer-Heeger
Hamiltonian. We find an interesting self-trapping phenomenon of electrons which takes place when the mag-
nitude of the nonlinearity parameter is close to the value of the hopping integral. For a periodic lattice, the
ballistic propagation of a wave packet is found in this modified one-dimensional nonlineadBg®oequa-
tion, and the propagation rate increases with the increase of nonlinearity parameter except in the self-trapping
interval. When diagonal disorder is introduced, the electronic states are localized, and no delocalization effect
of the off-diagonal nonlinearity is found. These results are quite different from that in the diagonal nonlinear
lattice, where delocalization is founp51063-651X97)10209-4

PACS numbeps): 42.25-p, 52.35.Mw, 71.55.Jv

I. INTRODUCTION will be subdiffusive for large timg16]. Recently, Molina
and Tsironis introduced a nonlinear random binary alloy
The study of the interplay of disorder and nonlinearity is(NRBA) model[17], where two species of sites with differ-
of great importance in a variety of fields in condensed-mattefnt nonlinearity parameters are randomly distributed, and the
physics. Both are regarded as origins of the localization, anélisorder resides completely in the nonlinear term. They stud-
have received much attention since the last de¢ad@ The ied the dynamical localization of the NRBA, and found the
theory of Anderson localization predicts that the wave func-2PSénce of electronic localization except for a very large
tion of an electron moving in a one-dimensional lattice with nlonlllnearlty parar?)eteI:. The l'presence Olf das_order tl)s ”‘?OT“'
on-site energy disorder is localized even for an infinitesimaP'€te!y overcome by the nonlinear term, leading to ballistic
amount of disordef3—7]. Thus in such systems the mobility prog\)ag?]tlon_ of the untrapped fra?tur)]n Oélzlhl_esge.c”%”s' .
i , . nother important property of the is the self-
of electrons is inhibited. On the other hand, nonlmeamytrapping phenomenofi1,18—20, i.e., the clustering of the
arises, for example, from the interaction between electronaI

; N . N ectron amplitude on a single site. When the nonlinearity
and lattice V|brat|on$8]. This leads to the possibility of the parameter is greater than the critical valué, &elf-trapping
occurrence of a mobility edg®]. Furthermore, the interac-

! i L occurs. Thus the probability of finding the particle at the
tion between electrons and lattice vibrations can lead to afhitial site is always nonzero.

effective correlation between the site energy and the nearest- The electron-phonon interaction included in the DNLSE
neighbor overlap integral, thus resulting in possible delocalyescribes the lattice vibrations coupled to the diagonal elec-
ization [10]. The most widely used equation describing thetronic matrix element of the electron Hamiltonian, we call
motion of an electron in a one-dimensional lattice withthis diagonal nonlinearity. In fact, the lattice vibration can
electron-phonon interaction is the discrete nonlinear Schroalso be coupled to the off-diagonal electronic matrix ele-

dinger equatiodDNLSE) [11-14 ments[21]. It is then interesting to investigate the combined

effects of disorder and off-diagonal nonlinearity on the local-

iCh=€nCn+V(Cns1tCn_1)— XnlCnl%Cn, (1) ization and transport properties of a low-dimensional
condensed-matter system.

wherec, is the wave amplitude at site, V is the hopping In this paper we investigate the self-trapping and the dy-

integral between nearest-neighbor sitesjs the on-site en- namical Ioca!ization property of_a modified nonlinea( Sehro
ergy, andy, is a nonlinearity parameter which is propor- d'”g‘?f equanr(MNLSlE) which is proposed to describe the
tional to the local electron-phonon coupling under an adia®f-diagonal nonlinearity caused by the electron-phonon cou-

; S ling in a Su-Schrieffer-Heegd6SH Hamiltonian. In Sec.
batic approximatior{15]. From the above DNLSE we can P . . .
see that wheny,=0, and the on-site energy is randomly Il of this paper we describe the origin of the MNLSE from

distributed, it reduces to the Anderson model, where all thd"€ SSH Hamiltonian. In Sec. lll we study the dynamical
eigenstates of electrons are localiZ&#]. In dynamics, an properﬂe; of the MNLSE.'” a periodic Iatuce,_and in Sec. !V
initially localized mode will remain localized in a finite re- W€ investigate the combined effects of off-diagonal nonlin-

gion, and the time-averaged probability to find the particle afanty and on-site energy d|so_rder on the localization of elec-
the initial site will be significantly larger than 0. However, if rons. In Sec. V we give a brief summary.

nonlinearity and the randomness in the site energies coexist,
the dynamical localization will be destroyed by nonlinearity.
Shepelansky found that when the nonlinearity parameter is We consider an electron moving in polyacetylene or other
greater than a critical value, , the motion of a wave packet polymers. When we take into account the interaction be-
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tween therw electrons and the lattice vibrations, we can use @
the SSH Hamiltoniah21] . 1.0
2) (3)
: 0.8 -
H:%M; |un|2+%K; (un_un+1)2 (4)
06
=2 (ot a(Up=Uni))(CCriatChiiC), 2 2
n 2 04
where u, is the displacement of latticeég is the intrinsic 0
hopping integralg is the electron-phonon coupling constant,
andc, is the electron probability amplitude at site 0.0 SAVAYY AN
From a variational calculation with the adiabatic approxi- o 1 10 1(')0 10'00
mation, it is found that the displacement of each bond is
proportional to local electron density at its ends. Substituting t(IV)
this into the expression of the SSH Hamiltonian yields an
ity Wy(t) in a periodic lattice for different nonlinearity parameters.
iCh=€nCntV(Cnri1+Cn1)tvn(lcnl?+|Cnsa]DCnit The nonlinearity parameters for curved)—(9) are —1.0V,
-1.05v, —1.2v, —1.3v, —0.9v, —1.4V, 0, —3.0Vv, and 1.0¥%,
+vn(|cn|2+|cn,l|2)cn,1, (3 respectively. Curveg1)—(4) represent self-trapping states, other

curves decay rapidly.

wherev, is a parameter describing the electron-phonon cou-
pling, and e, is the on-site energy which is added to the |5 grder to obtain the above quantities, the fourth-order
equation. _ _ _ _ Runge-Kutta method is employed to numerically integrating

The dynamical properties of the MNLSE can be investi-io \NLSE. To avoid the end effects, the system should be
gated by considering the time evolution of a wave packejarge enough to ensure that the wave amplitude near the
which is initially localized at siten,: boundaries satisfigs/,|?< 10~ ° during the integration. The
integration step is determined in the following way: we stop
decreasing the step until the integration results do not change
normally for 5—6 significant digijswith the variation of the

Cn(o)zan,no- (4)

The propagation of the wave packet can be characterized

several quantities. One of them is the time-dependent prob—ep'
ability to find the particle at the initial site,
3 ) Ill. DYNAMICAL PROPERTIES OF THE MNLSE
Wo(t) =[cn, ()], ) IN A PERIODIC LATTICE
and the others are the mean square displacefi®b) and In this section we will concentrate on the dynamical prop-
the participation number, which are defined as erties of the MNLSE in a periodic lattice. The lattice we

study consists of 5000 sites. Without loss of generality we
- ) ) set all the on-site energies equal to zero in this section, and
(An(t))°= En: (n—ng)?cn(t)]7, (6) . takes an identical value for all bonds. Since the transfor-
mation V,v,)—(—=V,—v,) only turns the MNLSE into an
-1 equation for the complex conjugate variabft), and as a
P(t)= [ > |Cn(t)|4} , (7)  result the site probabilitp,,= c,c¥ =|c,|? remains invariant,
" it is then sufficient to také/>0 and consider two possible
respectively. sign_s ofyn_. F_or the sal_<e of convenience, we setl. The
The root-mean-square displacement usually follows darticle is initially localized on the central sitg=2500.
power law We calculate the time evolution of the probability to find
the electron at the initial site, the mean-square displacement,
An(t)~t”. (8)  and the participation number of the system for different non-
linearity parameters. The results are shown in the following
Wheny=0 the wave packet is localized, wher:@/< 3 it is figures.
subdiffusive, y=3 corresponds to a diffusive behavior, In Fig. 1 we show how the probability of finding the
1< y<1 corresponds to a superdiffusive behavigr=1 particle at the initial sit&Vy(t) varies with time for different
means that the motion is ballistic, and>1 means it is su- nonlinearity parameters. From Fig. 1 we can see Wig(t)
perballistic. The participation numbd?(t) gives a rough always approaches zero wheg>0. But for large nonlinear-
estimation of the number of sites where the wave packet hasy parametersW,(t) oscillates for some time before decay-
a significant amplitude. Whela= 1, the wave packet is com- ing to zero. No self-trapping occurs when the nonlinearity
pletely localized, and whe®=N, the wave packet is uni- parameter is positive.
formly distributed over the whole lattice corresponding to a Whenv,, is negativeWy(t) keeps a relatively large value
completely extended behavior. at the initial site for some time, and then decays rapidly to



4746 ZHIWEN PAN, SHIJIE XIONG, AND CHANGDE GONG 56

which is determined from the conditigiwy(t)) =0, andv
1.0 only slightly depends on the number of sites in our numerical
studies. Only whem,, is negative and the magnitude of it
0.8+ lies in the interval ¥,1.4V) does the self-trapping occur.
Whenv,=—V, Wy(t) is exactly equal to 1.0 at any time.
0.6+ This means that the particle is completely trapped on the
initial site whenv,= —V. We can see from the MNLSE that
047 it is possible for the right-hand side of the equation to be
zero whemw,<0. Whenv,= —V, the right-hand site of the
027 MNLSE is zero at the initial time, and does not change for-
ever, resulting in the constaqWy(t))=1.0. The result for
00 - this off-diagonal nonlinearity is quite different from the re-

o0 o5 AR s 20 sults of previous work on diagonal nonlinearfti/1,18—-2Q.

v (V) For diagonal nonlinearity, self-trapping becomes more and

more eminent with the increase of the nonlinearity param-

FIG. 2. The dependence of the time-averaged initial-site probeter.

<W(t)>

ability (Wy(t)) on nonlinearity parameters. Whén,| is less than In Fig. 3 we demonstrate the root-mean-square displace-
V, (Wy(t)) is zero. Whenrv | is greater than 1\, it is again zero. ment of the wave packet as a function of time for different
We can see rapid changes(®¥/y(t)) at|v,|=V and|v,|=1.4V. nonlinearity parameters. Numerical studies show that, for

large time, the wave packet propagates ballistically despite

zero. When the magnitude of the nonlinearity parameter inthe sign and magnitude of,. In this nonlinear lattice with
creases towar¥, the length of this transient time increases off-diagonal nonlinearity, the velocity of the wave packet is
until it becomes infinite whefv ;| =V, and the probability of greater than/2, the propagation rate for the linear periodic
finding the particle at the initial site rapidly approaches ajattice. Also this rate increases with the increase of nonlin-
constant which is significantly larger than 0. When|>V  earity parameter when it lies outside the self-trapping inter-
and|v | is less than an upper critical valug, this phenom-  val. If we take a closer look at the detail of the time evolu-
enon still exists. However, whelw,| is larger tharv, the  tion of the wave packeisee the inset of Fig.)3we can see
initial-site probability decays to zero after a transient time.that, in this nonlinear lattice, the wave packet propagates
Again, this transient time decreases wheyj increases from  ballistically at a rate less than that in linear lattice whes
Ve- less then a valug, . After this time instant, the curve bends

In order to determine the value of;, we calculate the over, showing a slope larger tha@, and thenAn(t) grows
time-averaged probability of finding the particle at the initial linearly with time at this rate. Conversely, in the diagonal

site for different nonlinearity parameters, nonlinearity case, the rate is smaller thdh and decreases
. with the increase of the nonlinearity parametgg]. In the
(Wo(1))= lim E J e, (1)2dt, 9) MNLSE, when self-trapping occurs, most of the wave _pa_cket
Tow T Jo 0 is trapped, but the untrapped portion escapes ballistically

with a relatively slower velocity. However, whan,=—V,
and show the dependence(&/y(t)) onv, in Fig. 2. In the  the velocity is zero since the wave packet is wholly trapped
figure we can see that there is a rapid growth(8f,) at in the initial site. The fact that the motion is ballistic even
lva|=V, and it drops to zero dv,|=1.4V. Thusv.=1.4V, when self-trapping occurs can be understood as follows:

10004 jof——m— | v,
Vp=-1.5
S 104 V=12
800 - j\:i ] Vo=-1.05
g Vo= L FIG. 3. The root-mean-square displacement
< o T of the wave packet as a function of time for dif-
E 600 o014 ferent nonlinearity parameters. The unitmf(t)

isa/V, wherea is the lattice spacing. The inset is
the detail at the beginning. We can see that when
no self-trapping occurs, the propagation rate of
the wave packet is greater than that in linear lat-
tice, and the propagation is ballistic even when
self-trapping occurs.
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1000

100

FIG. 4. The participation numbdp(t) as a
function of time for different nonlinearity param-
eters.

1 10 160 1000
t (1V)

when self-trapping occurs, there is some portion of the prob- Figure 4 shows how the participation numii(t) of the
ability amplitude escaping from the initial site before the system varies with time for different nonlinearity parameters.
self-trapped state is formed. This escaping portion is relawWe can see that in the linear case it grows linearly with time,
tively small, especially on sites other than the initial site.indicating a uniform spreading of the wave packet over the
Thus, because of the smallness of the nonlinear terms in thehain. In the nonlinear case we find that when the nonlinear-
MNLSE, the motion of this escaping portion is weakly af- ity parameter lies outside the self-trapping interval, the par-
fected by the nonlinearity. The propagation rate of the waveicipation number oscillates quickly at first, after a long time
packet is smaller when self-trapping occurs because of ththe oscillation becomes smaller, and theft) grows lin-
decrease of the escaping portion. early with time. When the nonlinearity parameter increases,
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(b)
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z
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FIG. 5. Wy(t) as a function of time for different nonlinearity parameters with on-site energy disordey—(l), the probability is always
nonzero, indicating a localized mode. (d), the probability is very close to 1.0.
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FIG. 6. Root-mean-square displacement vs time in a disordere (b)
lattice for different nonlinearity parameters. The unitDif(t) is N_C 0.02 4
a/V, wherea is the lattice spacing. The nonlinearity parameters for ©
curves(1)—(5) are —10.0v, —4.0v, —0.8v, 0, and—1.0V, re- 0.01 -
spectively. It grows rapidly at first and then saturates. :
; ; ; ; 0.00
P(t) oscillates even more dramatically. Whep is outside J ' '
but close to the self-trapping interva(t) is quite small at 2300 2400 2500 2600 2700
first, then abruptly “climbs” to a much larger value, and
then begins to grow linearly. When nonlinearity parameter is
within the self-trapping region, the participation number is
very small (close to 1.0, indicating the existence of a
trapped mode. 0.05 +
0.044 ©
IV. DYNAMICAL PROPERTIES OF THE MNLSE N—C 0.03 -
IN A DISORDERED LATTICE L
0.02 -
In order to investigate the combined effect of off-diagonal 0.01 4
nonlinearity and diagonal disorder on the localization, we se
the on-site energy in the MNLSE randomly distributed 0.00-
within the interval (-0.5v,0.5V), and the nonlinearity pa- 2300 2400 2500 2600 2700
rameter is taken to be identical for every bond. The intrinsic site

hopping integraV is set to 1. The number of lattice sites is

5000. The wave packet is initially localized on the 2500th FIG. 8. The spatial distribution of a wave packet for fixed non-

linearity parameters,= — 0.9V at different time instants for a dis-
1000 ordered lattice(a) Vt=100.(b) Vt=500.(c) Vt=1000. The spatial
distribution is within a finite region, and it changes little with time.

100 . ..
site, and we choose open boundary conditions.

The return-to-initial-site probability is shown in Fig. 5. In
this figure we can see that there is always a finite probability
to find the particle at the initial site no matter the magnitude
of the nonlinearity parameter. The results change little when
the nonlinearity parameter takes a positive sign, which is not
shown in the figureWy(t) in the nonlinear disordered lattice

©) for the nonlinearity parameter outside the self-trapping range
00 oo o0 o0 1000 ?s I_ess_ than that in the _Iinear one a_t the_ same time instant,
t(AN) indicating that the off-diagonal nonlinearity to some extent

reduces the localization of the wave packet. Wheris lo-

FIG. 7. Participation number vs time in disordered lattice for cated within the self-trapping intervaly(t) is always quite
different nonlinearity parameters. The nonlinearity parameters fotarge, i.e., the nonlinearity effect dominates in this case; the
curves(1)—(5) are —20.0v, —10.0v, —1.5v, 0, and—1.0v, re-  only effect of diagonal disorder is to broaden the probability
spectively. distribution.

P()
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0.006 | V=500

' Vt=1000

0.004
o FIG. 9. The spatial distribution of a wave
o packet for a periodic lattice with fixed nonlinear-
- ity parameterv,=—0.8V at different time in-

0.002 stants.

0.000 S —_

0 1000 2000 3000 4000 5000
site

Figure 6 gives the root-mean-square displacement for diflinear periodic latticd 23] since the wave packet propagates
ferent nonlinearity parameters. We can see ftvaft) grows  ballistically in the nonlinear lattice just as in linear one.
rapidly with time at first, indicating an initial expansion of
the wave packet, and after some time the growth becomes V. SUMMARY

very slow. The wave packet is still localized in this case. e dynamical properties of the MNLSE have been inves-
However,An(t) is larger for larger nonlinearity parameters, tigated by studying the time evolution of wave packet in
indicating that the wave packet is less localized in the off-periodic and disordered lattice for different nonlinearity pa-
diagonal nonlinear lattice than in the linear one. By fittingrameters. In the periodic lattice we find an interesting self-
the curves, we find thag in Eq. (8) is 0 in this case, while in  trapping phenomenon that occurs only in a narrow interval of
the disordered lattice with diagonal nonlinearigy &. the nonlinearity parameter, which is different from the re-

Figure 7 shows the time dependence of the participatio?U!ts of diagonal nonlinearity, where self-trapping always oc-
number. It oscillates quickly and is not unlimited. We seeCUrs if the nonlinearity parameter is greater than a critical

that the participation number is quite small compared to thé’alue' A_ccordmg to our re§ults_, the lself-trappmg oceurs
whenv, is negative andv | lies in the interval ¥/,1.4V).

lattice length. In the nonlinear disordered case, the particip - . .
tion number is larger than that in the linear disordered casaeTh'a wave packet propagates ballistically in the MNLSE in a

indicating that off-diagonal nonlinearity can to some extentperIOdIC lattice. _V\/_hen self-trapping occurs, the wave packet
enhance the width of wave packet. propagates ballistically at a rate less than that of the untrap-

In order to show more clearly the configuration of WaVeping case. Contrary to the results of the diagonal nonlinearity

packet, we demonstrate the spatial distribution of the wav ase, th? propagation veloc[ty of'a wave packet n 'the
packet in Figs. 8 and 9. In Fig. 8 we show the spatial distri- NLSE is greater than that in a I|r_1ear _Iatt|ce, and it in-
bution of the wave packet at different time instants for aCreases with the Increase of the nonlinearity parameter. Thus
given nonlinearity parameter,=—0.9V. We can see that qff—dlagon.al_ ponllnear]ty can help to enhance the propaga-
the spatial distribution changes little with time. The only tion of an initially localized mode in a periodic lattice. As for

effect of the off-diagonal nonlinearity is that the wave am-the cpmblned effects.of 9ﬁ-d|agonal nonlmean'_[y and diago-
nal disorder on localization, we find that off-diagonal non-

plitude at the initial site is smaller than that in the linear . ; o . . .
nearity cannot destroy localization as diagonal nonlinearity

lattice at the same time instant. The width of the wave packe::lloes The existence of off-diagonal nonlinearity onlv sliahtl
is broadened due to off-diagonal nonlinearity. As a compari- : 9 y only stightly

son we plot the spatial distribution of the wave packet of theexpands the localized wave packet
MNLSE in a nonlinear periodic lattice in Fig. 9. There are
two peaks at the two ends of the wave packet, and the dis-

tribution is under an envelope curve. This distribution in the The author is grateful to Dr. Huang Xiuging and Dr. Wu

nonlinear periodic lattice is similar to the result of that in the Xintian for helpful discussions.
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